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A B S T R A C T

Maintaining stable energy production with increasing penetration of variable renewable energy requires
sufficient flexible generation resources and dispatch algorithms that accommodate renewables’ uncertainty. In
this work, we study the feasibility properties of real-time economic dispatch (RTED) algorithms and establish
fundamental limits on their performance. We propose a joint methodology for resource procurement and online
economic dispatch with guaranteed feasibility. Our algorithm, Feasible Fixed Horizon Control (FFHC) is a
regularized form of Receding Horizon Control (RHC) that balances exploitation of good near-term demand
predictions with feasibility requirements. Empirical evaluation of FFHC in comparison to the standard RHC
on realistic load profiles highlights that FFHC achieves near-optimal performance while ensuring feasibility in
high-ramp scenarios where RHC becomes infeasible.
1. Introduction

In power systems with high penetrations of variable renewable
energy production, sufficient flexible and dispatchable generation re-
sources are necessary to ensure a stable energy supply. However,
conventional dispatchable thermal generators are ramp-constrained,
limiting how quickly they can modulate their production to accommo-
date large fluctuations in net demand. This poses a challenge for system
operators on two fronts: resource procurement and real-time generation
cheduling.
Resource procurement refers to the system operator’s task of plan-

ing for sufficient available capacity and ramp for the system to meet
ncertain net demand. Resource procurement takes place on longer
imescales (e.g., years to day-ahead) and includes several problems
amiliar to power system operators including security-constrained unit
ommitment (SCUC), resource adequacy, and capacity planning. On
horter timescales (e.g., 5 to 15 min), system operators must dispatch
vailable generation resources efficiently to meet realized net demand.
his is known as real-time economic dispatch (RTED).
Numerous methods have been devised in both of these domains

o ensure robustness to uncertainty in net demand. For resource pro-
urement problems, scenario-based optimization is common in practice,
hile other stochastic optimization techniques and robust optimization
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2 In systems with no inter-temporal coupling constraints (e.g., ramp or state-of-charge constraints), this feasibility mismatch does not arise. However, in practice

ramp limits matter, i.e., they constrain the set of operating points reachable by the system.

have been explored in the research community. For RTED, lookahead
dispatch algorithms have been widely implemented by independent
system operators (ISOs) in energy markets, and additional ancillary
services such as flexible ramping products and load-following reserves
have seen some adoption in markets with high demand variability.

The ultimate goal of both resource procurement and RTED is to
deliver sufficient generation to meet realized demand while satisfying
system constraints: that is, to guarantee feasibility of the dispatch in
real time. However, a crucial challenge facing state-of-the-art methods
today is that if resource procurement fails to account for the particular
dispatch algorithm to be used, or if the RTED algorithm used does
not appropriately consider procured resources (e.g., generation & ramp
capacity) when making decisions, then feasibility is not assured.2 More-
over, merging the problems of resource procurement and feasible RTED
algorithm synthesis, i.e., optimizing over both system specifications
and RTED algorithms, is intractable for the class of general dispatch
algorithms.

This motivates the goal of this paper: developing tractable methods for
resource procurement and RTED that together yield provable guarantees of
feasibility.
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1.1. Contributions

First, to motivate the need for a joint approach to resource pro-
curement and RTED, we show in Section 3 that even on a single-bus
system and with nearly full knowledge of future demand, offline feasi-
bility over a set of demand trajectories is insufficient to guarantee the
existence of any online dispatch algorithm that can feasibly meet those
demand sequences.

Second, a practical joint algorithm for resource procurement and
RTED is presented in Section 4. The first step is a robust optimization
problem called Dispatch-Aware Planning (DAP), which determines ade-
quate system capacity to ensure a feasible RTED algorithm exists. The
second step is a dispatch algorithm called Feasible Fixed Horizon Control
(FFHC) that minimally modifies the standard receding horizon control
(RHC) algorithm to robustly use trusted predictions of demand.

Third, in Section 5 we give matching upper and lower bounds on
the competitive ratio of any feasible online dispatch algorithm. These
bounds imply identical bounds on FFHC.

Finally, we evaluate the proposed approach on a synthetic system
derived from CAISO demand and generation data. We show that FFHC
retains the excellent average-case performance of RHC but in cases
here there are large demand fluctuations and the system is ramp
onstrained, RHC fails while FFHC remains feasible with minimal
dditional cost. The test cases presented in this work are designed to
learly demonstrate the feasibility properties of our approach. Although
ur algorithm is applicable to realistic problems like SCUC, large-scale
imulations are not explored here and are the subject of future work.

.2. Related work

This work bridges the online algorithms and power systems lit-
ratures. We briefly highlight some related work in each of these
omains.
Online algorithms. RTED is an online decision-making problem char-

cterized by a challenging combination of time-coupling and unknown
ime-varying constraints. None of the existing constrained online opti-
ization literature, e.g., [1–4], directly handles our setting.
The authors in [1] explore a related ramp-constrained online op-

imization problem, yet feasibility does not pose an issue due to the
ack of unknown time-varying constraints. Recent work in online op-
imal control considers time-invariant [2] as well as time-varying and
oupling constraints [3] on state and action. However, the feasibility
uarantees depend on advance knowledge of the constraints.
The work in [4] comes closest to our setting. The authors optimize

ver affine policies to design algorithms for online optimization with
witching costs and ramp limits that are robust to polytopic uncertainty
n certain constraints. However, their approach does not consider the
roblem of guaranteeing feasibility, and their proposed algorithm is
nable to fully exploit good predictions of near-term uncertainty.
Power systems. Resource procurement for system reliability and
ulti-interval economic dispatch are two key problems in power sys-
ems operation addressed by this work.
Our formulation of the resource procurement problem has broad

pplicability to several problems in power system reliability: in par-
icular security-constrained unit commitment (SCUC) for day-ahead
arkets [5–9], resource adequacy [10–12], and capacity planning [13–
5]. Most of the approaches in this literature do not consider behavior
f causal RTED algorithms or generally involve scenario-based opti-
ization [16,17]. In practice, resource adequacy planning relies on
egulatory standards and scenario-based studies and similarly ignore
he behavior of the RTED algorithm.
Many ISOs have implemented multi-interval lookahead optimiza-

ion for RTED, as it can better accommodate variability in forecasts
or renewables and intertemporal constraints from conventional gener-
tion and storage [18–21] Ancillary services such as flexible ramping
2

roducts [9,22,23] and load-following reserves [24–26] have been c
studied and implemented in some markets. To our knowledge, all of
the aforementioned proposals for multi-interval dispatch do not provide
provable guarantees for the feasibility of the lookahead optimization
problem. There is prior work on utilizing affine policies to robustly
dispatch reserves in the real-time market when ramp constraints are
present [27,28], but this work similarly does not explicitly consider
the question of feasibility, and the affine policies utilized may be more
conservative than the lookahead dispatch algorithms used by operators.

Our work is most closely related to research on adaptive robust
unit commitment with causal affine real-time policies in [29,30]. Here,
robust policy-aware economic dispatch is combined with robust unit
commitment, and an algorithmic framework for efficient computation
of large-scale problems is proposed. Like [4], robustness comes at
the expense of fully utilizing predictions. In contrast, we bring an
online algorithms perspective to the problem of feasible RTED, focusing
primarily on (a) designing feasible RTED algorithms that can fruitfully
exploit predictions, and (b) characterizing the performance of feasible
RTED algorithms in general.

1.3. Notation

𝑁 ∈ Z+ is the number of dispatchable generators and 𝑇 ∈ Z+ is the
ength of the time horizon. We denote the ordered set of time intervals
etween indices 𝑎 and 𝑏 by [𝑎, 𝑏] ∶= {𝑎,… , 𝑏} ⊂ Z+. The inequalities in
1) and subsequent optimization problems are element-wise.

. Problem formulation

The problem of optimal power system planning and operation can
e cast as a sequential optimization problem robust to uncertainty
evealed prior to each stage.3

in
𝐲

max
𝑑1

min
𝐱1

⋯ max
𝑑𝑇

min
𝐱𝑇

𝐜̄⊤𝐲 +
𝑇
∑

𝑡=1
𝐜⊤𝑡 𝐱𝑡 (1a)

s.t. 𝟏⊤𝐱𝑡 = 𝑑𝑡 ∀𝑡 ∈ [1, 𝑇 ] (1b)

𝑔𝑡(𝐱𝑡, 𝐲) ≤ 𝟎 ∀𝑡 ∈ [1, 𝑇 ] (1c)

ℎ𝑡(𝐱𝑡−1, 𝐱𝑡) ≤ 𝟎 ∀𝑡 ∈ [1, 𝑇 ] (1d)

(𝑑1,… , 𝑑𝑇 ) ∈  (1e)

or concreteness, we limit our presentation to a single planning stage
ith decision variables 𝐲 ∈ R𝐾 (e.g., generator capacities, ramp/line
imits, unit commitments) followed by 𝑇 generation dispatch stages,
ach with decision variables 𝐱𝑡 ∈ R𝑁 , 𝑡 = 1,… , 𝑇 , where the initial
perating point 𝐱0 is fixed. We assume the cost functions for planning
ariables 𝐜̄ and dispatches 𝐜𝑡 are linear and known by the system op-
rator. Constraint (1b) is the supply–demand balance constraint where
𝑡 is the demand at time 𝑡. Constraints (1c) and (1d) are affine and
epresent capacity/planning constraints and intertemporal (ramp, state-
f-charge) constraints respectively. We focus on a single-bus network
ith all dispatchable generators satisfying a net load trajectory 𝐝 =
𝑑1,… , 𝑑𝑇 ), which is contained in a bounded, known uncertainty set
.4 We assume that  is polytopic, i.e. it takes the form  = {𝐝 ∈ R𝑇 ∶
𝐝 ≤ 𝐟} with parameters 𝐄 ∈ R𝐿×𝑇 and 𝐟 ∈ R𝐿 known to the system
perator prior to solving the planning and dispatch problem.
Each dispatch stage depends on the planning decision as well as the

revious dispatch. An example of a problem falling under this frame-
ork is SCUC followed by multi-interval real-time dispatch. However,
his framework can be extended to include several planning stages
n advance of dispatch, such as capacity planning and intraday unit
ommitment.

3 For simplicity, in this work we assume that the only uncertainty is the
emand, although uncertainty in generation (e.g., solar, wind) can also be
ccommodated.
4 Everything that follows can be extended to multi-bus setting with network
onstraints, as in [29,30].



Electric Power Systems Research 212 (2022) 108597N. Christianson et al.

s
k

s
c

4

f
t
a
t
d
i
b
(
(
i
t
s
a
m
C
o

2.1. Planning problem

The goal of the planning problem is to determine a choice 𝐲∗ of
the planning decisions. Given that problem (1) is intractable due to
the sequential min−max−min operators, an approach taken by power
system operators in practice is to choose 𝐲∗ by solving an ‘‘offline’’ form
of the problem where the demand sequence 𝐝 = (𝑑1,… , 𝑑𝑇 ) ∈  (or a
small number of scenarios) is assumed known in advance.

min
𝐲∈R𝐾
𝐱𝑡∈R𝑁

𝐜̄⊤𝐲 +
𝑇
∑

𝑡=1
𝐜⊤𝑡 𝐱𝑡 (2a)

s.t. 𝟏⊤𝐱𝑡 = 𝑑𝑡 ∀𝑡 ∈ [1, 𝑇 ] (2b)

𝑔𝑡(𝐱𝑡, 𝐲) ≤ 𝟎 ∀𝑡 ∈ [1, 𝑇 ] (2c)

ℎ𝑡(𝐱𝑡−1, 𝐱𝑡) ≤ 𝟎 ∀𝑡 ∈ [1, 𝑇 ] (2d)

As written, (2) is a linear program; when 𝐲 represents unit commit-
ments, (2) becomes a MILP with the addition of integrality constraints
on 𝐲 (not shown).

While the resulting 𝐲∗ from this offline optimization would be ex-
post optimal, were the assumed demand sequence the true demand,
this will not generally be the case, as the planning problem is typically
solved far in advance, when there is still uncertainty in future demand.
To provide stronger guarantees in the face of demand uncertainty,
system operators may wish for 𝐲∗ to satisfy (2b)–(2d) for any 𝐝 ∈ .
This motivates the following definition of offline feasibility.

Definition 2.1. A planning decision 𝐲∗ is offline feasible if and only if
for all 𝐝 ∈  there exists a dispatch sequence 𝐱1,… , 𝐱𝑇 satisfying the
dispatch feasibility constraints (1b)–(1d).

2.2. Online dispatch problem

After the planning variables 𝐲∗ are chosen, the task of the system
operator is to determine real-time dispatches 𝐱𝑡. They do so via an
online dispatch algorithm: a sequence of functions 𝑋1,… , 𝑋𝑇 , each of
which maps a demand sequence to a dispatch for time 𝑡: 𝑋𝑡 ∶  → R𝑁 .
Crucially, the collection of functions {𝑋𝑡}𝑇𝑡=1 must be causal, so the
decision 𝑋𝑡(𝐝) at time 𝑡 can only depend on information known to the
ystem operator at time 𝑡. We will assume that the system operator
nows the exact demand 𝑑𝑡 at time 𝑡, and also has access to perfect
predictions of demand 𝑑𝑡+1,… , 𝑑𝑡+ℎ within a short lookahead window
of length ℎ. Thus 𝑋𝑡(𝐝) may only depend on demands through time
min{𝑡 + ℎ, 𝑇 }.

A desirable objective for an online dispatch algorithm is the satis-
faction of dispatch feasibility constraints. This motivates the following
definition of online feasibility of a dispatch algorithm as well as of a
planning decision 𝐲∗.

Definition 2.2.

(1) Given a fixed planning decision 𝐲∗, a feasible online dispatch
algorithm is a sequence of causal policies {𝑋𝑡}𝑇𝑡=1 with the
property that for any demand sequence 𝐝 ∈ , the produced
decisions 𝑋1(𝐝),… , 𝑋𝑇 (𝐝) satisfy the constraints (1b)–(1d).

(2) If 𝐲∗ admits a feasible online dispatch algorithm, then 𝐲∗ is said
to be an online feasible planning decision.

A particular online dispatch algorithm that is widely used in practice
is Receding Horizon Control (RHC), where at time 𝑡, dispatches are op-
timized over the ℎ-step perfect lookahead horizon [𝑡, 𝑡+ℎ]. Only the first
dispatch 𝐱∗𝑡 is committed at each step of RHC; the remaining dispatches
over the lookahead horizon are merely ‘‘advisory’’. This process is then
repeated for the subsequent interval 𝑡 + 1, and so on. However, RHC
has a significant downside in that it is not necessarily feasible, even if
the planning decision 𝐲∗ is online feasible. We demonstrate situations
3

when RHC lacks feasibility in Section 6.
3. Offline feasibility does not imply online feasibility

Although we presented the planning and dispatch problems sepa-
rately in the previous section, we show now why the common practice
of solving for the planning variables 𝐲∗ offline in a dispatch-unaware
fashion can ultimately cause online dispatch infeasibility. We answer
the following question: For a particular demand uncertainty set, does
offline feasibility of planning decisions 𝐲∗ necessarily imply their online
feasibility?

We answer this question in the negative in the following theorem.
This establishes that anything short of full knowledge of the demand
sequence is insufficient for offline feasibility to imply online feasibility.

Theorem 3.1. There exist choices of affine system constraints {𝑔𝑡}, {ℎ𝑡},
a polytopic demand uncertainty set , and fixed planning decisions 𝐲∗ that
are offline feasible, yet which are not online feasible if ℎ < 𝑇 − 1.

For the sake of brevity, we do not present the detailed proof of
Theorem 3.1 here. The gist of the argument is as follows: we construct
a ramp-limited system and two demand sequences 𝐝 and 𝐝̂ differing
only in their final value 𝑑𝑇 . For each of these sequences 𝐝, 𝐝̂, there is
only a single offline feasible dispatch trajectory {𝐱𝑡}, {𝐱̂𝑡} (respectively).
Moreover, these demand sequences require different initial dispatch
decisions: 𝐱1 ≠ 𝐱̂1. Any online dispatch algorithm with lookahead
ℎ < 𝑇 − 1 cannot know the final demand 𝑑𝑇 when it makes a decision
for time 𝑡 = 1. Thus any such online dispatch algorithm has no way
of knowing whether the true demand sequence is 𝐝 or 𝐝̂, and since the
necessary feasible decisions 𝐱1, 𝐱̂1 that must be chosen in either of these
cenarios are different, the online dispatch algorithm cannot choose
orrectly.

. Joint algorithm for system planning and online dispatch

The counterexample in Theorem 3.1 establishes that the offline
easibility of a planning decision 𝐲∗ for a particular demand uncer-
ainty set does not imply its online feasibility. This motivates the joint
pproach in Algorithm 1, where we use affine policies to guarantee
he existence of an online feasible 𝐲∗ as well as an online feasible
ispatch algorithm. Affine policies approximate online decision mak-
ng during the planning stage (called Dispatch-aware Planning (DAP)),
efore passing the optimal planning variables to the RTED algorithm
called Feasible Fixed Horizon Control (FFHC)). Rather than using the
conservative) affine policies for determining actual dispatch schedules
n real time, we subtly modify the standard RHC dispatch algorithm
o include an affine-policy-based regularization term on the last deci-
ion of each subhorizon. This allows for online scheduling to exploit
ccurate short-term predictions without taking decisions that are too
yopic. Other variants of fixed horizon control, like AFHC [31] or
HC [32], can be substituted for RHC in our algorithm at the expense
f more burdensome notation.

Algorithm 1 Joint algorithm for planning and dispatch
1: input: Cost functions 𝐜̄, 𝐜𝑡 and constraints 𝑔𝑡, ℎ𝑡
2: Solve DAP problem (4)
3: Fix optimal planning variables 𝐲∗
4: for 𝑡 = 1,… , 𝑇 do
5: 𝑑𝑡+ℎ revealed
6: Solve FFHC problem (5) with 𝑑1,… , 𝑑𝑡+ℎ and 𝐱∗𝑡−1 as parameters
7: return 𝐱∗𝑡
8: end for
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4.1. Dispatch-aware planning (DAP)

The dispatch-aware planning problem is defined in (4) below. The
demand sequence 𝐝 = (𝑑1,… , 𝑑𝑇 ) resides in a known polytopic de-
mand uncertainty set , and the linear planning/dispatch cost func-
tions are known as well. Piecewise-linear cost functions can also be
accommodated with additional notation.

The real-time scheduling policies {𝑋𝑡(⋅)}𝑇𝑡=1 are defined to be affine
in the demand trajectory:

𝑋𝑡(𝐝) ∶= 𝐀𝑡𝐝 + 𝐛𝑡 ∀𝑡 ∈ [1, 𝑇 ] (3)

To optimize over the 𝑋𝑡 is to optimize over the matrices 𝐀𝑡 ∈ R𝑁×𝑇

and vectors 𝐛𝑡 ∈ R𝑁 . The 𝑋𝑡 are causal, meaning 𝐀𝑡 have 0’s for all
columns with index greater than 𝑡. This requirement can be enforced
with entrywise constraints on the matrices. It is assumed that (4) has a
feasible solution.

min
𝐲

𝑋1 ,…,𝑋𝑇

max
𝐝∈

𝐜̄⊤𝐲 +
𝑇
∑

𝑡=1
𝐜⊤𝑡 𝑋𝑡(𝐝) (4a)

s.t. 𝟏⊤𝑋𝑡(𝐝) = 𝑑𝑡 ∀𝑡 ∈ [1, 𝑇 ] (4b)

𝑔𝑡(𝑋𝑡(𝐝), 𝐲) ≤ 𝟎 ∀𝑡 ∈ [1, 𝑇 ] (4c)

ℎ𝑡(𝑋𝑡−1(𝐝), 𝑋𝑡(𝐝)) ≤ 𝟎 ∀𝑡 ∈ [1, 𝑇 ] (4d)

As convention we assume 𝑋0(𝐝) = 𝐱0. Problem (4) is a linear pro-
gram with semi-infinite constraints resulting from the ‘‘∀’’ qualification
on 𝐝. Using strong duality of linear programs, (4) can be equivalently
posed as a linear program with a finite number of additional variables
and constraints [33]. The result is a tractable linear program that can
be solved with off-the-shelf optimization solvers. However, depending
on the length of the time horizon and the complexity of , (4) can be
challenging to scale to large problem sizes. Although this scaling is not
the focus of this paper, strategies for improving scaling are discussed
in Section 6.3.

After solving (4), the optimal planning variables 𝐲∗ are fixed. It is
then possible to schedule in real time using the optimal affine policies
𝑋∗

1 ,… , 𝑋∗
𝑇 applied to the real-time demand sequence. The resulting

generation schedules are guaranteed to be feasible – that is, they
satisfy (1b)–(1d) for any 𝐝 ∈  – but because of their robustness
and inability to incorporate more refined demand predictions, the
cost of the dispatch is likely to be quite conservative. In contrast,
the algorithm we propose next uses the policies to constrain online
dispatches to an always-feasible region while still allowing accurate
short-term predictions to be exploited.

4.2. Feasible fixed horizon control (FFHC)

Economic dispatch in real-time (e.g., 5-min, 15-min) electricity
markets is often a multi-interval optimization problem over an (ℎ+ 1)-
step horizon from which only the first dispatch decision is binding
and the remaining are advisory. In the control literature this algorithm
is referred to as receding horizon control (RHC) or model predictive
control (MPC).

The version of fixed horizon control that we propose here, called
Feasible Fixed Horizon Control (FFHC), is RHC with the addition of a
robust affine constraint composed from the optimal policies from (4).
FFHC is parameterized by the optimal solutions 𝐲∗, 𝑋∗

1 ,… , 𝑋∗
𝑇 from

(4).5 FFHC has access to 𝑑𝑡 and ℎ (perfect predictions of) future de-
mand 𝑑𝑡+1,… , 𝑑𝑡+ℎ, as well as the previously committed dispatch 𝐱∗𝑡−1.
The first decision 𝐱∗𝑡 in the subhorizon of the following optimization

5 𝑋∗ refers to (𝐀∗,𝐛∗).
4

𝑡 𝑡 𝑡
problem determines the decision of FFHC in time 𝑡, denoted henceforth
by FFHC(𝑡).6

argmin
𝐱𝑡 ,…,𝐱𝑡+ℎ

𝑡+ℎ
∑

𝑠=𝑡
𝑐⊤𝑠 𝐱𝑠 (5a)

s.t. 𝟏⊤𝐱𝑠 = 𝑑𝑠 ∀𝑠 ∈ [𝑡, 𝑡+ℎ] (5b)

𝑔𝑠(𝐱𝑠, 𝐲∗) ≤ 𝟎 ∀𝑠 ∈ [𝑡, 𝑡 + ℎ] (5c)

ℎ𝑠(𝐱𝑠, 𝐱𝑠−1, 𝐲∗) ≤ 𝟎 ∀𝑠 ∈ [𝑡 + 1, 𝑡 + ℎ] (5d)

ℎ𝑡(𝐱𝑡, 𝐱∗𝑡−1, 𝐲
∗) ≤ 𝟎 (5e)

ℎ𝑡+ℎ+1(𝑋∗
𝑡+ℎ+1(𝐝), 𝐱𝑡+ℎ, 𝐲

∗) ≤ 𝟎 (5f)
∀𝐝 ∈ 0∶𝑡+ℎ

0∶𝑡+ℎ is the restricted set of demand sequences in  that are
possible given the already-revealed demand values from time 0 to 𝑡+ℎ.
In general for a pair of indices 𝑟, 𝑠 ∈ [0, 𝑇 ] and 𝑟 ≤ 𝑠 and 𝐝𝑟∶𝑠 =
(𝑑𝑟,… , 𝑑𝑠) a subsequence of realized values, we define

𝑟∶𝑠 ∶= {𝐝 ∈  | 𝑑𝑡 = 𝑑𝑡 ∀𝑡 = 𝑟,… , 𝑠} (6)
7 Clearly, 𝑟∶𝑠 ⊆  ⊆ R𝑇+1.

As was explored in Theorem 3.1, just enforcing constraints (5b)–
5e) does not always yield a feasible solution. Because the ramping
onstraint ties the previously committed decision 𝐱∗𝑡−1 to all subsequent
ispatches, a short-sighted dispatch early on could lead to infeasibility
or a subsequent round. The addition of robust constraints (5f) on the
ast decision 𝐱𝑡+ℎ ensures that earlier decisions are robust to future
ncertainty. As in (4), the robust constraint in (5) can be transformed
nto auxiliary linear constraints on 𝐱𝑡+ℎ. Taking the optimal solutions
f the first variables 𝐱∗𝑡 from each subhorizon for 𝑡 = 1,… , 𝑇 gives
he dispatch sequence from FFHC, which, as presented in the following
heorem, is feasible.

heorem 4.1. FFHC is a feasible online dispatch algorithm. That is, for
ny 𝐝 ∈ , 𝑇 −ℎ successive rounds of FFHC(𝑡) produce a dispatch sequence
∗
1 ,… , 𝐱∗𝑇 that satisfies (1b)–(1d).

roof. The result is shown by inductively constructing feasible solu-
ions for each round of FFHC, starting with the dispatch provided by
he affine policies in the first round and matching constraints between
roblems (4) and (5) in the subsequent rounds. The full proof is omitted
ere. □

emark. The terminal constraint (5f) is only applied through FFHC(𝑇−
− 1). Subsequent rounds of FFHC have no demand uncertainty.
FHC’s guaranteed feasibility distinguishes it from [4]. Moreover, the
lacement of constraint (5f) on the terminal decision enable FFHC to
ully exploit all perfect predictions of demand, in contrast to work
n [4,29,30].

. Upper and lower bounds on feasible online dispatch algorithms

We now turn to bounding the worst-case performance of the class
f feasible dispatch algorithms, which contain our proposed FFHC
s an instance. The exactly matching upper and lower bounds we
btain establish fundamental limits on the performance of algorithms
or RTED. They also establish that, in general, feasibility of an on-
ine algorithm implies optimality. In other words, feasibility is the best

6 At 𝑡 = 𝑇 −ℎ, the optimal solution of (5) determines FFHC’s remaining dis-
atch decisions 𝐱∗𝑇−ℎ,… , 𝐱∗𝑇 because by that time, the entire demand sequence
is known.

7 The explicit dependence of 𝑟∶𝑠 on 𝐝𝑟∶𝑠 is suppressed in the notation for
simplicity.
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you can do. Nonetheless, different algorithms can be distinguished in
their average-case performance, as we examine in the experiments in
Section 6.

We evaluate performance via the metric of competitive ratio, which
as recently seen increasing use in the control and power systems
ommunities [34–36]:

RALG = sup
𝐝∈

CostALG(𝐝)
CostOPT(𝐝)

(7)

competitive ratio of 1 signifies optimal performance of the online
lgorithm, whereas a competitive ratio larger than 1 indicates subopti-
al performance. We choose to focus on the competitive ratio because
t is unitless and time-independent, thus facilitating fair comparison of
lgorithm performance across different problem instances and system
arameters.8
In the following theorems we assume for clarity of exposition that
⊆ R𝑇

≥0, dispatch variables 𝐱𝑡 are always nonnegative, and costs are
inear, positive, and potentially time-varying. However, performance
ounds can be obtained in more general settings.

heorem 5.1. Suppose ALG ∶= {𝑋𝑡}𝑇𝑡=1 is a feasible online dispatch
lgorithm for demand uncertainty set  on some arbitrary system, where
osts are linear and time-varying, 𝐜1,… , 𝐜𝑇 ∈ R𝑁

>0. Then, the competitive
atio of ALG is bounded above as:

RALG ≤ max
𝑠,𝑡∈[1,𝑇 ]

𝑐max,𝑠

𝑐min,𝑡
. (8)

here 𝑐max,𝑡 = max𝑖∈[1,𝑁] 𝑐𝑖,𝑡 and 𝑐min,𝑡 = min𝑖∈[1,𝑁] 𝑐𝑖,𝑡

roof. The upper bound follows immediately from upper (lower)
ounding the online (offline) unit cost in each timestep by the unit cost
f the most (least) expensive generator at any time. The full proof is
mitted here due to space limitations. □

In the following, we construct a system with linear, time-invariant
osts and generators which have capacity and ramp constraints. We
ssume planning decisions 𝐲∗ result in a certain generator having
rbitrarily slow ramp limit 𝜖. Thereby, in the regime where 𝜖 → 0,
here is a demand trajectory on which any feasible dispatch algorithm
ust have competitive ratio arbitrarily close to the upper bound (8).
his constitutes an exactly tight lower bound on the competitive ratio
f any feasible dispatch algorithm.

heorem 5.2. Fix 𝜖 ∈ (0, 1). There exists a choice of system parameters
∗(𝜖) with linear, time-invariant costs 𝐜 ∈ R𝑁

≥0 and a polytopic demand
ncertainty set , as well as a distinguished demand sequence 𝐝̂ ∈ , such
hat for any feasible online dispatch algorithm ALG ∶= {𝑋𝑡}𝑇𝑡=1,

CostALG(𝐝̂)
CostOPT(𝐝̂)

≥ 𝜖 + (1 − 𝜖)
𝑐max
𝑐min

(9)

here 𝑐max ∶= max𝑖∈[1,𝑁] 𝑐𝑖 and 𝑐min ∶= min𝑖∈[1,𝑁] 𝑐𝑖.

roof of Theorem 5.2. Fix ℎ to be some positive integer, independent
f 𝑇 . We construct a 2-generator system with costs 𝐜 = (𝑐max, 𝑐min);
apacity lower and upper bounds 𝐱 = (0, 0), 𝐱 = (2ℎ, 2ℎ); ramp lower
and upper bounds 𝛥 = (𝜖, 2 − 𝜖) and 𝛥 = (−𝜖,−2 + 𝜖); and initial
operating point 𝐱0 = ((2 − 𝜖)ℎ, 𝜖ℎ). We define the demand uncertainty
set  ⊂ R𝑇 as follows:

 =
{

𝐝 ∶ 𝑑0 = 2ℎ, 𝑑𝑡 ≤ 𝑑𝑡+1 ≤ 𝑑𝑡 + 2, 𝑑𝑡 ≤ 4ℎ∀𝑡 ∈ [0, 𝑇 ]
}

,

8 Competitive difference upper and lower bounds can be obtained for FFHC,
and more generally for arbitrary feasible online dispatch algorithms, that
essentially match those in [1], with slight modifications due to the inclusion of
supply–demand balance constraints in our setting. Further, [1] obtains upper
and lower bounds on competitive difference matching up to a factor of 4,
5

whereas our competitive ratio upper and lower bounds match exactly. f
where we define 𝑑0 = 𝟏⊤𝐱0 = 2ℎ. Observe that  admits an online feasi-
le algorithm: specifically, the online algorithm that chooses its operat-
ng point at time 𝑡 in the set

{

𝐱 ∶ 𝟏⊤𝐱 = 𝑑𝑡, 𝐱 = 𝜆𝐱0 + (1 − 𝜆)𝐱, 𝜆 ∈ [0, 1]
}

s feasible for .
Now consider the specific demand trajectory 𝐝̂ with 𝑑𝑡 = 2ℎ for all

∈ [1, 𝑇 ]. We claim that, for all times 𝑡 ∈ [1, 𝑇 −2ℎ], 𝑋𝑡(𝐝̂)1 ≥ (2 − 2𝜖)ℎ.
We prove this by contradiction: suppose alternatively that 𝑋𝑡(𝐝̂)1 <
(2−2𝜖)ℎ for some 𝑡 ∈ [1, 𝑇−2ℎ]. But consider another demand trajectory
𝐝 ∈  defined by 𝑑𝑠 = 2ℎ for 𝑠 ∈ [1, 𝑡+ℎ] and 𝑑𝑠 = min{2ℎ+2(𝑠−𝑡−ℎ), 4ℎ}
for 𝑠 ∈ [𝑡 + ℎ + 1, 𝑇 ]. As 𝐝̂ and 𝐝 coincide in their entries through time
𝑡 + ℎ, causality dictates that 𝑋𝑡(𝐝̂) = 𝑋𝑡(𝐝), so 𝑋𝑡(𝐝)1 < (2 − 2𝜖)ℎ as
well. But then the online algorithm cannot remain feasible for 𝐝 for the
rest of time: this is because feasibly meeting 𝐝 for the rest of time, and
in particular remaining feasible for the sequence of demand increases
beginning at time 𝑡 + ℎ + 1, requires 𝑋𝑡+ℎ(𝐝) = 𝐱0 due to the ramp and
capacity constraints. However, since 𝑋𝑡(𝐝)1 < (2 − 2𝜖)ℎ and up-ramp
on the first generator is bounded by 𝜖, it is impossible for the online
algorithm to reach 𝐱0 at time 𝑡 + ℎ. Thus the online algorithm cannot
be feasible for , yielding a contradiction.

By the last paragraph’s result, we know that for 𝑡 ∈ [1, 𝑇 − 2ℎ],
𝑋𝑡(𝐝̂)1 ≥ (2− 2𝜖)ℎ; as 𝑋𝑡(𝐝̂)1 = 𝑑𝑡 −𝑋𝑡(𝐝̂)2, it follows that the cost of the
online algorithm on each of the first 𝑇 −2ℎ timesteps is lower bounded
by (2−2𝜖)ℎ𝑐max +2ℎ𝜖𝑐min. On each of the last 2ℎ timesteps, we trivially
lower bound the online algorithm cost by 2ℎ𝑐min. Thus we obtain

CostALG(𝐝̂) ≥ (𝑇−2ℎ)
(

(2−2𝜖)ℎ𝑐max+2ℎ𝜖𝑐min
)

+(2ℎ)2𝑐min (10)

Now we turn to providing an upper bound on CostOPT(𝐝̂). Since the
offline optimal knows all demands in advance, it will ramp maximally
to transfer all generation onto the second, cheaper generator and will
remain at this operating point for the rest of time. It will take (2−𝜖)ℎ

𝜖
timesteps to ramp to the operating point (0, 2ℎ), since generator 1 has
ramp limit 𝜖 and demand is constant through time. For each of these
first (2−𝜖)ℎ

𝜖 timesteps, we upper bound the offline optimal cost trivially
by 2ℎ𝑐max in each step. Once the offline optimal reaches (0, 2ℎ), its cost
in each step for the rest of time is exactly 2ℎ𝑐min. We get:

CostOPT(𝐝̂) ≤
(2−𝜖)ℎ

𝜖
(2ℎ𝑐max) +

(

𝑇−
(2−𝜖)ℎ

𝜖

)

(2ℎ𝑐min) (11)

Forming the ratio of (10) with (11) and taking the limit as 𝑇 → ∞
yields the lower bound (9). □

6. Experiments

In this section we explore through simulations on simple systems
how the proposed algorithm handles infeasibilities that otherwise arise
when resource procurement is done in a dispatch-agnostic fashion. We
also include a discussion about the scalability of the method to larger,
more realistic power systems (see Fig. 1).

6.1. A two-generator case

We use a two-generator case (same as the one presented in the
proof of Theorem 3.1) to show how FFHC is able to compute a feasible
dispatch when the standard RHC algorithm cannot.

Setting ℎ = 2 and 𝑇 = 4, we define a demand uncertainty set
 = {(2, 2, 2, 𝑑) ∶ 𝑑 ∈ [1, 4]}. We run DAP on this system with costs
𝐜 = (1, 3∕4), 𝐜̄ = (10, 11), nominal max capacity 𝐱 = (2, 2), nominal ramp
rates 𝛥nom = 𝛥

nom
= (2, 1∕4), and starting point 𝐱0 = (1, 1). For offline

lanning and dispatch, the nominal max capacity of (2, 2) is sufficient
o satisfy all 𝐝 ∈ . DAP procures an additional 37.5% capacity and a
roportional amount of ramp capacity on (lower cost) Generator 1.
Figs. 1(a) and 1(b) show the performance of the algorithms RHC,

FHC, and RAP (affine policies synthesized in DAP), as well as the of-
line optimal, on the two demand sequences 𝐝(𝐴) and 𝐝(𝐵) distinguished
n Theorem 3.1. 𝐝(𝐴) is an ‘‘easy’’ demand sequence: all algorithms are

easible, and FFHC takes more conservative (i.e., costlier) decisions
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Fig. 1. Counterexample from Theorem 3.1 revisited. Panel (a) shows a scenario where all algorithms are feasible. Panel (b) shows a scenario where RHC is unable to remain
feasible, whereas FFHC remains feasible. Panel (c) illustrates the performance of the RHC, FFHC, and RAP against the offline optimal as the size of the uncertainty set grows. The
dotted green line going to ∞ indicates that RHC becomes infeasible on some trajectories beginning at an uncertainty value of 3.
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Fig. 2. Power system for 4-generator cast study. Capacities shown are peak values.

than RHC, which immediately moves up to the top left of the capacity
region to exploit the lower cost of Generator 2. On the other hand,
𝐝(𝐵) details the ‘‘hard’’ demand sequence, for which RHC is unable to
remain feasible, since it mistakenly chooses to exploit the lower cost of
Generator 2 production at 𝑡 = 1, leaving it unable to meet 𝑑4. FFHC is
able to remain feasible in contrast.

Fig. 1(c) compares the performance of the algorithms via competi-
tive ratio as the demand uncertainty set is scaled. We parameterize the
uncertainty set by 𝑢:

(𝑢) ∶=
{

(2, 2, 2, 𝑑) ∶ 𝑑 ∈
[

2 − 𝑢∕2, 2 + 𝑢∕2
]}

For 𝑢 ∈ [0, 4], we run DAP on (𝑢) to determine system parameters.
We then sample trajectories from (𝑢) set using a hit-and-run sam-
pler for polytopes [37], and compute the dispatch of each algorithm.
The mean empirical competitive ratio of the trajectories along with
upper/lower bounds (shaded) for each algorithm are shown in Fig. 1(c).

While the performance of RAP suffers in comparison to that of
the offline optimal, both FFHC and RHC exactly match the offline
performance for 𝑢 < 3. For 𝑢 > 3, RHC begins encountering infeasibility
on some of the demand trajectories, and by 𝑢 = 4 is infeasible for 10%
of the sampled trajectories. Meanwhile, FFHC, just like RAP, always
remains feasible, though its performance degrades slightly from that of
the offline since its dispatches are influenced by the robust constraint.

6.2. Scenario based on CAISO load profile

The purpose of this example is to show the necessity of dispatch-
aware planning to maintain feasibility under realistic net load pro-
files. For simplicity, we do not incorporate integer unit commitment
variables and associated cost functions and therefore the setting is
not intended to represent the particular variety of unit commitment
problems solved by system operators.

We consider the small power system shown in Fig. 2, which has
1 GW of peak load and four generation sources: variable renewables
(wind & solar), a fast-ramping gas turbine, a slow-ramping coal plant,
and a transmission interconnection. This setup, while stylized, repre-
sents the scenario of a transmission-constrained zone within a larger
grid where local infeasibilities could arise under high fluctuations of
6

net demand and ramp shortages. o
Table 1
Parameters for generation sources. Costs are from [39, Table 1]. Max capacity values
indicate the maximum available generation for each type. CAISO generation mix is
used to derive a import cost [40]. Ramp rates are taken from reasonable ranges given
in [41,42].
Generation
type

Max Cap.
(MW)

Ramp rate
(% cap./min)

Variable cost
($/MWh)

Cap. cost
($/MW)

Imports 200 ±5 1.93 0
Gas 200 ±2 2.56 1.08 × 106

Coal 700 ±0.5 4.52 3.67 × 106

Renewables 600 Instantaneous 0 NA

Details on capacity, ramp rates, and costs for the generation sources
are given in Table 1. The 24 hr nominal generation profile sampled
at 15 min intervals is taken from CAISO’s aggregate demand on Sept.
9, 2021 [38]. We subtract the variable renewable generation profile
(from [38]) to get a nominal net demand curve (solid black line in
Fig. 3(a)), around which a demand uncertainty set is constructed.
Trajectories are sampled uniformly from this set using a hit-and-run
sampler [37]. Capacity costs are used in the DAP problem to determine
n optimal robust generation mix (neither renewables nor imports are
ncluded in this step as they are considered already fixed).
Due to the fast, sustained afternoon ramp event in the net load

rofile, the standard RHC dispatch runs into infeasibility for 29% of
ampled demand trajectories. In contrast, FFHC is always feasible at
ittle to no extra cost beyond that incurred by the offline optimal.
ig. 3(b) shows the optimal solutions for a particular net demand
rajectory. Prior to 20.5 h, both algorithms return identical solutions.
fter that, RHC becomes infeasible whereas FFHC does not. At the start
f the ramp event, imports are already at their maximum and RHC
hooses to myopically exploit the lower cost of the gas generator. In
ontrast, FFHC ‘‘pre-ramps’’ the slow coal generator and saves ramping
apacity on the gas generator to accommodate later fluctuations. It
s also notable that even though the planning variables (generator
apacities and ramps) in this example are online feasible, RHC is
till unable to remain feasible. Thus, the existence guarantee of an
nline feasible dispatch algorithm does not imply that even a good (on
verage) policy like RHC can produce a feasible sequence of dispatches.
Fig. 3(c) shows that the feasibility guarantee of FFHC comes at
very minimal efficiency loss. When RHC is can stay feasible, both
lgorithms attain near-optimal cost with average empirical competitive
atios CRRHC = 1.0000 and CRFFHC = 1.0002. In comparison, the RAP
lgorithm, while robustly feasible, has a significantly higher average
ompetitive ratio of 1.0934, indicating the value of using predictions
robustly!) in our approach. The robust resource procurement step
DAP) in this simulation procures 1066.6 MW of total generation
apacity, which is 14% above peak demand of 938.8 MW. In ramp
onstrained power systems, additional capacity may be required to
ccommodate long high ramp events. DAP provides a way to directly

ptimize for this margin.
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Fig. 3. Results from four-generator system using CAISO load and renewable generation profiles. Approximately 29% of 300 sampled demand trajectories are infeasible for RHC. The
vertical dotted green line in panel (c) indicates at which time RHC first becomes infeasible and the values at the top of the frame display the percentage of infeasible trajectories
(out of the total sampled) at regular time intervals.
F

6.3. Discussion of algorithm scalability

DAP requires solving a robust linear program, a problem known to
suffer from scalability issues. While scalability is not the focus of this
work, in this section we discuss effective strategies for reducing the
problem dimension and highlight relevant existing literature on this
subject.9

Optimization problems for large 𝑁-generator power systems (e.g.,
SCUC, capacity planning) already present operators with a demanding
computational task, with 𝑂(𝑁𝑇 ) variables and 𝑂(𝑀) constraints where
𝑀 can be as large as 𝑂(𝑁2𝑇 ) for mesh network topologies. We are
concerned with the additional complexity our robust linear formulation
adds to this baseline, which arises from (1) the robust description of
the uncertainty set  and (2) expressiveness of the causal affine policy
class.

For (1), we take the reasonable assumption that correlations be-
tween elements of the demand vector are limited to neighbors. This
means that the number of constraints in  is 𝑂(𝑇 ), rather than 𝑂(𝑇 2)
which would arise if full correlations were allowed. For (2) we observe
that synthesized policies often only make use of a few previous demand
steps, which we call memory 𝑚 with 𝑚 = 𝑂(1). This allows us to
limit the size of the affine policies to 𝑁𝑚 variables, as opposed to
𝑁𝑇 for full-history policies. Using limited memory policies necessitates
a careful reformulation of  and the problem constraints, but the
downstream benefits for the size of the robust LP are significant, as
the total number of constraints ultimately scales with the number of
policy variables. Restricting policy memory also eliminates the 𝑂(𝑁𝑇 2)
causality constraints required for the full policies.

Table 2 summarizes the number of constraints and variables (in
order sense) for each problem setting. Limited-memory policies allow
for the multiplicative factor of 𝑇 in both variables and constraints for
the full-memory robust formulation to be reduced to a (tunable and
small) constant factor 𝑚.

After reducing the problem size in the proposed manner, the result-
ing problem may still be a large LP. We point the interested reader
to the excellent discussion of this issue in [29,30] where a constraint
generation approach along with various other algorithmic tweaks allow
for efficient solutions to large LP/MILP power system problems. All of
the proposed methods therein are applicable to our setting.

9 We focus on DAP for scalability; the FFHC stage of our joint algorithm
only includes a small robust constraint that does not appreciably affect
computation.
7

Table 2
Comparison of number of variables and constraints for offline and two robust
formulations.

Offline Memory-𝑇 policies Memory-𝑚 policies

Variables 𝑂(𝑁𝑇 ) 𝑂(𝑁𝑇 2 +𝑀𝑇 ) 𝑂(𝑚𝑁𝑇 + 𝑚𝑀)
Constraints 𝑂(𝑀) 𝑂(𝑁𝑇 2 +𝑀𝑇 ) 𝑂(𝑚𝑀)

7. Conclusion

In this work, we analyze properties of feasible online dispatch
algorithms in general, and specifically propose a joint algorithm for
resource procurement and RTED that exploits lookahead predictions for
good performance while also guaranteeing feasibility. Our framework is
applicable to several types of resource procurement problem including
SCUC and resource adequacy, and is compatible with arbitrary fixed-
horizon lookahead optimization problems. We further present exactly
matching upper and lower bounds on the competitive ratio for the
problem class of RTED. Finally, our computational results demonstrate
that FFHC nearly matches the performance of the offline optimal while
always remains feasible, which contrasts with the frequent infeasibility
of RHC. Thus the proposed approach provides feasible RTED with
nearly no loss of efficiency compared to the standard algorithm.

Future work includes applying this algorithmic framework to prob-
lems with energy storage and time-varying state-of-charge require-
ments, as well as designing incentive compatible prices for dispatches
computed by feasible RTED algorithms.
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