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Abstract

We prove the existence and uniqueness of positive analytical solutions with positive initial
data to the mean field equation (the Dyson equation) of the Dyson Brownian motion through
the complex Burgers equation with a force term on the upper half complex plane. These
solutions converge to a steady state given by Wigner’s semicircle law. A unique global weak
solution with nonnegative initial data to the Dyson equation is obtained and some explicit
solutions are given by Wigner’s semicircle laws. We also construct a bi-Hamiltonian structure
for the system of the real and imaginary components of the complex Burgers equation (coupled
Burgers system). We establish a kinetic formulation for the coupled Burgers system and prove
the existence and uniqueness of entropy solutions. The coupled Burgers system in Lagrangian
variable naturally leads to two interacting particle systems, Fermi-Pasta-Ulam-Tsingou model
with nearest-neighbor interactions, and Calogero-Moser model. These two particle systems
yield the same Lagrangian dynamics in the continuum limit.

1 Introduction

Complex Burgers equation arises, although in different ways, from many different fields such as
fluid mechanics, random surface minimizing problem and Burgers turbulence in quantum chromo-
dynamics, which always unveils some mechanisms of singularity formations. We only list several
examples here. [31] use complex Burgers equation to construct a family of singular solution to
zero-gravity water wave system. [11] use the complex Burgers equation to study the limit shape
and singularity formations of random surface models. For other applications of complex Burgers
equation such as singularity tracking in the evolution of the complex system and the large-N limit
of induced quantum chromodynamics we refer to [9] and the references therein.

In this paper, we study the complex Burgers equation with a force term +2z on the upper half
complex plane C; := {z : §(z) > 0}

0vg + 0.9 =722, zeCy, t>0. (1.1)

Here, v > 0 is a constant. We use R(z) and 3(z) to stand for the real and imaginary parts of a
complex number z respectively.

Take the trace of a solution g(z,t) to (1.1) on the real line and there are two real functions
u(z,t) and p(x,t) such that

g(z,t) +vo = u(z,t) +irp(x,t), z€R, t >0, (1.2)
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where 7 is the circumference ratio. If g(z,t) is a Ci-holomorphic function, then we have the
following relation between u and p

u(z,t) = (rHp)(z,t), (1.3)

where Hp stands for the Hilbert transform of p given by

(Hp)(z,t) = %p.v./}R Ply:1) dy, z € R.

r—y
Take (1.2) into (1.1) and we obtain the following nonlocal partial differential equation for p
Op + Oz [p(u — vx)] =0, u(z,t) = (nHp)(z,t), x €R, ¢ > 0. (1.4)

The equation for u can be obtained from (1.4) by the Hilbert transform (see (2.6)). We refer to
(1.4) as the Dyson equation which is a mean field equation for the Dyson Brownian motion as
described below.

The N x N complex Hermitian matrices form a N? dimensional linear vector space over field
R. Consider a Hermitian matrices valued Ornstein-Uhlenbeck (OU) process A(t) = (A;x(t))nxn
given by

1 .
dA;;(t) = ﬁdBjj(t) —yAj(t)dt, j=1,--- N,
1 .
dRA(t) = \/ﬁdBﬁ;(t) —YRA(t)dt, j <k, (1.5)
1
dSA;x(t) = ﬁdBfk(t) =S A k() dt, § <k,

with A(0) = 0. Here Bj;(t) (1 < j < N), Bﬁc(t), Bfk(t) (1 <j < k<N),are N? independent
standard Brownian motions in R. The eigenvalues A;(¢) < - § )\N( ) of A(t) form some real
stochastic processes. By applying Ito’s formula to A;(¢)(= A (A( ))), one can show that A;(¢)
evolve by ([7, 8, 29])

dx;(t) = Tlﬁ dB;(t) + % ; M —X\(t)dt, 1<j<N. (1.6)

This evolution of eigenvalues are referred to as the Dyson Brownian motion. One can refer to
[8, 29] for more details about random matrices and the Dyson Brownian motion. It is well known
that the effects of harmonic trap term —~y\;(¢)d¢ in the OU process (1.6) can be reformulated
into the case v = 0, i.e. (1.6) without the trap term, by a space-time rescaling. We describe this
space-time rescaling for complex Burgers equation below. Let g be a solution to (1.1) and set

w 1
g 142y = t =— " t=—1log(1l+2y7). 1.7
B VI DT =g(50) 472 2= o, 1= o los(14297) (L.7)

Then, g is a solution to the Complex Burgers equation without the force term:
0:g + GOwg = 0. (1.8)

Note that §(-,7) is a Cy-holomorphic (C,-holomorphic) solution to (1.8) if and only if g(-,#) is a
C4-holomorphic (C4-holomorphic) solution to (1.1).

The mean field limit of the Dyson Brownian motion (1.6) yields the Dyson equation (1.4)
([25, 5, 2]), and (1.4) is a gradient flow in the probability measure space with Wasserstein distance
with respect to a free energy functional given by [1, Chapter 11]

B(p(t) = § [ #*ote.yde = [ [ togle —slota. oty )z dy

=: En(p(-,1)) + Ei(p(-,1))- (1.9)
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Here FE}, is a harmonic trap energy and Ej is an interaction energy. Then, the Dyson equation (1.4)
is recast to

BN _, B _7 z_/ _
o0, |p0. (5 )] =0 G =7 [ 1og = ylp(w.1) . (1.10)

With initial data pg > 0 and py € L?(R) N C%°(R), Castro and Cérdoba [4] proved global
existence and uniqueness of real analytical solutions for ¢ > 0 to the case v = 0 of (1.4) . This
instantaneous analytical property is suggested by the gradient flow structure (1.10). However,
if there is 29 € R such that p(zg) = 0, then the solution p will blow up in H*(R), s > 2 at
finite time [4]. Thanks to the transformation in (1.7), these two results hold also for v > 0; see
Theorem 2.1 and Remark 2.1. Moreover, we prove the existence and uniqueness of global weak
solution p € L>®(0,T; Hz (R) N L% (R)) to (1.4) in Theorem 2.2. The global regularity or finite
time blow-up in the space H*(R), s € (4, 2] remain open.

The steady state for the Dyson equation is given by Wigner’s semicircle law

(4-2%)4 4

1.11
21 s ( )

p(da) = pr(z) da ==
which has a compact support. Hence the solution p is not absolutely continuous with respect to
the steady state and the relative entropy method can not be directly applied here. There are two
methods to prove the convergence of solution p to its steady state. (i) For strictly positive initial
data po(x) > 0, following the idea of [25] we prove the pointwise convergence as ¢ goes to infinity
using analytical method; see Appendix A. (ii) Notice the free energy E(p) given by (1.9) for the
Dyson equation consists a harmonic trap energy FE) and an interaction energy Ej. Since Ej is
convex along generalized Wasserstein geodesics and Ey, is y-convex along Wasserstein geodesics,
the standard gradient flow theory yields Ws-contraction and hence the exponentially convergence
to the steady state in Wasserstein distance (see Remark 2.4 and Carrillo et. al. [3]).
Consider the complex Burgers equation (1.1) with v = 0. If g(z,¢) given by (1.2) is no longer
a trace of a C;-holomorphic function, then the relation between w and p in (1.3) does not hold.
We need to treat u and p independently. Take (1.2) into (1.1) and we obtain the following system
on the real line

(1.12)

pt+ (pu) =0, z€R, t>0,
Oyt + u0pu — T2 pdyp = 0.

Unfortunately, for the Cauchy problem, the above system is ill-posed as described below. We
introduce the following system of conservation law with general constant o € R

Op+ 0.(pu) =0, z€R, t >0,

2 2 1.13

Oru + Oy (w> = 0. ( )
2

Due to the relation between System (1.12) ((1.13) with a = —7?) and the complex Burgers equation

(1.1), we call System (1.13) as the coupled Burgers system in this paper. System (1.13) can be

rewritten as the following quasi-linear system

u
% P +A(p7u)[% 7 = 0, A(p,u)= P (1.14)
u ap u
The eigenvalues of A are given by u & /ap, where \/a = \/jl\/m = i\/m for a < 0. When
a > 0, this system is a hyperbolic system of conservation laws. When o < 0 and p # 0, A has
two imaginary eigenvalues and System (1.13) is elliptic and ill-posedness. For a # 0, we set the
eigenvalues as

fr=utap, foi=u—ap. (1.15)
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A linear transformation from the coupled Burgers system (1.13) shows that the eigenvalues satisfy
the following decoupled Burgers equations

Btf+ + f+8g;f+ =0, ze€eR, t>0, (116)
Ouf +f 0uf =0, z€R, t>0. (1.17)

When « < 0, (1.17) is just the conjugate of equation (1.16). When o = —7%, (1.16) is exactly the
complex Burgers equation (1.1) (v = 0) on the real line.

For a > 1, notice that fi are Riemann invariants of the following system of isentropic gas
dynamics:

Op+ 0:(pu) =0, z € R, t >0, (118)
B (pu) + 0x(pu®) + 0up = 0, '
where the pressure p is given by
@
p(x’t) - 7p3(xat)' (119)

3

Formally, system (1.18) is a nonlinear transformation of the coupled Burgers system (1.13) and it
expresses in physics the conservation of mass and the conservation of momentum, i.e. m := pu,
for an isentropic gas system. In the quasi-linear form, we have

0 0 0 1
S ) eBem— (") =0 Bom={( " ). 0
T\ m —r tap”

m

The functions fi = u & y/ap are also the eigenvalues of B. Notice that classical solutions of the
coupled Burgers system (1.13) are also classical solutions to (1.18). However, when shock appears,
shock speed for the coupled Burgers system (1.13) and (1.18) are different. For smooth solutions
of System (1.18), the following conservation of energy holds

O E + 0.[u(E +p)] = 0, (1.21)

where the total energy density is given by

L o p_1 5 a4
E(x,t) = 5PU + 5 = 5PU + i (1.22)

Although there is no bi-Hamiltonian structure for Burgers equation, we use the decoupled
Burgers equations (1.16) and (1.17) to construct a bi-Hamiltonian structure for the coupled Burgers
system (1.13) (see Theorem 3.1). Moreover, we obtain infinite many conserved quantities for the
coupled Burgers system (1.13). Bi-Hamiltonian structures for System (1.18) and p-system (which
is the gas dynamics in Lagrangian coordinates; see (1.23) below) are also obtained. To discover
a bi-Hamiltonian structure or a Lax pair for an integrable system is very important. Indeed,
according to the fundamental theorem of Magri [18], any bi-Hamiltonian system associated with a
nondegenerate Hamiltonian pair induces a hierarchy of commuting Hamiltonian flows and, provided
enough of these Hamiltonians are functionally independent, is therefore completely integrable. For
general discussions about Hamiltonian structures for systems of hyperbolic conservation laws, one
can refer to [22].

When « > 0, we establish a kinetic formulation for the coupled Burgers system (1.13). Using
the kinetic formulation, we define a class of entropy pairs to the coupled Burgers system (1.13).
Notice that our definition of entropies corresponds to the counter part (in the sense as explained in
Remark 4.2) of entropies used in [15] for System (1.18). In [15], Lions, Perthame and Tadmor proved
the existence of global entropy solutions to (1.18) and the uniqueness is unknown. In contrast,
we prove the existence and uniqueness of entropy solutions to the coupled Burgers system (1.13)
(see Section 4.2). Moreover, we show that an entropy solution to the coupled Burgers system
(1.13) corresponds to an entropy solution to the decoupled Burgers equations (1.16) and (1.17)
(see Proposition 4.3). For more details on relations of entropy solutions and weak solutions to
kinetic equations, one can refer to [24].
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We also derive the Lagrangian dynamics (see (5.11)) for the coupled Burgers system (1.13),
which resembles the gas dynamics in Lagrangian variables, or p-system [27]

{@T — 85‘/ = 0,

1.23

where 7(€,t) = 1/p(X(£,1),t) = X¢(&,t) stands for the specific volume and ¢ is the Lagrangian
labels. X (£,t) is the flow map according to velocity field u(X (€, t),t) (see (5.5)). V is the velocity
in Lagrangian variable V(&,t) := u(X(&,t),t) and p(7) = a/(373) is the pressure given by (1.19)
(see more details in Section 5.1). The Lagrangian dynamics of the coupled Burgers system (1.13)
naturally leads to a spring-mass system (Fermi-Pasta-Ulam-Tsingou model) such that each mass
evolves by the elastic force between adjacent mass that are reciprocal proportion to the cubic of
distances between the mass and the adjacent masses (see (5.15)). Instead of the nearest-neighbor
interaction, if the mass interacts with all the other masses with the same manner, we obtain the
Calogero-Moser model with different coefficients. As it is known, the Calogero-Moser model is an
integrable systems with a Lax-pair; see [21]. An interesting fact is that the continuum limit of the
Calogero-Moser model gives the same Lagrangian dynamics of the coupled Burgers system (1.13);
see [19].

The rest of this paper is organized as follows. In Section 2, we prove the global existence and
uniqueness of real analytical solutions to complex Burgers equation (1.1) and the Dyson equation
(1.4) (v > 0) with strictly positive initial datum py € H*(R) N L'(R), s > 1/2. We also obtian
the pointwise convergence to the steady state for analytical solutions. Some explicit solutions are
constructed by using Wigner’s semicircle law, which converge to the steady state exponentially
when v > 0. The same explicit solution is given in Appendix B by the Stieltjes transform of
Wigner’s semicircle law 1,. Moreover, we prove the global existence of weak solutions in H'/2 (R)n
L'(R) for nonnegative initial date. In Section 3, we construct bi-Hamiltonian structures for the
coupled Burgers system (1.13), isentropic gas system (1.18) and p-system (1.23). In Section 4, we
establish kinetic formulation for the coupled Burgers system (1.13) with « > 0. The existence and
uniqueness of entropy solutions to (1.13) are also proved. In Section 5, we study the Lagrangian
dynamics for the coupled Burgers system (1.13) and explore the connection between the Lagrangian
dynamics system and a Fermi-Pasta-Ulam-Tsingou model with nearest-neighbor interactions. In
Appendix A, we give the proof of Theorem 2.1.

2 Complex Burgers equation and the Dyson Brownian mo-
tion

Recall the Dyson Brownian motion (1.6). The eigenvalues \; given by (1.6) evolve by Brownian
motion, combined with a deterministic repulsion force that repels nearby eigenvalues from each
other with a strength inversely proportional to the separation. Notice that System (1.6) can also
be rewritten as

dA;(t) = %dBj(t) — O, @M (1), , An(1), 1<j <N, (2.1)

with potential function given by

N N
O (), (D) = L SN — g S0 S lom Ay (1) — Al (2.2)
j=1

5=1 k#j

It can be proved that the eigenvalues almost surely not collide with each other (see [25, 16, 14])
and the solutions to System (1.6) exist globally. Hence, the empirical measure

N
1
PN (t) = N ; O, () (2.3)

is well defined for ¢ € [0,00). One can prove that p'¥(t) converges to some probability measure
satisfying the Dyson equation (1.4) ([25, 5, 2]).
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Next, we derive the complex Burgers equation (1.1) from the Dyson equation (1.4). For f, g €
LP(R) (p > 1), the Hilbert transform has the following properties (see e.g. [23]):

H(Hf)=—f, 0.(Hf)=H0f,

and
H(fHg+gHf)=HfHg - fg.
Applying the Hilbert transform to the Dyson equation (1.4) yields

O(Hp) + mHpHOyp — mpOyp — v0, H(pz) = 0.

Moreover, for any function g : R — R, we have

H(zg(x)) :1plv_/Ryg(y) dy:iP-V-Awwdy+lp.v.AWdy

™ T —y T —y ™ -y
1
=xHg(x) — f/g(x) dz, (2.4)
T Jr
which implies
t)| 1 1
H(pz) = M@y T Sux (2.5)
7r ™

Combining the above two equations, we have
Opu + w0yt — 72 pdyp — YOz (uz) = 0. (2.6)

Set
f=u—1imp, u=mHp.

Hence, f gives the trace of an analytic function in the upper half plane. Combining (1.4) and (2.6)
yields
Of+ fOrf —70.(fx) =0, z €R, t > 0.

This corresponds to the following complex equation in Cj:

Of + f0.f —0:(fz) = Ouf + fO.f —720.f —7f =0, t > 0. (2.7)

By the linear transformation g(z,t) = f(z,t) — vz, we have

Qg+ 90.9— V2 =0f +(f —72)(0.f =) = V2 = f + fO.f —v20.f —vf =0,

which is the Burgers equation with force term v2z (1.1). Moreover, from the above computation
we see that the Dyson equation (1.4) with v = 0 is equivalent to the coupled Burgers system (1.13)
with @ = =72 and u = THp.

2.1 Analytical solutions to the Dyson equation (1.4), convergence to
steady state and finite time blow up

In this subsection, we prove the existence and uniqueness of positive analytical solutions to the
Dyson equation (1.4) with v > 0 and initial datum 0 < py € H*(R) N LY(R) (s > 1/2) by
proving the well-posedness results for complex Burgers equation (1.1). We also show the pointwise
convergence to the steady state for analytical solutions.

Let po(z) > 0 and pg € H*(R)NL'(R) with s > 1/2 be the initial datum for the Dyson equation
(1.4). The initial datum pg can be extended to a C-holomorphic function by Hilbert transform
(also called Stieltjes transform, Borel transform or Markov function) for positive measures:

folz) = %/R ZOES; ds, =z +iyeCy. (2.8)
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Let

9o(2) := fo(2) —vz, z=2 +iy € C,. (2.9)

Then, gg is a Cy-holomorphic function. Consider the following Cauchy problem of the Burgers
equation with force term 72z in C,:

{[atg +90:91(z,t) =772, z=w+iy € Cy, (2.10)

9(2,0) = go(2).
First let us list some simple estimates for the Dyson equation (1.4).

Fact 1 (L*-conservation law): [|p(t)||1®) = [|poll1 ®)-
Fact 2 (Second moment estimate): Multiplying (1.4) by x? and taking integral yield

% x 2p(x,t)de = 27r/ zpHpdzx — 27/ x?p(x,t) dx
R

Notice from (2.5), we have
1
Hpdz = —| |3
/Rxp pde = o—|plLs,

hence

d
G [t =l =20 [ ot da,

which implies
) = Jpollts ol —20ma(©) e

, Vi > 0.
2y 2y =

Fact 3 (L? estimate): Multiplying (1.4) by p and integration by parts show that

) 2
/p d:c+2// xt|p$ p(2y, 2l dxdy:’y/pzdx;
dt |z —y| R

see more details in the proof of Theorem 2.2.
Fact 4 (H? estimate):

d

TN 0l 7 [ @utpPpde -+ [ plon0)? o = 29 (=8) gl
R

see more details in the proof of Theorem 2.2.
Fact 5 (Entropy estimate): Taking the time derivative to fR plog pdx and integration by parts
show that

d
f/plogpdw:/&ep(logwﬂ)dx:/—(pHerva)w(lngJr 1)dz
dt Jg R R

N /R(Hp — yx)pe dz = —[ (=) *p|3-

Fact 6 (Energy dissipation): Since the Dyson equation is a Wa-gradient flow with respect to the
energy (1.9), we have the following energy dissipation property

d SE SEN|?
SE0 = [ S awar=— [ oo, (3)
R 14

d
- / p(x,t)|yx — wHp(z, t)‘2 dz.
R

Now we have the following theorem:
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Theorem 2.1. Let v >0 and 0 < po € H*(R) N L' (R) with s > 1/2. Then,
(i) The complex Burgers equation (2.10) has a unique Ci-holomorphic solution g(-,t) fort €

(0,00), and %g(-,t) is an analytical function of z on C, for any positive integer k and t > 0.

(ii) For any t > 0, the trace of f(z,t) = g(z,t) + vz on the real line gives a positive analytical
solution p(x,t) > 0 to the Dyson equation (1.4) with p(xz,0) = po(x) and %p(x,t) is an analytical
function of x € R for any positive integer k. The following estimates hold:

(a) The total mass ||p(t)| L1 is conserved:
o)l = llpollLr (2.11)

(b) If 2%py € L' (R), then the second moment ma(t) := [, 2*p(x,t) dx satisfies

loollZ:  llpollz — 277”2(0)6_2%’ >0,
ma(t) =4 27 2y (2.12)
ma(0) + [|pollZ:t, v = 0.
(c) The following energy dissipation holds:
d 2
3 E0P) =- Rp(:v,t)hw —mHp(z,1)|" da, (2.13)

with E defined by (1.9).
(d) If polog po € L'(R), then the entropy 0(t) := [, p(x,t)log p(x,t) da satisfies

0(t) < Ylpoll:t + 0(0). (2.14)

(iii) For v >0, g(z,t) converges to the steady state:
tlim g(z,t) = —\/7222 — 2y, Vz € Cy,
—oo

and p(xz,t) converges to the steady state given by semicircle law:

Oy — 232
lim p(z,t) = poo() := w, Vo € R. (2.15)
t—o0 T

(iv) For v = 0, the solution g(z,t) and p(x,t) converge to steady state after scaling in the

following sense:
)72%7\/2272 as t— oo.

62t71

2

elg (etz,

and

2t71 92— 2
etp(etx,e 3 )% ( )+ as t— oo.
u

We remark that part (i) of Theorem 2.1 is derived directly by combining the solutions given by
[4] and the space-time rescaling (1.7) as described below. Consider the following complex Burgers
equation

8.5 + §0uwdl(w,7) = 0, w € Cy,
{[ g+ §0ug)(w,7) we Cy (2.16)

9(w,0) = go(w) + yw,

where gg is defined by (2.9). Castro and Cérdoba [4] proved global existence and uniqueness
of C4-holomorphic solution § to (2.16) by the method of characteristics. For t > 0, g(-,t) is
C -holomorphic. Hence, from (1.7) we obtain a C_-holomorphic solution g to (2.10) with initial
datum go and for t > 0, g(-,t) is C;-holomorphic. This proves part (i) of Theorem 2.1. For part
(ii), let

f(z,t) = g(z,t) + vz, 2 € C4, t > 0.
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Then, f is a to C-holomorphic solution to (2.7) with initial datum fy given by (2.8) and for ¢ > 0,
g(+,t) is C4-holomorphic. Consider the trace of f on the real line and define

f(z,t) .= u(z,t) —imp(x,t), z € R, t > 0.

Then, we have v = mHp and p(z,t) is an analytical solution to the Dyson equation (1.4) with
initial datum pg. This proves part (ii) of Theorem 2.1.

Since, the acceleration of characteristics for complex Burgers (2.10) is not zero, which is different
with (2.16). This also brings some detailed information of solutions. Therefore, for completeness
and to unveil those information, we provide a direct proof for Theorem 2.1 in Appendix A.

Remark 2.1 (Finite time blow up). Note that condition py > 0 is essential to Theorem 2.1.
Castro and Cérdoba [4, Theorem 4.4, Remark 4.5] proved that if pg > 0 and py € H%(R), then
there exists a unique local solution p € C([0,T]; H*(R)) N C*([0,T]; H*(R)) to (1.4) with v = 0.
Moreover, if pg(z¢) = 0 = inf,er po(z) for some point ¢ € R, the solution blows up in finite time
(see [4, Theorem 4.8, Remark 4.9]). Precisely, along the trajectories of characteristics X (zo,t)
starting from x(, we have

X (wo,t) = Hpo(zo)t + x0,

and 1
O:Hp(X (xg,t),t) > —00 as t >t i= ————.
p( ( 0 ) ) 6$Hp0($0)
Due to (1.7), there exists a unique local solution p to (1.4) for v > 0 given by
e —1
Py, 7)=¢€"p (ewya T) , yeR, 7>0.

Moreover, we have

21T _ 1
0, Hp(y,7) = 7o, Hp (77, ).

2y
Let 9 2
-1 H -1
t:e 9 y=e€ ’YX(xO)t)_e ’YT|: po(xo)(e )+x0:|7
2y 2y
and
7" = —log(1 + 2+t¥)
Then, we have
e —1
lim 9,Hp(y,7) = lim e*"9,Hp (ewy» 7)
T—T* T—T* 2’}/
_ 2T : ——
e tl;rgl 0 Hp (X (o, t),t) 00

Hence, the solution to (1.4) with v > 0 also blows up in finite time.

2.2 Explicit solutions to the Dyson equation (1.4) from semicircle law
and exponential convergence to the steady state for v > 0

In this subsection, we give some explicit solutions to the Dyson equation (1.4) by using Wigner’s
semicircle law (1.11). When v > 0 the explicit solutions converge exponentially to steady state
given by (2.15).

2.2.1 An explicit solution to the Dyson equation (1.4) with v =10

For v = 0, notice that v/ NA(t)/v/t is a Wigner matrix (Hermitian matrix with i.i.d entries which
have mean zero and variance one), where A(t) is defined by (1.5) with A(0) = 0. Let {); (t)};vzl be

the eigenvalues of matrix A(t). Hence, as N goes to infinity, the empirical measure +; Zévzl Ox,(t)/vi
almost surely converges to Wigner’s semicircle law pj(x) given by (1.11) weakly in probability
measure space (see [30] or [29, Theorem 2.4.2]). On the other hand, the empirical measure p'¥ (t) =
+ Zjvzl dx,; (1) (z) almost surely converges to a measure solution p(z,t) of the Dyson equation (1.4)

with v = 0 [25]. We can obtain the relation between p(z,t) and pi(x) by the following lemma.



1

2

Lemma 2.1. For any constant a > 0, if we have the following narrow convergences in probability
measure space P(R):

1 Y 1 Y
N; ;)T v(x) and 7 N;

for two probability measures U, v, then we have

v(z) = éﬁ (g) . (2.17)
Proof. For any test function ¢ € Cy(R), we have
1 N
[ #la)dite) = tim @M@dWW@::NEZw@MM

_ hm/ (y/a) d™ —ahm/ o)

A¢wmmmm=a4¢mmwm>

Hence, av(az) = p(z), which implies (2.17).

O
From Lemma 2.1, we choose p as the rescaling of p; defined in (1.11)
1 ( x > (4t — $2)+
= — ) = i o 2.18
) = o ( o (218)

where p(z,t) is the limit of the empirical measure 4 Zjvzl dx,; () () for v = 0. This implies p(z,?)
is a kind of self-similar rarefaction wave solution of the Dyson equation (1.4) with v = 0. Next, we
calculate u(z,t) using the Hilbert transform of wp(z,t) and then verify the obtained (p, u) satisfies
(1.4) (y=0) . For z € R\ [-2v/%,2V/1], by changing of variable with y = 2+/¢sin 6, we have

2J/;
HA @) =5 |

1 [/ 4t — g2 [7/? 1
=— x+2vtsin @ d6+7/ ——d6
21 ) 5/ ( ) 2tm —xj2 T — 2/t sin 0

At — /2 1
=24 a / —df
2t 2 J_ppx— 2V/tsin 6
4t — 2?2 — 2/t 24/t
=24 a 7 {arctan <M> + arctan <M>} . (2.19)
72 —

2t 2t T2 — At x2 — At

Using the fact

for x-y=1, z,y >0,
arctanr + arctany =
for z-y=1, z,y <0,

(ST RS

we obtain

24t
T VEE o

(wHp)(z,t) =42 2 (2.20)
z 2 — 4t - 9
2% 2 7 '

10
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For x € [~2V/,2V/t], we have

1 VE L2
(rHp)(a,t) =5 —pov. [ YT qy

2tm o T—Y
1 r—e¢ 2Vt /4 )
=—lim / +(/ Viint dy.
2t71' =0 —2\/f x+e r—y

Then, using similar calculation as (2.19) we have (THp)(xz,t) = &, @ € [-2v/t,2V/t]. Therefore we
have

24t
ARG N

w(z,t) = (THp)(z,t) = % € [-2v4, 2V, (2.21)
T — Va2 —4t
> 21/t,
and (p, u) satisfies (1.4) (v = 0) with initial datum
1
p(x,0) = 6(0), u(x,0) = (rHp)(z,0) = p.v.—. (2.22)
x

Notice that the above self-similar solution (p, u) corresponds to the self-similar solution to complex
Burgers equation given in [20, Section 1.2].

In Appendix B we will give the same explicit solution by the Stieltjes transform of Wigner’s
semicircle law pq (see (B.8) ).

Remark 2.2 (Connection with Barenblatt solutions to porous media equation). Consider the
following one dimensional porous media equation:

2
Oh = %6m(h‘5), hlieo = 5(0).

It has a self-similar solution called Barenblatt solution (see [26, Page 104]) given by

Wy = YOI 1 (- (t1€4)2>+.

21Vt /4 2m

Notice that
(4t —a2)4
2mt
is exactly the explicit solution (2.18) to the Dyson equation (1.4) with v = 0.

plx,t) = h(x7t2) =

2.2.2 An explicit solution to the Dyson equation (1.4) with v > 0 and exponential
convergence to the steady state

When v > 0, we first show that (2.18) with ¢t = % gives a steady state of (1.4) with v > 0.
Actually, we have

(s ) = VO
plo, oo | =——7——
Vs

2y

)

and

YT+ /P2 = 2y, w < —V2,
1 1
u(x,%> =7mHp (:m%) =z, zel[-V2,v2,
v — /22— 27, & > V2.

11
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Define

Poo(T) = p (:1:, %) , Uso(Z) =1 (337 21’y> ) (2.23)

and then
Poo(Uso — ) =0,

which implies that po, is a steady state of the Dyson equation (1.4) when v > 0. Due to the
convexity of the energy E in (1.9), the steady state is the minimizer and it is unique (see Remark
2.4).

Next, we construct an explicit solution which converges to po, exponentially. Let o(t) be an
unknown function and ¢(0) = oy > 0 and assume solution p(z,t) to (1.4) with v > 0 has the
following form

o) — a2

) (2.24)

p(z,t) =

Correspondingly, we have

x+ /2?2 — 20(t) I
o0 ;@< —y/20(t),

u(z,t) = wHp(x,t) = o)’ lz| < /20(1),

R jt)_ 2J(t), x > 1/20(t).

Obviously, (p,u) satisfies (1.4) when |z| > \/20(t). Next, we consider the case |z| < /20(t) to
obtain a proper ordinary differential equation for o(t) such that (p,w) is a solution of (1.4). Direct
calculations show that

V20 — 22, o T
Ohp = — o+ R —

)
mo? woV20 — 12

and

V20 — 22 1
p+x8mp20< g >

o2 ToV20 — 12

Take the above equalities into (1.4) and we obtain
1
Ocp + Oslp(u —y2)] = Oep + { = =) (p+ 20sp)

V20 — 2 1
—(—64+2-2 - =0, |z|] £/20(1).
(=6 70)( mo? w020 — 2 = ot

Hence, we have
6(t) =2—2vy0, 0(0) =00 >0,
which implies

1 1-—
o(t) = = — — 1902t 5,

Y v

Hence, for any o > 0, an explicit solution to (1.4) is given by

V(@21 = (1 —qo0)e 7] —4222),
[l = (1 —y00)e=>7"]

pz,t) =

(2.25)

This solution tends to ps (defined by (2.23)) exponentially as t — oco.

12
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2.3 Global weak solutions of the Dyson equation (1.4)

In Theorem 2.1, we proved global existence and uniqueness of a positive analytical solution to (1.4)
with a strictly positive initial datum py > 0 and py € H*(R) N L*(R) with s > 1/2. If py > 0 and
po(xo) = 0 for some ¢ € R, the solution to (1.4) blows up in finite time (see Remark 2.1) in the
sense that 9, Hp goes to —oco. Consequently, there is also a finite time blow up in the space H*(R)
for s > 3/2. Next, we show global existence of weak solution in H'/2(R) N L(R). Note that we

have interpolation inequality

/2y 1/2

lollze < 3llpll 27 lloll s

Hence p € H'/2(R)NL(R) is equivalent to p € H'/?(R)NL(R). Let us define the weak solutions:

Definition 2.1. For T > 0, po € H'Y?(R) N L'(R) and py > 0, a nonnegative function p €
L>=(0,T; HY?(R) N LY(R)) N WH>(0,T; H~™(R)) for some m > 0 is said to be a weak solution
of the Dyson equation (1.4) if

/OT/RaW(%t),O(m,t) dxdt+/¢(m70)p0($) Az

:_7/ // ax‘”t W(y’ D o t)p(y. 1) dady dt

T
+’y/0 /Rxamq&(a:,t)p(x,t) dzdt, (2.26)

holds for any test function ¢ € C°(R x [0,T)).

Theorem 2.2. Assume 0 < po € HY/?(R) N L*(R) and m2(0) := [, x%po(z) dz < co. Then, there
exists a unique global nonnegative weak solution to the Dyson equatwn (1.4) satisfying

pe L®0,T; H/?(R) N LY(R)) n W1 (0,T; H*(R))
for any time T > 0. Moreover, we have the following estimates
(a)
el 12 < € llpoll sz, >0, (2.27)
(b) The mass ||p(t)||L: is conserved:

lo@ e = llpollzr- (2.28)

(¢) For a.e. t >0, the second moment my(t) := [, x*p(x,t) dz satisfies

ool ool —2ma(©) ore
ma(t) < ¢ 27 2y (2.29)
m2(0) + [lpollZ:t, v = 0.
(d) The following energy dissipation holds:
! 2
E(p(-,t)) —l—/ / p(x, s)|ya — wHp(z,s)|” dzds < E(po) for any t >0, (2.30)
0o Jr
with E defined by (1.9).
(e) If polog po € L*(R), then the entropy 0(t) := [, p(x,t)log p(x,t) dz satisfies
6(t) <llpollrt +0(0), >0, (2.31)

13
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Proof. Let pe > 0 (¢ > 0) be the standard Friedrichs mollifier. Set

Py = PO * Pe.

Then, for nontrival initial datum po, we have p§(z) > 0 for z € R and p§ € H*(R) N LY(R)
(s > 1/2). Moreover, from Young’s inequality for convolution, we have

196112 < llpollnz, 1106l e < llpollgares PGl = llpoll - (2.32)
By Theorem 2.1, we have a global positive analytical solution p¢ to (1.4) with initial date p§:
Opp© + 0 [pS(mHp® — ~vx)] = 0. (2.33)

Step 1. Uniform estimates for p°.
First, multiplying (2.33) by p° and integration by parts show that

dt Jr o /R 2 /R i
€ H € ¢ .
; 5 dx 5 (p9)°0,Hp® dx 5 (p)°dz =0

Since the second term on the left hand side is

/( 8dea:—// xt2pxt) p('%t)dydx
|z —yl?
// Ip (2,t) pg(yﬂt)l dz dy,
|z —y|

we obtain
d plec@.t) = p(y, ) / 2
2dz +2 drdy = ) dz. 2.34
% T+ // P rdy =~ R(p) z (2.34)
Gronwall’s inequality and (2.32) imply
lp“®)ll72 < e Np5lIZ2 < €llpollz2, t > 0. (2.35)

Second, multiplying (2.33) by Hp¢ gives the following estimate:

H( A4 pe|2, +7T/2(8IHpE)2pedx—|—7r/Ramp68prer6dx—v/RﬁmeeBI(mpe) =0.
(2.36)

2dt

On the one hand, we have

ﬂ/axpeaerEprdx = —71'/H(&E;JE&CH/)E)/)6 dz = —%/[(&TH;JG)2 — (0:p°)%]pdx. (2.37)
R R R

On the other hand, we estimate the last term in (2.36) as below. Due to (2.4), we derive
V/R%Hpe@x(fwe) :—v/RazpeamH(wpe) = —W/Razpeaf(pre)dx
= f’y/ Ozp°Hp®dx — fy/ 20,0, Hp® dx
R R
=AYl = [ wdpront da.
Use (2.4) again and we have

—V/xaw/f@prE da:zv/H(xé)Iﬁ)@wa dx:'y/a;&ngE P dx.
R R R

14
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This implies ~ fR 20, p 0, Hp® dx = 0 and hence
7 [ 0 Outap) = A(=2) 5 (239)
Combining (2.36), (2.37) and (2.38) shows
G s+ [ 0ot da e [ (0up P e = 20|V e (239)

Gronwall’s inequality and (2.32) imply

o ON1F/2 < e llpollFes > 0. (2.40)

Inequalities (2.35) and (2.40) yield
o172 < € llpollF/e, ¢ >0 (2.41)

and hence we have
pf € L>=(0,T; HY2(R)) for any T > 0.

Third, for time regularity, the following estimate holds for any ¢ € C°(R)
/c{)(m)@tpe(m,t) dz
R

__1 :¢(x) — %ud(y) . ) .
- Q/R/Rx_yp (z,t)p (y,t)dmdyﬂ/Rmz(x,t)p (z,t)dz

<C([0z2llee + (m2(p) + ] L) 102l L) < Clidllars

and hence
100 || Low (0,00:-3(R)) < C, Op® € L®(0,00; H*(R)). (2.42)

Step 2. Take limits for p¢ as € goes to 0.
First, from uniform estimates (2.41) and (2.42) in Step 1, there exist p € L>(0,T; H'/2(R)) N
W20, T; H3(R)) and a subsequence of {p¢}eso (still denoted as {p}.~o) such that

p = p in L®(0,T; H/*(R)) as e — 0,
and
0ip° = 0gp in L>®(0,T; H3(R)) as € — 0.

Hence, we have (2.27).
Second, from (2.41) and (2.42), by Lions-Aubin Lemma, we also know

p¢—p in L>=(0,T; L} (R)) as € — 0,

loc

and consequently
p¢—p in L>®(0,T;L;,.(R)) as € — 0. (2.43)

Due to [[p“(¢)[|z2 = [[pol| 2, we have

R R
o)z = Jim | plende= lim tm [0 de= .

R—+o00 e—=0 _R
where the last step we used the uniform bound of second momentum for p¢ (2.12). Hence,

p € L>(0,T; L' (R)),

15



and (2.28) holds. For any test function ¢ € C*(R x [0,T)), by (2.32) we have

/OT/Ratqﬁ(x,t)pf(x,t) dxdt+/¢(m,0)p5(x) da

:_7/ //5”’“ %) e (0 1)p () da dy dt

T
—l—’y/o /R:E&C(b(x,t)pe(x,t) dzdt, (2.44)

1 By the strong convergence of p€ in (2.43), we can take the limit as € — 0 in (2.44) and conclude
> that p satisfies (2.26). Hence, p is a global weak solution to (1.4).
3 Step 3. Consequent estimates for Hp. First, from (2.41) and

1 € € € 1 €
I(=A)1p)72 = /R(HP VHO,(Hp®) dx = [[(=A)T(Hp) |7, (2.45)
+  we have uniform estimates

| H p¢| < C for any T > 0. (2.46)

L (0,T;H? (R))

Second, from the equation for u¢ (2.6) with u® = wH p¢, we have for any ¢ € C°(R)

2
/d) YOru(z,t dasf/amgzb 3 (pe)szyxuf} dz
<C110.0]| 1 122 + / YV H (20,8)p° dz = C|0,] |02 + / VH (0,¢)2p° da

<1020l = 10132 + (ma(p)? |01 72) | HO= 0 4] < C(I0l| v + |02l 1),
and hence
||('“)tu6||Loo(07oo;H72(R)) < C7 8tu5 S LOO(O, Q5 H_Q(R)) (247)

Similar to p¢, combining (2.46), (2.47) and Lions-Aubin Lemma, we also know for v = nHp €
L>(0,T; HY2(R)) nWh*2(0,T; H~*(R)),

ut 2w oin L®(0,T; HY2(R)) as € — 0, (2.48)
Ot = dpu in L°(0,T; H %(R)) as e — 0, (2.49)
u® —u in L>¥(0,T;L} . (R)) as e— 0. (2.50)

s Consequently, we have for a.e. ¢t € [0,T]
Hp®(-,t) = Hp(-,t) fora.e. x€R as e — 0. (2.51)

6 Step 4. The uniqueness of weak solutions is a direct result of the contraction property of
7 Wasserstein distance as stated in (2.58).
8 Step 5. We prove properties (2.29), (2.30), and (2.31) below.

Due to (2.12), we have

loollZ:  llpollZ: = 2ym5(0) sy >0
ms(t) =4 27 2y ’ ’ (2.52)
m5(0) + |lpol1t, v =0,

o  where

ms(t) ::/Rpre(m,t) dz.
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Due to strong convergence of p¢ to p in L>(0,T; L}, (R)), for a.e. t € (0,T) we have

loc

p°(-,t) = p(-,t) forae. x €R as e — 0. (2.53)

To take the limit in (2.52), first notice m§(0) — m2(0) by Young’s convolution inequality. Second,
by Levi’s lemma and Fatou’s lemma, we have

t) = li Hypdr < lim liminf [ (2?)yp°d
malt) = tim_ [ @ods < i limigt | o'
(2.54)
< lim liminf [ 22p°dx < liminfm$(t),
N—+o0co €—0 R e—0
where (z2)y means the cutoff (22)y = min{z?, N}. Hence, we obtain (2.29).
For the energy dissipation (2.30), we prove it by taking limit in (2.13), Levi’s lemma and Fatou’s
Lemma. First by pointwise convergence of p¢ in (2.53), pointwise convergence of Hp® in (2.51) and
Fatou’s lemma, we have

T T
/ / plyx — THp(z,t)]? de < liminf/ / o lyr — nHp (2, )| da. (2.55)
o Jr =0 Jo Jr

Second, there exists a constant ¢ such that K (z,y) := %’y(IQ +y?) +log ‘x—iyl +c¢ > 0, so we rewire
the energy as

B() = 5 [ Klamp@p(drdy — 5. (2.56)

Denote the cutoff of K as Kn(z,y) := min{K(z,y), N} such that 0 < Ky(z,y) < K(z,y), which
increasingly converges to K (x,y) for a.e. (z,y) € R%. Then by Levi’s lemma and Fatou’s Lemma,
we obtain

c . 1
E(p) +5 = lim o . Kn(z,y)p(x)p(y) dz dy

T N—+oco €—0

1
< lim liminf = Ky (z,y)p(z)p(y) de dy
2 Jre (2.57)

1
g gl e
< lim liminf o . K(z,y)p*(x)p(y) dz dy

. o C
Shlell)l(r)le(p )+ 7
The entropy inequality (2.31) can be obtained by (2.14) and the weak lower semi-continuity of

the entropy [10].
O

Remark 2.3. We shall remark that the global existence of weak solutions for the following non-
conservative equation remains open:

Oip —udyp =0, u= Hp.

We refer to [6, 28] for in depth study of this equation with or without a viscous term.

Remark 2.4 (Exponential convergence to the steady state). Carrillo et. al. [3] proved the
existence and uniqueness of probability solutions by using gradient flow structure in Wasserstein
distance. Notice the free energy F(p) given by (1.9) for the Dyson equation consists a harmonic trap
energy Ey and an interaction energy F;. Ej is convex (or displacement convex) along generalized
Wasserstein geodesics and Ey, is y-convex along Wasserstein geodesics as explained below. Assume
00,1 € Pac(R) and T : pgdx — p; dy is Wa-optimal transport (Bernier’s map). Then p; :=
[t + (1 — t)T)4po is a Wasserstein geodesics (or displacement interpolation between py and p1).
From the definition of push forward (see [1, Section 5.2]),

fo2 X — s 2
Bu(p) = [ ontaa) = [ EEEESETE a

2 2
x? — —t)(z — T(x))? — 2(x
:7/; t(1—t)( T2( )7+ (1 —6)T%( )po(dx)
t(1—1)

=tEn(po) + (L —t)En(p1) — W3 (po, p1)-

2
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Therefore Fy(p) is v-geodesically convex (see [1, Definition 2.4.3]). For the geodesical convexity
of the interaction energy F;(p), due to the singularity in logarithmic function, it relies heavily on
monotonicity of optimal map. We illustrate the idea for pg, p; € Pac(R), po > 0, which ensures
the optimal map T is strictly increasing.

Ei(pt) :/R? —log(|x — y|)pt(dx) pe(dy)
= /RQ —log([t(z —y) + (1 = )(T(x) = T(y))])po(2)po(y) dz dy
<t [ —1ogle ~slpo(@hpn(s) dedy + (1 =1) [ ~1og (@) = T lpo(h(v) do dy

=t/ —log |z — ylpo(z)po(y) dz dy + (1 —t) / —log |z — ylp1(2)p1(y) dz dy
R2 R2
=tE;i(po) + (1 — t)Ei(p1),

where we used the convexity of logarithmic function in the first inequality and strict increase of T’
in the third equality. However, without the strictly increasing property, we refer to [3, Proposition
2.7], where Carrillo et. al. proved the generalized geodesic convex of F;(p) using the essential
monotonicity property (excluding a null set) of the optimal transport maps between absolutely
continuous probability measures in one dimension. The standard gradient flow theory [1, Theorem
11.2.1] yields the exponential convergence to the steady state in Wy distance; see also [3, 2]. More
precisely, if p and p are two probability measure solutions for initial date py and py separately,
then we have

Wa(p(t), p(t)) < e Wal(po, po)- (2.58)

This implies the uniqueness of probability measure solutions and exponential convergence to the
steady state.

When v > 0, we also remark that y-convexity of F implies the uniqueness of the steady state
(minimizer). Indeed, if 4 and v are two distinct minimizers, consider ji; /5 := [%I + %T]#u, where
T is Bernier’s map between u and v. Then, we have

(BG40 + BO)] ~ 2W3 (%) < 3[B () + Bw)]

N |

E(p1/2) <

which is a contradiction with that p and v are distinct.

3 Bi-Hamiltonian structures

In this section, we construct a bi-Hamiltonian structure for the coupled Burgers system (1.13)
by using the decoupled Burgers equations (1.16) and (1.17). First, we present infinite many
conserved quantities for the coupled Burgers system (1.13). Recall (1.15). Because [, f¥(x,t) dz
are conserved quantities of the decoupled Burgers equations (1.16) and (1.17), we have the following
proposition.

Proposition 3.1. Let (p,u) be a classical solution to the coupled Burgers system (1.13). Then,
quantities

A1 /R(u +Vap)™ dz + X /R(u —Vap)k2 dz (3.1)

are conserved for any constants A1, Ao € C and any positive integers ki, ko € N

Remark 3.1. Notice that when o < 0, we have f_ = f.. When A\; = Xy and k; = ko = k in
(3.1), we have

Mi(u+ Vap)k = Ao (u — vap)*.

In this case, (3.1) gives real conserved quantities.

18
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Next, we consider the case for ky = ko = 3 in (3.1) and derive a bi-Hamiltonian structure for
the coupled Burgers system (1.13). Define the following functionals of fi(= u £ /ap):

3 3
HL(f1. f /f++f HY(fy f.) = be\/{ dz. (3.2)

Due to Remark 3.1, we know that both H { and Hg are real conserved quantities. Moreover, the
decoupled Burgers equations (1.16) and (1.17) can be rewritten as

f
Ocfy + 20, <6H1 ) =0,

f
8tf++2f6< ) 0,

) )
Mj;f and 51{; (3.3)
1 _ _ 2 _
O f— + 20, <5f_ ) 0, O f- — 2+/ad, <5f_ ) 0.
Define
1 o 1 e
Hi(p,u) = / (6”3 + §p2u) dz, H$(p,u) := / <§pu2 + gp?’) dz. (3.4)
R R

Then, direct calculations show that

Hp,u) = HI(f+. f-), j=12, (3.5)
and we have the following theorem:

Theorem 3.1. For a # 0, the coupled Burgers system (1.13) has a bi-Hamiltonian structure:

0H 0HY
op - K op

SHY SHY ’ <36)
ou ou

where J and K are anti-symmetric operators given by

—10, 0 0 —0.
J = ¢ (3.7)
0 —0y -0y 0
Proof. Due to f1 = u + y/ap, we have p = =~ f+ — f-) and u = 3(f4 + f-). From (3.3), we
obtain
1 oH{ oH] §H]  O0H]
Op+ —=0s =) =0 0p+ 0 | =12 2)=o0
MRV <5f+ 5] ) v <5f+ o
sH{ sH{ and sH{ sHI (38)
1 _ 9 _ 03\ _
Due to (3.5), we have the following relations:
SHY sHI  oH! sHY oH! oH!
i—a i_ i, R s B S WY (3.9)
dp S0f+  Of- ou Sfy  of-
Put (3.9) into (3.8) and we obtain
1 OHY 0HY
8tp+—am( 1):0, 3tp+8m( 2):0,
@ op and ou
3tu+8w(6H1):07 3tu+3w(6H2):07
ou dp
which is (3.6). O

19



From Theorem 3.1, we can directly obtain a bi-Hamiltonian structure for System (1.18), as

shown in the following corollary:

Corollary 3.1. For a # 0, the isentropic gas dynamics (1.18) can be rewritten as the following

bi-Hamiltonian structure:

P SH™ SHY'

IPY_Gl 2 Vi o

ot SH™ sH |
m om om

where J and K are anti-symmetric operators given by

1 1
~ 7581 7*6_171 }7{ 0 —Oxp

—Lud, —Lud,u— pdyp ’ —p0y  —udyp — pOyu

and the Hamiltonians are given by

m? o« m?  «
Hy* »mZ/(7+*m>d$, H3"(p,m Z/(erf?’)dx.
ie:m) R \6p? 2 g ' (p.m) R\ 2p 6"

Proof. Due to m = pu, we have
H"(p,m) = H}'(p,u), j =1,2.
Moreover, we have the following relations:

SHy _SHy = SHP SHY  SH)"

J _
Sp Sp +u5m’ su P om
or equivalently
SHY AL
Sp _ op -
sH" | = suy | I =12
ou 0 P om
Combining (3.6) and (3.13), we obtain
SH™
9 (r _ 1 0 Oip _ 1 0 7 1 wu 5
o\ m U p Oru U p 0 p 6&
10 1wy [
= K P
SHI
w op 0 P om
Hence, we have
- 1 0 1 u —é@aj —é@xu
J = J =
U p 0 p —iu@x —iu@xu — pOLp
and
. 1 0 1 u 0 —0
K= K _ p
u op 0 p —p0y  —udyp — pOzu

Hence, we obtain a bi-Hamiltonian structure for System (1.18).

Notice that H3* is nothing but the total energy of System (1.18), which is given by

1 «a m?  ap’
HY'(p,m)= [ E(z,t)dz = ( 273)(1:/(— —)d.
2 (p,m) /]R (z,t)dx /R 5PU +6p x A 2p+ 5 x

where E(z,t) is defined by (1.22).
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Remark 3.2 (A bi-Hamiltonian structure for p-system (1.23)). Set

1
t) = ——= 0,1), t>0.
"7(67) T(,t)’ 56(7 )) >
Then, the p-system (1.23) becomes the following system for (n, V) :
{3577 = —"0cV,

3.16
oV = —a7726577. ( )

We have the following bi-Hamiltonian structure for System (3.16):

o (n\ —%775‘577 fina§v+%vagnf§a§nv 5(5;
t\v ) \—Lvom+ 2nocV — Lyvoe LVOV + Lnden sy )
and
ofn\_( 0 wac\ (%
ot \ v —Qen? 0 % ’
where

(V—3+aﬂ) de, Hg(n,V)—/R(‘/z-i—am)d@

n —
mov) = [ (G +a’ -+l

R

4 Kinetic formulations and entropy solutions for the cou-
pled Burgers system (1.13) with o > 0

In this section, we study the kinetic formulation for the coupled Burgers system (1.13) with a > 0.

In contrast, Lions, Perthame and Tadmor [15] studied System (1.18) and they used the kinetic

formulation to obtain global entropy solutions without uniqueness. Here, we show the existence
and uniqueness of global entropy solutions for (1.13).

4.1 Kinetic formulations

Kinetic formulation is a method which use the distribution function k(v,z,t) at time ¢ in the phase
plane for velocity v and the position z to study the continuum equation for u(z,t) (and p(z,t)). At
fixed continnum variable (z,t), u and p are some v-moments of x. In the local thermal equilibrium
the distribution function k(v,x,t) can be described by v-equilibrium distribution x(v;wu, p) with
parameters u and p, i.e. k(v,z,t) = x(v;u(z,t), p(z,t)). In kinetic theory, the v-equilibrium
distribution is also known as Maxwellian. Following the idea of the celebrated work by Lions,
Perthame and Tadmor [15], we use the combinations of Heaviside function,

1, v>0,
H® =30 w<o

to construct the equilibrium distribution. Let (p,u) be a solution to the coupled Burgers system
(1.13) with o > 0. Recall (1.15)

fr=u=£Voap.

Then, f4 are solutions to the decoupled Burgers equations (1.16) and (1.17). We use the following
v-equilibrium distributions

X+(vip,u) == H() = H(v—fy), x-(vip,u):=H(v)—H(v- f-),

(i) = 5o = x0) = g H (= ) = Ho = f)] (@.1)
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and

(s pr) = 5 0cr +xC) = H2H() — Hlw— f) ~ H(v ~ )]

For any nonnegative integer k, direct calculations show that the following k-moments equality
holds

k+1
/kai(v;p,U)dv: = (4.2)
R

k+1°

Hence, the conserved quantities given by (3.1) correspond to the integration (w.r.t. x variable) of
the following kinetic formulations:

Al/vklx_,_(v;p,u)var/\g/kaX_(v;p,u) dv, X\ €C, k,eNy, i=1,2. (4.3)
R R

Choosing A\; = Ay = i and k1 = ko = 2, we obtain the Hamiltonian H7* and choosing \; = —Ay =

ﬁ and ky = ko = 2, we obtain the Hamiltonian H¥ given by (3.4). More precisely, we have

1 1
H(p,u) = 3 / VX (v; p,u) dv,  Hy(p,u) = 3 / v x(v; p,u) dv. (4.4)
R R
By (4.2), the decoupled Burgers equations (1.16) and (1.17) have the following kinetic formulations:

/(@Xi +v0;x+) dv = O fa + fr0: fx = 0.
R
Besides, we also have
u= / X(vip,u)dv, p= / X(vi p, u) dv.
R R
Hence, the coupled Burgers system (1.13) has the following kinetic formulation:

dv = = . (4.5)

/ Opx + v0zX Otp + Oz (pu) 0
R\ 9,% + 09, % Dpu + 8, () 0

Moreover, direct calculations show that
U v
= / . | x(vip,u)dv, (4.6)
E R\ 5

where E is the total energy given by (1.22). Comparing with (4.5), we have the following kinetic
formulation for the isentropic gas system (1.18):

1 Orp + Oy 0
/ (Orx +v0px) dv = i (pu) =
R \v ¢ (pu) + 0. (pu? + p) 0

4.2 Existence and uniqueness of entropy solutions for the coupled Burg-
ers system (1.13)

The notion of the entropy-entropy-flux pair refers to the pair of regular functions (7, ¢) defined on
the space of the states (p, u) for which every classical solution (p,u) of the coupled Burgers system
(1.13), also satisfies

In(p,u) + Ozq(p,u) = 0. (4.7)
Combining the coupled Burgers system (1.13) and (4.7) gives

(0pq — udpn — apOun)Ozp + (Ouq — pOpn — udun)Ozu = 0,
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which holds for any smooth solutions (p,w). The entropy pair (7, ¢) can be found by solving the
following Euler-Poisson-Darboux equations. First, given ¥ (u), g(u), we solve n(p, u) satisfying

{6‘ppn — aOyyn =0, (48)
1(0,u) = ¥(u), dm(0,u) = g(u). '
Then we solve the entropy flux ¢ by

Ouq = pOpn + udun,  Opq = udpn + cpdy. (4.9)

From (4.8), we know 0y,,q = 0puq so (4.9) is solvable. We have the following results:

Proposition 4.1. For two given functions 1, g € C*(R), let (n(0,u),d,n(0,u)) = (1 (u), g(u)) be
the initial datum for (4.8). Then:
(i) The solution n(p,u) to (4.8) can be recast in a kinetic representation:

o) = [ R0 o+ [ g do (4.10)
R R
(ii) When ¢ =0 and p > 0, we have kinetic representations
n(p) = [ g pa)de, gyl i= [ vg)(espru)do, (4.11)
R R

Moreover, ng is convex with respect to (p,m) if and only if g(v) is convex, where m = pu.
(iii) When g = 0, we have kinetic representations

oy ) = / W (W) (w; py ) do (4.12)
(o) = [ 00/ (0305 py) aw = LTI E A 00), (4.13)

where ¢'(v) = v’ (v) for v € R. Moreover, ny is convexr with respect to (p,u) if and only if ¢ is
a convex function.

Proof. (i) By the d’Alembert’s formula, we have

I+
n(p7 u) _ w(f-l-) ;L/)(.f—) + 2\:;&/16 g(v) dU, (414)

where f4(p,u) = u£+/ap. Formula (4.10) is exactly the kinetic formulation for the formula (4.14).
(ii) First we verify (4.11) satisfies (4.9). We have

dung = g(u +ap) — glu—Vap), dng = \/a(g(u +Vap) +glu— \/Ep)),
and

Ougy =(u+ Vap)g(u+Vap) — (u—vap)g(u - Vap)

=u0yung + pO,ng-

Similarly, we also have d,qy = u0,ny + apdyuny.
Second, we check the convexity condition for ny in terms of (p, m), where m = pu. By changing
of variables v = u + £p, we have

o py10) = / o)) v = 5o /f " g
:le/a/jng (% +p) e (4.15)

23



10

11

12

13

14

15

16

17

18

19

Taking derivatives of (4.15), we can obtain

Opsy = 2\f/ o (2 vep) () g+ [T elgtur 0 gtu-g]ac

When g is convex, ¢’ is increasing and ¢” > 0. Hence 0,,7, > 0. Moreover, we have

Oty = 5= / (Zrep) (-5 +6) as
and

OmmTg = Qf/ + fp) d¢ > 0.

By Holder’s inequality, we can obtain

DppNg * OmmNg — (8pm779)2 > 0.

Hence, 14(p,u) is convex about (p,m). When g is not convex, we have ¢” < 0 in some interval.
This implies Ommng < 0. Hence, 14 is not convex. This proves that 7, is convex if and only if g is
convex.

(iii) First, we verify equalities in (4.9) hold for (ny,gy). For fi = u+ \/ap, we have

fot' () + f () _ 9T +9(F) fw’(m Voy'(f-)
2 2 2

=u0yuny + pOpTy.

au Gy =

Similarly, 0,qy = u0,ny + apdyny. Hence, equalities in (4.9) hold for (1y,qy). This proves that
@y is the corresponding entropy flux of 7.
Second, we check the convexity condition for 7, in terms of (p,u). Notice that

/1/} X(v; p,u)dv = w, (4.16)

where fi = u + /ap. Taking derivative of (4.16), we can obtain

Vo' (fy) =" (f-)) a@"(f1) +¢"(f-))
2 ’ 2 ’

Dpully = Oppiy =

and
V'(f+) " (f-)
3 .

auund) —

When v is convex, we have

auunw > 0781“/'7111 > 07 and 6ppnwauunw > (apu'r]w)2>

which means 7, is convex with respect to (p,u). Conversely, if 7, is convex with respect to (p,u),

(u) = ny(0,u) is convex.
O

In [15], Lions, Perthame and Tadmor studied the kinetic formulation of the isentropic gas
system (1.18). The convex entropies they used to define solutions corresponds to 7,(p,u) given
by (4.10) for convex functions g. The corresponding entropy flux are given by (4.11). Recall their
definition of the entropy solutions to the isentropic gas system (1.18) (see [15, Definition 2]).

Definition 4.1. A couple (p,m) is called an entropy solution of (1.18) if it satisfies

Oy (pu) + Orqe(p,u) <0, (4.17)

in distribution sense for all convex entropies ng given by (4.10) with convez g.
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U2

An important example for is taking g(v) = % in (4.15). Direct calculations show that the
entropy has the following kinetic formulation
1 o
ng =5+ op’ = B

and the entropic flux is

gy = / vg(v)x(v; p,u) do = 7/ v’ do =
R

Then (4.17) in Definition 4.1 becomes
WE + 9, [(E+p)u) <0 (4.18)

in the distributional sense. Notice that g(v) = % is convex and hence E is convex with respect to

(p,m).

Remark 4.1. Note that global existence of entropy solutions to System (1.18) was proved [15]. Tt
is shown in [15] that (p, m) is a weak entropy solution with respect to the family {n,}, if and only
if the kinetic function x(v; p, u) given by (4.1) is a weak solution of the kinetic equation

8tX + UazX = —3m;l~h

for some finite Radon measure p € M. Hence, the entropy inequality (4.17) has a kinetic formu-
lation:

Oeng(p,u) + 02qq(p,u) = /

9(v)(Opx + vOzx) dv = —/ ' (v)du <0
R

R
in the distributional sense for all g € C3(R) and ¢g” > 0 on the support of .

4.2.1 Existence and uniqueness of entropy solutions of (1.13)

Next, to obtain the uniqueness of entropy solutions, we consider the entropy solutions of the
coupled Burgers system (1.13). We have the following proposition for entropy pairs (7, q):

Proposition 4.2. Let ¢1,19 € C%(R) be two convex functions. Define

W)=t [ 00D s du+ s [ (x5 p) o
R R
= k191 (u + vVap) + kaa(u — Vap), (4.19)

and

a(p.u) : = by / o (0) x4 (05 9y ) do + / v (0)x— (5 p, ) do
= k161 (u + Vap) + ka¢2(u — Vap), (4.20)

where k1 and ko are two nonnegative real numbers and ¢ satisfies ¢i(v) = vipi(v) for i = 1,2
and v € R. Then, n(p,u) are convexr entropies with respect to (p,u). Moreover, q(p,u) is the
corresponding entropy flux of n(p,w).

Proof. The proof is similar to Proposition 4.1 and we omit it. O

Remark 4.2. When k; = ko = % and ¥ = 1y = 1, the entropy 7 defined by (4.19) is equivalent
to 1y given in (4.10). Recall Definition 4.1. For System (1.18), the entropy is defined by 7, which
is one part of (4.10). If we use the counter part 7, in (4.10) to define entropy class and entropy
solutions of the coupled Burgers system (1.13), we can also obtain global existence of solutions.
This can not ensure the uniqueness of entropy solutions. However, if we use the entropies given
by (4.19), which can be viewed as a class of entropies modifying 7, to define entropy solutions of
the coupled Burgers system (1.13), we can obtain the stability (hence uniqueness) of solutions (see
Theorem 4.1).
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We give the definition of entropy solutions of the coupled Burgers system (1.13).

Definition 4.2. A couple (p,u) is called an entropy solution of the coupled Burgers system (1.13)
if p >0 and it satisfies

in distribution sense for any convex entropies (1,q) given by (4.19), (4.20).

Next, we present an important result about the equivalent relations between entropy solutions
of the coupled Burgers system (1.13) and solutions of the decoupled Burgers equations (1.16) and
(1.17).

Proposition 4.3. If (p,u) is an entropy solution to the coupled Burgers system (1.13), then fy =
u=t+/ap are entropy solutions to the decoupled Burgers equations (1.16) and (1.17). Conversely, if
f+ such that fi > f_ are entropy solutions to the decoupled Burgers equations (1.16) and (1.17),
then (p,u) = (%, %) is an entropy solution to the coupled Burgers system (1.13).

Proof. Step 1. Assume (p,u) is an entropy solution to the coupled Burgers system (1.13). Hence,
the inequality (4.21) holds for any n given by (4.19). For any convex function ¢, let k1 =1, ko =0
and ©; =1 in (4.19). At this time, the inequality (4.21) gives

Y (f+) + 020(f+) <0, (4.22)

where ¢'(v) = v¢’'(v) and fy = u+ /ap. Similarly, when k; = 0, ko = 1 and 2 = 1), we can
obtain

Op(f-) + 0:0(f-) <0 (4.23)

in distribution sense. Inequalities (4.22) and (4.23) are exactly the entropy inequalities for the
decoupled Burgers equations (1.16) and (1.17). Hence, fi are entropy solutions to (1.16) and

(1.17).
Step 2. Let fi be an entropy solution of the decoupled Burgers equations (1.16) and (1.17).
Due to fi > f_, we have p = ! ;\7/27 > 0. Moreover, inequality (4.22) holds for any entropy

pair (¢1, ¢1) with ¢} (v) = vy)i(v), and inequality (4.23) holds for any entropy pair (12, ¢2) with
@5 (v) = v (v). The linear combination of (4.22) and (4.23) with nonnegative coefficients k; and
ko generates the inequality (4.21). Hence, (p,u) is an entropy solution to the coupled Burgers
system (1.13).

O

Due to the well-posedness of the scalar conservation law (Burgers equation), we have the fol-
lowing well-posedness result for the coupled Burgers system (1.13)

Theorem 4.1. Let po(z) and ug(x) be two bounded measurable functions satisfying po > 0. Then
(i) There exist a unique entropy solution (p(x,t),u(xz,t)) to the coupled Burgers system (1.13)
such that p > 0 and (p,u)|t=0 = (po,uo).
(ii) Let (p,u) be another entropy solution of the coupled Burgers system (1.13) subject to initial
datum (po(x), to(z)) with po > 0. If ug— 1o, po—po € L*(R), then u(-,t) —a(-,t), p(-,t)—p(-,t) €
LY (R) and

Vallp(,t) = pC. )l + fJu( ) — aC )l < 2(Vallpo = pollr + luo — dollz1)- (4.24)

Proof. (i) Consider the decoupled Burgers equations (1.16) and (1.17) with initial datum fi(z,0) :=
ug(z) £ v/apo(x). Then, there is a unique entropy solutions fi(z,t) to (1.16) and (1.17) respec-
tively. Due to pg > 0, we have fi(z,0) > f_(z,0). Hence, from [27, Proposition 2.3.6 ], we have
fi(x,t) > f_(x,t) for any t > 0 and = € R. By Proposition 4.3, there is a unique solution to the
coupled Burgers system (1.13) given by

U(I,t): f+(x,t)+f_(x,t)7 p(x,t): f+($,t)ff_($,t). (425)

2 2/

26



1 Moreover, we have p > 0.
(i) Let fi := u+ /ap and fi := @+ /ap. Then, fi and fi are entropy solutions to the
decoupled Burgers equations (1.16) and (1.17). By the stability results for scalar conservation law
(see [27, Proposition 2.3.6 ]), we have

vallp(t) = 508l + [ful £) = al, 1) 10
:‘ G = f () et — (1)

2 2
Ll
+ f+('at) +f7(‘7t) o f~+('7t)+ ~*('7t)
2 2 .
<IF(0) = £ (0l + 1 £ (0) = F-(,0)[ e
<2(vallpo — pollr + lluo — do)llL1)-
2 ]

s Remark 4.3. We remark that fi and f_ are entropy solutions to the decoupled Burgers equations
« (1.16) and (1.17) respectively if and only if there are two positive Radon measures pu4, u— € M4 (R)
s such that the kinetic functions x4 (v; p,u) given by (4.1) are weak solution of the kinetic equations
o [24]

Orx+ +v0rx+ = Oppit.

7 Actually, for an entropy pair (¢, ¢), one has

i (fi) + Dad(fs) = / (o) (Boxs + vBuxs) dv = / ¥ (0)j1s dv < 0

s in distribution sense. For more detailed discussions of using these kinetic density functions to study
o the coupled Burgers system (1.13) for (p,u), one can refer to [24].

v Remark 4.4 (Difference between Definition 4.1 and Definition 4.2). From (4.4), the Hamiltonian
u  HY corresponds to (4.19) for 41 (v) = o (v) = v3 and k; = ko = 1/12. At this time 1 is not convex
» and hence from Proposition 4.1, we know that Hj' is not convex with respect to (p,u). When
13 p >0, we also have HY is convex with respect to (p,u). However, we have

1 1
(o) = [ vx(wpdo = [ o wipu)do,

1 which is not a proper entropy as in Definition 4.2.
15 Similarly, one can show that H{" is not a proper entropy as in Definition 4.1, while HJ" is a
16 convex entropy for system (1.18).

17 To end this subsection, we give the kinetic formulation for the well known Lax entropy [13].
1w Let the solution of the wave equation (4.8) have the form n(k; p,u) = e*“a(k; p) for some constant
v parameter k # 0. Then, equation (4.8) becomes the ODE

0pp(p) = ak?o(p), (0) =0, o'(0) = 1.

2 Hence, we have
e ekl _ ki
o(p) = N n(k; p,u) = T oJak
This yields a family of Lax entropy pairs:

ekf+ — ekf- (kfy — l)ekf+ — (kf- - l)ekf*
k' = k' = . 4.2
n(k; p,u) NG q(k; p,u) NG (4.26)

2 Note that both 7 and ¢ are real functions. When g(v) = €** in (4.15), n,4(p, m) recovers the Lax
» entropy given in (4.26).
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5 Lagrangian dynamics for (1.13) and its relation with Calogero-

Moser model

In this section, we derive the Lagrangian dynamics for the coupled Burgers system (1.13), which
recovers the dynamics (1.23) for gas. Moreover, we present a nonlinear spring-mass system (Fermi-
Pasta-Ulam-Tsingou model) with nearest-neighbor interactions and its continuum limit yields the
Lagrangian dynamics of the coupled Burgers system (1.13).

5.1 Lagrangian dynamics for the coupled Burgers system (1.13)
Consider an initial datum for the coupled Burgers system (1.13):
u(z,0) =up(x), p(z,0)=po(z), z€R. (5.1)

Assume that initial density function pg : R — R satisfies po(z) > 0 and the total mass ||po||r: = 1.
Define the initial cumulative mass distribution function Zj:

Zy(z) == /f po(y)dy for z €R. (5.2)

Then, function Zy : R — (0,1) is strictly increasing. Hence, there is an inverse function X :
(0,1) — R such that

Zo(Xo(8)) =&, Xo(Zo(z)) = for x €R, €€ (0,1). (5.3)
Moreover, we have
Zp(0) = Xo(0) =0, and X(’)l(g) = Z\(z) = po(z) for &= Zy(x). (5.4)

Here, x is the Eulerian coordinates and we take £ as the Lagrangian coordinates.
Give an Eulerian velocity field v : R x [0,00) — R. Define the flow map X (&, t) satisfying

{X@,t):u(X(f,t),t), £€(0,1), t>0, 55)
X(&,0) = Xo(9). '
Here, X (,t) denotes 9; X (£,t). Hence, we have 9: X = d,ud: X and thus
e X(€,1) = Xp(€)eo X EN D g e (1), (5.6)
Define the density function in Lagrangian coordinates at time ¢ as:
1
P(X(E ) 8) = —— 5.7
(X600 = 51 (5.7
Hence,
plz,t)yde =d¢ and O¢p+ I.(pu) =0, p(x,0) = po(x), (5.8)

which is the first equation in the coupled Burgers system (1.13). We also have local mass conser-
vation law:

X(&2:t) Xo(&1)
/ ple,t)de =& — & = / po(z)dx for any &; € (0,1), i =1,2.
X (&1,t) Xo(€2)

By (5.7), we obtain

Oup(X(§,1),1) =

1 3( 1 )Ziast(f,t)
DeX (€,1) ° \OeX(€,1) (P X)3(€, 1)’
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which gives

—(a Oee X (€, 1)
(apdyp)(X(€,1),1) = CBXVEN (5.9)
Set
V(& 1) = u(X(1),1). (5.10)

Combining (5.9), the coupled Burgers system (1.13) is recast to the Lagrangian dynamics:

X)) =V(EL, £e€(0,1), t>0,
Dee X (1) o 1 (5.11)
2% )

Ve =g xnen - 3% \@xren

subject to initial datum

{X(g,o)X(f), £€(0,1), (5.12)

0

Here, ug is given by (5.1) and X((&) is given by (5.3). Taking derivative of the first equation in
(5.11) with respect to &, we can recover the dynamics (1.23) for gas with 7(§,t) := X¢(&, ).

Next, we briefly show least action principle for the Lagrangian dynamics (5.11). Corresponding
to the total energy HY'(p,m) given by (3.12), we use Legendre transformation to obtain the
Lagrangian functional as

Z(p,u) =/m5H2
R

1 e}
5 dx—Hﬁ”(p,m):/ <§pu2—gp3) dz
R

The momentum m is recovered by taking the variation of .Z with respect to u:

0L
m=— = pu.

ou

The action is defined by

// pu—— dxdt // X2(¢,1) —W)dgdt. (5.13)

Next, consider two increasing functions for € € [0,1]: X (£,0) = Xo(¢) and X (&,1) = X1(§). We
formally show that the coupled Burgers system (1.13) corresponds to a critical path of the action
A(X) in some manifold connecting Xy and X; for ¢t € [0,1]. For any Y € C2°((0,1) x (0,1)), we
have

// A ngdt_hmA(X—i—eY)—A(X)

// 2XY + ¢ aX) aéy dédt = // —X - ag (aX) )}ngdt.

This gives
0A -- ( e )
— =X -0 | =——= -
5X “\3(0:X)?
0A
Take SY 0, and we have

“0ex)"

=0, (5.14)

which corresponds to the Lagrangian dynamics (5.11).
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5.2 A spring-mass system with nearest-neighbor interactions

In this subsection, we present a local interaction model for N masses and show that the Lagrangian
dynamics system (5.11) is exactly the continuum limit equation of this model. For N ordered
masses z1(t) < -+ < xpy(t), each mass is evolved by a force generated by interactions between
nearest neighbors and the model is described by

i;(t) =vi(t), 1<j<N,

. a 1 1 (5.15)
YO =58 @ - @r - aop)
Here we assume
To = Tn41 = +00, and ! = ! =0. (5.16)

(xo(t) —21(1))?  (zn41(t) — 2N (2))?

The masses accelerated by an repulsive force if « < 0. While o > 0, the masses attract each other.
System (5.15) is a Hamiltonian system corresponding to the Hamiltonian functional:

N

N
H(x,p)=g2p§—ﬁz 3 m (5.17)

j=1 j=1k=j+1 "7

Momentum p; equals to mass 1/N times velocity v; which means v; = Np;. Hence, (5.15) equals
to

{:bj(t) =0y, H, 1<j<N,
p;(t) = 0., H.

Model (5.15) describes local interactions between masses and their nearest-neighbors, which is
a special case of the Fermi-Pasta-Ulam-Tsingou lattice system. We compare (5.15) with another
Fermi-Pasta-Ulam-Tsingou lattice system, Toda lattice, given by the system of ordinary differential
equations

d?q; o e

dt2 — eq]+1 q; _ eQ] q; 1, 7 (= Z (518)
Note that Toda lattice is an integrable system. We do not know whether System (5.15) is an
integrable system or not. However, if each mass interacts with all the other masses with the same
manner, we can obtain an integrable global interaction model, the Calogero-Moser model (see
Remark 5.1).

Next, we formally derive the continuum limit of the local interaction mass system. To do this,
we assume the masses initially distribute uniformly and z;(t) = X (§,1), z;4+1(t) = X(§ + 1/N, )
and z;_1(t) = X({ — 1/N,t) for some £ € (0,1) and 2 < j < N — 1. Using Taylor expansion, we
have

1 1
w1 (t) — x;(t) = O X (&, )N~ + 5355)((5%)1\7*2 + gasgaX(é,t)N’S +O((N™Y),
and

2 a(8) = (1) = ~0eX(E N + S0 X (6, N — Oeee X (6N + O((N).
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Hence, we can obtain

« { 1 n 1 }
BN? Lz (t) — (1) (w5-1(t) — 2;())°

a @-1+ i —22) (-1 — ;)% + (2540 — 25)° — (21 — 25) (2541 — ;)

3N? (@11 — 2;)%(zj—1 — 2;5)°
o [PeX(EON2 0N [3(352()2(5,15)1%2 +O(N3)]
- 3N2 (0eX)8(&,)N-6 + O(N-T)
o N |0 X(68) + O(N2)] - [3(0X)%(E,t) + O(N )]
“3N?NE (0¢X)0(&,t) + O(N 1)
_, Qe X(&,1) + O(N )
(0:X)*(&,t) + O(N—1)
Let N — oo and we obtain
1 1 _ 0 X(600)

lim

+ = :
N=o0 3N (@1 (t) —25(1)° (251 (t) — 2;(1))° (0:X)*(&, 1)
This gives the continuum coupled Burgers system in Lagrangian coordinate (5.11).

Remark 5.1. If each mass interact with all the other masses with the same manner (the force
between each pair of two masses are reciprocal proportion to the cubic of distance between them),
we can obtain an integrable global interaction model, the Calogero-Moser model [21]:

i (t) = v;(t),

N
. da 1 . (5.19)
Uj(t)zm E TN g 1<j5<N.

7 e i) — ()

The coefficients of (5.19) are different from the coefficients in (5.15). System (5.19) is also a
Hamiltonian system and the rescaled (p; = v;/N) Hamiltonian is given by

Iy a Y ot (520)

Jj= 11#7

By using the Euler-MacLaurin asymptotic expansion for the Riemann integral of functions, Menon
[19] showed that System (5.11) is the N — oo limit of the Calogero-Moser system corresponding
to the rescaled Hamiltonian (5.20). As shown by [19, Eqs. (5.13),(5.26)], the Hamiltonian H
corresponds to the total energy HI" (see (3.15)) of System (1.18).
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» A Proof of Theorem 2.1

Consider the initial datum given by (2.8). Direct calculation shows that

e L P e Lt

=: Rp()(l',y) - ZP,OO(I7y),

where Ppg(z,y) and Rpo(z,y) are given by the convolution of py with the Poisson kernel and the
conjugate Poisson kernel given by

1 vy 1 =z
P,(z) = P and Ry(x):= el (A1)
12 Furthermore, we have
lir&[Rpo(x,y) — iPpo(x,y)] = Hpo(x) —ipo(z) for a.e. x € R.
y
13 Recall that the following properties of Poisson kernel:
14 (1) If heL? (R), then
Rh(z,y) = PHh(z,y) on RZ.
15 (ii) If h € L*°(R) and is vanishing at infinity, then
lim P = R
y—%loo h(z,y) =0, z € R,
16 and
1 = > 0.
xggloo Ph(z,y) =0, y >0
v (iii) If h € L°(R), then Ph(z,y) is a bounded function on R2.
18 Next, we prove the existence and uniqueness of C,-holomorphic solutions to (2.10) by the
v characteristics method. Consider the characteristics given by
d
aZ(w,t) =g(Z(w,t),t), Z(w,0)=w e C,. (A.2)
20 Then,
2 d 9
21 with initial date d
Z(w,0) = w, &Z(w,t) T go(w), we Cy.
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Equation (A.2) gives the following complex trajectories:

1
w coshyt + —go(w) sinh~t, v > 0,
Zlw.t) = gl 7go( )sinh~t, v (A3)
go(w)t +w = fo(w)t +w, v=0.

Here, we only treat the case for v > 0 where the convergence to the steady state for analytical
solutions happens. For the well-posedness results of the case v = 0, one can refer to [4]. Let

Z(w?t) = Zl(xay?t) + iZQ(xayat)a w=2x+ ’Ly € (C-i-a
and we have
Z1(z,y,t) = xcoshyt + ﬁRpo(a;, y)sinht — zsinhyt = xe " + ERpo(z, y) sinh ¢, (A.4)
v Y

Zs(x,y,t) = ycoshyt — IP,oo(a:7 y)sinh vt — ysinh vyt = ye 7" — szO(a:, y) sinh ~t. (A.5)
Y Y

Because the initial date go(w) in (2.10) is a Cy-holomorphic function, Z(w,t) given by (A.3) is
C-holomorphic of w for any ¢ > 0. Next, we present a lemma to show that for any fixed time
t > 0 the backward characteristics of (A.3) are well defined on the set C;. We have:

Lemma A.1. Let 0 < pg € H*(R)NL'(R) with s > 1/2. For fired to > 0 and fixed Z = Z+iZ, €
Cy, there exists a unique w = x + iy € C4 such that (A.4) and (A.5) hold.

Proof. Given ty > 0, denote
a:=e M, b= T sinh vtg.
Y

Then (A.4) and (A.5) become
Zy = ax +bRpo(z,y), Z»=ay—bPpo(z,y).

Step 1. In this step, we prove that for any z, there exists a unique y > 0 satisfies (A.5) for
Zo >0 and ty > 0.
Because Ppg(z,y) > 0 is a bounded function on R2 | by the property of Poisson kernel we have

lim Zy(x,y,to) = +oo, lim Zs(z,y,t0) = —bpe(z) < 0. (A.6)
y—0+

y—+o00
Hence, for any fixed Z5 > 0, there exists a point y > 0 depending on x such that
Zy = ay — bPpo(x,y).
Now we prove that y is unique. Suppose that there exist y; > yo such that
Zy = ay1 — bPpo(, 1),
Zy = ayz — bPpo(,y2),
which implies

P P
Y1,Yy2 > Zz/a and po(,y1) — po(@, y2)

y1*Z2/a 212*22/(1.

Because function )
Y
h(y) = .
) y—2Zs/a y*+ (x—s)?
is a decreasing function for y > Z5/a, we obtain a contradiction.
Now we denote by yz,(x) the solution of (A.5) with fixed Zo > 0, tp > 0 and = € R. Hence,
we obtain

ayz, () — Z2 = bPpo(2,yz,(x)). (A7)
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Step 2. In this step, we prove there exits a unique x satisfies (A.4) for fixed Z;, Zs and tg.
Taking derivative of (A.7) with respect to x gives

d - amPpO(xanyz (I))
@yZQ (x) B a/b - ayppo(xa Yz, (l‘)) . (AS)

Since py € H*(R) N L'(R) (s > 1/2), it follows that Hpy € L>(R) and therefore Rpy = PHpy is
a bounded function over Ri. Furthermore,

liljl:l [ax + bRpo(2,yz,(x))] = £oo. (A.9)

T—r 00

Hence, for any Z; € R, we can find a « € R such that
Zy = ax + bRpo(x,yz,(v)).
To prove the uniqueness, we only have to prove the following function
q(z) = ax + bRpo (2, yz,(x)),
is an increasing function. By using (A.8) and the Cauchy-Riemann equations
0z Rpo = —0yPpo, 0.Ppo = 0yRpo, (A.10)
and taking derivative of ¢(z) gives

d _ b(a/b+3;Rpo)* + (3 Ppo)?

() = T S yz, (0)).

To prove the increasing of ¢(x), it is sufficient to prove

a/b+ 0. Rpo(z,y) >0 (A.11)
for any (z,y) € R? satisfying ay — bPpo(z,y) > 0 and y > 0. Suppose that

a/b+ 0, Rpo(xo,y0) <0

for some point (2o, yo) € R% with ayy — bPpo(zo,yo) > 0. Then, we have

1 2 _ _ 2 1 . _ 2
—a/b > 0;Rpo(To, yo) = */ MPO(S) ds > */ MPO(S) ds
R R

m Jr [W3 + (w0 — 5)?] m Je [0 + (w0 — 5)%2
1 -1 P

_ f/ zizpo@ds:_m,
T Jr Y5 + (2o — 3) Yo

which implies a contradiction:
ayo — bPpo(zo,y0) < 0.
O
From the above lemma, we know that the backward characteristics are well defined. More

importantly, for any Z € C, the initial point w must be interior point in C;. For any ¢t > 0, we
denote the backward characteristics as:

Zﬁl(yt) : E — (C+.
From the uniqueness in Lemma A.1, Z~7!(-,t) is an 1 — 1 map.

Proof of Theorem 2.1. For simplicity, we only consider the case v+ = 1. The proof for arbitrary

v > 0 is similar. o
Step 1. Proof of (i). From Lemma A.1, we have C; C {Z(w,t) : w € Cy} and Z7'(-,t) is
well defined on C, for any fixed time ¢ > 0. Denote the preimage of Z(-,t) as:

Z7HCy,t) ={weCy; Z(w,t) € Cy}.
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Denote
a(t):=e"', b(t):=msinht.

For (z,y) € R% and Zy(x,y,t) > 0, by the Cauchy-Riemann equation (A.10), we have

(21, Zs) AR VA a(t) + b(t)d: Rpo b(t)dy Rpo
1Zu(w,8)] = | S (,y) = =
(z,9) 0uZ Dy 7o —bd:Ppo a(t) — b(t)d,Ppo
2 2
=[alt) + b(t)0. Rpo| + [b(t)0: Ppo >0 (A.12)
z,y

Due to (A.6) and (A.9), we obtain
|Z(w,t)] = +o00 as |w| — 4o0.

which means Z(-,t) is proper [12, Definition 6.2.2]. By the Hadamard’s global inverse function
theorem [12, Theorem 6.2.8], there exists a inverse function Z~!(-,¢) such that

Z7 (1) Cy = Z7H(Cy 1)

is a bijection. We also know Z~! is C,-holomorphic since Z is C,-holomorphic. Moreover, for
any z € C, there exists w = Z~%(z,t) € C4. Due to z = Z(Z1(2,t),t) € Cy and | Z,(w,t)| # 0
(by (A.12)), we have

O Z(w,t)

HZ M (2,t) = T 0wZ(w )

w=Z"(z,1).

Because of (A.3), we know %Z(wﬂf) is C4-holomorphic for any positive integer k. Hence,

%Z*I(z, t) is C,-holomorphic for any positive integer k. From (A.3), we have

2z =7 Yz,t)cosht + go(Z *(z,t))sinht, z € C . (A.13)

By (A.2), we obtain

d
9(Z(w,t),t) = aZ(w,t) = wsinht + go(w) cosh t.

Hence,
g(z,t) = Z7 (2, t)sinht + go(Z 7 (2,t)) cosh t, (A.14)

which is a C,-holomorphic solution to the complex Burgers equation (2.10) satisfying g(z,0) =

go(2). Moreover, due to the time regularity for Z~1(z,t), we know that g—;cg(z, t) is C, -holomorphic
for any positive integer k and ¢ > 0.
Step 2. Proof of (ii). A Cj-holomorphic solution to (2.7) is given by

f(z,t) :=g(z,t)+ 2, 2€Cq, t >0, (A.15)

with initial datum fo(z) = 7Rpo(z,y) — imPpo(z,y), 2 = v + iy € C,. Combining (A.13) and
(A.14), we obtain

f(z,t) = fo(Z7 (2, t))e! and z=e7'Z7 (2,t) + fo(Z7 (2,t))sinht, 2z € C,. (A.16)
Consider the trace of f(z,t) on the real line and define:
f(z,t) = u(z, t) —imp(a, t).

Due to Lemma A.1, for any x € R, we have Z~(z,t) =: a, + ib, € C, with some positive real
number b, > 0. From (A.16), we have

f(z,t) = folay +iby)e’ = TRpo(az, by)e’ — imPpo(ag, by )e’
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Therefore,
p(x,t) = Ppo(az,bs)e’ >0, v € R. (A.17)

Hence, p(z,t) is a positive analytical solution to the Dyson equation (1.4). Moreover, by the
uniqueness of solutions to the characteristics equation (2.10) we know analytical solutions to the
Dyson equation (1.4) is unique.

The energy estimate (1.21) follows from

2

d . . [6E b

- (5E>
GE0 = [ S apde=— [ plo. (5

= —/p(m,t)|’yx—7er(x,t)|2dx.
R

For (2.12), direct calculations show that [|p(t)||1 ) = |lpollr ). Multiplying (1.4) by z* and
taking integral yield

4 2p(x,t) dr = 27r/

T zpHpdx — 2/ 2?p(z,t)dz = ||poll7: — 2/ a?p(x, t) d,
R R R R

which implies (2.12). Inequality (2.14) follows from Grénwall’s inequality gives and the following
estimate

d
— plogpdx:/atp(logp—l—l)dx:/—(pHp—I—’yxp)m(logp—I— 1)dx
dt Jg R R

— [ (Hp—ra)ps do = ~(-8) 9l + 2ol
R

Step 3. We prove (iii) following the idea of [25]. Recall formula (A.16). For fixed z € Cy,
denote
2, (t) +izi(t) == e Z7 (2, 1).

Next, we prove that z.(t) + iz;(t) converges to a point w = z + iz € C4 as t — oo. To this end,
we first prove |z,.(t)| and z;(¢) are all bounded from above and below uniformly in time ¢.
Because

Jo(Z71(2,8)) = 7 Rpo(el2 (), et2i(t)) — imPpoleta(t), ez (1)),
by (A.16), we have

z = z;(t) + mRpo(e' 2, (t), € 2;(t)) sinh t + i [2(t) — mPpo(e’zr(t), €'z (t)) sinh t] . (A.18)
Due to mPpg(etz.(t), etz (t)) sinht > 0, we have
zi(t) > S(z) > 0.
Moreover, we have

I(2) = 2i(t) — TPpo(e'z.(t), etz (t)) sinh ¢

etz (t )
= 2;(t) — /R 222(0) 1 (6521(15) — S)zpo(s) dssinht
etz (t)
> zi(t) — /}R 2e2022(1) + 2(el 2, (t) — 5)2 po(s)ds
1
> zi(t) — 7@7

which implies

Hence, z;(t) is bounded as



1 Next, we prove

sup |z (t)| < +o0.

>0
> We prove this by a contradiction argument. If there exists ¢, — oo such that z.(t,) — oo, then
s by the dominated convergence theorem we have

tnze(tn) — s
R tnrtn7 tnitn htn:/ - ZT(n
TRpo(et 2, (tn), € 2 (tn)) sin o €222 (1) + (€ 2 (6n) — )

5 dzsinht, — 0, n — oco.
+ By (A.18), we obtain a contradiction that
R(2) = 2,(tn) + TRpo(e' 2, (t,), €' z;(t,,)) sinh t,, — oo.
5 Since |z, (t)| and z;(t) are bounded, there exist ¢,, — 0o and two constant 2, z; > 0 such that

zr(tn) = 25, 2i(ty) — 27, n— oo.

s Let w:= 2z} 4+ iz7. For any s € R, we have

etz (ty) — s R z .
sinht, > —————=, N —
e2ln 2 (tn) + (€M 2n(tn) — 5)2 2(z7)% +2(z)?
Then, by the dominated convergence theorem we have
lim wRpo(e'z.(t,), €' 2i(t,)) sinht,
n—roo
ez (ty) — s
=1l dz sinh ¢
wooe Jy () + (e E ) =5
=
2GR+ 2
Similarly, we have
. ¢ . . _ z
nh_{%o wPpo(e'zr(tn), e 2zi(tn)) sinh t = 2+ 2
7 Hence, from (A.18) we obtain
n 1z —azf n 1
=W e =W —.
2@ e Y 2w

¢ Similar to the calculation of (B.5), we know that the above equation has a unique solution in C;:

o Hence, we have

1
et 77Nz t) = 2. (t) Fiz(t) » w = ——————, t = 0.
z2—Vz22 -2

By (A.16) and using the dominated convergence theorem again, we have

f(th) = fO(Zil(th))et

B ez (t) — s Sds — i e*2(t) $)ds
- |

zr — iz 1 3
= s = — =2 — V22— 2.
(202 + ()2 w
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The trace of z — V22 — 2 on the real line is

T+ Va2 =2, x < —V2,
foo(@) = THpoo (2) — impos(2) = & —in/2 — 22, x € [—V2,V2],
— V12 =2, > 2,

Hence,

p(x,t) = pool(x) = %,

which proves part (iii) in Theorem 2.1.
Step 4. We prove (iv). From (1.7), if g(z,t) and p(z,t) are analytical solutions to (2.16) and
(1.4) with v = 0, then

e2t—1

g(z,t) == €'y (etz7 T) —2z,2€Cp, t>0,

is a C -holomorphic solution to (2.10), and

2t 1
pz,t) :==elp (etx, GT) ,xE€R, t>0,

gives an analytical solution to (1.4) for v = 1. By part (iii), we obtain part (iv).

B An explicit solution to (1.4) with v =0

In this section, by the Stieltjes transform of Wigner’s semicircle law g in (1.11), we recover an
explicit solution, which is same as the explicit solution of the Dyson equation (1.4) constructed in
(2.18) and (2.21) (see (B.8)).

First, we begin by taking Stieltjes transformation. Let f1(z) be the Stieltjes transform of the
Wigner’s semicircle law pq given by (1.11):

f1(2)=/ ! pi(dy), z € C\ [-2,2].

_22—y

Let y = 2cosf for 6 € [—,0], « = —6 and we have

/ Vi—y? / 2sin% 0 40 — 1/7T 2sin? da
27T 0

2 —2cosf z—2cos

:7/ sin? @ a0,
7w J_r2—2cosf

Let ¢ = € and we obtain

_ L (¢ - 1)
filz) = Ami Jiej=1 (2 +1-2(0) ac.
Set Y
WO =

G +1-20)

Function h(¢) has three poles: (o = 0, (; = ZH¥EZ=2 V222*4, and (o = &=E2— VQZL4. Next, we choose the
branch cut of V22 — 4. Due to

/ZQ 4= |2,2 o 4|I/ZS%[aurg(272)+arg(z+2)]7
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we see that —2 and 2 are branch points. We take the branch cut along the interval [—2, 2] and we set
arg(z —2) = 7 and arg(z+2) = 0 for z on the upside of the branch cut. In this case, on the upside
of [~2,2] we have v/22 —4 = iv/4 — 22 while on the downside of [~2,2], V22 —4 = —i\/4 — 22
. Moreover, the square root of 22 — 4 has a positive imaginary part when z € C, and it has a
negative imaginary part when z € C_ := {z : §(z) < 0}. Hence, for the imaginary part, we have

IS(z— V22 —4)] <|S(z+ V22 —4)] for ze C\[-2,2]. (B.1)

which implies
S(G2)] < 1S(G1)| for z € C\[-2,2].

Due to (1(> = 1, we have
[(2] <1 and [(1] > 1 for z€C\[-2,2].

And we obtain for z € C\ [-2,2],

Resh(Go) = lim -1(¢ ~ GPh(O)] = 2 Resh(ca) =~/ —d
Hence, by the Residue theorem,
_ 2 _
filz) =2 22 IR (B.2)

Second, we show f1(—z) is a Herglotz (Pick) function, which is analytical on C\ [-2,
$(2)S(f1(—=2)) > 0 for J(z) # 0 and we show the decay order of R(f1) and I(f1) as R(z) and
J(2) tends to infinity. Direct calculations give

2] + R(=)

5 and %(ﬁ)Q:W. (B.3)

2R(V2)S(V7) = S(2), R(V2)* = 2

For z = x + iy, we obtain

22 —y? —4)2 +422y? + 22 —y? — 4

J(2? —4) =2zy, R(V22-4)*= VA 5 )

and

) = V(@? —y? —4)? + da?y? — (2 — o2 —4)

2
Recall that in our settings of branch cut, the square root of 22 — 4 has positive imaginary part
when z € C; and it has negative imaginary part when z € C_. Due to (B.3), we know that the
sign of R(v/22 — 4) is the same as F(v22 — 4) when xy > 0 and they have different signs if xy < 0.
By elementary calculations, we have

Var =/ — P AP+ AP + (22— — 4)

S(Vz

- 2\@ , x>0,

R(f1(2)) = (B.4)
V2r+ /(@ Praty+ @ -y -4
2\/5 ’ ’
and

Vay — /(@2 2\/;4x2y(2y24)<0’y>0,
S(fi(2)) = Vay s/ = (B.5)

2y + /(@2 — 2 — 4)? + 4222 — (a —y—)>0’y<0'

2V2

From the sign in (B.5), $(z) > 0 implies $(—2) < 0 and J(f(—z)) > 0. Therefore we have
S(2) - S(f1(—2)) > 0 and thus f1(—=2) is a Herglotz function. Moreover, for fixed y € R in (B.4),
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dividing R(f1(z)) by = shows that R(f1(z)) decays in the order O(|Jz|~1) as |x| — oco. Similarly,
J(f1(2)) decays in the order O(|y|~!) as |y| — oo for fixed z € R.

Third, we use f; to recover the explicit solution to the Dyson equation (1.4) with v = 0 given
by (2.18) and (2.21). Define

1 z
fi(z) = Wfl (\/1?> , 2z € C\ [-2vt,2V1].

Then, direct checking shows that f;(z) is a self-similar solution to complex Burgers equation (1.1).
Finally, we try to obtain the traces of f; on the upper and lower half planes respectively. In
the above settings of branch cut, we have

arg(z —2) = = arg(z + 2), z € (—o0, —2),

which implies

V22 —d=\a22—4e™ = —\/22 -4, z =2 € (—00,-2).

Similarly, we have

V22 —d =22 — 4" = /22 — 4, 2 =1 € (2,4+).

Hence, the trace of function f;(z) defined by (B.2) from the upper half plane C, is given by

x+Va?—4
f’ r < —2,
A — 22
filz+) = %7 z € [-2,2), (B.6)
V22 _4
TV T e
2
The trace of function fi(z) given by (B.2) from the lower half plane C_ is
x+Va?—4
f’ r < —2,
T2
filz—) = rrwa—a” V2$ re[-2,2], (B.7)
x—Var?—4
f’ T > 2.

Direct computations show that %f 1(%:&) are solutions to complex Burgers equation on the real
line R.

Recall Section 2. If p is a solution to the Dyson equation (1.4), then g = tHp —imp —z is a
solution to the complex Burgers equation (1.1) on the real line and f = wHp — imp gives a trace
of an analytical function on the upper half plane. Hence, we use the trace fi(x+) (given by (B.6))
to define

T
T VT TR < ok,

2t 2t
flz,t) = %fl (%Jr) = % - 274’52;# x e [—2Vt,2V1),
R Y
and
G \/F, < —2Vt,
u(z,t) = % € [—2V, 2V, plz,t) = (4'52%;”2)*. (B.8)
rove o ;2_4t, x> 2V,
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To the end of this section, we provide another method to prove fi(—z) is a Herglotz (Pick)
analytic on (—oo, —2) U (2,400). Recall p1(dy) = 5=1/(4 — y?)+ dy. Then changing of variable
y =1t — 2 gives that

fi=s) = | gV (B.9)

—z+2—t2r
Define the measure d.(t) := 5=+/(t(4 — 1))+ dt and recast fi(—z) as

4
fi(—z) = /0 ). (B.10)

—z+2—1

Changing variable —z + 2 = i gives

! tow
fl(—z)z/o 1_tdu*(t):‘/o mdu*(t) =: wF(w). (B.11)

Here F(w) = f04 L dpu.(t) is a Pick function analytic on (—oo, ). F(w) is also the generating
function of a completely monotone sequence {4,(2,2)},>0 [17, Lemma 3], where A,,(2,2) is the
general Fuss-Catalan numbers (also called Raney numbers) with index (2,2). Therefore from [17,
Corollary 1 (iii)], Fy(w) := wF(wl) is a Pick function analytic on w € (—o0, 1). From the relation

—z+2= i, we know w(z) = 5 is a pick function mapping (—oo, —2) U (2, 4+00) to (—oo, %)

Therefore the composition fi(—z) = Fyow(z) is a Pick function analytic on z € (—o0, —2)U(2, +00).
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