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ABSTRACT. In this paper, we revisit the mathematical validation of the Peierls—
Nabarro (PN) models, which are multiscale models of dislocations that incor-
porate the detailed dislocation core structure. We focus on the static and
dynamic PN models of an edge dislocation in Hilbert space. In a PN model,
the total energy includes the elastic energy in the two half-space continua and
a nonlinear potential energy, which is always infinite, across the slip plane.
We revisit the relationship between the PN model in the full space and the
reduced problem on the slip plane in terms of both governing equations and
energy variations. The shear displacement jump is determined only by the
reduced problem on the slip plane while the displacement fields in the two
half spaces are determined by linear elasticity. We establish the existence and
sharp regularities of classical solutions in Hilbert space. For both the reduced
problem and the full PN model, we prove that a static solution is a global
minimizer in a perturbed sense. We also show that there is a unique classical,
global in time solution of the dynamic PN model.

1. Introduction. Materials defects such as dislocations are important structures
in materials science. Dislocations are line defects in crystalline materials and the
major carriers of plastic deformation [24]. Many plastic and mechanical behaviors of
materials are associated with the energetic and dynamic properties of dislocations.
Understandings of these properties also form a basis for the development of many
novel materials with robust performance.
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As a line defect, a dislocation has a small region (called the dislocation core
region) of heavily distorted atomistic structures with shear displacement jump along
a slip plane; as illustrated in Fig. 1. The dislocation core structures play essential
roles in determining the energetic and dynamic properties of dislocations, such as
the dislocation line energies and the critical stresses for the motion of dislocations.
The classical dislocation theory [24] regards the dislocation core as a singular point
so that the solution can be solved explicitly based on the linear elasticity theory.
Although the classical dislocation theory works well outside the dislocation core
regions, it gives nonphysical singularities within the dislocation cores. One way
to precisely describe the dislocation core structure on the continuum level is the
Peierls—Nabarro (PN) model [34, 30, 39], which is a multiscale continuum model
that incorporates the atomistic effect by introducing a nonlinear potential describing
the atomistic interaction across the slip plane of the dislocation.
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/ © © © Qyi
Nonlinear
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FIGURE 1. Schematic illustration of the PN model for an edge
dislocation. The dislocation locates along the z axis with 4z direc-
tion, and its slip plane is the y = 0 plane. b is the Burgers vector
and d is the interplanar distance in the direction normal to the slip
plane. The black dots and red circles show the locations of atoms
of the two atomic planes y = 0% and y = 0~ in the lattice with the
dislocation and in the reference states before elastic deformation,
respectively, based on a simple cubic lattice. The Burgers vector
enclosed by a loop L enclosing the dislocation is by, = fL du.

This paper focuses on the PN model for a straight edge dislocation [24] described
below. Assume that the dislocation is located along the z axis with 4z direction,
and the slip plane of the dislocation is ' := {(x,y);y = 0}. Since the elastic field
is uniform along the dislocation (z direction), this problem is reduced to a two-
dimensional problem in the xy plane. In the PN model, the whole space is divided
by the dislocation slip plane I' into two elastic continua y > 0 and y < 0 in which
linear elasticity theory holds, and the two continua are connected by a nonlinear
atomistic potential force across the slip plane I'; see Fig. 1. The displacement field
u(z,y) = (u1(z,y),us(x,y)) has a shear displacement jump across the slip plane
T', i.e., uy is discontinuous across T'.

Dislocations are characterized by their Burgers vectors b, which measure the di-
rection and total magnitude of the shear displacement jump. The Burgers vector is
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defined as b = fL du, where u is the displacement vector and L is any loop that en-
closes the dislocation line with counterclockwise orientation; see Fig. 1. For the edge
dislocation in Fig. 1, since the displacement u is differentiable in the half planes y >
0 and y < 0, the amplitude of by, = (b, 0) is by, = [* (=u (2,0%) + u} (z,07)) da,
where a and [ are the intersection points of the loop L with the z-axis. When the
loop L becomes infinitely large, by, — [—u1 (+00,0")+u; (+00,07)] = [—u1 (—o0, 0T)
+ u1(—00,07)] =: b.

Denote u™, u™ as the displacement fields for the two half-spaces {(x,y);y > 0}
and {(x,y);y < 0} respectively. We impose the following symmetric assumption

uf (2,07) = —uy (2,07), g (2,0") = uz (2,07). (1.1)
and then the far field boundary conditions at y = 0 become
b b

uf (—00,0") = T uf (+00,01) = -7 (1.2)

For this edge dislocation, as illustrated in Fig. 1 (based on simple cubic lattice
for the locations of atoms near the slip plane y = 0), the reference states of the
elastic deformation in the two half-space continua are different since there is an
extra upper half plane of atoms located at x = 0 in the upper space y > 0. The
shear displacement jump across the slip plane, or the disregistry, is

o(z) == uf (z,07) —ui (z,07) + g, (1.3)

with the property
¢(—00) =b, ¢(+00)=0. (1.4)

This means that away from the dislocation, we still have approximately the perfect
crystal lattice. Note that the term b/2 in Eq. (1.3) is to account for the disregistry
(relative shift) between the reference states in the upper and lower half spaces in
the direction of the Burgers vector.

In the classical dislocation model [40], the density of the magnitude of Burgers
vector p(x) = —¢'(x) = bd(x), where §(z) is the Dirac delta function, leads to sin-
gular displacement, strain and stress fields. Whereas in the PN model, the density
of Burgers vector p(x) = —¢'(z) is a smoothed profile due to the incorporation of
the nonlinear atomistic interaction across the slip plane. More precisely, the dis-
placement fields are determined by minimizing the total energy E(u) including the
elastic energy

1
Egs(u) :== 3 /11{2\1“0 redady (1.5)

in the two half spaces separated by the slip plane, where A : B := ZZ j A;i;jB;j;, and
nonlinear misfit energy across the slip plane due to nonlinear atomistic interactions

Epis(u) ::/F'y(gb) dz. (1.6)

The misfit energy density 7 depends on the disregistry ¢ across the slip plane
(1.3) and is called the ~y-surface [39]. Using the boundary symmetry conditions in
Eq. (1.1), we write the y-surface as a function of u}

Y(d) = y(uf —uy +b/2) = 7(2u] +b/2) = W(u])



3180 YUAN GAO, JIAN-GUO LIU, TAO LUO AND YANG XIANG

for convenience of notation in the analysis. In a general one-dimensional model,
v(¢) is a bounded multi-well potential with period b (period b/2 for W (v)), and
any minimum of it describes the perfect lattice.

The most important feature of the minimizing problem for the PN model above
is that the shear displacement jump u; (x,0%) — uj (z,07) across the slip plane
can be determined by a reduced one-dimensional model, i.e. a fractional Laplacian
equation with a nonlinear potential force

e 9 ul 1)+

=0 PV/ . s:W(ul(x)), z € R, (1.7)

with boundary condition (1.2), where G is the shear modulus and v is the Possion

ratio.

As a solvable example, the nonlinear potential takes the form of sinusoidal func-

tion [34, 30], which phenomenologically reflects the lattice periodicity [16],
Gb? 47Tu1

W 1.8

(ul) An 2d( +c b )a ( )

where d is a constant indicating the interplanar distance in the direction normal

to the slip plane; see Fig 1. A nontrivial solution solved by Peierls and Nabarro

34, 30] is uf (z) = — 5% tan™ C’ where ¢ = ﬁ and 2( is the core width of the
dislocation, with the far field decay rate
bobC
Ta)+-~—— +o0. 1.
uy (x) 1" Gag BT (1.9)

Then by solving the linear elastic equation in the two half spaces V-0 =0, (z,y) €
RZ\T', one can obtain the special solution to the full system [24, 42)]
b — x T
ui(z,y) = o7 [_ tan~" 247 + 42(1—u><w2y+7<yi<>2>} )

bo| 1-20 2 2 a®—y?+¢? (1.10)
uz(z,y) = =57 [4(1_l,) log(z* + (y £ )*) + W} :

We call this solution the elastic extension of wuj(x); see Theorem 2.7. For another
type of piecewise quadratic misfit energy, we refer to [26] which models a dislocation
ensemble moving on a slip plane through a discrete array of obstacles and give
analytic formulas using a variational approach.

Instead of the elastic extension, a scalar model using harmonic extension to
obtain scalar solution in the two half spaces

- 1z

u(z,y) = 5 tan JEC

plays important role in studying dislocations. For mathematical analysis for the
static solution to the reduced PN model (1.7) and the scalar model are well studied
in [7, 5, 4, 31]. In [5], for a general misfit potential v with C*< regularity, CABRE
AND SOLA-MORALES (i) established the existence (unique up to translation) of
monotonic solutions with C%* regularity; (ii) recovered the sharp decay rate (1.9)
for the bistable profile; (iii) proved the bistable profile is a global minimizer rel-
ative to perturbations in [—2,2] for the total energy F(a) for the scalar model.
In [31], DIPIERRO, PALATUCCI AND VALDINOCI directly worked on the nonlocal
equation (1.7) and improved the global minimizer result (iii) by removing the above
[72, g]—restriction on perturbations. Similar results for the existence, regularities,
and uniqueness of nonlocal equation with general fractional Laplacian (—A)2 for
exponent s € (0,1) are obtained by CABRE AND SIRE [4]. We refer to [14] for
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more general case. Within the framework of I'-convergence at energy level, we refer
to [10] for a sharp interface limit of the vector-field dislocation model, which is a
generalization of the sharp interface limit for the scalar dislocation model [21, 1].

For the dynamic PN model, viscosity solutions of the analogy scalar model
which is a heat equation with a dynamic boundary condition are studied by FINO,
IBRAHIM AND MONNEAU [15]. The authors established existence and uniqueness
of the viscosity solution to the scaler model using comparison principle for second
order equations and the harmonic extension, which works only for scalar solutions.

With the same assumption on the above general misfit potential v with C%
regularity, we summarize the main results in this paper as follows.

(i) For the reduced nonlocal equation (1.7), we obtain a sharp regularity result
uy ¢ H2(R), uy € H*(R) for any s > 1 (see Proposition 2.6).

(ii) We extend u; to the two half spaces as u using elastic extension (see Theorem
2.7) and obtain the corresponding sharp regularity u ¢ AL(R?), u € A;+% (R?)
for any s > 3 (See (2.20) for homogeneous Hilbert space A%(R?)).

(iii) Combining above two facts (i) and (ii), we obtain the well-posedness of the
static dislocation model in the full space (see Theorem 2.9).

(iv) We establish the energy connections between the reduce model on I" and the
full system (2.12) in R? in the perturbed sense (see Theorem 3.1), and then use
it to prove the static solution (unique upto translations) to the full system is
the global minimizer of the total energy in the perturbed sense (see Theorem
3.7).

(v) For the dynamic PN model in the full system (4.2), we obtain the global
classical solution under quasi-static assumptions in the two half spaces.

To the best of our knowledge, the vector-field displacement is essential to de-
termine long-range elastic interactions associated with dislocations and dislocation
core structures. In contrast to the harmonic extension, we do not have maximum
principle for the elastic extension. Indeed, the displacement fields u in (1.10) has
a Inr growth rate at far field, which is same as that of the two-dimensional stream
function in fluids or the two-dimensional electrostatic potential.

This paper only focuses on the analysis for a single edge dislocation model.
Based on the framework established here in Hilbert space, we will also work on the
existence and rigidity problem for a curved dislocation in a follow up paper. There
is a vast literature in mathematical and physics studying dislocations and related
problems and we only list a few here. For example, some different physical models
have been generalized and applied to calculate dislocation line energy, critical stress
for the motion of dislocations, energy of grain boundaries which consist of arrays of
dislocations, and structure and morphology of bilayer materials with dislocations,
e.g. [39, 25, 35, 28, 37, 42, 43, 11, 36, 45]. Convergence from atomistic model to
the PN model with the y-surface in bilayer materials has been proved [29]. There
are also some results for other dislocation dynamics models, e.g., [2] proved short
time existence of a level set dislocation dynamics model [41], and convergence from
PN models to larger scale models for a dislocation particle system, slow motion and
other properties were analyzed [8, 20, 12, 15, 22, 6, 3, 13, 32, 33, 18]. Some other
techniques used for nonlocal equations rising from epitaxial surfaces were presented
in [19, 27, 17].

The remaining sections of this paper are organized as follows. In Sec. 2, we
first derive the reduced system and prove its sharp regularities; see Sec. 2.2 and
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Sec. 2.3 separately. Then we establish the connection between the reduced system
and the full system by the elastic extension in Theorem 2.7 and use it to obtain
the well-posedness of the full system in Theorem 2.9. In Sec. 3, we first obtain
the connections between the reduced energy and the total energy in Theorem 3.1.
Then we prove the static solution (unique upto translations) to the full system is
the global minimizer in perturbed sense; see Theorem 3.7. Sec. 4 is devoted to
proving existence of the global classical solution to the dynamic PN model.

2. Well-posedness for static PN model. We investigate solutions to the static
PN model by first deriving the Euler—Lagrange equation which corresponds to criti-
cal points of the total energy of the PN model. To understand connections between
solutions to the full space and solutions to the reduced system on slip plane, we
establish the elastic extension analogue to the harmonic extension for the scalar
model. More precisely, we will obtain the classical solution to the reduced system
with sharp regularities and the classical solution to the full system with correspond-
ing regularities.

For simplification of notations, we will use ui (z) = ui(x,0%), uf(z) = uf(z,
0%), 0% (2) = o*(x,0%), etc, to indicate the trace at y = 0F from positive/negative
side.

2.1. Total energy and Euler—Lagrange equation. In the PN model, the two
half spaces separated by the slip plane of the dislocation are assumed to be linear
elastic continua, and the two half spaces are connected by a nonlinear potential
energy across the slip plane that incorporates atomistic interactions, see Fig. 1.
The total energy is

E(u) := Egs(u) 4+ Emis(u). (2.1)

Here u is the displacement vector. As described in the introduction, in this PN
model for the edge dislocation along the z axis, the crystal structure is uniform in
the z direction; as a result, the problem becomes a problem in the zy plane and
the displacement in z direction with uz = 0. The energy E(u) is the energy per
unit length along the dislocation, and the displacement vector can be written as
u = (u1,uz).

The first term in the total energy in Eq. (2.1) is the elastic energy in the two half
spaces defined in (1.5). Here ¢ is the strain tensor:

1
€ij = i(ajui + (%Uj), (22)

for i,5 =1,2,3, (where &y = 9, := %, Oy = 0y = a%v and 03 = 0, := %,) o is the
stress tensor:

2vG
T ki, 2.3
1— 20 M0 (2:3)
for ¢, = 1,2,3 (in an isotropic medium), d;; = 1 when ¢ = j and 0 otherwise,
and o : € = 04;6;5. We have used the Einstein summation convention that eg, =
3 2 3 2
D k=1 Bk = Qg Sk AN 03555 = D5 5y 04jEi5 = D iy Oig€ie
The second term in the total energy in Eq. (2.1) is the misfit energy across the
slip plane due to nonlinear atomistic interactions defined in (1.6), i.e.

Enis(u) ::/F'y(@ dx:/FW(uf) dex. (2.4)

0ij = 2G51‘j +
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For the analysis of the PN model for an edge dislocation in this paper, we assume
that the nonlinear potential W satisfies for some « € (0, 1)

W e C**(R),

W (v) >W(—Z> :WG)’ for v € (‘Z’Z)’ (2.5)

w (:ﬁ:i) > 0;

see (1.8) for example.

Remark 1. Under the assumptions (1.1), (1.2) and (2.5), we remark that if we
assume further W is an even function, then the solution uf to (1.7) will be a
unique odd function with the center uf((), 07) = 0, which is the case that an extra
upper half plane of atoms locates at * = 0 as illustrated in Fig. 1. Without this
additional assumption, the solution u; and the corresponding u are unique upto
translations; see Theorem 2.9.

The equilibrium structure of the edge dislocation is obtained by minimizing the
total energy in Eq. (2.1) subject to the boundary condition at the slip plane given in
Eq. (1.2). However, it is known that for a straight dislocation, the strain ¢ and the
stress o decay with rate 1/r at far field where r is the distance to the dislocation,
thus the elastic energy Es is infinity [24]; see Remark 3 below. To be precise,
we define the perturbed elastic energy of u with respect to any perturbation fields
¢ € C°(R?\I'; R?) and ¢ has compact support in some B(R) as

. 1 1
Egs(p;u) ::/ “(eutey) i (out0y)— seuioy da
R

2\r 2 2
:/ %[(Ew)ij(gw)ij + (560)ij(0-u)ij + (Eu)ij<gtp)ij] dax (26)
R2\T

= els(ﬁo) + Cels(ua 90)

where the cross term

1
Cas(u, @) := / (e 1 oytey 1 0y) da :/
R

5 1[(%)ij(Uu)ij+(€u)ij(%)ij] dz,
R2\T

2\1“ 2
(2.7)
where €,,0, and €,, 0, are the strain and stress tensors corresponding to u and ¢
respectively. Then the perturbed total energy is defined as

Etotal(go; l].) = Eels(so; u) + /F W(U] + (,01) — W(Ul) dz. (28)

Definition 1. We call a function u a global minimizer of total energy F if it satisfies

EAtotal(LP; u) Z 0 (29)
for any perturbation ¢ € C*°(R?\I'; R?) supported in some B(R) satisfying
@f(m,O*) = —(p;(a?,o_), Lp;r(x70+> = @;(.r,o_). (2'10)

Remark 2. The definition above is reasonable because it can be shown in the
following lemma that the global minimizer u satisfies the Euler-Lagrange equation.
Furthermore, the global minimizer w is also a stable solution in the sense that
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the second local variation of E(u) is nonnegative, i.e. for any perturbation ¢ €
C>(R2\I'; R?) supported in some B(R) satisfying (2.10),

Eq () + /F W (uy)p? dz > 0. (2.11)

We have the following lemma for the Euler-Lagrange equation with respect to
the total energy E(u).

Lemma 2.1. Assume that u € C?(R?\I'; R?) satisfying boundary conditions (1.1)
and (1.2) is a minimizer of the total energy E in the sense of Definition 1. Then
u satisfies the Euler—Lagrange equation

Au +

. = i 2
1_2VV(V u) =0 in RA\T,

oy +on =W\ (uf) onT, (2.12)
032 =09 onl.

Proof. From Definition 1 of minimizer, we calculate the variation of energy in terms
of a perturbation with compact support in an arbitrary ball B(R). For any v €
C>(B(R)\I') such that v has compact support in B(R) and satisfies (2.10), we
consider the perturbation év where ¢ is a small real number. We denote ¢ := e(u),
o :=o(u) and &1 := &(v), 01 := 0(v). Then we have that

1
%1_{% g(E(u +6v) — E(u))

1
:/ ~(o1 :5+0:51)dxdy+/ W (uf o] dz
B(R)\T 2 [-R.A

:/ o€ dxdy—i—/ W (uf )vi dz
B(R)\I [~ R,R]
(2.13)

:/ o:Vvdrdy —|—/ W' (uf ol dz
B(R)\T' [—R,R]

= —/ 0j0;v; dxdy—i—/ Ufjn;rv;r dx
B(R)\I [—R,R]
—|—/ on; v da —|—/ W' (uf)of dz >0
[-R,R] [-R,R]

where we used the property that o and V- o are locally integrable in {y > 0} U{y <
0} when carrying out the integration by parts, and the outer normal vector of the
boundary I is n™ (resp. the n™) for the upper half-plane (resp. lower half-plane).
Similarly, taking perturbation as —v, we have

1
lim ~(E(u — 6v) — E(w)

:/ 9;040; dxdy—/ ornfv de (2.14)
B(R)\T [-R.R] '

—/ o n; v da —/ W (uf )vf dz > 0.
[-R,R] [-R,R]

Hence

_/ ajamvldxdy—l—/ O';;’I’L;F’U:rdx
B(R)\T [—R,R]
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+/ TN v dx+/ W' (uf)of dz =0
[7R7R] [7R7R]

Noticing that nt = (0,—1) and n= = (0, 1), we have

+,. 4.+ - ==
o nIv; dsr:—|—/ o;.n; v, dx
/[R,R] ij'"j _R.E] ij'tj Vi

:/ —0 3503 dac—i—/ Og9Us dx—i—/ —o 5] dx—l—/ o150, dz.
[-R,R] [-R,R] [-R,R] [-R,R]

(2.15)
Notice v} (x) = —v] (x) and vy (x) = v; (). Hence due to the arbitrariness of R,
we conclude that the minimizer u must satisfy
/[JBJrcrl_Q—W(ul)] dx =0,
r
/ (035 — 055) v3 da =0, (2.16)
r

/ (V-o)-v dedy=0
R2\T

for any v € C*°(B(R)\I') and v has compact support in B(R), which leads to
the Euler-Lagrange equation (2.12). Here we have written the equation V-0 =0
in R?\I" as the first equation of (2.12) in terms of the displacement u, using the
constitutive relation in (2.3) and the definition of the strain tensor in (2.2). O

2.1.1. Working Space. To better understand the sharp Sobolev working space for
the PN dislocation model, let us first see an example for classical nonlinear potential
below.

Remark 3. Recall the special solution u] (z) = —% tan—! % for the reduced model
(1.7) when the nonlinear potential is (1.8). Using this solution of the reduced
problem on I', the solution of the full PN model, i.e., the Euler-Lagrange equation
(2.12) with the boundary conditions (1.1) and (1.2), is shown in (1.10). The stress
tensor is then

o ByEa¢  2(y()? P _ _2wy(yxQ) 0
b @?+yE0? T PO 24O [P+
o= x __23y(yxQ) _ y + 202y 0
27m(1 —v) @2+ (yx0)? [P E)?? 22+ (yx)? T @224 (wEO?? '
0 0 _ v+l
22+(y£()?

17)
where +( applies for y > 0 while —( applies for y < 0. Note that in this Case the
disregistry across I' defined in (1.3) is ¢(z) = 2uf (z) + 2 = —%tan’1 L+ 5 and
the density of the Burgers vector is p(z) = —¢'(z) = 2 lgicz

From this example, the Fourier transform of uf (z) = — 5% tan™* ¢ in tempered
distributional sense is —me ~I¢€l. Thus we can show
b20(2s — 1) 1
||U1 ||H s(R) W for s > 5; HUTHH%(R) = +oo, (2.18)

where T'(2s — 1) is the Gamma function. So we want to study uf (z,0") € Hzte
for e > 0.
For real number s > 0 and integer m > 0, define the homogeneous Sobolev space

HY™R\D) = {u; (—040)20)'u € L*(R*\T)} (2.19)
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with standard semi-norm || - || ... (R*\I'). Therefore it is natural to define spaces

for s >1

AF(R?) = {u e B M(RAD), 0 <m < [s], uf (2,07) = —uy (2,07), uy (,07) = uy (2,07)},
(2.20)

where [s] represents the integer part of s. Define the semi-norm for u € A% (R?) as

[s]
Hu”i%(R2) = Z ||uHi[s,7n(R2\F)' (221)
m=0

Cerl
It is easy to check the example above belongs A1{+2 (R?) for s > % but o ~ %

at far field implies u ¢ AL(R?). Due to the elastic continua is divided into two
half spaces, taking m as an integer is to avoid technique complication for fractional
derivatives in y directiorll. In this paper, we will see the working space for PN
dislocation model is Alst (R?) for real number s > 1.

To ensure we can take trace for any function u € Ali (R?), let us first give the trace
theorem for A% (R?), whose proof is standard and we give it here for completeness.
The inverse trace theorem is proved in Theorem 2.7 by establishing the elastic
extension.

Lemma 2.2 (Trace theorem). Given u € A‘%(R2) for any s > 1, then the trace of
u, uﬂp S Hs_%(]R), 1 =1,2 and we have the estimate

AfL(R2)7 1= 1, 2. (2.22)

+
el o3 gy < [0l

Proof. Let s > 1 and denote @] (£, y), 45 (£,y) as the Fourier transform for uj (x,y)
and u; (x,y) with respect to by regarding them as tempered distributions. First,
for the upper half plane and any function u € A%(Rz) such that u vanishes as
y — +00, we have

+o00
€t (€ oDP =~ [ ol (et €ndy (229
0
Then by Hoélder’s inequality and Parserval’s identity,
HUTH;@_%(R) < 2)/(=02a) = Oyuf [I1(=02a) 2 uf || < [Jull3, g2)- (2.24)

This estimate holds also for u;r and the lower half plane. Thus by a density argu-
ment, we conclude (2.22). O

2.2. Dirichlet to Neumann map. In this section, we study a representation in
the sense that for given ui on I, we can uniquely determine the traction (03, 03;)
on I' using the elasticity system in R?\I". This is the Dirichlet to Neumann map for
the linear elasticity system. As a consequence of the Dirichlet to Neumann map we
reduce the Euler-Lagrange equation (2.12) in R? to a problem on I (to be discussed
in the next subsection). The following lemma gives the Dirichlet to Neumann map.
Note that P.V. denotes the Cauchy principal value of the integral.

Cerd
Lemma 2.3. Assume that u € A§+2(R2) for some s > I satisfies the Euler—

Lagrange equation (2.12). We have the following conclusions.

(i) (Fourier representation) The solution u(x,y) in R? can be represented entirely
by uljE (x,0%) on T as follows.

a6 ) = (6. 0%) (1= L) e (2.25)
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S (e 0t
e Tl G R ) s (2.26)

b1 Dirichlet to Neumann map If u r € Hl then o and o on I' are in
1 12 22
L2 (R) and can be expressed by

+oo +
oia(@) = o7y (a) = — 17V _& _pyv. / . (2.27)

033 (w) = 033(x) = 0. (2.28)

(i) If uf|p € H'(R), then u also satisfies the elastic equation in whole space in
the distributional sense, i.e.

V.-0=0, inD'(R?. (2.29)

Proof. Step 1. We solve the elasticity problem, i.e., the first equation in (2.12), by
using the Fourier transform with respect to 2. Note that ui(z,y) is not in L?(R)
for a fixed y due to its asymptotic behavior in (1.2). Therefore, we take the Fourier
transform for w; (z,y) and us(z,y) with respect to x by regarding them as tempered
distributions. For notation simplicity, denote the Fourier transforms as (£, y) and
'ELQ (67 y)

Taking the Fourier transform with respect to x in the first equation in (2.12), we
have

(1 —20)0yyty — (2 — 20)E%0y + i€y Tz = 0,

(2 — 20)0yytiz — (1 — 2v)E%ag + i€0y 0y = 0,
in the tempered distributional sense. Eliminating o, we obtain an ODE for

Oty — 262020y + iy = 0. (2.31)

(2.30)

The eigenvalues are determined by the characteristic equation k* — 262k% + ¢4 =0
which has two double roots k1 = ko =&, k3 = kg = —€.

We first consider the lower plane y < 0. Since u € A st+3 (R?), the negative roots
are not acceptable in this case, and the general solutlon of (2.31) is given by

L= (A7 + B¢y, y <o, (2.32)

where constants A~, B~ may depend on £ and will be determined later. Similar
analysis gives general solutions

iz = 'i' (C + D Jely)el, y <0, (2.33)

and in the upper plane y > 0,
af = (AT — BY¢ly)e €V, 4 >0, (2.34)
if = Elcr - Dot y >0 (2.35)

where constants C~, D=, AT, BY C*, D™ may depend on ¢ and will be determined
later.

Step 2. Now we express those constants in terms of A1 using Euler-Lagrange
equation (2.12) and boundary symmetry (1.1). First by induction, we have the
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following identities

o (e Ily = (—[¢)me el
A (—elye™E) = (—[e)™ (m — |ly)e W,
A (elélv) = |g|melely, (2.36)
O (1€lyelsy) = 1™ (m + [¢]y)elsly,

for any m € NT. Then plugging the general solutions of 4; and s in (2.32)—(2.35)
into (2.30), we obtain the relations

Dt =-BT, D= 41/17_3(144“ +Ct) (2.37)
D~ =B~, D™ = 4U1_ S(C7— A7), (2.38)
Second, from wuy(z,0") = —uy(z,07) and us(x,0") = uz(x,07) in the boundary
condition in (1.1) we have
At=-A", CcT=C", (2.39)
respectively. Combining (2.39) with (2.37) and (2.38), we have
Bt=-B~, D"=D". (2.40)

Third, from the second boundary condition in (2.12), i.e., o4, = 05, on I', and
using (2.39) and (2.40), we have

2(C* 4+ DY) + 12—VA+ =0.

Using this equation and (2.38), we obtain
1-2v
ct=cC" = At 2.41
2—-2v ( )

Thus, all the constants in the general solutions of u; and ug in (2.32)—(2.35) can be
determined by the constant AT by (2.37)—(2.41) as follows.

1

Bt =-B = AT 2.42
2—2v ( )
1
Dt=D" =— AT, 2.4
2—2v (2.43)
Therefore we can further express the solutions as
iy = —at (14 L) el 2.44
iy (+2_2yy e,y <0, (2.44)
AT i€
g = ——— (1 —20) = —i €1y 2.4
o= —5g (1= 2§ — igw) e,y <0, (2.45)
i =A" (1 - ﬁy e I8V 4 >0 (2.46)
2—2v ’ ’

Gy = 7% ((1 - QV)E' + z§y> eIy > 0. (2.47)
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Since we also have 4] (£,0) = A*(€) by (2.34), the conclusion (i) follows.

Step 3. Using these obtained results, we can calculate that on T,
. - . . G
oy = 01p = G(9yu) +ikty) = *m\ﬁlAﬂ (2.48)
Gon = Gy = 0. (2.49)

Equation (2.28) follows directly from (2.49). If further u|p € Hl(]R), using the
definition of the Hilbert transform H(f)(x) = 1P.V. f+°° 1) 45 and its Fourier

o —00 T—S§
—_—

transform H(f) = —isgn(¢)f, we obtain (2.27) from (2.48). This proves part (ii).
Step 4. Given any test function ¢ € C°(R?), if u] |r € H'(R), we calculate V - &
in the weak sense.

/(V-J)~<pdxdy=/ —o:chda:dy:/ —o: Vedzdy
R2 R2 R2\T

0j0ip; de dy 7/ O’;;le(pi dz 7/ o n; pide
{y=0"}

/{y>0}u{y<0} {y=0*}

:/ 3j0ij¢id$dy+/(cf§rz—052)%02+(0f’2 — o13)p1 da,
{y>0}u{y<0} r

where we use the symmetry property of ¢. Since we have V-0 = 0 in R?\T,
0551 = 00|r = 0 and o5 |r = o1,|r, we obtain

/ (Vo) pdedy = —/(0?2—0172%01 dz =0, (2.50)
R? r

which implies
V.o=0, inD/(R?.

This property explains that at the equilibrium state the force acting on the elas-
tic materials is zero everywhere. To determine the displacement field in the whole
space, the staring point is free system without external force. Therefore the elastic
equation V - ¢ = 0 holds for the whole space in distribution sense. All the defor-
mation comes from the internal defect, which, in our case, is the single straight
dislocation line defect. Hence the full system can be regarded as a linear elastic
system for the upper and the lower plane connected by shear displacement jump on
the interface, i.e. the slip plane T'. 0

The lemma above allows us to reduce the full system to the slip plane I, called
the reduced system (see next subsection), by establishing the Dirichlet to Neumann
map.

2.3. Reduced problem on I' and its solvability. From Lemma 2.3 part (i), we
know that the solution of the Euler-Lagrange equation (2.12) is entirely determined
by the displacement u} (z) = u;(2,07) on T'. From Lemma 2.3 part (i), v on T
can be determined by the second equation in the Euler—Lagrange equation (2.12).
In this sense, the equation of uf on I' is called the reduced problem on I' and will be
discussed in this subsection. How to determine the solution of the Euler—-Lagrange
equation (2.12) in R? from the solution of the reduced problem will be discussed in
the next subsection.

In fact, using Lemma 2.3 part (ii) and the second equation of the Euler-Lagrange
equation (2.12), we know that the displacement u; on T, u (x) = uf (z,0%), is a
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solution of the nonlocal equation (1.7) on T'; i.e.

+Ooau1 /(. +
1711 ——P.V. s:W(ul), z € R, (2.51)

Tr—S

with the boundary condition in (1.2), i.e

b
Fioy 2 : +iy - 2
Jim i) =3, lm ()=, (2.52)
where W is the nonlinear potential satisfying (2.5). This is the reduced problem on
T.
The nonlocal term on the left-hand side of (1.7) is the Hilbert transform with a
constant coefficient —2G/(1—v), which can also be written in terms of the fractional
Laplacian operator:

1 oo (s) 1
H( = —P.V./ ds = (—0z2)2 . 2.53
@)@) = 2PV [ ds = (-0 bol) (2:53)
Recall that the fractional Laplacian operator (—0y,)%v(x) := CsP.V. [; ljy‘lf?;} dy,
where (' is a normalizing constant to guarantee the symbol of the resulting operator
is J¢[2°.

We summarize the above results into the following proposition.

Proposition 2.4 (Reduced PN model). Assume thatu € Affé (R?) for some s > %
is a solution of the Euler—Lagrange equation (2.12) with the boundary condition
(1.2). Then the displacement uy on T, uf (x) = uf (z,07), is a solution of the
nonlocal equation (1.7) with boundary conditions (2.52) at x = £o00.

Compared with the special solution solved by Peierls and Nabarro [34, 30] for
the typical potential (1.8), the existence result of equation (1.7) subject to far field
boundary conditions (2.52) has been given by Theorem 2.4 in [4] (see also Theorem
1.2 in [5]), after rescaling of (1.7) into the form 2(—0,z)2uf = f(uf) on T

Proposition 2.5 (Solvability of reduced model). Consider the nonlocal equation
(1.7) with boundary conditions (2.52).

(i) (Theorem 2.4 in [4]) There exists a bounded solution uj (z) (unique up to
translations) such that O,uf (r) < 0 in R.

(ii) (Theorem 1.6 in [5]) The solutions satisfy the asymptotic behavior | ¥ 7 —
uf (z)| ~ ﬁ as x — +oo.

Next we prove a sharp elliptic regularity result for uf () in the Sobolev space.

Proposition 2.6. The solution u] (z) to nonlocal equation (1.7) with boundary

condition (2.52) satisfies uf € H*(R) for any s > 3

Proof. Step 1. We prove u] € H L(R). From Proposition 2.5 (ii) and Taylor
expansion of f at uf(too) = FL, f(uf(z)) = W(uf(2)) ~ L as 2 — +cc.
Therefore fowu € L?(R). From (1.7) and Parserval’s identity we obtain

1€l 2y = csll f o uf L2y < C, (2.54)
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where ¢, is a rescaling constant and we concludes u” € H'(R).
Step 2. We prove uj € H*(R) for any % < s < 1 using the property fouj ~ % €
LP(R) for any p > 1. From (1.7), we have for § < s <1

(~0ue)iuf = (-0m) T (Foul) = (~0m) " T (Foul).  (25)

Here (—89,3513)_%(]” o uj) can be represented by the Riesz potential I;_.g :=
ch |z — y|~%°g(y) dy where g € LP(R) with % = % + s. Particularly, from the

Hardy-Littlewood-Sobolev theorem for fractional integration [38, p. 119, Theorem
1]

[ 70 = 1(=0ea) 2 1[5z = [ T1=s(f o ul)Zo) < clf o uf lEom)-  (2:56)

This concludes u}” € H*(R) for any $<s<l

Step 3. We prove uf € H® (R) for any 1 < s < % First we notice for any s > 0,
|f (uy fluf ()1?
Ifoufly. =5 [ IO qody < Gua ) . (257

Therefore from Step 2, u € H*(R) for 3 < s <1 implies fouf € H*(R) for

% < § < 1. Then by (1.7) and Parserval’s identity, we have for any 1 < s < %
ol < [ e batetFout dg < Judl oy I oty <O @259)

due to both u, f ouj € H*(R) for 1 5 <s<L

Step 4. In summary, for s € (1, 2], we have uf € H*(R) from Steps 1-3. By
induction, we only need to show how to improve s € (%, %} to s € (g, 2] Since
u € H* for s € (3,3 Welkr;ow fouj € H for s € (3,32]. Thus by Parserval’s
identity, we have for s € (3, 5]

el *ay Iz = NI1*f o uf |2 < C, (2.59)
which concludes uj” € H* for any s € (3,2]. O

2.4. Elastic extension in R*\I' and its property. Analogue to the harmonic
extension, we introduce an elastic extension that extends the function on I' to the
two half spaces based on the elastic system in R?\I'. This is summarized into the
following lemma.

Theorem 2.7. Assume that pr € HS(R) for some real number s > % There exists
a unique solution u € AéJr2 (R?) to the following elasticity problem in R*\T':
Au+ A-V(V-u)=0 in R\T,
uf (z,0%) = ¢or(x) onT, (2.60)
045(7) = 05p(x)  on T.
And the solution satisfies the stability and reqularity estimate

Il < Clluf Nl ay- (2.61)

We call solution u the elastic extension of @r.

AR )
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Proof. Step 1. It can be seen from Lemma 2.3 part (i) that the solution u of
the elastic system in R?\T is given by Fourier representation (2.25)—(2.26) with the
symmetric relations in (2.39) and (2.40). It shows that the solution u exists and is
uniquely determined by u; (x,07) = ¢r(z).

Step 2. Regularity of u in R?2\I'. By the Fourier representation formula (2.25)-
(2.26), we can take any derivatives w.r.t y. Recall identities (2.36). For any 0 <
m < [s+ 3], we have for y > 0

(et mopar e = G (-lehmar (6,0 (1- Bl ) el
(2.62)
For y > 0, from (2.62), we estimate

s+%—m,
/ (—0ue) ™= O uf Pdzdy < C / €12 (€,01) [P (1+]¢%y?)e ¢V dg dy.
R RZ

2
+ ¥

(2.63)
Notice the identity
7{ (3 +20¢Py% + 2|£|y) 672|§|y:|/ = (14 [€[2y2)e 2y,
ey
We have
B <3 + 217y + 2§|y> 672|§|y’00 < 3
4[] o~ 4lgl
Thus we obtain the uniform bound
s+1—m
[ 10 T oput Py < © [ it (€.09)F g = Ol .. (264
2

for y > 0 and any 0 < m < [s+ %] This estimate also holds for us or y < 0.
Therefore we obtain the stability and regularity estimate

2 +112
||11| A;+%(R2) < OHul HH“(R)

(2.65)

O

Remark 4. The elastic extension established in Theorem 2.7 shows that for any

. . 1
function uf |r € H*(R) with s > 1, there exists u € Aff? (R?) such that u|r is
the trace of the first component of u. This is an inverse trace theorem.

2.5. Existence, uniqueness and regularity for the full PN model. In this
section, we establish the existence and uniqueness of the solution to Euler—Lagrange
equation (2.12), which is referred to as the full PN model, subject to the boundary
conditions (1.1) and (1.2). After the reduced model on I' is solved in the last
subsection, the solution of the full model is determined by an elastic extension from
the solution on I'.

We first have the following mirror symmetry property for the displacement u in
the whole space due to mirror symmetry boundary conditions in (1.1).

Cepl
Lemma 2.8. Let u € A?—Q(Rg) for some s > % be the solution to the elasticity
system in R2\T (the first equation in (2.12)). Then u satisfies the mirror symmetry
condition in the whole space

uf(a@y) = —uj (z, —y), u;(x,y) =u; (z,~y), x€R,yeR". (2.66)
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The proof of this lemma directly follows the expressions of u; and ug in (2.32)-
(2.35) and the relationship of the coefficients in (2.39) and (2.40) in the proof of
Lemma 2.3.

After establishing the connection between solutions to the reduced model and the
full model by the elastic extension. We state the existence and regularity theorem
below.

Theorem 2.9. Assume that the nonlinear potential W satisfies (2.5). We have the
following conclusions for solutions to the full PN model.

el
(i) There exists a classical solution (unique up to translations) u € A;JFQ(RQ)
for any s > L to problem (2.12) with boundary conditions (1.1) and (1.2).

Moreover, the solution u satisfies the symmetry condition in (2.66).

(ii) The displacement component u; of the solution u on T uf (z) = uj (z,0%) is
a classical solution in H*, for any s > % of the nonlocal equation (1.7) with
boundary conditions (2.52) at x = +0o.

(i4i) The unique solution u in (i) can be regarded as the elastic extension of uj ()
on I' (which is the solution of the reduced problem of (1.7) and (2.52)) defined
in Theorem 2.7.

Proof. We first apply Proposition 2.5 to obtain the existence of a solution (unique
up to translations) u] (z) to problem (1.7) with boundary condition (2.52), such
that d,u] (z) < 0 in R. The regularity u € H*(R) for any s > 1 comes from
Proposition 2.6. Thus we have (ii). The solution u of the full PN model is obtained
by the elastic extension of uf(m) on I', which is uniquely determined, following

s g1 .
Theorem 2.7. From (2.61),the regularity of u € AFJr2 (R?) for any s > 1 is ensured
by the regularity of u; (x). Thus we conclude (iii) and the existence and regularity
in (i). The symmetric property of u in (i) is a conclusion of Lemma 2.8. O

3. Global minimizer of total energy for the full system. The goals in this
section are to connect the total energy in the two half spaces with the reduced
energy on I', which are both infinite for a single straight dislocation, and then to
prove the static solution u obtained in the last section is a unique global minimizer
of the total energy F(u) in the sense of Definition 1. Besides, the first component
trace up|r of the global minimizer u of the total energy is also a global minimizer
of the reduced energy Er(u;) defined in (3.1) below, vice versa. To ensure all the
energy estimates in this section meaningful, the natural idea is to compare the
difference between E(u) and E(u + ¢) such that the total Burgers vector for the
perturbed displacement fields ¢ is zero. We will show the precise relation between
reduced energy Er on slip plane I" and the total energy F in (2.1) in Theorem 3.1.
We will see in the next section the reduced system on I' has its own gradient flow
structure with respect to Ep. From now on, with slight abuse of notation, we use
u; = up|r := uf (x,0%) to denote the restriction of the first component of vector
fields u on the slip plane I'.

3.1. Energy relations between the full system and the reduced system.
From the Dirichlet to Neumann map established in Section 2.2, we will reduce
rigorously the total energy of the full PN model to an energy on the slip plane T'.
Indeed, we define the free energy Er for the reduced system on the slip plane I" as

Br(uy) ;:/F|(—am)iu1\2dx+/rvv(ul)dx, (3.1)
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which is finite for u; € H 3. However for the static solutions obtained in the last
section, u;|r € H*® with s > 1 and Er is infinite ; see also example in (2.18). Hence
the idea is to state the connection for E(u+ @) — E(u), where u is the static solution
obtained in Theorem 2.9. Similar to (2.8), we define the perturbation elastic energy
of u on T' with respect to the trace ¢1|r of the perturbation ¢ as

prin) = [ 1(=000) s+ )P = (=0.0) Vi do
(3.2)
/ [(— 1/4<p1\2 dx—|—2/ 1(—=0, )1/2u1 dx
and the perturbed total energy on I' as
Er(pr;u1) = Ere (p1;u1) + / W(uy + ¢1) — W(up)de. (3.3)
r

It is easy to see the perturbed energy above is well-defined for any perturbations
@ € H'(R?\I") with ¢, |r € H=(R) satisfying (2.10).

We first summarize the energy connections in two cases. The proof of this theo-
rem will be left to the end of this section after establishing some lemmas.

Theorem 3.1. Given ui|r € HS(R) for some s > % and its elastic extension

uc Aff%(RQ), we consider the reduced energy Er(ui) and the total energy E(u).
(i) If ur|r € H2(R), then

E(u) = Er(ul) < Q. (34)
(ii) If uy|r ¢ H2(R), then
E(u) = 4o00; Er(ui) = +o0, (3.5)

and the relation of energies is stated in perturbed sense, i.e. for any pertur-
bation o1|r € H2 (R) with ¢ € HY(R2\T') being its elastic extension, we have

7 1
Er(p1;u1) = Biowal(@;u)  for any s > =,

. (3.6)

where Fyowal(;0) is defined in (2.8) and Er(p1;uy) is defined in (3.3).

First, we point out this result is standard if ui|p € H?2 (R), which yields a finite
elastic energy; see Lemma 3.2 below. However, for the trace ui|r € HS(R) with
some § > %, which yields an infinite energy7 we will handle it later in Lemma 3.3.

Define the elastic part of Er(u) as Ep_( fr Oza) 4u1|2 dz. The following
lemma shows that we can reduce the elastlc energy in the two half spaces to the
nonlocal energy Er, on surface I'.

Lemma 3.2. Assume u € AL(R?) is an elastic extension of ui|r € Hz2(R), then
we have

Eels('“/) = EFe (ul) (37)
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Proof. By a density argument, we only prove for u € AL(R?) N C%(R?). We know

0:/ u-(V-o)dedy
{y>0}u{y<o}

= 7/ Vu: deder/U;;nj'u;" der/Ji;nj_ui_ dz
{y>0}u{y<0} r r
z—/ 6:adxdy—k/(—aﬁé+02_2)u;dx+/(—af'2—an)qux
{y>0}u{y<0} r r
2G
z—/ ezadxdy—i—/7|(—8m)iuf|2dm,
{y>0}U{y<0} r(l—v)
where we used o, + o, = f%(fam)%uf due to Lemma 2.3. Without loss
of generality, we set the physical constant (1fy) to be 1 (otherwise there will be a
coefficient (13,) in (3.7)), so we obtain
2B :/ erodrdy = 2/ (—0p) Tuf|? da. (3.8)
{y>0}u{y<o} r

O

Next we extend the lemma above to ui|r ¢ Hz with its elastic extension vector

fields u € Aifé with s > I, which is the case (ii) in Theorem 3.1. Since u|r ¢ Hz
implies an infinite reduced energy, instead of proving (3.7) directly, we compare the
difference between E(u) and E(u+ ¢) such that the perturbed displacement fields
¢ possessing finite energy.

PP .
Lemma 3.3. Let u € A;+2 (R?) with trace ui|r € H*(R) for some s > % be the

static solution obtained in Theorem 2.9. Let ¢1|r be any H2(R) perturbation and
let ¢ € H(R?\I') be the elastic extension of ¢1|r. Then we have

Eas(p;u) = Er, (¢13u1) (3.9)

Proof. Recall the definition of energy functional Fes and Er, and the cross term
defined in (2.7)

1 1
Cais(u, ) :/ 5(% toytey i 0y) dr :/ 5[(%)@(%)@4+(6u)¢j(%)¢j] du,
R2\T R2\T

where €., 0, and €4, 0, are the strain and stress tensor corresponding to u and ¢
respectively. Then we have

. 1 1
Eeos(p;u) :/ 5(% +ey) i (out0y) — 36u 1 0u dzx
R2\

:/ %[(%)ij(%)ij T (e)i(0)i + Eiglo)y] e 310
R2\T
=Eeis(p) + Ceis(u, ).

Similarly, define the cross term

Cr, (u1, 1) = 2 / o1 (=000) 20y da.
N



3196 YUAN GAO, JIAN-GUO LIU, TAO LUO AND YANG XIANG

Then for the energy functional Er, we have

Br (o) = [ (-0m)un + 0P = [(-0) Pt de (31)
T

:/ ((=000) 401 2 dx+2/gpl(—8m)1/2u1 dz (3.12)
T T
=Er, (p1) + Cr. (u1, 1)

By Lemma 3.2, Eqs(9) = Er, (¢1) due to ¢1|r € H2(R), so it remains to deal with
the cross terms.
Next, we claim the following relation for the cross terms.

Ceis(u, ) = Cr, (u1, ¢1). (3.13)

In fact, from the symmetry of constitutive relation o;; = Cjjrier, we know

(ep)ij(ow)ij = (6)ijCijri(cu)r = (ep)kiCijri(eu)is = (Eu)ij(04)ig,

which gives us
Ceis(u, ¢) :/ (ep)ij(ou)s; da.
R2\T

Therefore, noticing ¢ has symmetric properties (2.10) due to the elastic extension,
an integration by parts yields

@w@>4mwmmﬁwx
_/R2\F—(V.au)-go dx+/r((au)ijnj%)+ dx+A((au)ijnj¢i)* de
:/[_(0u712)+ — (oy,12) |1l dz
r

:/ 2[(=05a)*ui]ip1 dz = Cr, (u1, 1),
I

In the last equality, we used the relation in Lemma 2.3 o}, +0p, = — (1%6;) (—0pa)2uf
with the physical constant ﬁ = 1. Thus we obtain (3.13) and complete the proof
of this lemma. O

Now combing Lemma 3.2 and Lemma 3.3, we give the proof of Theorem 3.1.

Proof of Theorem 5.1. Notice the Taylor expansion of W at u;(+oo) = F2 and
Proposition 2.5 (ii). It is easy to check the misfit energy Fys in (2.4) is always
finite. Thus, if ui|r € H 3 (R), by Lemma 3.2 for the elastic part in the total energy,
we conclude part (i) of Theorem 3.1. If uy|p ¢ H 2 (R), by Lemma 3.3, we conclude
part (i) of Theorem 3.1. O

3.2. Static solution is a global minimizer of the full system. In this section,
we will prove that the static solution u (unique upto translations) obtained in
Theorem 2.9 are the global minimizers of the full system in the sense of Definition
1.

Assume u € Aff% (R?) for some s > 1 is the static solution obtained in Theorem
2.9, then we first show that u is a minimizer of E in the sense of Definition 1 for
perturbations in [—%, %]; see Proposition 3.6. Then we will remove this constrain
later in Theorem 3.7. Notice Definition 1 for the global minimizer is in terms of
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all the perturbations with compact support. Since u € Aff%(R?) for any s >
%, Etotal(go;u) is continuous in H%_S(RQ\F) w.r.t ¢. Notice also the function
space for perturbations ¢ in Definition 1 is dense in H!(R2\I') < H2~*(R?) with
symmetry (2.10). It is easy to check the global minimizer defined in Definition
1 can be equivalently generalized to any perturbations ¢ € H!(R2\I';R?) with
¢1|r € H2 (R) satisfying (2.10).

The idea is to use the elastic extension in Theorem 2.7 and the connections
between the energy to the full system and the reduced energy to the slip plane in
Theorem 3.1. In [5, Theorem 1.4], CABRE AND SOLA-MORALES prove that the
static solution to the scalar model from harmonic extension is a minimizer of the

b %1 In order to apply

corresponding total energy relative to perturbations in [—7, 7].
this result, we restate it in the setting of the reduced model (1.7) on I" below.

Proposition 3.4. ([5, Theorem 1.4]) Assume ui|r € H*(R) for some s > 1 lisa
static solution to the reduced model (1.7) and (2. 02) obtained in Proposition ,2 (i).
Given any perturbations op € H? (R) such that —% < (or+uilr) < =2, we have

Er(p;u) > 0. (3.14)

Proof. First, let u € C*(R%) be the harmonic extension of u1|p and ¢ € C*(R%)
be the harmonic extension of ¢r. Then by maximal principle for Laplace equation,
-t <p+u<?inR:

Second, from [5, Theorem 1.4], we have for any R > 0

1 R

Eiotal(u; R) :== f/ |Vul|? dz dy —|—/ W(u1)dz < Eiotal(u + ¢; R) (3.15)
2 Jr2 nB(R) “R

for any p € C? (@) with compact support in By (R)UT such that —2 < p4u <

It is well known the harmonic extension of u; satisfies —0,u; = (—am)%ul on
Then from integration by parts, we obtain

1 +oo
5/R/O (IVu+ Vel* — [Vul?) dyda

o0 1
:/]R/O §|ch|2+Vchpdydx

o0 1
:// 7|V<p|2—Au<pdyda?—/6,,u1cppdm
+oo N
// |V<p|2dydx—|—/cpr( Opy)2uy dz

1 .
= [ JlomterPde+ [ or(-0u)turdo = 28k ().

Therefore we have
0 <Etotal U + ["2) R) Etotal(u R)

+o0o +oo
// |Vu+Vg0\2dydx—f// |Vu\2dyda:—|—/ W(uy + ¢) dz

— [R W (uy) dz

:EF((P§ uy)

’1 »Jk\e-
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for any ¢ € Cl(@) with compact support in B (R)UT such that —% < (p+u)[r <
b
Z-

Third, since Er(; u) is continuous in /2 ~*(R?) w.r.t ¢ and for any s > 3 C2(R?)
is dense in HY(R2) < H2~*(R2), Epr(p;u) > 0 holds also for any perturbation

or € Hz(R) such that —% <(pr+wlr) <-§. -

Before proving a static solution is a global minimizer, we first show that given
v1lr € H 3 (R), its elastic extension yields a minimizer of the elastic energy Fes.

Lemma 3.5. Given o1|r € H2(R), and its elastic extension @, then ¢ is a mini-
mizer of the elastic energy Ees with trace p1|r in the sense that Ees(@) < Fes(P)
for any @ € HY(R?\I') satisfying (2.10) with the same trace ¢1|r.

Proof. Since ¢1|r € H2(R), same as (3.10), we directly calculate that

Eos(P) — Eeis() = Ees(@ — @) + Cais(@ — @, p). (3.16)

Notice the trace of ¢ and the trace of ¢ are same. Using ¢ is the elastic extension
of ¢1|r and the symmetry (2.10) for ¢, we have

Casl—0:0) = [ (V@i de
[ (Vo) (e @
R2\T'

+ / (0)i15(@ — @)yt do + / (00)in; (@ — 9)s)™ da

r

:/F[—(%,m)Jr —(0p,12) (@ — )1 dz=0.
Then Eqs(@ — ) > 0 implies Ees(@) — Eeas(@) > 0. O

Proposition 3.6. Let u € Aff%(Rz) for some s > % be a static solution obtained
in. Theorem 2.9. Given any perturbations @ € H'(R?\I';R2) with oi|pr € H2(R)
satisfying (2.10) and —2 < (p1 +w1)|r < &, then we know u is a minimizer of E
such that

0 S EF(@l;ul) = Etotal('l/); ll) S Etotal(so; 11), (317)

where 1 is the elastic extension of 1|r.

Proof. First, since 1) is the elastic extension of ¢1|r, Theorem 3.1(ii) shows that
EAltotal(’l:b; 11) = EF(QDl; ul)' (318)

Second, for any perturbation ¢ € H'(R2\I';R?) with ¢;|r € H2(R) satisfying
(2.10), since v is the elastic extension of ¢i|r, we know (1 — ¢1)|r = 0 and
(1 — ) € HY(R?). Therefore by Lemma 3.5, we know

Ees (¢) < Fes (‘10) .

Notice also Cr, (u1,%1) = Cr, (u1, ¢1), which together with the relation (3.10), leads
to

EA‘els(d"; u) S Eels(QD; u)'
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Therefore
Buova(iw) = Buabiw) + | W+ 1) = W) da
<EBus(piu /W u + 1) — Wug) do (3.19)
ZEtota1(<,o; u).
Finally, we apply Proposition 3.4 to obtain
0 < Er(p13u).

This, together with (3.18) and (3.19), yields

0 S EF(SDl;ul) - Etotal(";b; 11) S Etotal(so; 11). (320)

This completes the proof of Proposition 3.6. O

Similar to Proposition 3.4, Proposition 3.6 above also requires all the perturba-

tions are between [—%, %] The next theorem develops a new method to show the
static solution for the PN model obtained in Theorem 2.9 is a global minimizer in
the sense of Definition 1 by removing the restriction that perturbation must be in
the range of [-2, %],

Dol
Theorem 3.7. Let u € A§+2(R2) for some s > % be a static solution obtained
in Theorem 2.9. Then u is a global minimizer of E in the sense that for any

¢ € HY(R?\T"), the perturbation energy satisfies

Eioar(p;u) > 0. (3.21)

Besides, if u is a global minimizer of E then its trace ur is also a global minimizer
of Er. Conversely, if up is a global minimizer of Er then its elastic extension u is

a global minimizer of E.
Proof. First, from Theorem 3.1 and (3.19), we know for any perturbation ¢;|r €
H? (R)

Er(p1;u1) = Fiotal(¥;1) < Erorar (05 ), (3.22)

where ) is the elastic extension of ¢1|r. Hence it is sufficient to show that
Er(p1;u1) > 0, (3.23)

where Ep (¢1;u1) fr 1/4 (uq +<,01)|2—|(—3m)1/4u1|2d$+fp W(u1+ 1) —
W (uy) dz defined in (3.3). We have proved in Proposition 3.6 that u is a minimizer
for all the perturbations satisfying 7% < (p14+u)lr < %. For the case (p1 + u1)|r
not in [—37 g], we prove the same result using the method of contradiction below.
Suppose that Er(p1;u;1) < 0 for some ¢ € C°(R?\I';R?) and ¢ has compact
support in some B(R) satisfying symmetry (2.10). Let v := (1 4+ u1)|r, and a cut
off function v := max{min{v, £}, —%}. Since u; is monotone and connect from &

to —g, @1|r := U — uy still has compact support in B(R). Denote ¢ as the elastic
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extension of @¢1|r. Note that |o(x) — v(2’)| < |v(z) — v(z')| for any x,2" € R. Thus

1
3/ |<—am>1/4a|2 - |<—am>1/4u1|2dx
|0(x )P fun(z) —ua (@)
47r// |:vfx’|2 L do da’
|v(z )P fun(z) —ua (@)
47r// |x—ﬂc’|2 B |z — a/|? do da’

5 [ 10u 0l = [(=000) Vo (3.24)
T

\ /\

Also note that for v(z) > % or v(z) < -8, 9(z) = £% and W (v(z)) = 0 < W(v(z)).
Thus

/FW(T)) —Wi(up)de < /FW(U) — W(uy)da. (3.25)

Combining Eqs. (3.24) and (3.25), we immediately obtain Er(@;u) < Er(¢
0. On the other hand, Proposition 3.6 implies that 0 < Ep(@;u) since —
(@1 +w1)|r < b. This contradiction completes the proof of (3.21).
Finally, we clarify the relation between the minimizer of the full system and the
minimizer of the reduced system. On one hand, from (3.22), Er(p1;u;) > 0 implies
Etotal(w; u) > 0. On the other hand, Etota1(¢; u) > 0 implies Ep((pl; up) >0 O

4. Global classical solution to dynamic PN model. In this section, we con-
sider the dynamic model with the total energy E in (2.1). Here we focus on the
dynamics of a dislocation structure and neglect the inertia effect of the materials.
In other words, we consider the overdamped regime, which is a gradient flow of the
total energy. This is reasonable since the dislocation dynamics on the slip plane I"
has a much larger time scale than the relaxation time of the elastic parts. Hence we
take a quasi-static assumption for the upper/lower half space y > 0 and y < 0, i.e.,
Oyu = 0 in R2\T. Indeed the quasi-static assumption leads to a homogenous elastic
equation in the upper/lower half space y > 0 and y < 0, which is the key point to
establish the relation between the full system and the reduced system in terms of
solutions as well as energies.
Recall the free energy Er on the slip plane is

Ep(ul):/F|(—8m)%u1|2dx+/rW(u1)dw; (4.1)

see the specific definition for the perturbed energy in (4.5). After the quasi-static
approximation, we can use the elastic extension in Theorem 2.7 to see that a solution
to the dynamic system on the slip plane I" gives naturally the displacement fields in
the full space. In other words, from the relation between the trace u;|r and solution
u in the full space stated in Theorem 2.9, the dynamic model becomes an elliptic
problem with a nonlinear dynamic boundary condition

V.-o=0 inRA\L,
Ouy = —2(—3193)%1“ —W'(uy) onT, (4.2)

+ o -
099 = 099 onl.
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We also provide explanations using a gradient flow for the full system with different
mobilities in Remark 5. Here and in the following, we set some physical constants
to be 1 for simplicity.

Our main goal in this section is to prove the uniqueness and existence of the
classical solution to problem (4.2) with boundary conditions (1.1), (1.2) and initial
data ug.

Notice the nonliearity W(-) effects only the first variable u; and thus by the
elastic extension of u1 | we can determine uniquely the solution to Problem (4.2) as
long as we can solve u; on I'. We focus on the one dimensional nonlocal equation

Opuy + 2(—8ps)?ur + W(u) =0, z€R (4.3)
with boundary condition
up(+o00) = —1; wuy(—o0) =1. (4.4)

We remark the boundary condition here is well-defined since in the end we obtain
the dynamic solution u; in the classical sense by proving the perturbation v =
up — u} € C((0,00); H(R)), where u} is the static solution to the reduce model
(1.7).

Recall the free energy Er for the reduced model is infinity. As in the last section,
we still use the perturbed total energy on I' with respect to the trace uj|r of the
static solution u* obtained in Theorem 2.9

Er(v;u* /\ o) Y g [2 = | (—0p) Y Aut)? dx—|—/W uy) — W(ui)dz, (4.5)
which is equivalent to
Br(oiu’) = [ (=00 =) do +2 [ (00" 40 (-0, (01 =) da
+ /F W(uy) — W(uj)de (4.6)
= [ 1=0m) = w? de = [ Wi 1 =) et [ W) = W)
/\ VB[ — oW ) + W (o + ) — W (uf) da,
due to uj is the static solution satisfying (1.7). Thus the reduced system on I' has

its own gradient flow structure

(SEF(U u )

atU1 - 5’11,1

(4.7)

In the following subsection, we will establish the global classical solution to the
perturbation v = u; —u}, which is the difference between u; and the static solution
Remark 5. We can also explain the quasi-static assumption by a gradient flow
with different mobilities. Recall the total energy of the full system

E(u) = Eqs(u) 4+ Epis(u).

From the calculations in Lemma 2.1, the first variation with respect to the admissi-
ble perturbation u € C*°(B(R)\T') such that U has compact support in B(R) and
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satisfies (2.10) is

d .
$|6:0E(u+5u) = —/

" (V~U)~udmdy—/[012—1—01_2—W’(ui‘r)]u;—i—(ag—agg)af dz.
R2\T

r

(4.8)
In general, for a over-damped dynamical system, the governing equation is given
by V.= —M f, where V is the time derivative of parameters of the state, f is the
first variation of the free energy with respect to virtual displacement, and M is the
corresponding mobility which is basically the reciprocal of the damping coefficient.
For a crystalline solid with dislocations, denote the mobility for the motion of the
elastic continua as M, however, the Mr is the mobility for the dynamic of shear
discontinuity u;j — u; . Experimental observations show that M > Mr for most
dislocations, i.e. the time scale for the motion of the elastic bulk is smaller then the
motion on the interface. In the following we assume M = O(1/e) and M = O(1)
where € is a small parameter. We introduce the metrics

1 1
g(a,v) := —/ l'n'rdxdy—i——/uli}l dux, (4.9)
R2\T Mr Jr

where we used different mobilities for the bulk and the interface and assume there
is no damping for the second component on the interface. Therefore the gradient
flow with respect to g

) d )
g(Opu,01) = —5‘5:0E(u + du) (4.10)

gives the governing equation for dynamic model

1
M(?tu =-V.0, zcRAT,

1
—Owur = —[ofy + o, + W (ur)], z€T,
Mr

Jr _ —
Ogg = 099, x €T\

Let ¢ — 0, ﬁ — 0, which indicates —V - ¢ = 0 then u is the elastic extension of up

and coincides with u . Thus Lemma 2.3 part (ii) shows that
oty = 015 = 2(—8yy)2up, z€T.
We obtain the reduced dynamic system on I' (4.3).

4.1. Global classical solution. In this section, we will use the theory for analytic
semigroup to establish the existence and uniqueness of the global classical solution
o (4.3) by studying the existence and uniqueness in terms of the perturbation
fields. In terms of the reference field u* such that 2(—8,,)2uf = —W'(u}), set the
perturbation v(z,t) := u1(z,t) — uj(x). Then from the dynamic equation (4.3), we
know the dynamic equation for v is

v = —2(—0p0)2v — W (v +ul) + W (u}) (4.11)
with initial data vo(z) = uq(z,0) —uj(z). Denote H*(R) as the (fractional) Sobolev
space with norm denoted as || - ||s. Denote || - || as the standard L?(R) norm.

Define the free energy for v as

Plo) = /F (= 0ua)40[2 — oW (u3) + W (o + u?) da. (4.12)
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Notice this energy differs with (4.6) with a term [, W (u}) dz whose variation is 0.
Then v satisfies the gradient flow structure

O = — 6F6§}v)'
Define
Av = ((=840) + D), (4.13)
T(v) :=W'(ui) — W' (v+ul) +v. (4.14)
Then (4.11) becomes
Opv = —Av + T(v). (4.15)

Since the spectrum for A is o(A) = [1,+00), from [23, Definition 1.3.1], 4 is a
sectorial operator from D(A) = H'(R) C L?*(R) — L?(R) in the sense that

Sipi= {AB< Jargh— 1) <7 A # 1)
is in the resolvent set of A and

I =)~ <

1
o] for all A € S1 6. (4.16)

The existence and uniqueness of the global classical solution to (4.11) is stated
as follows.

Theorem 4.1. Assume initial data vo(z) := ug(x) — ul(x) € H2(R).
(i) There exists a global unique solution
v € C'([0,00); L*(R)) N C((0, 00); H' (R)) (4.17)

to (4.15) such that v(z,0) = vo(z) and dpv, Av,T(v) € L*(R) for t > 0 and
the equation (4.15) is satisfied in L*(R) for any t > 0;
(i) the solution can be expressed by

t
v(t) = e Aoy +/ e~ AT (u(r)) dr; (4.18)
0
(iii) for any k,j € Nt and § > 0 there exist constants ¢, Cs,; such that

v e C’k((O,oo);Hj(R));
[0Fv(-, t)[l; < Cspge, t>6;

(4.19)

(iv) we have energy identity
dF(v(t))
dt
and furthermore, if for misfit energy Enis defined in (2.4), the initial data

vo(x) satisfies Emis(vo + uf) < 0o, we have

F(v(t)) < F(vg), foranyt>0. (4.21)

= f/[f(—5‘m)1/2v—W/(v+uT)+W’(uI)]2 dz =: —9(v(t)) <0, (4.20)
R

Proof. Step 1. We state some properties for T" defined in (4.14). From [5, Theorem
1.6] we know the static solution

c c
forx >0, |[1—uj|l<
1+ |z | 1|_1—|—|x|

14+ uj| < for z < 0,

and c
0] < T3
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which shows ||0uf|| < +o00. Then we have
(a) T : L*(R) — L2(R) is global Lipschiz, i.e. there exists a constant L such that

1T (v1) = T(v2) || < (1 + max [W[)]joy — v2]| < Ljvy — va; (4.22)
(b) if v(-) € HY(R), then T'(v(-)) € H*(R). Indeed,
10T (v)[| < (1 + max [W])][v]| + 7lv]l,

which implies
1T ()]l < elfv] (4.23)

Step 2. Firstly, it is easy to check that the operator A defined in (4.13) is
m-accretive in L?(R). Indeed we know Re(Az,z) > 0 for all z € D(A) and
o(A) = [1,400). Therefore A is an infinitesimal generator of a linear strongly
continuous semigroup of contractions and ||e~4*|| < 1. Secondly, from global Lips-
chitz condition (4.22), there exists a unique mild solution expressed by (4.18) and
v € C([0,+00); LA(R)).

Step 3. Hélder continuity in ¢ of v and T'(v).

v(t+h) —o(t) (29
t+h t
—p—At(g=Ah, e~ AT (u(r)) dr — [ e AT (u(r)) dr
( 0 o)+/0 T(v(r))d /0 T(v(r))d
h
= [(e= My — vg) + /0 e DT (o(7)) dr]
L / e~ ACDT(v(r + h)) — T(v(7))] dr
0
=e = (v(h) — vo) + / MO (o(r + b)) = T(v(7))] dr
0
Since ||e=4|| <1,

[o(t +h) —o(@)]| < [lv(h) — vl +/0 2[o(r + h) = v(7)] dr.

Then by Gronwall’s inequality, we have
[o(t +h) = v()]| < [lo(h) = volle*". (4.25)
On the other hand,
h
v(h) —vo = (74" — Iy + / e~ A= (u(1)) — T(vo) + T(vo)]dr.  (4.26)
0
Then from (4.22) and [le=4*|| < 1 we know
h
[o(h) = woll < [[(e " = Dvo| + L/ [v(7) = voll dT + AL |lvol
0
h
=hElloll + O] AY2u0]) + L [ o(r) = wol
0

where we used the fact A is sectorial and thus from [23, Theorem 1.4.3]

(e — Ivo|| < Ch¥||AY ?g].
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Thus Gronwall’s inequality gives us
lo(h) = woll < h* (h* Lijvol| + Cl[ A uo e, (4.27)
which, together with (4.25), leads to the Holder continuity of v(t)
v(t+h) —o(t)
h
Then from (4.22) we concludes the Holder continuity of T'(v(t))

‘ T(v(t +h)) = T(v(t))

1
Therefore by [23, Lemma 3.2.1] we know for ¢ > 0

‘ < cffvol|y > " (4.28)

[N

1 < c||vo||562t+Lh. (4.29)

/ t e~ A= (u(1)) dr € D(A). (4.30)
0

Notice also .
HAG_At’U()” < ge_t

for t > 0, which shows e~4vg € D(A) for t > 0. Therefore by mild solution (4.18)
we concludes v € D(A) and dyv = —Av + T'(v) € L? for t > 0, which completes the
proof for (i), (ii).

Step 4. Higher order regularities.
Set wy := dyv and wy := J,v. Then

AT(u(t)) = T'(v)0y € C(0,T); I(R))
and
0T (v(t)) = (1 = W (ul +v))0pv — (W' (u} +v) — W (u}))du} € C([0,T]; L*(R)).
Therefore we can repeat Step 2 and 3 for
Oywy + Awy = T (v)wy (4.31)
and
Oywa + Awg = (1 — W'(uf +v))wa — (W' (ui +v) — W (u}))0pui (4.32)
to obtain
wy,wy € C((0,00); L*(R)) N C((0,00); H(R))
dywe, dyw, € C((0,00); L*(R))
which concludes v is a global classical solution to (4.11) and satisfies (4.19).

Step 5. (4.20) is directly from (4.11) and above regularity properties. Notice that
if the initial data vo(z) satisfies Epmis(vo + uf) < oo, then from ||ui(-)|| < ¢ and
vo(x) € H2(R) we have F(vp) < oo and thus

F(v(t)) < F(vg) < 0.
O

Acknowledgment. The work of YG and YX was supported by the Hong Kong
Research Grants Council General Research Fund 16313316. JGL was supported in
part by the National Science Foundation (NSF) under award DMS- 1812573 and
the NSF grant RNMS-1107444 (KI-Net).



3206

[1]
2]
3]
[4]
[5]
[6]
7]
(8]
[9]
(10]
(11]
(12]
(13]
(14]
[15]
[16]
(17]
(18]

(19]

20]
21]

(22]

23]

[24]
[25]

[26]

27]

YUAN GAO, JIAN-GUO LIU, TAO LUO AND YANG XIANG

REFERENCES

G. Alberti, G. Bouchitté and P. Seppecher, Un résultat de perturbations singulieres avec la
norm H'/2, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333-338.

O. Alvarez, P. Hoch, Y. Le Bouar, and R. Monneau, Dislocation dynamics: Short-time exis-
tence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.

T. Blass, I. Fonseca, G. Leoni and M. Morandotti, Dynamics for systems of screw dislocations,
SIAM J. Appl. Math., 75 (2015), 393-419.

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness,
and qualitative properties of solutions, Trans. Am. Math. Soc., 367 (2015), 911-941.

X. Cabré and J. Sola-Morales, Layer solutions in a half-space for boundary reactions, Comm.
Pure Appl. Math., 58 (2005), 1678-1732.

S. Cacace, A. Chambolle and R. Monneau, A posteriori error estimates for the effective
Hamiltonian of dislocation dynamics, Numer. Math., 121 (2012), 281-335.

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm.
Partial Differential Equations, 32 (2007), 1245-1260.

P. Cermelli and G. Leoni, Renormalized energy and forces on dislocations, SIAM J. Math.
Anal., 37 (2005), 1131-1160.

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evo-
lution equations, Adv. Differ. Equ., 2 (1997), 125-160.

S. Conti, A. Garroni and S. Miiller, Singular kernels, multiscale decomposition of microstruc-
ture, and dislocation models, Arch. Ration. Mech. Anal., 199 (2011), 779-819.

S. Dai, Y. Xiang and D. J. Srolovitz, Structure and energy of (111) low-angle twist boundaries
in Al, Cu and Ni, Acta Mater., 61 (2013), 1327-1337.

S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals,
Comm. Partial Differential Equations, 39 (2014), 2351-2387.

S. Dipierro, G. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: a macroscopic
theory in a fractional Laplace setting, Comm. Math. Phys., 333 (2015), 1061-1105.

S. Dipierro, S. Patrizi and E. Valdinoci, Heteroclinic connections for nonlocal equations, Math.
Models Methods Appl. Sci., 29 (2019), 2585-2636. arXiv:1711.01491.

A. Z. Fino, H. Ibrahim and R. Monneau, The Peierls-Nabarro model as a limit of a Frenkel-
Kontorova model, J. Differ. Equations, 252 (2012), 258-293.

J. Frenkel, Theory of the elastic limits and rigidity of crystalline bodies, Z. Phys., 37 (1926),
572-609.

I. Fonseca, N. Fusco, G. Leoni and M. Morini, A model for dislocations in epitaxially strained
elastic films, J. Math. Pures Appl., 111 (2018), 126-160.

I. Fonseca, G. Leoni and M. Morini, Equilibria and dislocations in epitaxial growth, Nonlinear
Anal., 154 (2017), 88-121.

I. Fonseca, G. Leoni and X. Y. Lu, Regularity in time for weak solutions of a continuum
model for epitaxial growth with elasticity on vicinal surfaces, Commun. Part. Diff. Eq., 40
(2015), 1942-1957.

A. Garroni, G. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization
of discrete dislocations, J. Eur. Math. Soc., 12 (2010), 1231-1266.

A. Garroni and S. Miiller, I'-limit of a phase-field model of dislocations, SIAM J. Math. Anal.,
36 (2005), 1943-1964.

M. del M. Gonzélez and R. Monneau, Slow motion of particle systems as a limit of a reaction-
diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32
(2012), 1255-1286.

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathemat-
ics, 840. Springer-Verlag, Berlin-New York, 1981.

J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley, New York, 2nd edition, 1982.

E. Kaxiras and M. S. Duesbery, Free energies of generalized stacking faults in Si and impli-
cations for the brittle-ductile transition, Phys. Rev. Lett., 70 (1993), 3752-3755.

M. Koslowski, A. M. Cuitifio and M. Ortiz, A phase-field theory of dislocation dynamics,
strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002),
2597-2635.

X. Y. Lu, On the solutions of a 2 4+ 1-dimensional model for epitaxial growth with axial
symmetry, J. Nonlinear Sci., 28 (2018), 807-831.


http://www.ams.org/mathscinet-getitem?mr=MR1289307&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2231781&return=pdf
http://dx.doi.org/10.1007/s00205-006-0418-5
http://dx.doi.org/10.1007/s00205-006-0418-5
http://www.ams.org/mathscinet-getitem?mr=MR3323554&return=pdf
http://dx.doi.org/10.1137/140980065
http://www.ams.org/mathscinet-getitem?mr=MR3280032&return=pdf
http://dx.doi.org/10.1090/S0002-9947-2014-05906-0
http://dx.doi.org/10.1090/S0002-9947-2014-05906-0
http://www.ams.org/mathscinet-getitem?mr=MR2177165&return=pdf
http://dx.doi.org/10.1002/cpa.20093
http://www.ams.org/mathscinet-getitem?mr=MR2917164&return=pdf
http://dx.doi.org/10.1007/s00211-011-0430-z
http://dx.doi.org/10.1007/s00211-011-0430-z
http://www.ams.org/mathscinet-getitem?mr=MR2354493&return=pdf
http://dx.doi.org/10.1080/03605300600987306
http://www.ams.org/mathscinet-getitem?mr=MR2192291&return=pdf
http://dx.doi.org/10.1137/040621636
http://www.ams.org/mathscinet-getitem?mr=MR1424765&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2771667&return=pdf
http://dx.doi.org/10.1007/s00205-010-0333-7
http://dx.doi.org/10.1007/s00205-010-0333-7
http://dx.doi.org/10.1016/j.actamat.2012.11.010
http://dx.doi.org/10.1016/j.actamat.2012.11.010
http://www.ams.org/mathscinet-getitem?mr=MR3259559&return=pdf
http://dx.doi.org/10.1080/03605302.2014.914536
http://www.ams.org/mathscinet-getitem?mr=MR3296170&return=pdf
http://dx.doi.org/10.1007/s00220-014-2118-6
http://dx.doi.org/10.1007/s00220-014-2118-6
http://www.ams.org/mathscinet-getitem?mr=MR4053239&return=pdf
http://dx.doi.org/10.1142/S0218202519500556
http://arxiv.org/pdf/1711.01491
http://www.ams.org/mathscinet-getitem?mr=MR2852206&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.08.007
http://dx.doi.org/10.1016/j.jde.2011.08.007
http://www.ams.org/mathscinet-getitem?mr=MR3760751&return=pdf
http://dx.doi.org/10.1016/j.matpur.2017.09.001
http://dx.doi.org/10.1016/j.matpur.2017.09.001
http://www.ams.org/mathscinet-getitem?mr=MR3614646&return=pdf
http://dx.doi.org/10.1016/j.na.2016.10.013
http://www.ams.org/mathscinet-getitem?mr=MR3391834&return=pdf
http://dx.doi.org/10.1080/03605302.2015.1045074
http://dx.doi.org/10.1080/03605302.2015.1045074
http://www.ams.org/mathscinet-getitem?mr=MR2677615&return=pdf
http://dx.doi.org/10.4171/JEMS/228
http://dx.doi.org/10.4171/JEMS/228
http://www.ams.org/mathscinet-getitem?mr=MR2178227&return=pdf
http://dx.doi.org/10.1137/S003614100343768X
http://www.ams.org/mathscinet-getitem?mr=MR2851899&return=pdf
http://dx.doi.org/10.3934/dcds.2012.32.1255
http://dx.doi.org/10.3934/dcds.2012.32.1255
http://www.ams.org/mathscinet-getitem?mr=MR610244&return=pdf
http://dx.doi.org/10.1103/PhysRevLett.70.3752
http://dx.doi.org/10.1103/PhysRevLett.70.3752
http://www.ams.org/mathscinet-getitem?mr=MR1935021&return=pdf
http://dx.doi.org/10.1016/S0022-5096(02)00037-6
http://dx.doi.org/10.1016/S0022-5096(02)00037-6
http://www.ams.org/mathscinet-getitem?mr=MR3770200&return=pdf
http://dx.doi.org/10.1007/s00332-017-9428-8
http://dx.doi.org/10.1007/s00332-017-9428-8

REVISIT OF THE PEIERLS-NABARRO MODEL 3207

[28] G. Lu, N. Kioussis, V. V. Bulatov and E. Kaxiras, Generalized-stacking-fault energy surface
and dislocation properties of aluminum, Phys. Rev. B, 62 (2000), 3099-3108.

[29] T. Luo, P. Ming and Y. Xiang, From atomistic model to the Peierls-Nabarro model with
Gamma-surface for dislocations, Arch. Ration. Mech. Anal., 230 (2018), 735-781.

[30] F. R. N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59 (1947), 256-272.

[31] G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy
involving a fractional norm, Ann. Mat. Pura Appl., 192 (2013), 673-718.

[32] S. Patrizi and E. Valdinoci, Crystal dislocations with different orientations and collisions,
Arch. Rational Mech. Anal., 217 (2015), 231-261.

[33] S. Patrizi and E. Valdinoci, Relaxation times for atom dislocations in crystals, Calc. Var.
Partial Differ. Equ., 55 (2016), 44 pp.

[34] R. Peierls, The size of a dislocation, Selected Scientific Papers of Sir Rudolf Peierls, (1997),
273-276.

[35] G. Schoeck, The generalized Peierls-Nabarro model, Phil. Mag. A, 69 (1994), 1085-1095.

[36] C. Shen, J. Li and Y. Wang, Predicting structure and energy of dislocations and grain bound-
aries, Acta Mater., 74 (2014), 125-131.

[37] C. Shen and Y. Wang, Incorporation of v-surface to phase field model of dislocations: Simu-
lating dislocation dissociation in fcc crystals, Acta Mater., 52 (2004), 683-691.

[38] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton uni-
versity press, 1970.

[39] V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., 18 (1968),
773-786.

[40] V. Volterra, Sur I’équilibre des corps élastiques multiplement connexes, Ann. Sci. Ecole Norm.
Sup., 24 (1907), 401-517.

[41] Y. Xiang, L. T. Cheng, D. J. Srolovitz and W. E, A level set method for dislocation dynamics,
Acta Mater., 51 (2003), 5499-5518.

[42] Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383—
424.

[43] Y. Xiang, H. Wei, P. Ming and W. E, A generalized Peierls—-Nabarro model for curved dis-
locations and core structures of dislocation loops in Al and Cu, Acta Mater., 56 (2008),
1447-1460.

[44] A. Zangwill, Physics at Surfaces, Cambridge University Press, New York, 1988.

[45] S. Zhou, J. Han, S. Dai, J. Sun and D. J. Srolovitz, van der Waals bilayer energetics: Gener-
alized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers,
Phys. Rev. B, 92 (2015), 155438.

Received for publication May 2020.

E-mail address: yg86@duke . edu
E-mail address: jliu@math.duke.edu
E-mail address: 1uo196@purdue.edu
E-mail address: maxiang@ust.hk


http://dx.doi.org/10.1103/PhysRevB.62.3099
http://dx.doi.org/10.1103/PhysRevB.62.3099
http://www.ams.org/mathscinet-getitem?mr=MR3842058&return=pdf
http://dx.doi.org/10.1007/s00205-018-1257-x
http://dx.doi.org/10.1007/s00205-018-1257-x
http://dx.doi.org/10.1088/0959-5309/59/2/309
http://www.ams.org/mathscinet-getitem?mr=MR3081641&return=pdf
http://dx.doi.org/10.1007/s10231-011-0243-9
http://dx.doi.org/10.1007/s10231-011-0243-9
http://www.ams.org/mathscinet-getitem?mr=MR3338445&return=pdf
http://dx.doi.org/10.1007/s00205-014-0832-z
http://www.ams.org/mathscinet-getitem?mr=MR3511786&return=pdf
http://dx.doi.org/10.1007/s00526-016-1000-0
http://dx.doi.org/10.1142/9789812795779_0032
http://dx.doi.org/10.1080/01418619408242240
http://dx.doi.org/10.1016/j.actamat.2014.03.065
http://dx.doi.org/10.1016/j.actamat.2014.03.065
http://www.ams.org/mathscinet-getitem?mr=MR0290095&return=pdf
http://dx.doi.org/10.1080/14786436808227500
http://www.ams.org/mathscinet-getitem?mr=MR1509085&return=pdf
http://dx.doi.org/10.24033/asens.583
http://dx.doi.org/10.1016/j.actamat.2007.11.033
http://dx.doi.org/10.1016/j.actamat.2007.11.033
http://dx.doi.org/10.1017/CBO9780511622564
http://dx.doi.org/10.1103/PhysRevB.92.155438
http://dx.doi.org/10.1103/PhysRevB.92.155438
mailto:yg86@duke.edu
mailto:jliu@math.duke.edu
mailto:luo196@purdue.edu
mailto:maxiang@ust.hk

	1. Introduction
	2. Well-posedness for static PN model
	2.1. Total energy and Euler–Lagrange equation
	2.2. Dirichlet to Neumann map
	2.3. Reduced problem on  and its solvability
	2.4. Elastic extension in R2"026E30F  and its property
	2.5. Existence, uniqueness and regularity for the full PN model

	3. Global minimizer of total energy for the full system
	3.1. Energy relations between the full system and the reduced system
	3.2. Static solution is a global minimizer of the full system 

	4. Global classical solution to dynamic PN model
	4.1. Global classical solution

	Acknowledgment
	REFERENCES

