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ABSTRACT
Voltage control generally requires accurate information about the

grid’s topology in order to guarantee network stability. However, ac-

curate topology identification is a challenging problem for existing

methods, especially as the grid is subject to increasingly frequent

reconfiguration due to the adoption of renewable energy. Further,

running existing control mechanisms with incorrect network infor-

mation may lead to unstable control. In this work, we combine a

nested convex body chasing algorithm with a robust predictive con-

troller to achieve provably finite-time convergence to safe voltage

limits in the online setting where the network topology is initially

unknown. Specifically, the online controller does not know the

true network topology and line parameters, but instead must learn

them over time by narrowing down the set of network topologies

and line parameters that are consistent with its observations and

adjusting reactive power generation accordingly to keep voltages

within desired safety limits. We demonstrate the effectiveness of

the approach using a case study, which shows that in practical

settings the controller is indeed able to narrow the set of consistent

topologies quickly enough to make control decisions that ensure

stability.
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1 INTRODUCTION
Operators of electricity distribution grids must maintain voltages

at each bus within certain operating limits, as deviations from such

limits may damage electrical equipment and cause power outages

[1, 17]. This “voltage control” or “voltage regulation” problem has

been well-studied in the literature, e.g., [24, 27, 37] and the refer-

ences therein. Voltage control algorithms aim to guarantee grid

stability while minimizing the costs associated with control inputs.

Typically, the algorithms assume exact knowledge of the underlying
grid topology.

However, the exact grid topology and line parameters are often

not known, and inexact knowledge may lead to stability problems

for voltage control algorithms [20, 25]. This problem is exacer-

bated by the increasing integration of distributed energy resources

(DERs), such as photovoltaic and storage devices. Especially in dis-

tribution grids, where DERs often do not belong to the electricity

utility, the grid operator may lack up-to-date information about the

grid topology [9, 22]. While a grid operator can install sensors to

help identify the current network topology, unless such sensors are

densely deployed, uncertainty about the topology remains; and so

cost is prohibitive. Furthermore, parts of the grid may undergo fre-

quent reconfiguration either due to load balancing [3] or unplanned

maintenance. Thus, distribution grid operators cannot expect to

operate with perfect topology information and the design of voltage

control robust to unknown grid topology is crucial.

To date, only a limited number of voltage control mechanisms

have been studied in the case when the grid topology is uncer-

tain. One common design is to learn a voltage controller via deep

reinforcement learning (DRL), e.g., [11, 15, 31, 33, 34] and refer-

ences within. However, such approaches have neither performance

nor voltage stability guarantees. Thus, they are not suitable for

safety-critical infrastructure. Two recent works [7, 30] propose a

model-free DRL approach for voltage control with stability guar-

antees. The main tool being used in [7, 30] is Lyapunov stability

theory, from which a structural constraint for stable controllers is

derived, and policy optimization with the constraint is performed.

In contrast, our framework jointly learns the system model (consis-

tent to data) and stable controller, in an online fashion.

Another common approach for voltage control when grid topol-

ogy is uncertain, is to use a two-stage model-based approach: first,

estimate the network topology, a.k.a., system identification, using

structured neural networks; and second, apply an existing model

240

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3538637.3538853
https://doi.org/10.1145/3538637.3538853
https://creativecommons.org/licenses/by/4.0/


e-Energy ’22, June 28–July 1, 2022, Virtual Event, USA Christopher Yeh, Jing Yu, Yuanyuan Shi, and Adam Wierman

predictive control with the identified model, e.g., [6]. However, ac-
curate topology identification is a challenging problem [29] and

existing methods require voltage measurements over hundreds of

time steps [8, 22], after which uncertainty still remains. This is

problematic because, during the time where system identification is

being performed, the network is not able to respond effectively to

disturbances, since using an incorrect model may lead to unstable

control. Given the timescale of grid topology changes in practice, a

different approach is needed.

1.1 Contributions
We propose a new approach for voltage control over an uncertain

grid topology that does not perform system identification and volt-

age control separately. Instead, our approach robustly learns to

stabilize voltage within the desired limits directly, without any prior
knowledge of the topology and without needing to precisely learn the
topology.

Our approach takes ideas from online nested convex body chas-

ing (CBC) [2] and robust predictive control and combines them

using a new learning framework [18] to apply them to voltage con-

trol for the first time. Intuitively, we use a nested CBC algorithm

in order to track the set of topologies that are consistent with the

observed voltage measurements—as more measurements are taken

the set of consistent topologies shrinks (and so the sets are nested).

As these measurements are taken, a form of robust predictive con-

trol is used for voltage control, where the robustness guarantee is

used to ensure the uncertainty about the topology can be handled.

Our main result (Theorem 1) provides a finite error stability bound

for the overall controller, which is summarized in Algorithm 1. This

represents the first voltage control algorithm that is provably robust

to uncertainty about network topology.

In addition to providing theoretical guarantees, we demonstrate

the effectiveness of our proposed approach using a case study of a

56-bus distribution grid from the Southern California Edison (SCE)

utility [13]. In this setting, we give the controller no prior infor-

mation about the topology of the grid, yet the controller quickly

narrows down the set of topologies and line parameters that are

consistent with its observations and adjusts reactive power genera-

tion to keep voltages within desired safety limits when faced with

disturbance. In fact, our controller’s performance nearly matches

that of controllers which assume perfect knowledge of the topology,

even when given only partial observations of bus voltages.

1.2 Related Work
The problem of voltage control has a long history with many im-

portant contributions [4, 6, 14, 21, 26, 28, 32, 33, 36, 37] (and the

references within). Classic voltage regulation devices such as tap-

changing transformers [14, 28] are effective in dealing with slow
voltage variations. However, with fast time variations introduced

by renewables, a growing body of literature has focused on inverter-

based controllers that can quickly respond by adjusting their active

and reactive power set-points [4, 21, 26, 32, 37]. Most of these works

cast voltage control as an optimization problem and then propose

different centralized or decentralized algorithms depending on the

communication infrastructure. Critically, all of these voltage control

methods assume that the underlying grid topology is known.

Some recent works consider voltage control with unknown net-

work topology and parameters. These works either use a two-

stage model-based approach of first performing system identifi-

cation and then optimizing over the identified model [6], or an

entirely model-free to learn a controller via deep reinforcement

learning [11, 15, 31, 33, 34] which has no performance or voltage

stability guarantees. In contrast, our work considers model-based

approach that jointly learns the system model and a controller.

An important tool for voltage control is model predictive con-

trol (MPC), which has been investigated in a number of works,

e.g., [6, 16, 23]. Of particular relevance to this paper is work on

robust MPC algorithms for voltage control such as [23]. While

many proposals have emerged, to this point provable bounds for

robust MPC algorithms have typically been elusive. A key part of

our proposed framework is the development of a robust control

algorithm for voltage control with a provable robustness guarantee.

This is summarized in Theorem 3.

The standard approach for handling uncertainty about network

topology is to estimate the topology using a form of system iden-

tification. There is a growing literature of such approaches, e.g.,

[8, 9, 19, 20, 22, 25]. A prominent approach is to use graphical

models for topology reconstruction [8], via maximum likelihood

methods while enforcing other structural restrictions like low-rank

and sparsity. Our approach in this paper is novel because system

identification is not performed separately from control. Instead of

seeking to estimate the topology, the controller itself is learned

directly without the intermediate step of system identification.

2 MODEL
We study voltage control on an unknown grid topology.We consider

a radial power distribution circuit represented as a network 𝐺 =

(N , E), where N is the set of buses (nodes) and E ⊂ N ×N is the

set of lines (edges). The buses are numbered N = {0, 1, 2, . . . , 𝑛},
where bus 0 is the substation and other buses are branch buses.

Let C ⊆ N denote the subset of buses with controllable reactive

power injection. Because the network is radial (tree-structured) and

rooted at the substation (bus 0), there is a unique path P𝑖 from bus

0 to any other bus 𝑖 .

For each line (𝑖, 𝑗) ∈ E, its complex impedance is 𝑟𝑖 𝑗 + i𝑥𝑖 𝑗 , with
real-valued line parameters 𝑟𝑖 𝑗 , 𝑥𝑖 𝑗 > 0 (units Ω). Define the fol-
lowing matrices 𝑅★, 𝑋★ ∈ R𝑛×𝑛 , which are computed from the

network topology and line parameters. Assuming that 𝐺 is a con-

nected graph (i.e., no bus is disconnected from the substation), then

𝑅★, 𝑋★
are positive definite and have strictly positive entries [12].

𝑅★𝑖 𝑗 := 2

∑
(ℎ,𝑘) ∈P𝑖∩P𝑗

𝑟ℎ𝑘 , 𝑋★
𝑖 𝑗 := 2

∑
(ℎ,𝑘) ∈P𝑖∩P𝑗

𝑥ℎ𝑘 , 𝑖, 𝑗 ∈ {1, . . . , 𝑛} (1)

Let 𝑣 ∈ R𝑛 denote the squared voltage magnitude at the buses,

excluding the substation. Let 𝑝 + i𝑞 denote the complex power

injection at the buses, where 𝑝 ∈ R𝑛 (units W) is the net active

power injection, and 𝑞 ∈ R𝑛 (units Var) is the net reactive power

injection. We assume that the active power injection is exogenous,

but that reactive power at each bus can be decomposed as𝑞 = 𝑞𝑐+𝑞𝑒 ,
where 𝑞𝑐 is the “controllable” component and 𝑞𝑒 is the “exogenous”

(i.e., uncontrollable) component.
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Under the linearized Simplified DistFlow model [21],

𝑣 = 𝑅★𝑝 + 𝑋★𝑞 + 𝑣01𝑛 = 𝑋★𝑞𝑐 + 𝑣par, (2)

where 𝑣par = 𝑅★𝑝 + 𝑋★𝑞𝑒 + 𝑣01𝑛 ∈ R𝑛 (“par” stands for “partial”)

represents the effect of the exogenous quantities on voltage, and

𝑣0 is a known, fixed constant representing the squared voltage

magnitude at the substation.

We can model this as a discrete-time linear system

𝑣 (𝑡 + 1) = 𝑋★𝑞𝑐 (𝑡) + 𝑣par (𝑡). (3)

Substituting 𝑢 (𝑡) = 𝑞𝑐 (𝑡) − 𝑞𝑐 (𝑡 − 1) (change in controllable reac-

tive power injection) and 𝑤 (𝑡) = 𝑣par (𝑡) − 𝑣par (𝑡 − 1) (change in
exogenous noise) yields the linear dynamical system

𝑣 (𝑡 + 1) = 𝑣 (𝑡) + 𝑋★𝑢 (𝑡) +𝑤 (𝑡). (4)

The voltage control problem [13] is to drive the squared voltage

magnitudes of each bus from an initial state 𝑣 (1) ∈ R𝑛 into a

given multi-dimensional interval [𝑣, 𝑣] ⊂ R𝑛 ; it is possible that

𝑣 (1) does not start within the interval due to some large initial

disturbance. For all 𝑡 ≥ 2, the voltage control algorithm aims to

maintain 𝑣 (𝑡) within [𝑣, 𝑣], ideally keeping 𝑣 (𝑡) as close as possible
to a “nominal” value 𝑣nom ∈ [𝑣, 𝑣], typically 𝑣nom = (𝑣 + 𝑣)/2. The
cost for deviating from 𝑣nom is measured by ∥𝑣 (𝑡) − 𝑣nom∥2𝑃𝑣 for

some positive semidefinite matrix 𝑃𝑣 , where ∥𝑥 ∥2𝐴 := 𝑥⊤𝐴𝑥 .
At each time step, buses may change their reactive power in-

jection in order to regulate the voltage close to 𝑣nom. The reactive

power injection must remain within a given bound 𝑞𝑐 (𝑡) ∈ [𝑞, 𝑞] ⊂
R𝑛 , and we assume 𝑞𝑐 (0) indeed starts within [𝑞, 𝑞]. Because buses
not in C do not have any ability to control the reactive power in-

jection: ∀𝑖 ∉ C. 𝑞
𝑖
= 𝑞𝑖 = 0. In our model, we do not place any

hard “ramp constraints” on 𝑢 (𝑡). However, we impose a quadratic

ramping cost ∥𝑢 (𝑡)∥2
𝑃𝑢

where 𝑃𝑢 is a positive semidefinite matrix.

To drive voltage back to the desired interval, and minimize the

aforementioned voltage violation cost ∥𝑣 (𝑡) − 𝑣nom∥2𝑃𝑣 and control

cost ∥𝑢 (𝑡)∥2
𝑃𝑢
, one needs the exact system dynamics (3) for choosing

the optimal reactive power injections 𝑞𝑐 (1), 𝑞𝑐 (2), . . . . However,
in distribution systems, the exact network parameters are often

unknown or hard to estimate.

In this paper, we work with the voltage control problem on an

unknown grid topology. We assume that the true 𝑋★
lies within a

known compact set X ⊂ S𝑛+ ∩ R𝑛×𝑛+ and that we only have access

to the real-time voltage measurement 𝑣 (𝑡) at each bus. We perform

voltage control while learning the system model at the same time.

(S𝑛+ is the set of 𝑛 × 𝑛 positive semidefinite matrices, and R𝑛×𝑛+ is

the set of 𝑛 × 𝑛 matrices with nonnegative entries.)

3 ROBUST ONLINE VOLTAGE CONTROL
In this section we introduce our robust online voltage control algo-

rithm and its performance bound (Theorem 1), which is the main

result of this paper.

3.1 Algorithm
The structure of the algorithm is summarized in Figure 1 and de-

tailed in Algorithm 1. As the figure shows, the algorithm consists of

two main components, a consistent model chasing algorithm SEL
and a robust control oracle Π, which are then combined by adapting

Figure 1: Online robust control framework

ideas from [18]. These two crucial components are detailed in steps

(2) and (3) in Algorithm 1, respectively.

The model chasing algorithm SEL performs nested CBC, which

is the online problem of choosing a sequence of points within

sequentially nested convex sets, with the aim of minimizing the

sum of distances between the chosen points [2]. In our setting,

the nested convex sets are the consistent sets of possible model

parameters, described in Section 4.We use a simple projection-based

algorithm that is more computationally efficient than the Steiner

point-based approaches, which have state-of-the-art competitive

ratio for nested CBC but are not computationally tractable for high-

dimensional settings like voltage control.

The robust control oracle Π we use is novel and is developed

specifically to provide a provable robustness guarantee (Theorem 3).

This robustness guarantee is necessary for the analysis which in-

tegrates SEL with Π to provide the finite mistake guarantee of the

overall algorithm. See Section 4 for details. Note that other choices

for both of these components are possible, as long as they provide

the guarantees needed in the analysis in Section 4.

Intuitively, SEL and Π are combined in a way such that Π outputs

an action that causes a voltage limit violation, SEL always reduces

the uncertainty about themodel by aminimum amount. SEL ensures
that our current model estimate𝑋𝑡 is consistent with observed data

collected so far. This model improvement means that Π cannot take

too many “bad” actions before the system uncertainty is small.

One important detail in Algorithm 1 is the inclusion of the slack

variable 𝜉 . If no slack variable is included (equivalently, with 𝜉 = 0

fixed), the optimization problem in Π is guaranteed (Theorem 3) to

be feasible and keep the voltage within limits only when the current

model estimate 𝑋𝑡 is close enough to the true model. However,

such a guarantee does not necessarily hold when 𝜉 is allowed to

be nonzero. On the other hand, since the current model estimate

𝑋𝑡 may in general be far from the true model, the optimization

problem Π without a slack variable may not be feasible; that is,

there may not be a control action that keeps the predicted voltage

within limits under an incorrect model.

Thus, to be precise, for our finite mistake guarantee (Theorem 1)

to hold, the optimization problem for the robust control oracle Π
should first be solved without the slack variable. This ensures that if

𝑋𝑡 is sufficiently close enough to the true model, then the algorithm

will not make a mistake. In the case that Π is infeasible, then it

should be solved again with a slack variable, which ensures feasibil-

ity. However, solving Π twice is unnecessary in practice, and so we

have written Algorithm 1 to reflect its practical implementation.
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Algorithm 1 Online Robust Voltage Controller

Inputs

• fixed squared voltage magnitude at substation: 𝑣0 ∈ R𝑛
• desired nominal squared voltage magnitude: 𝑣nom ∈ R𝑛
• limits on the squared voltage magnitude: [𝑣, 𝑣] ⊂ R𝑛
• limits on the reactive power injection: [𝑞, 𝑞] ⊂ R𝑛
• initial state: 𝑣 (1), 𝑞𝑐 (0) ∈ R𝑛
• state and action cost matrices: 𝑃𝑣, 𝑃𝑢 ∈ S𝑛+
• compact convex uncertainty set for the model parameter:

X ⊂ S𝑛+ ∩ R𝑛×𝑛+
• compact convex uncertainty set for exogenous voltage quan-

tities:Vpar ⊂ R𝑛
• upper bound for noise: 𝜂 > 0

• weight for slack variable: 𝛽 > 0

Procedure

(1) Initialize an empty trajectory 𝐷0 = [ ]. Set 𝑡 = 1.

(2) If 𝑡 = 1, initialize estimate of model parameters 𝑋1 ∈ X.
Otherwise, query the model chasing algorithm for a new pa-

rameter estimate: 𝑋𝑡 ← SEL[𝐷𝑡−1].
SEL[𝐷𝑡 ] : min

𝑋̂𝑡 ∈S𝑛
∥𝑋𝑡 − 𝑋𝑡−1∥2△ (5a)

s.t. 𝑋𝑡 ∈ X (5b)

∀(𝑣𝑖 , 𝑣𝑖+1, 𝑢𝑖 , 𝑞𝑐𝑖 ) ∈ 𝐷𝑡 :

− 𝜂1 ⪯ 𝑣𝑖+1 − 𝑣𝑖 − 𝑋𝑡𝑢𝑖 ⪯ 𝜂1 (5c)

𝑣𝑖+1 − 𝑋𝑡𝑞
𝑐
𝑖 ∈ V

par
(5d)

(3) Query the robust control oracle for the next control action:

𝑢 (𝑡) ← Π
𝑋̂𝑡
(𝑣 (𝑡)).

Π
𝑋̂𝑡

: min

𝑢∈R𝑛, 𝜉 ∈R+



𝑣 ′ − 𝑣nom

2
𝑃𝑣
+ ∥𝑢∥2𝑃𝑢 + 𝛽𝜉

2
(6a)

s.t. 𝑞 ⪯ 𝑞𝑐 (𝑡 − 1) + 𝑢 ⪯ 𝑞 (6b)

𝑣 ′ = 𝑣 (𝑡) + 𝑋𝑡𝑢 (6c)

𝑘 = 𝜂 + 𝜌 (𝜖) ∥𝑢∥
2

(6d)

𝑣 + (𝑘 − 𝜉)1 ⪯ 𝑣 ′ ⪯ 𝑣 − (𝑘 − 𝜉)1 (6e)

(4) Update 𝑞𝑐 (𝑡) ← 𝑞𝑐 (𝑡 − 1) +𝑢 (𝑡). Apply the control action 𝑢 (𝑡).
Observe the system transition to 𝑣 (𝑡 +1) = 𝑣 (𝑡) +𝑋★𝑢 (𝑡) +𝑤 (𝑡).

(5) Append (𝑣 (𝑡), 𝑣 (𝑡 + 1), 𝑢 (𝑡), 𝑞𝑐 (𝑡)) to the trajectory 𝐷𝑡−1,

𝐷𝑡 =
[
(𝑣 (𝑖), 𝑣 (𝑖 + 1), 𝑢 (𝑖), 𝑞𝑐 (𝑖))

]𝑡
𝑖=1

.

(6) Increment 𝑡 ← 𝑡 + 1. Repeat from Step (2).

3.2 Assumptions
Before presenting the main results, we introduce several key as-

sumptions that underlie our analysis and discuss why they are both

needed and practical.

The first assumption, stated below, is standard and bounds the

noise in the dynamics.

Assumption 1. The change in noise is bounded as

∀𝑡 : ∥𝑤 (𝑡)∥∞ ≤ 𝜂, (7)

where 𝑤 (𝑡) = 𝑣par (𝑡) − 𝑣par (𝑡 − 1), 𝜂 ∈ [0, 𝜂] is a known constant
and 𝜂 = min𝑖=1,...,𝑛 (𝑣𝑖 − 𝑣𝑖 )/2.

Physically, this bound represents an assumption that the active

and exogenous reactive power injection does not vary dramatically

between time steps, as can be seen by expanding the definition of

𝑤 (𝑡):

𝑤 (𝑡) = 𝑣par (𝑡) − 𝑣par (𝑡 − 1)
= 𝑅★(𝑝 (𝑡) − 𝑝 (𝑡 − 1)) + 𝑋★(𝑞𝑒 (𝑡) − 𝑞𝑒 (𝑡 − 1)) .

For example, if the net active and exogenous reactive power injec-

tion is the same at time steps 𝑡 and 𝑡 − 1, then𝑤 (𝑡) = 0.

The requirement that 𝜂 ≤ 𝜂 ensures that the space between

𝑣 +𝜂1 and 𝑣 −𝜂1 is nonempty so that, for any 𝑣 (𝑡) inside this space,
the addition of noise𝑤 (𝑡) does not push the voltage outside of the

target voltage limits. On the other hand, if this space were empty,

then for any 𝑣 (𝑡) and 𝑢 (𝑡), there would exist some𝑤 (𝑡) satisfying
∥𝑤 (𝑡)∥∞ ≤ 𝜂 such that 𝑣 (𝑡 + 1) exceeds the desired voltage limits.

Because we seek a voltage controller that is robust to change in

exogenous noise, we must assume that the space is nonempty.

Our second assumption provides a bound on the uncertainty

about the network topology, such as the maximum connectivity

and impedances.

Assumption 2. The true model 𝑋★ lies within a known compact,
convex set X ⊂ S𝑛+ ∩ R𝑛×𝑛+ . Let diam(X) denote the diameter of X:

diam(X) = sup

𝑋1,𝑋2∈X
∥𝑋1 − 𝑋2∥△ .

Assumption 2 ensures that the unknown true model parameters

𝑋★
belong to a compact, convex set X, which is a minimal assump-

tion necessary for proving an analytic guarantee. This compact set

forms the starting point of our consistent model chasing algorithm

SEL.
We equip the space S𝑛 of 𝑛 × 𝑛 symmetric matrices with a norm

∥·∥△ defined as

∥𝐴∥△ = ∥upper-triangle(𝐴)∥
2
=

√√√ 𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖

𝐴2

𝑖 𝑗
.

We use this choice of norm in order to isometrically map the space

of symmetric matrices to Euclidean space, thereby enabling us to

take advantage of known results on nested convex body chasing

within Euclidean space.

Finally, our third assumption is about the existence of feasible

control actions for the robust control oracle. This assumption can

be interpreted as either a bound on the noise, or a requirement

that the controllable reactive power injection be flexible enough to

satisfy the demand of any noise.

Assumption 3. There exists a compact, convex set Vpar ⊂ R𝑛
such that ∀𝑡 ≥ 0 : 𝑣par (𝑡) ∈ Vpar. Furthermore, for some known
𝜖 > 0,

∀𝑣par ∈ Vpar, 𝑋 ∈ X.
∃𝑞𝑐 ∈ [𝑞, 𝑞] s.t. 𝑋𝑞𝑐 + 𝑣par ∈ [𝑣 + (𝜂 + 𝜖)1, 𝑣 − (𝜂 + 𝜖)1] .

Intuitively, the 𝜂 padding is required for robustness to the noise

𝑤 (𝑡), while the 𝜖 padding is required for robustness to model un-

certainty (i.e., uncertainty about 𝑋★
).
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3.3 Main result
We can now state our main result, which is a finite-error bound for

Algorithm 1.

Theorem 1 (Main Result). Under Assumptions 1 to 3, Algo-
rithm 1 ensures that the voltage limits will be violated at most

4𝛾

𝜌 (𝜖) diam(X) + 1 (8)

times, where 𝜌 (𝜖) = 𝜖

2




𝑞−𝑞



2

,𝛾 = 𝜋 (𝑚−1)𝑚𝑚/2, and𝑚 = 𝑛(𝑛+1)/2.

To the best of our knowledge, this result is the first provable

stability bound for voltage control in a setting where the network

topology is unknown. It highlights that the Algorithm 1 can ensure

stability even after unknown changes to the network topology, e.g.,
due to maintenance, failures, etc., without the need to perform

system identification.

Intuitively, this result guarantees that the model chasing algo-

rithm SEL will learn a “good enough” model for control quickly.

When the robust controller Π makes a mistake, the model chasing

algorithm will learn from that mistake and significantly reduce the

set of consistent models. Because the initial set of consistent models

is bounded, and this set shrinks a significant amount after each

mistake, the total number of mistakes is bounded.

To interpret the error bound (8) in Theorem 1, we notice that

it is proportional to the diameter diam(X) of the parameter space

X and the competitive ratio 𝛾 of the consistent model chasing al-

gorithm, and inverse proportional to the oracle robustness margin

𝜌 . Note that the dependence on 𝑚 of the consistent model chas-

ing competitive ratio 𝛾 is very conservative. Because of compu-

tational tractability concerns, our implementation of SEL uses a

projection-based algorithm rather than the state-of-the-art Steiner

point method [2, 5]. For the algorithm in [5], 𝛾Steiner =𝑚/2. As our
case studies show, in practice the projection-based algorithm used

in SEL performs much better than the worst-case bound.

We outline a proof of Theorem 1 in the next section, but be-

fore doing so we want to highlight one piece of that proof that

is of independent interest. In particular, a major step in the proof

is to provide a feasibility guarantee for the robust control oracle

component Π of the algorithm, which is done in Theorem 3.

4 PROOFS
We now prove our main result Theorem 1. Our proof builds on and

adapts the approach of [18], which outlines a general framework

for integrating model chasing and robust control. To explain the

general framework, we first consider a discrete-time nonlinear

dynamical system

𝑥𝑡+1 = 𝑓∗ (𝑥𝑡 , 𝑢𝑡 ) +𝑤𝑡 , 𝑥0 given, (𝑓∗,w) ∈ F ,
where 𝑥 ∈ S ⊆ R𝑛 is the system state and 𝑢 ∈ U ⊆ R𝑚 is the

control input. The unknown function 𝑓∗ and disturbance sequence

w ∈ ℓ∞ (Z+;R𝑛) belong to an uncertainty set F , and the distur-

bance is bounded as ∥w∥∞ ≤ 𝜂. Assume that F has a compact
parametrization (T,K, 𝑑), where T : K→ ℘(F ) is a mapping from

the parameter space K to a set of functions and disturbances such

that F ⊆ ⋃
𝜃 ∈K T[𝜃 ]. ℘(F ) denotes the powerset of F . Let 𝑑 de-

note a metric on K, so (K, 𝑑) is a compact metric space.

The control objective is specified as a sequence of indicator “goal"

functions G = (G0,G1, . . . ). Each G𝑡 : X ×U → {0, 1} encodes a
desired condition per time step 𝑡 :

G𝑡 (𝑥𝑡 , 𝑢𝑡 ) = 1[𝑥𝑡 , 𝑢𝑡 violate desired condition at time 𝑡] .

The main result of [18] specifies a set of sufficient conditions

for a finite-mistake guarantee. These conditions decouple online

robust control into separate online learning and robust control

components.

The online learning component requires a consistent model chas-

ing algorithm SEL, which takes as input the current observed tra-

jectory 𝐷𝑡 = [(𝑥𝑖 , 𝑥𝑖+1, 𝑢𝑖 )]𝑡𝑖=1 and outputs an estimated parameter

𝜃𝑡 ∈ K. The estimated parameter 𝜃𝑡 must be consistent with 𝐷𝑡 .

Definition 1 (Consistent Parameter). We say 𝜃 ∈ K is con-
sistent with 𝐷𝑡 if there exists (𝑓 ,w) ∈ T[𝜃 ] such that

∀(𝑥𝑡 , 𝑥𝑡+1, 𝑢𝑡 ) ∈ 𝐷𝑡 : 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ;𝜃 ) +𝑤𝑡 .

Let 𝑃𝑡 denote the set of all parameters consistent with 𝐷𝑡 . We

say SEL is 𝛾-competitive if

∑∞
𝑡=1 𝑑 (𝜃𝑡 , 𝜃𝑡−1) ≤ 𝛾 max𝜃 ∈K 𝑑 (𝑃∞, 𝜃 )

holds for a fixed constant 𝛾 > 0, which we call the competitive ratio.
The robust control component requires a control oracle Π, which

given the current state 𝑥𝑡 and a parameter 𝜃𝑡 , outputs a control

action 𝑢𝑡 = Π𝜃𝑡 (𝑥𝑡 ) that is robust for all systems that are close

to 𝜃𝑡 . In particular, we call a control oracle 𝜌-robust for control
objective G, if all trajectories in 𝑆Π [𝜌 ;𝜃 ] achieve G after finitely

many mistakes, and 𝑆Π [𝜌 ;𝜃 ] is defined as the set of all possible

trajectories generated by Π
ˆ𝜃
for all

ˆ𝜃 such that 𝑑 (𝜃, ˆ𝜃 ) ≤ 𝜌 .

𝑆Π [𝜌 ;𝜃 ] =


𝐷∞ = [(𝑥𝑡 , 𝑥𝑡+1, 𝑢𝑡 )]∞𝑡=1 :
𝑢𝑡 = Π

ˆ𝜃
(𝑥𝑡 )

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ) +𝑤𝑡

�������
(𝑓 ,w) ∈ T[𝜃 ],

𝑑 ( ˆ𝜃, 𝜃 ) ≤ 𝜌

 (9)

Due to the page limit, we refer readers to [18] for a more detailed

discussion of consistent model chasing algorithms and 𝜌-robust

control oracles. As a summary, if SEL chases consistent models and

Π is a robust oracle for G, then the resulting 𝐴Π (SEL) algorithm
achieves a finite mistake guarantee, which is stated in the following.

Theorem 2. [18, Theorem 2.5] Assume that SEL chases consistent
models and Π is a robust oracle for objective G. Then for any starting
point 𝑥0 and trajectory [(𝑥𝑡 , 𝑢𝑡 )]∞𝑡=0 generated by AΠ (SEL) (illus-
trated in Figure 1), the following mistake guarantees hold: (i) If Π
is robust, then

∑∞
𝑡=0 G𝑡 (𝑥𝑡 , 𝑢𝑡 ) < ∞; (ii) If Π is uniformly 𝜌-robust

and SEL is 𝛾-competitive, then

∞∑
𝑡=0

G𝑡 (𝑥𝑡 , 𝑢𝑡 ) < max

{
1, 𝑀Π

𝜌

} (
2𝛾

𝜌
diam(K) + 1

)
where𝑀Π

𝜌 denotes the worst case total mistakes of the 𝜌-robust control
oracle Π.

To apply Theorem 2 to prove Theorem 1 we need to prove that

(i) the proposed algorithm Equation (5) chases consistent models

and has a bounded competitive ratio, and (ii) the proposed robust

algorithm in Equation (11) is a 𝜌-robust control oracle, for bounded
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disturbance in the system topology. In particular, the correspon-

dence of the definitions are as follows. We have 𝜃 = 𝑋 , and

K = X, 𝑣 (1), 𝑞𝑐 (0) given
𝑑 (𝑋,𝑋 ′) = ∥𝑋 − 𝑋 ′∥△
T[𝑋 ] = {(𝑓 ,w) | 𝑓 (𝑣,𝑢) = 𝑣 + 𝑋𝑢, ∥w∥∞ ≤ 𝜂}

F =
⋃
𝑋 ∈X

𝑇 [𝑋 ]

G𝑡 = 1[𝑣 (𝑡) ∈ [𝑣, 𝑣]] .
We begin by proving that the set defined from (5b), (5c), (5d) in

Algorithm 1 is consistent with the trajectory 𝐷𝑇 .

Lemma 1 (SEL is consistent). Suppose 𝐷𝑇 is a trajectory of
voltage measurements and control actions taken up to time 𝑇 :

𝐷𝑇 = [𝑣 (𝑡), 𝑣 (𝑡 + 1), 𝑢 (𝑡), 𝑞𝑐 (𝑡)]𝑇𝑡=1 .
The set

𝑃𝑇 :=

𝑋 ∈ X
��������
∀
[
𝑣 (𝑡), 𝑣 (𝑡 + 1), 𝑢 (𝑡), 𝑞𝑐 (𝑡)

]
∈ 𝐷𝑇 :

𝑣 (𝑡 + 1) − 𝑣 (𝑡) − 𝑋𝑢 (𝑡)

∞ ≤ 𝜂,

𝑣 (𝑡 + 1) − 𝑋𝑞𝑐 (𝑡) ∈ Vpar

 (10)

is a consistent set for 𝐷𝑇 , i.e., 𝑋 ∈ X is consistent (Definition 1) if and
only if 𝑋 ∈ 𝑃𝑇 .

Proof. Consider any 𝑋 ∈ 𝑃𝑇 . For 𝑡 ∈ {1, . . . ,𝑇 }, define
𝑤̂ (𝑡) := 𝑣 (𝑡 + 1) − 𝑣 (𝑡) − 𝑋𝑢 (𝑡) .

Then, 𝑤̂ (𝑡) clearly satisfies Assumption 1. Moreover, let

𝑣par (𝑡) := 𝑣 (𝑡 + 1) − 𝑋𝑞𝑐 (𝑡) .
Then 𝑣par (𝑡) is the corresponding admissible noise that satisfies

Assumption 3.

Conversely, if 𝑋 ∉ 𝑃𝑇 , then either



𝑣 (𝑡 + 1) − 𝑣 (𝑡) − 𝑋𝑢 (𝑡)

∞ >

𝜂 for some 𝑡 (and therefore ∥𝑤̂ (𝑡)∥∞ > 𝜂) or 𝑣par (𝑡) violates As-
sumption 3. Thus, 𝑃𝑇 contains exactly all 𝑋 ∈ X that are consistent

with 𝐷𝑇 . □

Observe that 𝑃𝑇 is a closed, bounded, and convex set. Further-

more, it is non-empty, since 𝑋★ ∈ 𝑃𝑇 . Intuitively, 𝑃𝑇 is the smallest

set containing all parameters that could generate the observed tra-

jectory {𝑣 (𝑡)}𝑇+1
𝑡=1

along with a corresponding admissible sequence

of noise compatible with Assumptions 1 to 3.

Now that we have defined the consistent sets 𝑃𝑡 , we can express

SEL equivalently as solving min
𝑋̂𝑡 ∈S𝑛



𝑋𝑡 − 𝑋𝑡−1


2
△ s.t. 𝑋𝑡 ∈ 𝑃𝑡 .

This is a nested convex body chasing problem, where we aim to

minimize the movement distance



𝑋𝑡 − 𝑋𝑡−1



△ between nested

convex sets 𝑃𝑡 ⊆ 𝑃𝑡−1. By leveraging known results about nested

convex body chasing algorithms [2, 5], we can prove that the model

chasing algorithm SEL described by (5) has a bounded competitive

ratio. This is formalized in the following lemma.

Lemma 2 (SEL is competitive). For any compact convex space
K ⊂ S𝑛 , the greedy projection algorithm for consistent model chasing
(CMC) in Equation (5) achieves a competitive ratio

𝛾 = 𝜋 (𝑚 − 1)𝑚𝑚/2

where𝑚 = 𝑛(𝑛 + 1)/2.

Proof. The normed vector space (S𝑛, ∥·∥△) is isometrically iso-

morphic to the Euclidean space (R𝑚, ∥·∥
2
) with𝑚 = 𝑛(𝑛 + 1)/2.

The mapping between the two spaces is the vectorization of the

upper-triangle of the symmetric matrix:

𝐴 ∈ S𝑛 ←→ [𝐴1,1:𝑛, 𝐴2,2:𝑛, . . . , 𝐴𝑛,𝑛]⊤ ∈ R𝑚 .

Note that ∀𝑑 ∈ N : (𝜔𝑑/𝜔𝑑−1) ≤ 𝜋 , where 𝜔𝑑 denotes the sur-

face area of the 𝑑-sphere. Then, by [2, Theorem 1.3], the greedy

projection algorithm achieves a competitive ratio of at most 𝜋 (𝑚 −
1)𝑚𝑚/2

. □

Finally, we show that our controller Π is 𝜌-robust. In particular,

we prove that Π
𝑋̂
makes no mistakes (𝑀Π

𝜌 = 0) given a consistent

model 𝑋 ∈ 𝑃𝑡 .

Theorem 3 (Π is 𝜌-robust). Under Assumptions 1 to 3, sup-
pose 𝑋 ∈ 𝑃𝑡 , where 𝑃𝑡 is given in (10) for 𝑡 ≥ 1. Define 𝜌 (𝜖) =
𝜖/

(
2∥𝑞 − 𝑞∥2

)
. Then, the following optimization problem is feasible,

min

𝑢∈R𝑛


𝑣 ′ − 𝑣nom

2

𝑃𝑣
+ ∥𝑢∥2𝑃𝑢 (11a)

s.t. 𝑞 ⪯ 𝑞𝑐 (𝑡 − 1) + 𝑢 ⪯ 𝑞 (11b)

𝑣 ′ = 𝑣 (𝑡) + 𝑋𝑢 (11c)

𝑘 = 𝜂 + 𝜌 (𝜖) ∥𝑢∥
2

(11d)

𝑣 + 𝑘1 ⪯ 𝑣 ′ ⪯ 𝑣 − 𝑘1. (11e)

Further, the solution of (11), 𝑢 (𝑡), guarantees voltage stability for all
𝑋 ∈ X such that



𝑋 − 𝑋


△ ≤ 𝜌 (𝜖). That is, 𝑣 (𝑡) + 𝑋𝑢 (𝑡) +𝑤 (𝑡) ∈

[𝑣, 𝑣] for all𝑤 (𝑡) satisfying Assumption 1.

Observe that Equation (11) corresponds to Equation (6) in Al-

gorithm 1 with the slack variable set to zero. We note that the

robustness margin 𝜌 decreases as [𝑞, 𝑞] increase. The intuitive rea-
son is that the voltage is more sensitive to changes in 𝑋 when the

range of possible 𝑢’s expands. Therefore, a fixed voltage buffer of 𝜖

in constraints (6d) and (11e) affords less robustness to changes in

𝑋 as [𝑞, 𝑞] gets larger.

Proof of Theorem 3. First, we prove that the optimization prob-

lem (11) is feasible. Define a new variable 𝑞𝑐 := 𝑞𝑐 (𝑡 − 1) + 𝑢. Let
𝑣par (𝑡 − 1) := 𝑣 (𝑡) − 𝑋𝑞𝑐 (𝑡 − 1) (12)

𝑣 ′(𝑢) := 𝑣 (𝑡) + 𝑋𝑢 = 𝑣 (𝑡) + 𝑋 [𝑞𝑐 − 𝑞𝑐 (𝑡 − 1)] (13)

= 𝑋𝑞𝑐 + 𝑣par (𝑡 − 1) (14)

𝑣 ′(𝑢) := 𝑣 (𝑡) + 𝑋𝑢 = 𝑣 ′(𝑢) + (𝑋 − 𝑋 )𝑢. (15)

Here, 𝑣par is the conjectured admissible noise when we assume the

underlying parameter is 𝑋 . Recall (4) and we can interpret 𝑣 ′ as
the one-step prediction of voltage under the selected consistent

model 𝑋 given a control action 𝑢 and the current voltage 𝑣 (𝑡),
without the disturbance term. Similarly, 𝑣 ′ is the disturbance-free
one-step prediction of voltage under a different model 𝑋 such that

𝑋 − 𝑋



△ ≤ 𝜌 (𝜖) given the same control action 𝑢 and the current

voltage 𝑣 (𝑡).
Since 𝑋 is consistent with 𝑃𝑡−1, 𝑣par (𝑡 − 1) ∈ Vpar

. Therefore,

by Assumption 3, there exists 𝑞𝑐 ∈ [𝑞, 𝑞] such that

𝑣 + (𝜂 + 𝜖)1 ⪯ 𝑣 ′(𝑢) ⪯ 𝑣 − (𝜂 + 𝜖)1. (16)
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Then the 𝑢 corresponding to such 𝑞𝑐 , i.e., 𝑢 = 𝑞𝑐 −𝑞𝑐 (𝑡 − 1), clearly
satisfies constraint (11b). By Lemma 3, for all 𝑋 satisfying ∥𝑋 −
𝑋 ∥△ ≤ 𝜌 (𝜖),

− 𝜌 (𝜖) ∥𝑢∥
2
1 ⪯ (𝑋 − 𝑋 )𝑢 ⪯ 𝜌 (𝜖) ∥𝑢∥

2
1. (17)

Adding (17) with (16) and using (15) yields

𝑣 + (𝜂 + 𝜖 − 𝜌 (𝜖) ∥𝑢∥
2
)1 ⪯ 𝑣 ′(𝑢) ⪯ 𝑣 − (𝜂 + 𝜖 − 𝜌 (𝜖) ∥𝑢∥

2
)1. (18)

By choosing

𝜌 (𝜖) = 𝜖

2




𝑞 − 𝑞



2

,

and observing that 𝑢 must satisfy ∥𝑢∥
2
≤



𝑞 − 𝑞




2

since 𝑢 = 𝑞𝑐 −
𝑞𝑐 (𝑡 − 1), we have

𝜌 (𝜖) ∥𝑢∥
2
≤ 𝜖

2

≤ 𝜖 − 𝜌 (𝜖) ∥𝑢∥
2
.

Therefore, we can use this relation to upper and lower bound (18)

and arrive at

𝑣 + (𝜂 + 𝜌 (𝜖) ∥𝑢∥
2
)1 ⪯ 𝑣 ′(𝑢) ⪯ 𝑣 − (𝜂 + 𝜌 (𝜖) ∥𝑢∥

2
)1 (19)

This holds for any one-step noiseless prediction 𝑣 ′(𝑢) from 𝑋 such

that



𝑋 − 𝑋


△ ≤ 𝜌 (𝜖). Since 𝑋 trivially lies in this set, 𝑣 ′ also

satisfies (19), which in turn shows that 𝑢 satisfies constraint (11e).

Thus, the optimization problem is feasible.

Next, we show that every solution 𝑢 from (11) generated with 𝑋

guarantees that 𝑣 (𝑡) + 𝑋𝑢 ∈ [𝑣, 𝑣] for all 𝑋 such that



𝑋 − 𝑋


△ ≤

𝜌 (𝜖). Subtracting (17) from constraint (11e) and using Equation (15)

yields

𝑣 + 𝜂1 ⪯ 𝑣 ′(𝑢) ⪯ 𝑣 − 𝜂1.
By Assumption 1, any admissible disturbance𝑤 (𝑡) is bounded as

−𝜂1 ⪯ 𝑤 (𝑡) ⪯ 𝜂1. This means that

𝑣 ⪯ 𝑣 (𝑡 + 1) = 𝑣 ′(𝑢) +𝑤 (𝑡) ⪯ 𝑣,

which shows the control action computed using (11) guarantees

voltage stability for all 𝑋 ∈ X such that



𝑋 − 𝑋


△ ≤ 𝜌 (𝜖). □

Lemma 3. For all 𝐴 ∈ S𝑛 , 𝑏 ∈ R𝑛 , and 𝛼 ∈ R+,

∥𝐴∥△ ≤ 𝛼 =⇒ −𝛼 ∥𝑏∥
2
1 ⪯ 𝐴𝑏 ⪯ 𝛼 ∥𝑏∥

2
1.

Proof. Let 𝐴𝑖 denote the 𝑖
th
row of 𝐴. By symmetry of 𝐴,

∥𝐴𝑖 ∥22 =
𝑛∑
𝑗=1

𝐴2

𝑖, 𝑗 =

𝑖−1∑
𝑘=1

𝐴2

𝑘,𝑖
+

𝑛∑
𝑗=𝑖

𝐴2

𝑖, 𝑗

≤
𝑛∑

𝑘=1

𝑛∑
𝑗=𝑘

𝐴2

𝑘,𝑗
= ∥𝐴∥2△ ≤ 𝛼2,

so ∥𝐴𝑖 ∥2 ≤ 𝛼 . Then

−𝛼 ∥𝑏∥
2
≤ − ∥𝐴𝑖 ∥2 ∥𝑏∥2 ≤ (𝐴𝑏)𝑖 ≤ ∥𝐴𝑖 ∥2 ∥𝑏∥2 ≤ 𝛼 ∥𝑏∥

2
.

This holds for all 𝑖 ∈ {1, . . . , 𝑛}, which yields the desired result. □

Finally, combining Theorem 3 with Lemma 2 and applying The-

orem 2 completes the proof of Theorem 1.

Figure 2: Schematic diagram of SCE 56 bus distribution sys-
tem.

5 CASE STUDY
We demonstrate the effectiveness of Algorithm 1 using a case study

based on a single-phase 56-bus network from the Southern Cali-

fornia Edison (SCE) utility (Figure 2). We use a setup that mimics

what has been used previously in the voltage control literature.

In particular, the detailed line parameters 𝑟𝑖 𝑗 and 𝑥𝑖 𝑗 that we use

for this network are the same as those in Table 1 of [13]. In our

experiments, we use the linear power model in Equation (2) to solve

for voltages; we do not use non-linear power flow models.

5.1 Experimental Setup
We use real-world data [26] collected from the unmodified network,

with power injection at buses in C = {2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 19, 20, 23, 25, 26, 32} adjusted by scaled actual generation from a

nearby photovoltaic system. Exogenous active and reactive power

injection measurements are taken at each bus at 6-second intervals

over a 24-hour period. We assume that controllers with reactive

power injection capacity are set up at every node. Figure 3a plots

these values for several buses to illustrate the setting considered.

The network parameters used in our experiments are as follows:

• nominal squared voltage magnitude at the substation 𝑣0 =

𝑣nom = (12kV)2
• squared voltage magnitude limits [𝑣, 𝑣] = [0.95pu, 1.05pu] =
[(11.4kV)2, (12.6kV)2]
• reactive power injection limits [𝑞, 𝑞] = [−0.24MVar, 0.24MVar]
• state and input cost matrices 𝑃𝑣 = 0.1𝐼 , 𝑃𝑢 = 10𝐼

• initial state 𝑣 (1) = 𝑅𝑝 (0) + 𝑋𝑞𝑒 (0) + 𝑣01, 𝑞𝑐 (0) = 0
Note that, in comparison to previous papers in the voltage control

literature, our reactive power injection limits [𝑞, 𝑞] are slightlymore

generous than the ±0.2MVar used in, e.g., [26]. We choose ±0.24
MVar because even a controller with perfect knowledge of the

future would need reactive power injection capabilities of at least

±0.238MVar in order to maintain 𝑣 (𝑡) ∈ [𝑣, 𝑣] (if 𝑞 = −𝑞).
In order to truly satisfy the requirement in Assumption 3 𝑣 (𝑡) ∈

[𝑣 + (𝜂 + 𝜖), 𝑣 − (𝜂 + 𝜖)] with 𝜖 = 0.1, the reactive power injection

capabilities need to be at least ±0.455 MVar. As we show in our

experiments with only ±0.24 MVar range of control, Assumption 3

does not need to be fully satisfied in order for our method to still

provide strong empirical results.

We fix 𝜖 = 0.1 in our experiments, corresponding to a robustness

margin 𝜌 = 𝜖/(2∥𝑞 − 𝑞∥2) ≈ 0.014. We set 𝜂 = 8.65, which upper-

bounds the true maximum change in exogenous noise observed in
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our data:

max

𝑡



𝑅(𝑝 (𝑡) − 𝑝 (𝑡 − 1)) + 𝑋 (𝑞𝑒 (𝑡) − 𝑞𝑒 (𝑡 − 1))

∞ ≈ 8.625.

For the robust controllerΠ, we use a slack variableweight 𝛽 = 100 in

the cost function, and we setVpar = [𝑣par, 𝑣par] to be the rectangle
around the true noise:

∀𝑖 ∈ {1, . . . , 𝑛 = 55} : 𝑣par𝑖 = min

𝑡
𝑣
par

𝑖
(𝑡), 𝑣par𝑖 = max

𝑡
𝑣
par

𝑖
(𝑡).

In our implementation of the consistent model chasing algo-

rithm, we make a few changes from the procedure described in

Algorithm 1. In order to keep the consistent model chasing op-

timization problem (5) computationally tractable, we do not use

the full trajectory 𝐷 as in constraints (5c)-(5d). Instead, we include

the 20 latest observations and a set of 80 more random samples

(𝑣 (𝑡), 𝑣 (𝑡 + 1), 𝑢 (𝑡), 𝑞𝑐 (𝑡)) ∼ 𝐷 . This provides a computationally

tractable approximation of the uncertainty set.

Our experiments aim to understand the performance of the pro-

posed online robust controller under different levels of uncertainty

and the effect of different initializations of 𝑋 . In particular, we

consider uncertainty sets of the form

X𝛼 =
{
𝑋 ∈ S𝑛+ ∩ R𝑛×𝑛+ : ∥𝑋 − 𝑋★∥△ ≤ 𝛼



𝑋★



△
}

(20)

where larger 𝛼 corresponds to a larger uncertainty set. Note that

diam(X𝛼 ) = 2𝛼


𝑋★




△ .

We initialize 𝑋 by adding noise to the true 𝑋★
in two ways.

First, we multiply the line impedance coefficients 𝑥𝑖 𝑗 by a random

scaling factor sampled from Uniform[1 − 𝜎, 1 + 𝜎] for some 𝜎 ∈
[0, 1]. Second, we randomly permute the bus ordering, so that 𝑋

corresponds to a permuted grid topology. Finally, we project 𝑋 into

the uncertainty set X𝛼 .
We consider 3 settings:

(1) moderate uncertainty and error (𝛼 = 0.5), with 𝜎 = 0.5

(2) large uncertainty and error (𝛼 = 1.0), with 𝜎 = 1.0

(3) large uncertainty (𝛼 = 1.0) with 𝜎 = 1.0, but with moderate

error (the initial 𝑋 is projected into X0.5)
By comparing case (3) to cases (1) and (2), we distinguish the

impact of the uncertainty set size and the error of the initial guess

for 𝑋 , each of which presents different challenges for Algorithm 1.

We compare our experiments against four baselines, illustrated in

Figure 3: (a) the case of no controller, (b) the case where our robust

controller is used with perfect knowledge of the network topology,

(c) a model-agnostic decentralized controller from [21, Section IV],

and (d) another model-agnostic decentralized controller from [21,

Section V]. The figure highlights that, without a controller, buses 19

and 31 violate the upper and lower voltage limits, respectively, by a

significant margin. In contrast, the robust controller given the true

𝑋★
keeps the voltage within the limits for all buses, as expected.

The decentralized model-agnostic controllers (c) and (d), which are

supposed to be robust to the underlying topology, do not perform

well, as their theoretical convergence guarantees [21] only hold for

fixed 𝑣par and for unbounded reactive power injection limits (𝑞, 𝑞).

5.2 Experimental Results
Our experimental results focus on demonstrating the ability of

Algorithm 1 to stabilize the system without knowledge of the net-

work topology. To highlight the performance of the algorithm, we

consider settings with moderate and large amounts of uncertainty

in Figures 4 and 5. Importantly, Algorithm 1 stabilizes the system

without performing system identification. In fact, our results high-

light that the algorithm still has significant uncertainty about the

topology at the end of the experiments, while also providing nearly

the same stabilization performance as the robust controller does

with complete information about the topology.

Our simulations use the linearized system dynamics Equation (3),

and the convex optimization problems for SEL and Π are solved

with CVXPY [10] using the MOSEK solver. Code for our simulations

will be made available on GitHub.

Experiment 1: Moderate Uncertainty. Our first set of experiments

runs the robust online voltage controller (Algorithm 1, denoted

Π+SEL) in a scenario where the norm of the initial parameter esti-

mate is within 50% of the true parameter norm. Figure 4 shows that

the proposed controller can consistently maintain a voltage pro-

file within the nominal operation range. The solid orange line and

shaded orange region represent the mean and±1 standard deviation
of voltages from the proposed controller, over 4 random choices

of 𝑋1. In contrast, the robust controller Π on its own (without the

consistent model chasing algorithm SEL to update the model) ex-

hibits large voltage oscillations shown in blue and fails to stabilize

the voltage. This is a consequence of Π choosing actions based on

incorrect information about the network topology. Using the wrong

knowledge is even worse than not having a controller (Figure 3a) in

this case. This demonstrates a clear need for learning the topology

rather than purely replying on a robust voltage controller in the

case of uncertainty about the network topology.

Figure 4c shows the evolution of the convex model chasing algo-

rithm results across different choices of 𝑋1. Notably, even though

we only approximate the true consistent set through a small ran-

dom sample, the distance between the learned model 𝑋𝑡 and true

model 𝑋★
decreases monotonically over time. However, the uncer-

tainty does not converge to zero, illustrating that Algorithm 1 does

not perform complete system identification and instead learns just

enough about the topology in order to stabilize the system. This is

a key novelty of our approach, and enables the algorithm to quickly

adapt to uncertain network conditions.

Finally, we compare the performance of Algorithm 1 with that

of the robust controller that has perfect knowledge of the network

topology (Figure 3b). The performance of Algorithm 1 is comparable

despite its lack of knowledge of the topology. One reason for the

near-optimal performance of Algorithm 1 in this case is that the

robust controller Π turns out to be even more robust than our

theoretical results suggest. In particular, empirically it is robust to

𝑋 up to a distance 0.4


𝑋★




△ ≈ 66 away from the true 𝑋★

, even

though our theoretical results only guarantee its robustness for

distances up to 𝜌 ≈ 0.014.

Experiment 2: Large Uncertainty. Next, we test the proposed ro-

bust online voltage controller in a more challenging setting where

there is a large amount of uncertainty. Here, the initial 𝑋 is gener-

ated from impedance values with up to 100% error from the true

values. Consistent with the moderate uncertainty case, our method

manages to maintain voltage stability across all buses. Even though

the initial model estimation can be very different compared to the
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Figure 3: Voltage profile of SCE 56 bus distribution systemwith PV generators. (a) without control (b) robust controller Π given
the true 𝑋★ (c) model-agnostic controller from [21, Section IV] (d) model-agnostic controller from [21, Section V].
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Figure 4: Results for Algorithm 1 on the SCE 56-bus distribution system with moderate-sized uncertainty set (𝛼 = 0.5) and
moderate initial error (∥𝑋 − 𝑋★∥△ = 0.5



𝑋★



△). (a) Voltage profile of bus 19, where dark blue and dark orange lines plot the

mean voltage for the robust controller Π with fixed 𝑋 vs. Π paired with SEL, respectively, across 4 random initializations of
𝑋 ; shaded light blue and light orange regions indicate ±1 standard deviation. The dark blue line looks like a blob because
Π over-corrects its mistakes when given incorrect network parameters. (b) Same as (a), but for bus 31. (c) Model uncertainty
decreases as SEL learns over time, for the same 4 choices of 𝑋 from (a) and (b). The algorithm keeps the voltage within limits
even though the model estimates 𝑋𝑡 are imperfect, demonstrating that complete system identification is not necessary.

00:00 04:00 08:00 12:00 16:00 20:00 24:00
time t

11.5

12.0

12.5

13.0

Vo
lta

ge
 (k

V)

, fixed X
 + SEL
 + SEL (p.o.)

(a)

00:00 04:00 08:00 12:00 16:00 20:00 24:00
time t

11.5

12.0

12.5

13.0

Vo
lta

ge
 (k

V)

, fixed X
 + SEL
 + SEL (p.o.)

(b)

00:00 04:00 08:00 12:00 16:00 20:00 24:00
time t

40

60

80

100

120

140

||X
t

X
|| , fixed X

 + SEL
 + SEL (p.o.)

(c)

Figure 5: Same as Figure 4, except the uncertainty set and initial error are both larger (𝛼 = 1.0, ∥𝑋 −𝑋★∥△ =


𝑋★




△.) The robust

controller Π with fixed 𝑋 performs significantly worse than in Figure 4, while Π paired with SEL performs only slightly worse.
We also experiment with partial observability of voltages (denoted “p.o.”) bywithholding observations of voltages from certain
buses, including buses 19 and 31 whose voltage profiles are plotted in (a) and (b). As expected, our controller performs worse
with partially observations compared to full observations, but only marginally so. In (c), it is visible that the lack of voltage
observation at these 7 nodes does not significantly affect the ability of SEL to learn consistent models.
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ground truth system (i.e.,


𝑋 − 𝑋★




△ > 100), Algorithm 1 quickly

learns from the mistakes and refines the model estimation. Notice

in Figure 5c how the model error drops quickly during the voltage

violation periods between time 10:00 and 12:00. However, the ro-

bust controller on its own (without SEL) fails to control the voltage

in the large uncertainty scenario: the voltage profiles at buses 19

(Figure 5a) and 31 (Figure 5b) deviate significantly from the nominal

value. This may lead to unsafe operating conditions that violate reg-

ulatory requirements, with potentially catastrophic consequences,

e.g., blackouts. In addition, the robust controller on its own is quite

sensitive to the initial choice of 𝑋 , with a much larger standard

deviation than Algorithm 1. Similar to the previous experiment, the

model error shown in Figure 5c decreases monotonically with a

nonzero final estimation error.

In this large uncertainty setting, we also experiment with partial

observability of voltages (denoted “p.o.” in Figure 5) by withholding

observations of voltages from buses 𝑖 ∈ {9, 19, 22, 31, 40, 46, 55}.
That is, we still permit the robust controllerΠ to control the reactive

power injection at these buses, but SEL does not use the voltages
𝑣𝑖 (𝑡) from these buses as part of the constraints for the consistent

sets. As expected, our controller performs worse in this partially-

observed setting, but only marginally so. As shown in Figure 5c, the

lack of voltage observation at these 7 nodes does not significantly

affect the ability of SEL to learn consistent models.

Experiment 3: Moderate Initial Error, Large Uncertainty. Finally,
we test our robust online voltage controller with a large uncertainty

set (𝛼 = 1.0) but moderate initial error (𝑋1 projected into X0.5). We

found the plots of voltage profiles to be nearly indistinguishable

from the moderate uncertainty/moderate error setting (Figure 4),

so we have omitted inclusion of those plots. This empirical obser-

vation matches the intuitive idea that for large uncertainty settings,

the observed trajectory data is more informative in the definition

of consistent sets than the initial uncertainty set X. This explains
why our method performs similarly in both the medium uncer-

tainty/medium error and large uncertainty/large error settings.

6 CONCLUSION
This paper provides the first controller that establishes a finite-

mistake guarantee for voltage control in a setting with an unknown

grid topology. We showed that traditional voltage control algo-

rithms that rely on knowing network information may cause grid

instability when given incorrect information about the network

topology; furthermore, decentralized network-agnostic control al-

gorithms may also fail when subject to realistic noise and con-

straints on control inputs. In contrast, our proposed algorithm is

able to learn the grid topology in an online fashion and provably

converge to a stable controller. Further, simulated experiments

on a 56-bus distribution grid demonstrate the effectiveness of our

algorithm in a practical scenario.

As the current algorithm is highly centralized, future works may

consider more decentralized approaches to topology-robust voltage

control in order to enable faster real-time control. Ideas from works

such as [35] can potentially be adapted. Further studies may also

explore loosening the radial topology assumption to accommodate

a wider range of distribution grids. This would be a challenging,

but important, extension. Finally, an interesting algorithmic exten-

sion is to consider computationally efficient convex body chasing

algorithms with better competitive ratios. Existing methods based

on Steiner point [2, 5] achieve nearly-optimal competitive ratio but

are computationally inefficient in high dimension settings such as

voltage control, so designing efficient approximate Steiner point

algorithms could potentially lead to significant performance im-

provements.
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