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ABSTRACT

Voltage control generally requires accurate information about the
grid’s topology in order to guarantee network stability. However, ac-
curate topology identification is a challenging problem for existing
methods, especially as the grid is subject to increasingly frequent
reconfiguration due to the adoption of renewable energy. Further,
running existing control mechanisms with incorrect network infor-
mation may lead to unstable control. In this work, we combine a
nested convex body chasing algorithm with a robust predictive con-
troller to achieve provably finite-time convergence to safe voltage
limits in the online setting where the network topology is initially
unknown. Specifically, the online controller does not know the
true network topology and line parameters, but instead must learn
them over time by narrowing down the set of network topologies
and line parameters that are consistent with its observations and
adjusting reactive power generation accordingly to keep voltages
within desired safety limits. We demonstrate the effectiveness of
the approach using a case study, which shows that in practical
settings the controller is indeed able to narrow the set of consistent
topologies quickly enough to make control decisions that ensure
stability.
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1 INTRODUCTION

Operators of electricity distribution grids must maintain voltages
at each bus within certain operating limits, as deviations from such
limits may damage electrical equipment and cause power outages
[1, 17]. This “voltage control” or “voltage regulation” problem has
been well-studied in the literature, e.g., [24, 27, 37] and the refer-
ences therein. Voltage control algorithms aim to guarantee grid
stability while minimizing the costs associated with control inputs.
Typically, the algorithms assume exact knowledge of the underlying
grid topology.

However, the exact grid topology and line parameters are often
not known, and inexact knowledge may lead to stability problems
for voltage control algorithms [20, 25]. This problem is exacer-
bated by the increasing integration of distributed energy resources
(DERSs), such as photovoltaic and storage devices. Especially in dis-
tribution grids, where DERs often do not belong to the electricity
utility, the grid operator may lack up-to-date information about the
grid topology [9, 22]. While a grid operator can install sensors to
help identify the current network topology, unless such sensors are
densely deployed, uncertainty about the topology remains; and so
cost is prohibitive. Furthermore, parts of the grid may undergo fre-
quent reconfiguration either due to load balancing [3] or unplanned
maintenance. Thus, distribution grid operators cannot expect to
operate with perfect topology information and the design of voltage
control robust to unknown grid topology is crucial.

To date, only a limited number of voltage control mechanisms
have been studied in the case when the grid topology is uncer-
tain. One common design is to learn a voltage controller via deep
reinforcement learning (DRL), e.g., [11, 15, 31, 33, 34] and refer-
ences within. However, such approaches have neither performance
nor voltage stability guarantees. Thus, they are not suitable for
safety-critical infrastructure. Two recent works [7, 30] propose a
model-free DRL approach for voltage control with stability guar-
antees. The main tool being used in [7, 30] is Lyapunov stability
theory, from which a structural constraint for stable controllers is
derived, and policy optimization with the constraint is performed.
In contrast, our framework jointly learns the system model (consis-
tent to data) and stable controller, in an online fashion.

Another common approach for voltage control when grid topol-
ogy is uncertain, is to use a two-stage model-based approach: first,
estimate the network topology, a.k.a., system identification, using
structured neural networks; and second, apply an existing model
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predictive control with the identified model, e.g., [6]. However, ac-
curate topology identification is a challenging problem [29] and
existing methods require voltage measurements over hundreds of
time steps [8, 22], after which uncertainty still remains. This is
problematic because, during the time where system identification is
being performed, the network is not able to respond effectively to
disturbances, since using an incorrect model may lead to unstable
control. Given the timescale of grid topology changes in practice, a
different approach is needed.

1.1 Contributions

We propose a new approach for voltage control over an uncertain
grid topology that does not perform system identification and volt-
age control separately. Instead, our approach robustly learns to
stabilize voltage within the desired limits directly, without any prior
knowledge of the topology and without needing to precisely learn the
topology.

Our approach takes ideas from online nested convex body chas-
ing (CBC) [2] and robust predictive control and combines them
using a new learning framework [18] to apply them to voltage con-
trol for the first time. Intuitively, we use a nested CBC algorithm
in order to track the set of topologies that are consistent with the
observed voltage measurements—as more measurements are taken
the set of consistent topologies shrinks (and so the sets are nested).
As these measurements are taken, a form of robust predictive con-
trol is used for voltage control, where the robustness guarantee is
used to ensure the uncertainty about the topology can be handled.
Our main result (Theorem 1) provides a finite error stability bound
for the overall controller, which is summarized in Algorithm 1. This
represents the first voltage control algorithm that is provably robust
to uncertainty about network topology.

In addition to providing theoretical guarantees, we demonstrate
the effectiveness of our proposed approach using a case study of a
56-bus distribution grid from the Southern California Edison (SCE)
utility [13]. In this setting, we give the controller no prior infor-
mation about the topology of the grid, yet the controller quickly
narrows down the set of topologies and line parameters that are
consistent with its observations and adjusts reactive power genera-
tion to keep voltages within desired safety limits when faced with
disturbance. In fact, our controller’s performance nearly matches
that of controllers which assume perfect knowledge of the topology,
even when given only partial observations of bus voltages.

1.2 Related Work

The problem of voltage control has a long history with many im-
portant contributions [4, 6, 14, 21, 26, 28, 32, 33, 36, 37] (and the
references within). Classic voltage regulation devices such as tap-
changing transformers [14, 28] are effective in dealing with slow
voltage variations. However, with fast time variations introduced
by renewables, a growing body of literature has focused on inverter-
based controllers that can quickly respond by adjusting their active
and reactive power set-points [4, 21, 26, 32, 37]. Most of these works
cast voltage control as an optimization problem and then propose
different centralized or decentralized algorithms depending on the
communication infrastructure. Critically, all of these voltage control
methods assume that the underlying grid topology is known.

241

Christopher Yeh, Jing Yu, Yuanyuan Shi, and Adam Wierman

Some recent works consider voltage control with unknown net-
work topology and parameters. These works either use a two-
stage model-based approach of first performing system identifi-
cation and then optimizing over the identified model [6], or an
entirely model-free to learn a controller via deep reinforcement
learning [11, 15, 31, 33, 34] which has no performance or voltage
stability guarantees. In contrast, our work considers model-based
approach that jointly learns the system model and a controller.

An important tool for voltage control is model predictive con-
trol (MPC), which has been investigated in a number of works,
e.g., [6, 16, 23]. Of particular relevance to this paper is work on
robust MPC algorithms for voltage control such as [23]. While
many proposals have emerged, to this point provable bounds for
robust MPC algorithms have typically been elusive. A key part of
our proposed framework is the development of a robust control
algorithm for voltage control with a provable robustness guarantee.
This is summarized in Theorem 3.

The standard approach for handling uncertainty about network
topology is to estimate the topology using a form of system iden-
tification. There is a growing literature of such approaches, e.g.,
[8, 9, 19, 20, 22, 25]. A prominent approach is to use graphical
models for topology reconstruction [8], via maximum likelihood
methods while enforcing other structural restrictions like low-rank
and sparsity. Our approach in this paper is novel because system
identification is not performed separately from control. Instead of
seeking to estimate the topology, the controller itself is learned
directly without the intermediate step of system identification.

2 MODEL

We study voltage control on an unknown grid topology. We consider
a radial power distribution circuit represented as a network G =
(N, E), where N is the set of buses (nodes) and & ¢ N X N is the
set of lines (edges). The buses are numbered N = {0,1,2,...,n},
where bus 0 is the substation and other buses are branch buses.
Let C € N denote the subset of buses with controllable reactive
power injection. Because the network is radial (tree-structured) and
rooted at the substation (bus 0), there is a unique path #; from bus
0 to any other bus i.

For each line (i, j) € &, its complex impedance is r;; + ix;;, with
real-valued line parameters r;j, x;; > 0 (units Q). Define the fol-
lowing matrices R*,X* € R™ ", which are computed from the
network topology and line parameters. Assuming that G is a con-
nected graph (i.e, no bus is disconnected from the substation), then
R*, X™* are positive definite and have strictly positive entries [12].

R =23 rhe Xfj=2) s Gje{l....n}
(hk)ePinP; (hk)eP:nNP;

(1)

Let v € R" denote the squared voltage magnitude at the buses,
excluding the substation. Let p + iq denote the complex power
injection at the buses, where p € R" (units W) is the net active
power injection, and g € R" (units Var) is the net reactive power
injection. We assume that the active power injection is exogenous,
but that reactive power at each bus can be decomposed as g = ¢°+4¢°,
where ¢ is the “controllable” component and ¢° is the “exogenous”
(i.e., uncontrollable) component.
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Under the linearized Simplified DistFlow model [21],

v =R*p+X*q+0°1, = X*¢° + oP¥,

@)
where 0P = R*p + X*¢® + 01, € R” (“par” stands for “partial”)
represents the effect of the exogenous quantities on voltage, and
00 is a known, fixed constant representing the squared voltage
magnitude at the substation.

We can model this as a discrete-time linear system

o(t+1) = X*q°(t) + 0P (¢). (3)

Substituting u(t) = ¢°(t) — ¢°(¢ — 1) (change in controllable reac-
tive power injection) and w(t) = 0P?(t) — oP¥ (¢ — 1) (change in
exogenous noise) yields the linear dynamical system

o(t+1) =0(t) + X u(t) + w(t). 4)

The voltage control problem [13] is to drive the squared voltage
magnitudes of each bus from an initial state v(1) € R” into a
given multi-dimensional interval [v,0] c R"; it is possible that
v(1) does not start within the interval due to some large initial
disturbance. For all t > 2, the voltage control algorithm aims to
maintain v (#) within [o, 9], ideally keeping v(t) as close as possible
to a “nominal” value v™™ € [v,v], typically v"°™ = (v +v) /2. The
cost for deviating from v™°™ is measured by |jo(t) — vn°m||f30 for

some positive semidefinite matrix P,, where ||x|| i‘ = x T Ax.

At each time step, buses may change their reactive power in-
jection in order to regulate the voltage close to v™°™. The reactive
power injection must remain within a given bound ¢°(t) € [g,q] C
R", and we assume ¢¢(0) indeed starts within [q, q]. Because buses
not in C do not have any ability to control the reactive power in-
jection: Vi ¢ C. q, = q; = 0. In our model, we do not place any
hard “ramp constraints” on u(t). However, we impose a quadratic
ramping cost |[u(t) ||%u where Py, is a positive semidefinite matrix.

To drive voltage back to the desired interval, and minimize the
aforementioned voltage violation cost || () — 0“°m||f,u and control

cost ||u(t) ||123u, one needs the exact system dynamics (3) for choosing
the optimal reactive power injections ¢°(1), ¢°(2),.... However,
in distribution systems, the exact network parameters are often
unknown or hard to estimate.

In this paper, we work with the voltage control problem on an
unknown grid topology. We assume that the true X* lies within a
known compact set X C S7 N R and that we only have access
to the real-time voltage measurement o(t) at each bus. We perform
voltage control while learning the system model at the same time.
(S is the set of n X n positive semidefinite matrices, and R7*" is
the set of n X n matrices with nonnegative entries.)

3 ROBUST ONLINE VOLTAGE CONTROL

In this section we introduce our robust online voltage control algo-
rithm and its performance bound (Theorem 1), which is the main
result of this paper.

3.1 Algorithm

The structure of the algorithm is summarized in Figure 1 and de-
tailed in Algorithm 1. As the figure shows, the algorithm consists of
two main components, a consistent model chasing algorithm SEL
and a robust control oracle IT, which are then combined by adapting
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Figure 1: Online robust control framework

ideas from [18]. These two crucial components are detailed in steps
(2) and (3) in Algorithm 1, respectively.

The model chasing algorithm SEL performs nested CBC, which
is the online problem of choosing a sequence of points within
sequentially nested convex sets, with the aim of minimizing the
sum of distances between the chosen points [2]. In our setting,
the nested convex sets are the consistent sets of possible model
parameters, described in Section 4. We use a simple projection-based
algorithm that is more computationally efficient than the Steiner
point-based approaches, which have state-of-the-art competitive
ratio for nested CBC but are not computationally tractable for high-
dimensional settings like voltage control.

The robust control oracle IT we use is novel and is developed
specifically to provide a provable robustness guarantee (Theorem 3).
This robustness guarantee is necessary for the analysis which in-
tegrates SEL with IT to provide the finite mistake guarantee of the
overall algorithm. See Section 4 for details. Note that other choices
for both of these components are possible, as long as they provide
the guarantees needed in the analysis in Section 4.

Intuitively, SEL and IT are combined in a way such that IT outputs
an action that causes a voltage limit violation, SEL always reduces
the uncertainty about the model by a minimum amount. SEL ensures
that our current model estimate X; is consistent with observed data
collected so far. This model improvement means that IT cannot take
too many “bad” actions before the system uncertainty is small.

One important detail in Algorithm 1 is the inclusion of the slack
variable &. If no slack variable is included (equivalently, with £ = 0
fixed), the optimization problem in IT is guaranteed (Theorem 3) to
be feasible and keep the voltage within limits only when the current
model estimate X; is close enough to the true model. However,
such a guarantee does not necessarily hold when ¢ is allowed to
be nonzero. On the other hand, since the current model estimate
X; may in general be far from the true model, the optimization
problem IT without a slack variable may not be feasible; that is,
there may not be a control action that keeps the predicted voltage
within limits under an incorrect model.

Thus, to be precise, for our finite mistake guarantee (Theorem 1)
to hold, the optimization problem for the robust control oracle IT
should first be solved without the slack variable. This ensures that if
X, is sufficiently close enough to the true model, then the algorithm
will not make a mistake. In the case that II is infeasible, then it
should be solved again with a slack variable, which ensures feasibil-
ity. However, solving IT twice is unnecessary in practice, and so we
have written Algorithm 1 to reflect its practical implementation.
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Algorithm 1 Online Robust Voltage Controller
Inputs

fixed squared voltage magnitude at substation: ° € R"

desired nominal squared voltage magnitude: o™°™ € R”"

limits on the squared voltage magnitude: [v,7] c R”

limits on the reactive power injection: [¢,q] c R"

e initial state: v(1), ¢°(0) € R" -

e state and action cost matrices: Py, P, € S}

e compact convex uncertainty set for the model parameter:
X c St nRM"

e compact convex uncertainty set for exogenous voltage quan-
tities: VP2 c R”

e upper bound for noise: > 0

o weight for slack variable: § > 0

Procedure
(1) Initialize an empty trajectory Do = []. Set t = 1.
(2) If t = 1, initialize estimate of model parameters X; € X.
Otherwise, query the model chasing algorithm for a new pa-
rameter estimate: X; « SEL[D;_1].

SEL[D;] : min [IX; - X;[3 (52)
XpesSn
st.XreX (5b)

¥(vi,0it1, Ui, q5) € Dy :
—n1 <vjp1—0; —Xpu; <1 (5¢)
Vi1 — Xeqf € VPH (5d)

(3) Query the robust control oracle for the next control action:
u(t) — I (o(1)).

T P, 6" = 0"l + lulip, + pE° (62)
s.t.gﬁqc(t—l)+U$E] (6b)

8 =o(t) + Xpu (6¢c)
k=n+p(e)llully (6d)

v+ (k-H1<8" <v—-(k-6€1  (6e)
(4) Update g°(t) « q°(¢t — 1) + u(t). Apply the control action u(#).
Observe the system transition to v (t+1) = v(t) + X*u(t) + w(t).
(5) Append (v(t),v(t + 1),u(t), g°(t)) to the trajectory Dy_q,
Dy = [ (0(i),0(i + 1), u(0), ¢ ()] iy -

(6) Increment ¢ «— t + 1. Repeat from Step (2).

3.2 Assumptions

Before presenting the main results, we introduce several key as-
sumptions that underlie our analysis and discuss why they are both
needed and practical.

The first assumption, stated below, is standard and bounds the
noise in the dynamics.

AssuMPTION 1. The change in noise is bounded as

Vi lw(t)lleo < 1, ™)

where w(t) = 0P (t) — vP%(t — 1), n € [0,7] is a known constant
andn = minj=1,.. ., (0; — ;) /2.
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Physically, this bound represents an assumption that the active
and exogenous reactive power injection does not vary dramatically
between time steps, as can be seen by expanding the definition of

w(t):
w(t) = 0P (¢) — 0P (t - 1)
=R*(p(t) — p(t — 1)) + X*(g°(t) — ¢°(t - 1)).

For example, if the net active and exogenous reactive power injec-
tion is the same at time steps t and t — 1, then w(¢) = 0.

The requirement that n < 7 ensures that the space between
v+n1and o — 71 is nonempty so that, for any o(t) inside this space,
the addition of noise w(t) does not push the voltage outside of the
target voltage limits. On the other hand, if this space were empty,
then for any v(t) and u(t), there would exist some w(t) satisfying
[[w(t)|lco < 1 such that v(t + 1) exceeds the desired voltage limits.
Because we seek a voltage controller that is robust to change in
exogenous noise, we must assume that the space is nonempty.

Our second assumption provides a bound on the uncertainty
about the network topology, such as the maximum connectivity
and impedances.

AssuMPTION 2. The true model X* lies within a known compact,
convex set X C ST NRP*". Let diam(X) denote the diameter of X :

diam(X) = sup ||X1 —Xz|l, -

X1,X,€X

Assumption 2 ensures that the unknown true model parameters
X™ belong to a compact, convex set X, which is a minimal assump-
tion necessary for proving an analytic guarantee. This compact set
forms the starting point of our consistent model chasing algorithm
SEL.

We equip the space S” of n X n symmetric matrices with a norm
[|-]| o defined as

Al o = [|lupper-triangle(A)]|, =

We use this choice of norm in order to isometrically map the space
of symmetric matrices to Euclidean space, thereby enabling us to
take advantage of known results on nested convex body chasing
within Euclidean space.

Finally, our third assumption is about the existence of feasible
control actions for the robust control oracle. This assumption can
be interpreted as either a bound on the noise, or a requirement
that the controllable reactive power injection be flexible enough to
satisfy the demand of any noise.

AssuMPTION 3. There exists a compact, convex set VP4 c R"
such thatVt > 0 : oP%(t) € VP, Furthermore, for some known
€>0,

Yo% e VP X € X.
3¢ € [q,9] st Xq +0oP € [u+ (n+e)1, 7 - (n+e)1].
Intuitively, the n padding is required for robustness to the noise

w(t), while the € padding is required for robustness to model un-
certainty (i.e., uncertainty about X*).
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3.3 Main result

We can now state our main result, which is a finite-error bound for
Algorithm 1.

THEOREM 1 (MAIN REsurt). Under Assumptions 1 to 3, Algo-
rithm 1 ensures that the voltage limits will be violated at most

4
Y diam(X) + 1 ®)
p(e)
times, where p(€) = -—S—,y = Jz(m—l)mm/z, andm = n(n+1)/2.

2Ja-d],

To the best of our knowledge, this result is the first provable
stability bound for voltage control in a setting where the network
topology is unknown. It highlights that the Algorithm 1 can ensure
stability even after unknown changes to the network topology, e.g.,
due to maintenance, failures, etc., without the need to perform
system identification.

Intuitively, this result guarantees that the model chasing algo-
rithm SEL will learn a “good enough” model for control quickly.
When the robust controller IT makes a mistake, the model chasing
algorithm will learn from that mistake and significantly reduce the
set of consistent models. Because the initial set of consistent models
is bounded, and this set shrinks a significant amount after each
mistake, the total number of mistakes is bounded.

To interpret the error bound (8) in Theorem 1, we notice that
it is proportional to the diameter diam(X) of the parameter space
X and the competitive ratio y of the consistent model chasing al-
gorithm, and inverse proportional to the oracle robustness margin
p. Note that the dependence on m of the consistent model chas-
ing competitive ratio y is very conservative. Because of compu-
tational tractability concerns, our implementation of SEL uses a
projection-based algorithm rather than the state-of-the-art Steiner
point method [2, 5]. For the algorithm in [5], ySteiner = m/2. As our
case studies show, in practice the projection-based algorithm used
in SEL performs much better than the worst-case bound.

We outline a proof of Theorem 1 in the next section, but be-
fore doing so we want to highlight one piece of that proof that
is of independent interest. In particular, a major step in the proof
is to provide a feasibility guarantee for the robust control oracle
component IT of the algorithm, which is done in Theorem 3.

4 PROOFS

We now prove our main result Theorem 1. Our proof builds on and
adapts the approach of [18], which outlines a general framework
for integrating model chasing and robust control. To explain the
general framework, we first consider a discrete-time nonlinear
dynamical system

X given,

(fow) € F,

where x € & C R”" is the system state and u € U C R™ is the
control input. The unknown function f; and disturbance sequence
w € £°(Z4+;R") belong to an uncertainty set #, and the distur-
bance is bounded as ||[W|l,, < 1. Assume that ¥ has a compact
parametrization (T, K, d), where T : K — p(¥) is a mapping from
the parameter space K to a set of functions and disturbances such
that ¥ C Ugek T[0]. 9(F) denotes the powerset of . Let d de-
note a metric on K, so (K, d) is a compact metric space.

xee1 = fu (g, ug) +wy,
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The control objective is specified as a sequence of indicator “goal"
functions G = (Go, G1,...). Each G; : X X U — {0, 1} encodes a
desired condition per time step ¢:

Gy (xt,up) = 1] xz, uz violate desired condition at time ¢].

The main result of [18] specifies a set of sufficient conditions
for a finite-mistake guarantee. These conditions decouple online
robust control into separate online learning and robust control
components.

The online learning component requires a consistent model chas-
ing algorithm SEL, which takes as input the current observed tra-
jectory Dy = [(xi, Xit1, u,—)]f:1 and outputs an estimated parameter
0; € K. The estimated parameter 6; must be consistent with D;.

DEFINITION 1 (CONSISTENT PARAMETER). We say 6 € K is con-
sistent with Dy if there exists (f,w) € T[0] such that

V(xg, Xpv1,ur) € Dyt X1 = f(xg,up50) + wy.

Let P; denote the set of all parameters consistent with D;. We
say SEL is y-competitive if .37, d(6;,0;-1) < ymaxgeg d(Peo, 6)
holds for a fixed constant y > 0, which we call the competitive ratio.

The robust control component requires a control oracle IT, which
given the current state x; and a parameter ¢;, outputs a control
action uy = Iy, (x;) that is robust for all systems that are close
to 6;. In particular, we call a control oracle p-robust for control
objective G, if all trajectories in S [p; 8] achieve G after finitely
many mistakes, and SU[p; 0] is defined as the set of all possible
trajectories generated by Il for all 6 such that d (0, 9) <p.

Doo = [(xt,xt+1,ut)]?il : (f.w) e T[0]

sh [p; 0] = ur = Hy(xr)

d(6,0) <
X1 = f(xp, up) +wy 0.6) <p

Due to the page limit, we refer readers to [18] for a more detailed
discussion of consistent model chasing algorithms and p-robust
control oracles. As a summary, if SEL chases consistent models and
I1 is a robust oracle for G, then the resulting A (SEL) algorithm
achieves a finite mistake guarantee, which is stated in the following.

THEOREM 2. [18, Theorem 2.5] Assume that SEL chases consistent
models and I1 is a robust oracle for objective G. Then for any starting
point xo and trajectory [(x;, ut)]52, generated by A (SEL) (illus-
trated in Figure 1), the following mistake guarantees hold: (i) If 11
is robust, then 3,32 ) Gy (xy,uz) < oo; (i) If 11 is uniformly p-robust
and SEL is y-competitive, then

Z G (x4, u;) < max {l,Mll;I} (% diam(K) + 1)
t=0

where Mg denotes the worst case total mistakes of the p-robust control
oracle II.

To apply Theorem 2 to prove Theorem 1 we need to prove that
(i) the proposed algorithm Equation (5) chases consistent models
and has a bounded competitive ratio, and (ii) the proposed robust
algorithm in Equation (11) is a p-robust control oracle, for bounded
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disturbance in the system topology. In particular, the correspon-
dence of the definitions are as follows. We have 6 = X, and

K=X, o(1),q°0) given
d(X,X") = X = X"||a
TIX] ={(f,w) | f(o,u) =v+Xu, [[W]le < n}
7= TIX]

XeX
Gr = 1[o(1) € [v,0]].

We begin by proving that the set defined from (5b), (5¢), (5d) in
Algorithm 1 is consistent with the trajectory Dr.

LEMMA 1 (SEL 1S CONSISTENT). Suppose Dt is a trajectory of
voltage measurements and control actions taken up to time T:

Dr = [o(t),0(t + 1), u(t). ¢°()] ;.
The set
V [o(2), 0(t + 1), u(t),q°(t)] € Dr :
ot +1) —o(t) - Xu(t)||, <n.
o(t+1) — X¢° (1) € VP¥

Pr=4XeX (10)

is a consistent set for Dr, i.e, X € X is consistent (Definition 1) if and
only if X € Pr.

Proor. Consider any X e Pr.Fort e {1,...,T}, define
w(t) =o(t +1) — o(t) — Xu(t).
Then, w(t) clearly satisfies Assumption 1. Moreover, let
0P (1) = o(t + 1) — Xq°(1).

Then 0P?'(t) is the corresponding admissible noise that satisfies
Assumption 3.

Conversely, if X ¢ Pr, then either ||U(t +1) —o(t) — Xu(t)”oo >
n for some t (and therefore |W(t)||o, > 1) or oP¥ (¢) violates As-
sumption 3. Thus, Pr contains exactly all X € X that are consistent
with Dr. m]

Observe that Pr is a closed, bounded, and convex set. Further-
more, it is non-empty, since X* € Pr. Intuitively, Pr is the smallest
set containing all parameters that could generate the observed tra-
jectory {U(f)},TIf along with a corresponding admissible sequence
of noise compatible with Assumptions 1 to 3.

Now that we have defined the consistent sets Py, we can express
SEL equivalently as solving minf([esn ||X} - )A(t,lnzA st. X, € Py
This is a nested convex body chasing problem, where we aim to
minimize the movement distance HX; - X[_1|| A between nested
convex sets Py C P;_1. By leveraging known results about nested
convex body chasing algorithms [2, 5], we can prove that the model
chasing algorithm SEL described by (5) has a bounded competitive
ratio. This is formalized in the following lemma.

LEMMA 2 (SEL 1s COMPETITIVE). For any compact convex space
K c S™, the greedy projection algorithm for consistent model chasing
(CMC) in Equation (5) achieves a competitive ratio

y = n(m—1)m™?

wherem = n(n+1)/2.
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Proor. The normed vector space (S™, ||-|| ») is isometrically iso-
morphic to the Euclidean space (R™, ||-||;) with m = n(n + 1)/2.
The mapping between the two spaces is the vectorization of the
upper-triangle of the symmetric matrix:

AeS" [At1:n, A22:n, - - ~>An,n]T eR™.

Note that Vd € N : (wg/wg—1) < 7w, where wy denotes the sur-
face area of the d-sphere. Then, by [2, Theorem 1.3], the greedy
projection algorithm achieves a competitive ratio of at most 7(m —
1)m™/2, o

Finally, we show that our controller IT is p-robust. In particular,
we prove that Iy, makes no mistakes (Mg = 0) given a consistent
model X € P;.

THEOREM 3 (II 1s p-ROBUST). Under Assumptions 1 to 3, sup-
pose X € Py, where P; is given in (10) for t > 1. Define p(e) =
e/(2||q - q||2). Then, the following optimization problem is feasible,

. R 2 2
min Hv' - U"°m||PU + lullp, (11a)
st. q=2q¢(t-1)+u=xqg (11b)

8 =o(t) + Xu (11¢)
k=n+p(e)llull (11d)

v+kl <9’ <v-k1. (11e)

Further, the solution of (11), u(t), guarantees voltage stability for all
X € X such that ||X —Xl’A < p(e). That is, v(t) + Xu(t) + w(t) €
[v,9] for all w(t) satisfying Assumption 1.

Observe that Equation (11) corresponds to Equation (6) in Al-
gorithm 1 with the slack variable set to zero. We note that the
robustness margin p decreases as [g, q] increase. The intuitive rea-
son is that the voltage is more sensitive to changes in X when the
range of possible u’s expands. Therefore, a fixed voltage buffer of e
in constraints (6d) and (11e) affords less robustness to changes in
X as [q,q] gets larger.

Proor oF THEOREM 3. First, we prove that the optimization prob-
lem (11) is feasible. Define a new variable g€ := (¢ — 1) + u. Let

0P (1 - 1) = 0(t) — Xq° (¢ — 1) (12)
o' ()=o) +Xu=0(t) +X[¢° —¢°(t - 1)] (13)

= )ch +oP¥ (t - 1) (14)

o' (u) = 0(t) + Xu = 8" (u) + (X - X)u. (15)

Here, vP?" is the conjectured admissible noise when we assume the
underlying parameter is X. Recall (4) and we can interpret 8’ as
the one-step prediction of voltage under the selected consistent
model X given a control action u and the current voltage v(t),
without the disturbance term. Similarly, v” is the disturbance-free
one-step prediction of voltage under a different model X such that
HX -X ” » < p(e) given the same control action u and the current
voltage v(t).

Since X is consistent with P;_;, 0P (¢t — 1) € VP2 Therefore,
by Assumption 3, there exists ¢° € [g, g] such that

o+ (n+e)1 <86 (u) 2v-(n+e)l.

(16)
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Then the u corresponding to such ¢¢, i.e, u = ¢° — ¢°(¢ — 1), clearly
satisfies constraint (11b). By Lemma 3, for all X satisfying ||X —

Xlla < ple),
—p(e) llullz 1= (X = X)u < p(e) llull; 1
Adding (17) with (16) and using (15) yields

(17)

v+ (n+e—p(e)llull)1 <o'(u) <o (n+e—p(e)llullz)1. (18)
By choosing

ple) = ——
2 —
Hq QHZ

and observing that u must satisfy ||ul|, < ”Z] - q”2 since u = ¢ —

q°(t — 1), we have
€
p(e) llully < 5 < €= ple) flullz-

Therefore, we can use this relation to upper and lower bound (18)
and arrive at

(19)

This holds for any one-step noiseless prediction v’ (%) from X such
that “X - )A(HA < p(e). Since X trivially lies in this set, 9’ also
satisfies (19), which in turn shows that u satisfies constraint (11e).
Thus, the optimization problem is feasible.

Next, we show that every solution u from (11) generated with X
guarantees that v(¢) + Xu € [0,v] for all X such that ||X - )A(”A <
p(€). Subtracting (17) from constraint (11e) and using Equation (15)
yields

v+ (n+p(e) llullz)1 < o' (w) <= (n+p(e) llullx)1

v+nl <0’ (u) <v-nl.

By Assumption 1, any admissible disturbance w(t) is bounded as
—n1 < w(t) < n1. This means that

v<o(t+1)=0"(u)+w(t) <7,

which shows the control action computed using (11) guarantees
voltage stability for all X € X such that ||X -X || A Sple). O

LEMMA 3. Forall A€ S", b eR", anda € Ry,

lAlls <a = -albl;1=<Ab<albl1

ProOF. Let A; denote the ith

n
Al =ZA?,j =
\ n
DAL

1j=k

row of A. By symmetry of A,
i-1 n
2 2
Z AL+ DAL
= =i

=A% < o,

M:

=
1l

s0 ||Ai]lz £ . Then
—a bl < = 1lAillz 18]l < (Ab)i < [|Aillz 1l < a1b]]; -
m}

This holds for all i € {1,...,n}, which yields the desired result.

Finally, combining Theorem 3 with Lemma 2 and applying The-
orem 2 completes the proof of Theorem 1.
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Figure 2: Schematic diagram of SCE 56 bus distribution sys-
tem.
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5 CASE STUDY

We demonstrate the effectiveness of Algorithm 1 using a case study
based on a single-phase 56-bus network from the Southern Cali-
fornia Edison (SCE) utility (Figure 2). We use a setup that mimics
what has been used previously in the voltage control literature.
In particular, the detailed line parameters r;; and x;; that we use
for this network are the same as those in Table 1 of [13]. In our
experiments, we use the linear power model in Equation (2) to solve
for voltages; we do not use non-linear power flow models.

5.1 Experimental Setup

We use real-world data [26] collected from the unmodified network,
with power injection at busesin C = {2,4,7,8,9,10, 11, 12, 13, 14, 15,
16, 19, 20, 23, 25, 26, 32} adjusted by scaled actual generation from a
nearby photovoltaic system. Exogenous active and reactive power
injection measurements are taken at each bus at 6-second intervals
over a 24-hour period. We assume that controllers with reactive
power injection capacity are set up at every node. Figure 3a plots
these values for several buses to illustrate the setting considered.

The network parameters used in our experiments are as follows:

e nominal squared voltage magnitude at the substation v =
m = (12kV)?2
e squared voltage magnitude limits [o, 7]
[(11.4kV)?, (12.6kV)?]
e reactive power injection limits g, g] = [—0.24MVar, 0.24MVar]|
e state and input cost matrices P; =0.11, P, = 101
e initial state o(1) = Rp(0) + Xq¢(0) +0°1, ¢°(0) = 0

Note that, in comparison to previous papers in the voltage control
literature, our reactive power injection limits [g, g] are slightly more
generous than the 0.2 MVar used in, e.g., [26]. We choose +0.24
MVar because even a controller with perfect knowledge of the
future would need reactive power injection capabilities of at least
+0.238 MVar in order to maintain o(t) € [v,9] (if ¢ = —¢).

In order to truly satisfy the requirement in Assu_mption 3o(t) €
[v+ (n+€),v— (n+e)] with e = 0.1, the reactive power injection
capabilities need to be at least +0.455 MVar. As we show in our
experiments with only +0.24 MVar range of control, Assumption 3
does not need to be fully satisfied in order for our method to still
provide strong empirical results.

We fix € = 0.1 in our experiments, corresponding to a robustness
margin p = €/(2||qg — ql|2) = 0.014. We set = 8.65, which upper-
bounds the true maximum change in exogenous noise observed in

[0.95pu, 1.05pu]
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our data:
max [R(p(t) = p(t — 1)) + X(q° (1) — g°(t — 1))||, = 8.625.

For the robust controller IT, we use a slack variable weight f = 100 in
the cost function, and we set VPF = [9Pf yPar] to be the rectangle
around the true noise:

Vie{l,...,n=55}: oP¥ = mtinvf’ar(t), oPaT; = mtaxvipar(t).

In our implementation of the consistent model chasing algo-
rithm, we make a few changes from the procedure described in
Algorithm 1. In order to keep the consistent model chasing op-
timization problem (5) computationally tractable, we do not use
the full trajectory D as in constraints (5c)-(5d). Instead, we include
the 20 latest observations and a set of 80 more random samples
(v(8),0(t + 1),u(t),q°(t)) ~ D. This provides a computationally
tractable approximation of the uncertainty set.

Our experiments aim to understand the performance of the pro-
posed online robust controller under different levels of uncertainty
and the effect of different initializations of X. In particular, we
consider uncertainty sets of the form

Xy = {X € STARPT . 1K - X <alX*],} (20

where larger a corresponds to a larger uncertainty set. Note that
diam(X,) = 2a || X*]| .

We initialize X by adding noise to the true X* in two ways.
First, we multiply the line impedance coefficients x;; by a random
scaling factor sampled from Uniform[1 — 0,1 + o] for some o €
[0,1]. Second, we randomly permute the bus ordering, so that X
corresponds to a permuted grid topology. Finally, we project X into
the uncertainty set Xy .

We consider 3 settings:

(1) moderate uncertainty and error (@ = 0.5), with 0 = 0.5

(2) large uncertainty and error (a = 1.0), with o = 1.0

(3) large uncertainty (@ = 1.0) with o = 1.0, but with moderate

error (the initial X is projected into X 5)

By comparing case (3) to cases (1) and (2), we distinguish the
impact of the uncertainty set size and the error of the initial guess
for X, each of which presents different challenges for Algorithm 1.

We compare our experiments against four baselines, illustrated in
Figure 3: (a) the case of no controller, (b) the case where our robust
controller is used with perfect knowledge of the network topology,
(c) a model-agnostic decentralized controller from [21, Section IV],
and (d) another model-agnostic decentralized controller from [21,
Section V]. The figure highlights that, without a controller, buses 19
and 31 violate the upper and lower voltage limits, respectively, by a
significant margin. In contrast, the robust controller given the true
X* keeps the voltage within the limits for all buses, as expected.
The decentralized model-agnostic controllers (c) and (d), which are
supposed to be robust to the underlying topology, do not perform
well, as their theoretical convergence guarantees [21] only hold for
fixed vP?" and for unbounded reactive power injection limits (g, ).

5.2 Experimental Results

Our experimental results focus on demonstrating the ability of
Algorithm 1 to stabilize the system without knowledge of the net-
work topology. To highlight the performance of the algorithm, we
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consider settings with moderate and large amounts of uncertainty
in Figures 4 and 5. Importantly, Algorithm 1 stabilizes the system
without performing system identification. In fact, our results high-
light that the algorithm still has significant uncertainty about the
topology at the end of the experiments, while also providing nearly
the same stabilization performance as the robust controller does
with complete information about the topology.

Our simulations use the linearized system dynamics Equation (3),
and the convex optimization problems for SEL and II are solved
with CVXPY [10] using the MOSEK solver. Code for our simulations
will be made available on GitHub.

Experiment 1: Moderate Uncertainty. Our first set of experiments
runs the robust online voltage controller (Algorithm 1, denoted
IT+SEL) in a scenario where the norm of the initial parameter esti-
mate is within 50% of the true parameter norm. Figure 4 shows that
the proposed controller can consistently maintain a voltage pro-
file within the nominal operation range. The solid orange line and
shaded orange region represent the mean and +1 standard deviation
of voltages from the proposed controller, over 4 random choices
of Xl. In contrast, the robust controller IT on its own (without the
consistent model chasing algorithm SEL to update the model) ex-
hibits large voltage oscillations shown in blue and fails to stabilize
the voltage. This is a consequence of II choosing actions based on
incorrect information about the network topology. Using the wrong
knowledge is even worse than not having a controller (Figure 3a) in
this case. This demonstrates a clear need for learning the topology
rather than purely replying on a robust voltage controller in the
case of uncertainty about the network topology.

Figure 4c shows the evolution of the convex model chasing algo-
rithm results across different choices of X;. Notably, even though
we only approximate the true consistent set through a small ran-
dom sample, the distance between the learned model X; and true
model X* decreases monotonically over time. However, the uncer-
tainty does not converge to zero, illustrating that Algorithm 1 does
not perform complete system identification and instead learns just
enough about the topology in order to stabilize the system. This is
a key novelty of our approach, and enables the algorithm to quickly
adapt to uncertain network conditions.

Finally, we compare the performance of Algorithm 1 with that
of the robust controller that has perfect knowledge of the network
topology (Figure 3b). The performance of Algorithm 1 is comparable
despite its lack of knowledge of the topology. One reason for the
near-optimal performance of Algorithm 1 in this case is that the
robust controller II turns out to be even more robust than our
theoretical results suggest. In particular, empirically it is robust to
X up to a distance 0.4 HX*”A ~ 66 away from the true X*, even
though our theoretical results only guarantee its robustness for
distances up to p = 0.014.

Experiment 2: Large Uncertainty. Next, we test the proposed ro-
bust online voltage controller in a more challenging setting where
there is a large amount of uncertainty. Here, the initial X is gener-
ated from impedance values with up to 100% error from the true
values. Consistent with the moderate uncertainty case, our method
manages to maintain voltage stability across all buses. Even though
the initial model estimation can be very different compared to the
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Figure 3: Voltage profile of SCE 56 bus distribution system with PV generators. (a) without control (b) robust controller II given
the true X* (c) model-agnostic controller from [21, Section IV] (d) model-agnostic controller from [21, Section V].
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Figure 4: Results for Algorithm 1 on the SCE 56-bus distribution system with moderate-sized uncertainty set (¢ = 0.5) and
moderate initial error (||[X — X*||» = 0.5 HX *” »)- (a) Voltage profile of bus 19, where dark blue and dark orange lines plot the
mean voltage for the robust controller IT with fixed X vs. IT paired with SEL, respectively, across 4 random initializations of
X; shaded light blue and light orange regions indicate +1 standard deviation. The dark blue line looks like a blob because
IT over-corrects its mistakes when given incorrect network parameters. (b) Same as (a), but for bus 31. (c) Model uncertainty
decreases as SEL learns over time, for the same 4 choices of X from (a) and (b). The algorithm keeps the voltage within limits
even though the model estimates X; are imperfect, demonstrating that complete system identification is not necessary.
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Figure 5: Same as Figure 4, except the uncertainty set and initial error are both larger (« = 1.0, IX =X*||a = ||X *” ) The robust
controller IT with fixed X performs significantly worse than in Figure 4, while II paired with SEL performs only slightly worse.
We also experiment with partial observability of voltages (denoted “p.0.”) by withholding observations of voltages from certain
buses, including buses 19 and 31 whose voltage profiles are plotted in (a) and (b). As expected, our controller performs worse
with partially observations compared to full observations, but only marginally so. In (c), it is visible that the lack of voltage
observation at these 7 nodes does not significantly affect the ability of SEL to learn consistent models.
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ground truth system (i.e., ||)A( - X*” » > 100), Algorithm 1 quickly
learns from the mistakes and refines the model estimation. Notice
in Figure 5¢ how the model error drops quickly during the voltage
violation periods between time 10:00 and 12:00. However, the ro-
bust controller on its own (without SEL) fails to control the voltage
in the large uncertainty scenario: the voltage profiles at buses 19
(Figure 5a) and 31 (Figure 5b) deviate significantly from the nominal
value. This may lead to unsafe operating conditions that violate reg-
ulatory requirements, with potentially catastrophic consequences,
e.g., blackouts. In addition, the robust controller on its own is quite
sensitive to the initial choice of X , with a much larger standard
deviation than Algorithm 1. Similar to the previous experiment, the
model error shown in Figure 5c¢ decreases monotonically with a
nonzero final estimation error.

In this large uncertainty setting, we also experiment with partial
observability of voltages (denoted “p.o.” in Figure 5) by withholding
observations of voltages from buses i € {9, 19,22, 31,40, 46,55}
That is, we still permit the robust controller IT to control the reactive
power injection at these buses, but SEL does not use the voltages
v;(t) from these buses as part of the constraints for the consistent
sets. As expected, our controller performs worse in this partially-
observed setting, but only marginally so. As shown in Figure 5c, the
lack of voltage observation at these 7 nodes does not significantly
affect the ability of SEL to learn consistent models.

Experiment 3: Moderate Initial Error, Large Uncertainty. Finally,
we test our robust online voltage controller with a large uncertainty
set (& = 1.0) but moderate initial error (X projected into Xy 5). We
found the plots of voltage profiles to be nearly indistinguishable
from the moderate uncertainty/moderate error setting (Figure 4),
so we have omitted inclusion of those plots. This empirical obser-
vation matches the intuitive idea that for large uncertainty settings,
the observed trajectory data is more informative in the definition
of consistent sets than the initial uncertainty set X. This explains
why our method performs similarly in both the medium uncer-
tainty/medium error and large uncertainty/large error settings.

6 CONCLUSION

This paper provides the first controller that establishes a finite-
mistake guarantee for voltage control in a setting with an unknown
grid topology. We showed that traditional voltage control algo-
rithms that rely on knowing network information may cause grid
instability when given incorrect information about the network
topology; furthermore, decentralized network-agnostic control al-
gorithms may also fail when subject to realistic noise and con-
straints on control inputs. In contrast, our proposed algorithm is
able to learn the grid topology in an online fashion and provably
converge to a stable controller. Further, simulated experiments
on a 56-bus distribution grid demonstrate the effectiveness of our
algorithm in a practical scenario.

As the current algorithm is highly centralized, future works may
consider more decentralized approaches to topology-robust voltage
control in order to enable faster real-time control. Ideas from works
such as [35] can potentially be adapted. Further studies may also
explore loosening the radial topology assumption to accommodate
a wider range of distribution grids. This would be a challenging,
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but important, extension. Finally, an interesting algorithmic exten-
sion is to consider computationally efficient convex body chasing
algorithms with better competitive ratios. Existing methods based
on Steiner point [2, 5] achieve nearly-optimal competitive ratio but
are computationally inefficient in high dimension settings such as
voltage control, so designing efficient approximate Steiner point
algorithms could potentially lead to significant performance im-
provements.
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