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Abstract. In this paper, we revisit the mathematical validation of the Peierls–

Nabarro (PN) models, which are multiscale models of dislocations that incor-

porate the detailed dislocation core structure. We focus on the static and
dynamic PN models of an edge dislocation in Hilbert space. In a PN model,

the total energy includes the elastic energy in the two half-space continua and

a nonlinear potential energy, which is always infinite, across the slip plane.
We revisit the relationship between the PN model in the full space and the

reduced problem on the slip plane in terms of both governing equations and
energy variations. The shear displacement jump is determined only by the
reduced problem on the slip plane while the displacement fields in the two

half spaces are determined by linear elasticity. We establish the existence and
sharp regularities of classical solutions in Hilbert space. For both the reduced

problem and the full PN model, we prove that a static solution is a global

minimizer in a perturbed sense. We also show that there is a unique classical,
global in time solution of the dynamic PN model.

1. Introduction. Materials defects such as dislocations are important structures
in materials science. Dislocations are line defects in crystalline materials and the
major carriers of plastic deformation [24]. Many plastic and mechanical behaviors of
materials are associated with the energetic and dynamic properties of dislocations.
Understandings of these properties also form a basis for the development of many
novel materials with robust performance.
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As a line defect, a dislocation has a small region (called the dislocation core
region) of heavily distorted atomistic structures with shear displacement jump along
a slip plane; as illustrated in Fig. 1. The dislocation core structures play essential
roles in determining the energetic and dynamic properties of dislocations, such as
the dislocation line energies and the critical stresses for the motion of dislocations.
The classical dislocation theory [24] regards the dislocation core as a singular point
so that the solution can be solved explicitly based on the linear elasticity theory.
Although the classical dislocation theory works well outside the dislocation core
regions, it gives nonphysical singularities within the dislocation cores. One way
to precisely describe the dislocation core structure on the continuum level is the
Peierls–Nabarro (PN) model [34, 30, 39], which is a multiscale continuum model
that incorporates the atomistic effect by introducing a nonlinear potential describing
the atomistic interaction across the slip plane of the dislocation.

Figure 1. Schematic illustration of the PN model for an edge
dislocation. The dislocation locates along the z axis with +z direc-
tion, and its slip plane is the y = 0 plane. b is the Burgers vector
and d is the interplanar distance in the direction normal to the slip
plane. The black dots and red circles show the locations of atoms
of the two atomic planes y = 0+ and y = 0− in the lattice with the
dislocation and in the reference states before elastic deformation,
respectively, based on a simple cubic lattice. The Burgers vector
enclosed by a loop L enclosing the dislocation is bL =

∮
L

du.

This paper focuses on the PN model for a straight edge dislocation [24] described
below. Assume that the dislocation is located along the z axis with +z direction,
and the slip plane of the dislocation is Γ := {(x, y); y = 0}. Since the elastic field
is uniform along the dislocation (z direction), this problem is reduced to a two-
dimensional problem in the xy plane. In the PN model, the whole space is divided
by the dislocation slip plane Γ into two elastic continua y > 0 and y < 0 in which
linear elasticity theory holds, and the two continua are connected by a nonlinear
atomistic potential force across the slip plane Γ, see Fig. 1. The displacement field
u(x, y) := (u1(x, y), u2(x, y)) has a shear displacement jump across the slip plane
Γ, i.e., u1 is discontinuous across Γ.

Dislocations are characterized by their Burgers vectors b, which measure the di-
rection and total magnitude of the shear displacement jump. The Burgers vector is
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defined as b =
∮
L

du, where u is the displacement vector and L is any loop that en-
closes the dislocation line with counterclockwise orientation; see Fig. 1. For the edge
dislocation in Fig. 1, since the displacement u is differentiable in the half planes y >

0 and y < 0, the amplitude of bL = (bL, 0) is bL =
∫ β
α

(−u′1(x, 0+) + u′1(x, 0−)) dx,
where α and β are the intersection points of the loop L with the x-axis. When the
loop L becomes infinitely large, bL → [−u1(+∞, 0+)+u1(+∞, 0−)]−[−u1(−∞, 0+)
+ u1(−∞, 0−)] =: b.

Denote u+, u− as the displacement fields for the two half-spaces {(x, y); y > 0}
and {(x, y); y < 0} respectively. We impose the following symmetric assumption

u+
1 (x, 0+) = −u−1 (x, 0−), u+

2 (x, 0+) = u−2 (x, 0−). (1.1)

and then the far field boundary conditions at y = 0 become

u+
1 (−∞, 0+) =

b

4
, u+

1 (+∞, 0+) = − b
4
. (1.2)

For this edge dislocation, as illustrated in Fig. 1 (based on simple cubic lattice
for the locations of atoms near the slip plane y = 0), the reference states of the
elastic deformation in the two half-space continua are different since there is an
extra upper half plane of atoms located at x = 0 in the upper space y > 0. The
shear displacement jump across the slip plane, or the disregistry, is

φ(x) := u+
1 (x, 0+)− u−1 (x, 0−) +

b

2
, (1.3)

with the property

φ(−∞) = b, φ(+∞) = 0. (1.4)

This means that away from the dislocation, we still have approximately the perfect
crystal lattice. Note that the term b/2 in Eq. (1.3) is to account for the disregistry
(relative shift) between the reference states in the upper and lower half spaces in
the direction of the Burgers vector.

In the classical dislocation model [40], the density of the magnitude of Burgers
vector ρ(x) = −φ′(x) = bδ(x), where δ(x) is the Dirac delta function, leads to sin-
gular displacement, strain and stress fields. Whereas in the PN model, the density
of Burgers vector ρ(x) = −φ′(x) is a smoothed profile due to the incorporation of
the nonlinear atomistic interaction across the slip plane. More precisely, the dis-
placement fields are determined by minimizing the total energy E(u) including the
elastic energy

Eels(u) :=
1

2

∫
R2\Γ

σ : ε dx dy (1.5)

in the two half spaces separated by the slip plane, where A : B :=
∑
i,j AijBij , and

nonlinear misfit energy across the slip plane due to nonlinear atomistic interactions

Emis(u) :=

∫
Γ

γ(φ) dx. (1.6)

The misfit energy density γ depends on the disregistry φ across the slip plane
(1.3) and is called the γ-surface [39]. Using the boundary symmetry conditions in
Eq. (1.1), we write the γ-surface as a function of u+

1

γ(φ) = γ(u+
1 − u

−
1 + b/2) = γ(2u+

1 + b/2) =: W (u+
1 )
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for convenience of notation in the analysis. In a general one-dimensional model,
γ(φ) is a bounded multi-well potential with period b (period b/2 for W (v)), and
any minimum of it describes the perfect lattice.

The most important feature of the minimizing problem for the PN model above
is that the shear displacement jump u+

1 (x, 0+) − u−1 (x, 0−) across the slip plane
can be determined by a reduced one-dimensional model, i.e. a fractional Laplacian
equation with a nonlinear potential force

− 2G

(1− ν)π
P.V.

∫ +∞

−∞

∂xu
+
1 (s)

x− s
ds = W ′(u+

1 (x)), x ∈ R, (1.7)

with boundary condition (1.2), where G is the shear modulus and ν is the Possion
ratio.

As a solvable example, the nonlinear potential takes the form of sinusoidal func-
tion [34, 30], which phenomenologically reflects the lattice periodicity [16],

W (u1) =
Gb2

4π2d
(1 + cos

4πu1

b
), (1.8)

where d is a constant indicating the interplanar distance in the direction normal
to the slip plane; see Fig 1. A nontrivial solution solved by Peierls and Nabarro
[34, 30] is u+

1 (x) = − b
2π tan−1 x

ζ , where ζ = d
2(1−ν) and 2ζ is the core width of the

dislocation, with the far field decay rate

u+
1 (x)± b

4
∼ bζ

2πx
as x→ ±∞. (1.9)

Then by solving the linear elastic equation in the two half spaces ∇·σ = 0, (x, y) ∈
R2\Γ, one can obtain the special solution to the full system [24, 42]

u1(x, y) = b
2π

[
− tan−1 x

y±ζ + xy
2(1−ν)(x2+(y±ζ)2)

]
,

u2(x, y) = − b
2π

[
1−2ν

4(1−ν) log(x2 + (y ± ζ)2) + x2−y2+ζ2

4(1−ν)(x2+(y±ζ)2)

]
.

(1.10)

We call this solution the elastic extension of u1(x); see Theorem 2.7. For another
type of piecewise quadratic misfit energy, we refer to [26] which models a dislocation
ensemble moving on a slip plane through a discrete array of obstacles and give
analytic formulas using a variational approach.

Instead of the elastic extension, a scalar model using harmonic extension to
obtain scalar solution in the two half spaces

ũ(x, y) = − b

2π
tan−1 x

y ± ζ
plays important role in studying dislocations. For mathematical analysis for the
static solution to the reduced PN model (1.7) and the scalar model are well studied
in [7, 5, 4, 31]. In [5], for a general misfit potential γ with C2,α regularity, Cabré
and Solà-Morales (i) established the existence (unique up to translation) of
monotonic solutions with C2,α regularity; (ii) recovered the sharp decay rate (1.9)
for the bistable profile; (iii) proved the bistable profile is a global minimizer rel-
ative to perturbations in [− b

4 ,
b
4 ] for the total energy E(ũ) for the scalar model.

In [31], Dipierro, Palatucci and Valdinoci directly worked on the nonlocal
equation (1.7) and improved the global minimizer result (iii) by removing the above
[− b

4 ,
b
4 ]-restriction on perturbations. Similar results for the existence, regularities,

and uniqueness of nonlocal equation with general fractional Laplacian (−∆)
s
2 for

exponent s ∈ (0, 1) are obtained by Cabré and Sire [4]. We refer to [14] for
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more general case. Within the framework of Γ-convergence at energy level, we refer
to [10] for a sharp interface limit of the vector-field dislocation model, which is a
generalization of the sharp interface limit for the scalar dislocation model [21, 1].

For the dynamic PN model, viscosity solutions of the analogy scalar model
which is a heat equation with a dynamic boundary condition are studied by Fino,
Ibrahim and Monneau [15]. The authors established existence and uniqueness
of the viscosity solution to the scaler model using comparison principle for second
order equations and the harmonic extension, which works only for scalar solutions.

With the same assumption on the above general misfit potential γ with C2,α

regularity, we summarize the main results in this paper as follows.

(i) For the reduced nonlocal equation (1.7), we obtain a sharp regularity result

u1 /∈ Ḣ
1
2 (R), u1 ∈ Ḣs(R) for any s > 1

2 (see Proposition 2.6).
(ii) We extend u1 to the two half spaces as u using elastic extension (see Theorem

2.7) and obtain the corresponding sharp regularity u /∈ Λ̇1
Γ(R2), u ∈ Λ̇

s+ 1
2

Γ (R2)

for any s > 1
2 (See (2.20) for homogeneous Hilbert space Λ̇s(R2)).

(iii) Combining above two facts (i) and (ii), we obtain the well-posedness of the
static dislocation model in the full space (see Theorem 2.9).

(iv) We establish the energy connections between the reduce model on Γ and the
full system (2.12) in R2 in the perturbed sense (see Theorem 3.1), and then use
it to prove the static solution (unique upto translations) to the full system is
the global minimizer of the total energy in the perturbed sense (see Theorem
3.7).

(v) For the dynamic PN model in the full system (4.2), we obtain the global
classical solution under quasi-static assumptions in the two half spaces.

To the best of our knowledge, the vector-field displacement is essential to de-
termine long-range elastic interactions associated with dislocations and dislocation
core structures. In contrast to the harmonic extension, we do not have maximum
principle for the elastic extension. Indeed, the displacement fields u in (1.10) has
a ln r growth rate at far field, which is same as that of the two-dimensional stream
function in fluids or the two-dimensional electrostatic potential.

This paper only focuses on the analysis for a single edge dislocation model.
Based on the framework established here in Hilbert space, we will also work on the
existence and rigidity problem for a curved dislocation in a follow up paper. There
is a vast literature in mathematical and physics studying dislocations and related
problems and we only list a few here. For example, some different physical models
have been generalized and applied to calculate dislocation line energy, critical stress
for the motion of dislocations, energy of grain boundaries which consist of arrays of
dislocations, and structure and morphology of bilayer materials with dislocations,
e.g. [39, 25, 35, 28, 37, 42, 43, 11, 36, 45]. Convergence from atomistic model to
the PN model with the γ-surface in bilayer materials has been proved [29]. There
are also some results for other dislocation dynamics models, e.g., [2] proved short
time existence of a level set dislocation dynamics model [41], and convergence from
PN models to larger scale models for a dislocation particle system, slow motion and
other properties were analyzed [8, 20, 12, 15, 22, 6, 3, 13, 32, 33, 18]. Some other
techniques used for nonlocal equations rising from epitaxial surfaces were presented
in [19, 27, 17].

The remaining sections of this paper are organized as follows. In Sec. 2, we
first derive the reduced system and prove its sharp regularities; see Sec. 2.2 and
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Sec. 2.3 separately. Then we establish the connection between the reduced system
and the full system by the elastic extension in Theorem 2.7 and use it to obtain
the well-posedness of the full system in Theorem 2.9. In Sec. 3, we first obtain
the connections between the reduced energy and the total energy in Theorem 3.1.
Then we prove the static solution (unique upto translations) to the full system is
the global minimizer in perturbed sense; see Theorem 3.7. Sec. 4 is devoted to
proving existence of the global classical solution to the dynamic PN model.

2. Well-posedness for static PN model. We investigate solutions to the static
PN model by first deriving the Euler–Lagrange equation which corresponds to criti-
cal points of the total energy of the PN model. To understand connections between
solutions to the full space and solutions to the reduced system on slip plane, we
establish the elastic extension analogue to the harmonic extension for the scalar
model. More precisely, we will obtain the classical solution to the reduced system
with sharp regularities and the classical solution to the full system with correspond-
ing regularities.

For simplification of notations, we will use u±1 (x) = u±1 (x, 0±), u±2 (x) = u±2 (x,
0±), σ±(x) = σ±(x, 0±), etc, to indicate the trace at y = 0± from positive/negative
side.

2.1. Total energy and Euler–Lagrange equation. In the PN model, the two
half spaces separated by the slip plane of the dislocation are assumed to be linear
elastic continua, and the two half spaces are connected by a nonlinear potential
energy across the slip plane that incorporates atomistic interactions, see Fig. 1.
The total energy is

E(u) := Eels(u) + Emis(u). (2.1)

Here u is the displacement vector. As described in the introduction, in this PN
model for the edge dislocation along the z axis, the crystal structure is uniform in
the z direction; as a result, the problem becomes a problem in the xy plane and
the displacement in z direction with u3 = 0. The energy E(u) is the energy per
unit length along the dislocation, and the displacement vector can be written as
u = (u1, u2).

The first term in the total energy in Eq. (2.1) is the elastic energy in the two half
spaces defined in (1.5). Here ε is the strain tensor:

εij =
1

2
(∂jui + ∂iuj), (2.2)

for i, j = 1, 2, 3, (where ∂1 = ∂x := ∂
∂x , ∂2 = ∂y := ∂

∂y , and ∂3 = ∂z := ∂
∂z ,) σ is the

stress tensor:

σij = 2Gεij +
2νG

1− 2ν
εkkδij , (2.3)

for i, j = 1, 2, 3 (in an isotropic medium), δij = 1 when i = j and 0 otherwise,
and σ : ε = σijεij . We have used the Einstein summation convention that εkk =∑3
k=1 εkk =

∑2
k=1 εkk and σijεij =

∑3
i,j=1 σijεij =

∑2
i,j=1 σijεij .

The second term in the total energy in Eq. (2.1) is the misfit energy across the
slip plane due to nonlinear atomistic interactions defined in (1.6), i.e.

Emis(u) :=

∫
Γ

γ(φ) dx =

∫
Γ

W (u+
1 ) dx. (2.4)
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For the analysis of the PN model for an edge dislocation in this paper, we assume
that the nonlinear potential W satisfies for some α ∈ (0, 1)

W ∈ C2,α(R),

W (v) > W

(
− b

4

)
= W

(
b

4

)
, for v ∈

(
− b

4
,
b

4

)
,

W ′′
(
± b

4

)
> 0;

(2.5)

see (1.8) for example.

Remark 1. Under the assumptions (1.1), (1.2) and (2.5), we remark that if we
assume further W is an even function, then the solution u+

1 to (1.7) will be a
unique odd function with the center u+

1 (0, 0+) = 0, which is the case that an extra
upper half plane of atoms locates at x = 0 as illustrated in Fig. 1. Without this
additional assumption, the solution u1 and the corresponding u are unique upto
translations; see Theorem 2.9.

The equilibrium structure of the edge dislocation is obtained by minimizing the
total energy in Eq. (2.1) subject to the boundary condition at the slip plane given in
Eq. (1.2). However, it is known that for a straight dislocation, the strain ε and the
stress σ decay with rate 1/r at far field where r is the distance to the dislocation,
thus the elastic energy Eels is infinity [24]; see Remark 3 below. To be precise,
we define the perturbed elastic energy of u with respect to any perturbation fields
ϕ ∈ C∞(R2\Γ;R2) and ϕ has compact support in some B(R) as

Êels(ϕ; u) :=

∫
R2\Γ

1

2
(εu + εϕ) : (σu + σϕ)− 1

2
εu : σu dx

=

∫
R2\Γ

1

2
[(εϕ)ij(σϕ)ij + (εϕ)ij(σu)ij + (εu)ij(σϕ)ij ] dx

=Eels(ϕ) + Cels(u,ϕ)

(2.6)

where the cross term

Cels(u,ϕ) :=

∫
R2\Γ

1

2
(εϕ : σu+εu : σϕ) dx =

∫
R2\Γ

1

2
[(εϕ)ij(σu)ij+(εu)ij(σϕ)ij ] dx,

(2.7)
where εu, σu and εϕ, σϕ are the strain and stress tensors corresponding to u and ϕ
respectively. Then the perturbed total energy is defined as

Êtotal(ϕ; u) := Êels(ϕ; u) +

∫
Γ

W (u1 + ϕ1)−W (u1) dx. (2.8)

Definition 1. We call a function u a global minimizer of total energy E if it satisfies

Êtotal(ϕ; u) ≥ 0 (2.9)

for any perturbation ϕ ∈ C∞(R2\Γ;R2) supported in some B(R) satisfying

ϕ+
1 (x, 0+) = −ϕ−1 (x, 0−), ϕ+

2 (x, 0+) = ϕ−2 (x, 0−). (2.10)

Remark 2. The definition above is reasonable because it can be shown in the
following lemma that the global minimizer u satisfies the Euler-Lagrange equation.
Furthermore, the global minimizer u is also a stable solution in the sense that
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the second local variation of E(u) is nonnegative, i.e. for any perturbation ϕ ∈
C∞(R2\Γ;R2) supported in some B(R) satisfying (2.10),

Eels(ϕ) +

∫
Γ

W ′′(u1)ϕ2
1 dx ≥ 0. (2.11)

We have the following lemma for the Euler–Lagrange equation with respect to
the total energy E(u).

Lemma 2.1. Assume that u ∈ C2(R2\Γ;R2) satisfying boundary conditions (1.1)
and (1.2) is a minimizer of the total energy E in the sense of Definition 1. Then
u satisfies the Euler–Lagrange equation

∆u +
1

1− 2ν
∇(∇ · u) = 0 in R2\Γ,

σ+
12 + σ−12 = W ′(u+

1 ) on Γ,

σ+
22 = σ−22 on Γ.

(2.12)

Proof. From Definition 1 of minimizer, we calculate the variation of energy in terms
of a perturbation with compact support in an arbitrary ball B(R). For any v ∈
C∞(B(R)\Γ) such that v has compact support in B(R) and satisfies (2.10), we
consider the perturbation δv where δ is a small real number. We denote ε := ε(u),
σ := σ(u) and ε1 := ε(v), σ1 := σ(v). Then we have that

lim
δ→0

1

δ
(E(u + δv)− E(u))

=

∫
B(R)\Γ

1

2
(σ1 : ε+ σ : ε1) dx dy +

∫
[−R,R]

W ′(u+
1 )v+

1 dx

=

∫
B(R)\Γ

σ : ε1 dx dy +

∫
[−R,R]

W ′(u+
1 )v+

1 dx

=

∫
B(R)\Γ

σ : ∇v dx dy +

∫
[−R,R]

W ′(u+
1 )v+

1 dx

=−
∫
B(R)\Γ

∂jσijvi dx dy +

∫
[−R,R]

σ+
ijn

+
j v

+
i dx

+

∫
[−R,R]

σ−ijn
−
j v
−
i dx+

∫
[−R,R]

W ′(u+
1 )v+

1 dx ≥ 0

(2.13)

where we used the property that σ and ∇·σ are locally integrable in {y > 0}∪{y <
0} when carrying out the integration by parts, and the outer normal vector of the
boundary Γ is n+ (resp. the n−) for the upper half-plane (resp. lower half-plane).
Similarly, taking perturbation as −v, we have

lim
δ→0

1

δ
(E(u− δv)− E(u))

=

∫
B(R)\Γ

∂jσijvi dx dy −
∫

[−R,R]

σ+
ijn

+
j v

+
i dx

−
∫

[−R,R]

σ−ijn
−
j v
−
i dx−

∫
[−R,R]

W ′(u+
1 )v+

1 dx ≥ 0.

(2.14)

Hence

−
∫
B(R)\Γ

∂jσijvi dx dy +

∫
[−R,R]

σ+
ijn

+
j v

+
i dx
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+

∫
[−R,R]

σ−ijn
−
j v
−
i dx+

∫
[−R,R]

W ′(u+
1 )v+

1 dx = 0

Noticing that n+ = (0,−1) and n− = (0, 1), we have∫
[−R,R]

σ+
ijn

+
j v

+
i dx+

∫
[−R,R]

σ−ijn
−
j v
−
i dx

=

∫
[−R,R]

−σ+
22v

+
2 dx+

∫
[−R,R]

σ−22v
−
2 dx+

∫
[−R,R]

−σ+
12v

+
1 dx+

∫
[−R,R]

σ−12v
−
1 dx.

(2.15)
Notice v+

1 (x) = −v−1 (x) and v+
2 (x) = v−2 (x). Hence due to the arbitrariness of R,

we conclude that the minimizer u must satisfy∫
Γ

[
σ+

12 + σ−12 −W ′(u
+
1 )
]
v+

1 dx = 0,∫
Γ

(
σ+

22 − σ
−
22

)
v+

2 dx = 0,∫
R2\Γ

(∇ · σ) · v dx dy = 0

(2.16)

for any v ∈ C∞(B(R)\Γ) and v has compact support in B(R), which leads to
the Euler–Lagrange equation (2.12). Here we have written the equation ∇ · σ = 0
in R2\Γ as the first equation of (2.12) in terms of the displacement u, using the
constitutive relation in (2.3) and the definition of the strain tensor in (2.2).

2.1.1. Working Space. To better understand the sharp Sobolev working space for
the PN dislocation model, let us first see an example for classical nonlinear potential
below.

Remark 3. Recall the special solution u+
1 (x) = − b

2π tan−1 x
ζ for the reduced model

(1.7) when the nonlinear potential is (1.8). Using this solution of the reduced
problem on Γ, the solution of the full PN model, i.e., the Euler–Lagrange equation
(2.12) with the boundary conditions (1.1) and (1.2), is shown in (1.10). The stress
tensor is then

σ =
Gb

2π(1− ν)


− 3y±2ζ
x2+(y±ζ)2 +

2y(y±ζ)2
[x2+(y±ζ)2]2

x
x2+(y±ζ)2 −

2xy(y±ζ)
[x2+(y±ζ)2]2

0

x
x2+(y±ζ)2 −

2xy(y±ζ)
[x2+(y±ζ)2]2

− y
x2+(y±ζ)2 + 2x2y

[x2+(y±ζ)2]2
0

0 0 − 2ν(y±ζ)
x2+(y±ζ)2

 ,

(2.17)

where +ζ applies for y > 0 while −ζ applies for y < 0. Note that in this case, the
disregistry across Γ defined in (1.3) is φ(x) = 2u+

1 (x) + b
2 = − b

π tan−1 x
ζ + b

2 and

the density of the Burgers vector is ρ(x) = −φ′(x) = b
π

ζ
x2+ζ2 .

From this example, the Fourier transform of u+
1 (x) = − b

2π tan−1 x
ζ in tempered

distributional sense is − ib
2|ξ|e

−|ζξ|. Thus we can show

‖u+
1 ‖2Ḣs(R)

=
b2Γ(2s− 1)

4π(2ζ)2s−1
for s >

1

2
; ‖u+

1 ‖Ḣ 1
2 (R)

= +∞, (2.18)

where Γ(2s − 1) is the Gamma function. So we want to study u+
1 (x, 0+) ∈ H 1

2 +ε

for ε > 0.
For real number s > 0 and integer m ≥ 0, define the homogeneous Sobolev space

Ḣs,m(R2\Γ) := {u; (−∂xx)
s
2 ∂my u ∈ L2(R2\Γ)} (2.19)
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with standard semi-norm ‖ · ‖Ḣs,m(R2\Γ). Therefore it is natural to define spaces
for s ≥ 1

Λ̇sΓ(R2) := {u ∈ Ḣs−m,m(R2\Γ), 0 ≤ m ≤ [s], u+
1 (x, 0+) = −u−1 (x, 0−), u+

2 (x, 0+) = u−2 (x, 0−)},
(2.20)

where [s] represents the integer part of s. Define the semi-norm for u ∈ Λ̇sΓ(R2) as

‖u‖2
Λ̇s

Γ(R2)
:=

[s]∑
m=0

‖u‖2
Ḣs,m(R2\Γ)

. (2.21)

It is easy to check the example above belongs Λ̇
s+ 1

2

Γ (R2) for s > 1
2 but σ ∼ 1

r

at far field implies u /∈ Λ̇1
Γ(R2). Due to the elastic continua is divided into two

half spaces, taking m as an integer is to avoid technique complication for fractional
derivatives in y direction. In this paper, we will see the working space for PN

dislocation model is Λ̇
s+ 1

2

Γ (R2) for real number s > 1
2 .

To ensure we can take trace for any function u ∈ Λ̇sΓ(R2), let us first give the trace

theorem for Λ̇sΓ(R2), whose proof is standard and we give it here for completeness.
The inverse trace theorem is proved in Theorem 2.7 by establishing the elastic
extension.

Lemma 2.2 (Trace theorem). Given u ∈ Λ̇sΓ(R2) for any s ≥ 1, then the trace of

u, u±i |Γ ∈ Ḣs− 1
2 (R), i = 1, 2 and we have the estimate

‖u±i |Γ‖Ḣs− 1
2 (R)
≤ ‖u‖Λ̇s

Γ(R2), i = 1, 2. (2.22)

Proof. Let s ≥ 1 and denote û+
1 (ξ, y), û+

2 (ξ, y) as the Fourier transform for u+
1 (x, y)

and u+
2 (x, y) with respect to x by regarding them as tempered distributions. First,

for the upper half plane and any function u ∈ Λ̇sΓ(R2) such that u vanishes as
y → +∞, we have

|ξ|2s−1|û+
1 (ξ, 0+)|2 = −2|ξ|2s−1

∫ +∞

0

∂yû
+
1 (ξ, y)û+

1 (ξ, y) dy. (2.23)

Then by Hölder’s inequality and Parserval’s identity,

‖u+
1 ‖2Ḣs− 1

2 (R)
≤ 2‖(−∂xx)

s−1
2 ∂yu

+
1 ‖‖(−∂xx)

s
2u+

1 ‖ ≤ ‖u‖2Λ̇s
Γ(R2)

. (2.24)

This estimate holds also for u+
2 and the lower half plane. Thus by a density argu-

ment, we conclude (2.22).

2.2. Dirichlet to Neumann map. In this section, we study a representation in
the sense that for given u±1 on Γ, we can uniquely determine the traction (σ±12, σ

±
22)

on Γ using the elasticity system in R2\Γ. This is the Dirichlet to Neumann map for
the linear elasticity system. As a consequence of the Dirichlet to Neumann map we
reduce the Euler–Lagrange equation (2.12) in R2 to a problem on Γ (to be discussed
in the next subsection). The following lemma gives the Dirichlet to Neumann map.
Note that P.V. denotes the Cauchy principal value of the integral.

Lemma 2.3. Assume that u ∈ Λ̇
s+ 1

2

Γ (R2) for some s ≥ 1
2 satisfies the Euler–

Lagrange equation (2.12). We have the following conclusions.

(i) (Fourier representation) The solution u(x, y) in R2 can be represented entirely
by u±1 (x, 0±) on Γ as follows.

û±1 (ξ, y) = û±1 (ξ, 0±)

(
1− |ξ|

2− 2ν
|y|
)
e−|ξy|, (2.25)
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û±2 (ξ, y) = − û
+
1 (ξ, 0+)

2− 2ν

(
(1− 2ν)

iξ

|ξ|
+ iξ|y|

)
e−|ξy|, (2.26)

(ii) (Dirichlet to Neumann map) If u+
1 |Γ ∈ Ḣ1(R) then σ±12 and σ±22 on Γ are in

L2(R) and can be expressed by

σ+
12(x) = σ−12(x) = − G

(1− ν)π
P.V.

∫ +∞

−∞

u+
1

′
(s)

x− s
ds, (2.27)

σ+
22(x) = σ−22(x) = 0. (2.28)

(iii) If u+
1 |Γ ∈ Ḣ1(R), then u also satisfies the elastic equation in whole space in

the distributional sense, i.e.

∇ · σ = 0, in D′(R2). (2.29)

Proof. Step 1. We solve the elasticity problem, i.e., the first equation in (2.12), by
using the Fourier transform with respect to x. Note that u1(x, y) is not in L2(R)
for a fixed y due to its asymptotic behavior in (1.2). Therefore, we take the Fourier
transform for u1(x, y) and u2(x, y) with respect to x by regarding them as tempered
distributions. For notation simplicity, denote the Fourier transforms as û1(ξ, y) and
û2(ξ, y).

Taking the Fourier transform with respect to x in the first equation in (2.12), we
have

(1− 2ν)∂yyû1 − (2− 2ν)ξ2û1 + iξ∂yû2 = 0,

(2− 2ν)∂yyû2 − (1− 2ν)ξ2û2 + iξ∂yû1 = 0,
(2.30)

in the tempered distributional sense. Eliminating û2, we obtain an ODE for û1

∂4
y û1 − 2ξ2∂2

y û1 + ξ4û1 = 0. (2.31)

The eigenvalues are determined by the characteristic equation k4 − 2ξ2k2 + ξ4 = 0,
which has two double roots k1 = k2 = ξ, k3 = k4 = −ξ.

We first consider the lower plane y < 0. Since u ∈ Λ̇
s+ 1

2

Γ (R2), the negative roots
are not acceptable in this case, and the general solution of (2.31) is given by

û−1 = (A− +B−|ξ|y)e|ξ|y, y < 0, (2.32)

where constants A−, B− may depend on ξ and will be determined later. Similar
analysis gives general solutions

û−2 =
|ξ|
iξ

(C− +D−|ξ|y)e|ξ|y, y < 0, (2.33)

and in the upper plane y > 0,

û+
1 = (A+ −B+|ξ|y)e−|ξ|y, y > 0, (2.34)

û+
2 =

|ξ|
iξ

(C+ −D+|ξ|y)e−|ξ|y, y > 0, (2.35)

where constants C−, D−, A+, B+, C+, D+ may depend on ξ and will be determined
later.

Step 2. Now we express those constants in terms of A+ using Euler–Lagrange
equation (2.12) and boundary symmetry (1.1). First by induction, we have the
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following identities

∂my (e−|ξ|y) = (−|ξ|)me−|ξ|y,

∂my (−|ξ|ye−|ξ|y) = (−|ξ|)m(m− |ξ|y)e−|ξ|y,

∂my (e|ξ|y) = |ξ|me|ξ|y,

∂my (|ξ|ye|ξ|y) = |ξ|m(m+ |ξ|y)e|ξ|y,

(2.36)

for any m ∈ N+. Then plugging the general solutions of û1 and û2 in (2.32)–(2.35)
into (2.30), we obtain the relations

D+ = −B+, D+ =
1

4ν − 3
(A+ + C+) (2.37)

D− = B−, D− =
1

4ν − 3
(C− −A−). (2.38)

Second, from u1(x, 0+) = −u1(x, 0−) and u2(x, 0+) = u2(x, 0−) in the boundary
condition in (1.1) we have

A+ = −A−, C+ = C−, (2.39)

respectively. Combining (2.39) with (2.37) and (2.38), we have

B+ = −B−, D+ = D−. (2.40)

Third, from the second boundary condition in (2.12), i.e., σ+
22 = σ−22 on Γ, and

using (2.39) and (2.40), we have

2(C+ +D+) +
2ν

1− ν
A+ = 0.

Using this equation and (2.38), we obtain

C+ = C− =
1− 2ν

2− 2ν
A+. (2.41)

Thus, all the constants in the general solutions of u1 and u2 in (2.32)–(2.35) can be
determined by the constant A+ by (2.37)–(2.41) as follows.

B+ = −B− =
1

2− 2ν
A+ (2.42)

D+ = D− = − 1

2− 2ν
A+. (2.43)

Therefore we can further express the solutions as

û1 = −A+

(
1 +

|ξ|
2− 2ν

y

)
e|ξ|y, y < 0, (2.44)

û2 = − A+

2− 2ν

(
(1− 2ν)

iξ

|ξ|
− iξy

)
e|ξ|y, y < 0, (2.45)

û1 = A+

(
1− |ξ|

2− 2ν
y

)
e−|ξ|y, y > 0, (2.46)

û2 = − A+

2− 2ν

(
(1− 2ν)

iξ

|ξ|
+ iξy

)
e−|ξ|y, y > 0. (2.47)
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Since we also have û+
1 (ξ, 0) = A+(ξ) by (2.34), the conclusion (i) follows.

Step 3. Using these obtained results, we can calculate that on Γ,

σ̂+
12 = σ̂−12 = G(∂yû

+
1 + iξû+

2 ) = − G

1− ν
|ξ|A+, (2.48)

σ̂+
22 = σ̂−22 = 0. (2.49)

Equation (2.28) follows directly from (2.49). If further u+
1 |Γ ∈ Ḣ1(R), using the

definition of the Hilbert transform H(f)(x) = 1
πP.V.

∫ +∞
−∞

f(s)
x−s ds and its Fourier

transform Ĥ(f) = −isgn(ξ)f̂ , we obtain (2.27) from (2.48). This proves part (ii).

Step 4. Given any test function ϕ ∈ C∞c (R2), if u+
1 |Γ ∈ Ḣ1(R), we calculate ∇ · σ

in the weak sense.∫
R2

(∇ · σ) ·ϕ dx dy =

∫
R2

−σ : ∇ϕ dx dy =

∫
R2\Γ

−σ : ∇ϕ dx dy

=

∫
{y>0}∪{y<0}

∂jσijϕi dx dy −
∫
{y=0+}

σ+
ijn

+
j ϕi dx−

∫
{y=0−}

σ−ijn
−
j ϕi dx

=

∫
{y>0}∪{y<0}

∂jσijϕi dx dy +

∫
Γ

(σ+
22 − σ

−
22)ϕ2 + (σ+

12 − σ
−
12)ϕ1 dx,

where we use the symmetry property of ϕ. Since we have ∇ · σ = 0 in R2\Γ,
σ+

22|Γ = σ−22|Γ = 0 and σ+
12|Γ = σ−12|Γ, we obtain∫

R2

(∇ · σ) ·ϕ dx dy = −
∫

Γ

(σ+
12 − σ

−
12)ϕ1 dx = 0, (2.50)

which implies

∇ · σ = 0, in D′(R2).

This property explains that at the equilibrium state the force acting on the elas-
tic materials is zero everywhere. To determine the displacement field in the whole
space, the staring point is free system without external force. Therefore the elastic
equation ∇ · σ = 0 holds for the whole space in distribution sense. All the defor-
mation comes from the internal defect, which, in our case, is the single straight
dislocation line defect. Hence the full system can be regarded as a linear elastic
system for the upper and the lower plane connected by shear displacement jump on
the interface, i.e. the slip plane Γ.

The lemma above allows us to reduce the full system to the slip plane Γ, called
the reduced system (see next subsection), by establishing the Dirichlet to Neumann
map.

2.3. Reduced problem on Γ and its solvability. From Lemma 2.3 part (i), we
know that the solution of the Euler–Lagrange equation (2.12) is entirely determined
by the displacement u+

1 (x) = u1(x, 0+) on Γ. From Lemma 2.3 part (ii), u+
1 on Γ

can be determined by the second equation in the Euler–Lagrange equation (2.12).
In this sense, the equation of u+

1 on Γ is called the reduced problem on Γ and will be
discussed in this subsection. How to determine the solution of the Euler–Lagrange
equation (2.12) in R2 from the solution of the reduced problem will be discussed in
the next subsection.

In fact, using Lemma 2.3 part (ii) and the second equation of the Euler–Lagrange
equation (2.12), we know that the displacement u1 on Γ, u+

1 (x) = u+
1 (x, 0+), is a
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solution of the nonlocal equation (1.7) on Γ; i.e.

− 2G

(1− ν)π
P.V.

∫ +∞

−∞

∂xu
+
1 (s)

x− s
ds = W ′(u+

1 ), x ∈ R, (2.51)

with the boundary condition in (1.2), i.e.

lim
x→−∞

u+
1 (x) =

b

4
, lim

x→+∞
u+

1 (x) = − b
4
, (2.52)

where W is the nonlinear potential satisfying (2.5). This is the reduced problem on
Γ.

The nonlocal term on the left-hand side of (1.7) is the Hilbert transform with a
constant coefficient −2G/(1−ν), which can also be written in terms of the fractional
Laplacian operator:

H(v′)(x) =
1

π
P.V.

∫ +∞

−∞

v′(s)

x− s
ds = (−∂xx)

1
2 v(x). (2.53)

Recall that the fractional Laplacian operator (−∂xx)sv(x) := CsP.V.
∫
R
v(x)−v(y)
|x−y|1+2s dy,

where Cs is a normalizing constant to guarantee the symbol of the resulting operator
is |ξ|2s.

We summarize the above results into the following proposition.

Proposition 2.4 (Reduced PN model). Assume that u ∈ Λ̇
s+ 1

2

Γ (R2) for some s > 1
2

is a solution of the Euler–Lagrange equation (2.12) with the boundary condition
(1.2). Then the displacement u1 on Γ, u+

1 (x) = u+
1 (x, 0+), is a solution of the

nonlocal equation (1.7) with boundary conditions (2.52) at x = ±∞.

Compared with the special solution solved by Peierls and Nabarro [34, 30] for
the typical potential (1.8), the existence result of equation (1.7) subject to far field
boundary conditions (2.52) has been given by Theorem 2.4 in [4] (see also Theorem

1.2 in [5]), after rescaling of (1.7) into the form 2(−∂xx)
1
2u+

1 = f(u+
1 ) on Γ.

Proposition 2.5 (Solvability of reduced model). Consider the nonlocal equation
(1.7) with boundary conditions (2.52).

(i) (Theorem 2.4 in [4]) There exists a bounded solution u+
1 (x) (unique up to

translations) such that ∂xu
+
1 (x) < 0 in R.

(ii) (Theorem 1.6 in [5]) The solutions satisfy the asymptotic behavior | ∓ b
4 −

u+
1 (x)| ∼ 1

|x| as x→ ±∞.

Next we prove a sharp elliptic regularity result for u+
1 (x) in the Sobolev space.

Proposition 2.6. The solution u+
1 (x) to nonlocal equation (1.7) with boundary

condition (2.52) satisfies u+
1 ∈ Ḣs(R) for any s > 1

2 .

Proof. Step 1. We prove u+
1 ∈ Ḣ1(R). From Proposition 2.5 (ii) and Taylor

expansion of f at u+
1 (±∞) = ∓ b

4 , f(u+
1 (x)) = W ′(u+

1 (x)) ∼ 1
x as x → ±∞.

Therefore f ◦ u+
1 ∈ L2(R). From (1.7) and Parserval’s identity we obtain

‖|ξ|û1‖L2(R) = cs‖f̂ ◦ u+
1 ‖L2(R) ≤ C, (2.54)
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where cs is a rescaling constant and we concludes u+
1 ∈ Ḣ1(R).

Step 2. We prove u+
1 ∈ Ḣs(R) for any 1

2 < s < 1 using the property f ◦ u+
1 ∼ 1

x ∈
Lp(R) for any p > 1. From (1.7), we have for 1

2 < s < 1

(−∂xx)
s
2u+

1 = (−∂xx)
s−1

2 (f ◦ u+
1 ) = (−∂xx)−

1−s
2 (f ◦ u+

1 ). (2.55)

Here (−∂xx)−
1−s

2 (f ◦ u+
1 ) can be represented by the Riesz potential I1−sg :=

c
∫
R |x − y|−sg(y) dy where g ∈ Lp(R) with 3

2 = 1
p + s. Particularly, from the

Hardy-Littlewood-Sobolev theorem for fractional integration [38, p. 119, Theorem
1]

‖u+
1 ‖2Ḣs = ‖(−∂xx)

s
2u+

1 ‖2L2 = ‖I1−s(f ◦ u+
1 )‖2L2(R) ≤ c‖f ◦ u

+
1 ‖2Lp(R). (2.56)

This concludes u+
1 ∈ Ḣs(R) for any 1

2 < s < 1.

Step 3. We prove u+
1 ∈ Ḣs(R) for any 1 < s ≤ 3

2 . First we notice for any s > 0,

‖f ◦ u+
1 ‖2Ḣs =

Cs
2

∫ ∫
|f(u+

1 (x))− f(u+
1 (y))|2

|x− y|1+2s
dx dy ≤ (max f ′)‖u+

1 ‖2Ḣs . (2.57)

Therefore from Step 2, u+
1 ∈ Ḣs(R) for 1

2 < s ≤ 1 implies f ◦ u+
1 ∈ Ḣs(R) for

1
2 < s ≤ 1. Then by (1.7) and Parserval’s identity, we have for any 1 < s ≤ 3

2

‖u+
1 ‖2Ḣs ≤

∫
R
ξs−

1
2 û+

1 ξ
s− 1

2 f̂ ◦ u+
1 dξ ≤ ‖u+

1 ‖Ḣs− 1
2
‖f ◦ u+

1 ‖Ḣs− 1
2
< C (2.58)

due to both u, f ◦ u+
1 ∈ Ḣs(R) for 1

2 < s ≤ 1.

Step 4. In summary, for s ∈ ( 1
2 ,

3
2 ], we have u+

1 ∈ Ḣs(R) from Steps 1–3. By

induction, we only need to show how to improve s ∈ ( 1
2 ,

3
2 ] to s ∈ ( 3

2 ,
5
2 ]. Since

u ∈ Ḣs for s ∈ ( 1
2 ,

3
2 ] we know f ◦ u+

1 ∈ Ḣs for s ∈ ( 1
2 ,

3
2 ]. Thus by Parserval’s

identity, we have for s ∈ ( 1
2 ,

3
2 ]

‖|ξ|1+sû+
1 ‖L2 = ‖|ξ|sf ◦ u+

1 ‖L2 ≤ C, (2.59)

which concludes u+
1 ∈ Ḣs for any s ∈ ( 3

2 ,
5
2 ].

2.4. Elastic extension in R2\Γ and its property. Analogue to the harmonic
extension, we introduce an elastic extension that extends the function on Γ to the
two half spaces based on the elastic system in R2\Γ. This is summarized into the
following lemma.

Theorem 2.7. Assume that ϕΓ ∈ Ḣs(R) for some real number s ≥ 1
2 . There exists

a unique solution u ∈ Λ̇
s+ 1

2

Γ (R2) to the following elasticity problem in R2\Γ:
∆u + 1

1−2ν∇(∇ · u) = 0 in R2\Γ,

u+
1 (x, 0+) = ϕΓ(x) on Γ,

σ+
22(x) = σ−22(x) on Γ.

(2.60)

And the solution satisfies the stability and regularity estimate

‖u‖
Λ̇

s+ 1
2

Γ (R2)
≤ C‖u+

1 ‖Ḣs(R). (2.61)

We call solution u the elastic extension of ϕΓ.
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Proof. Step 1. It can be seen from Lemma 2.3 part (i) that the solution u of
the elastic system in R2\Γ is given by Fourier representation (2.25)–(2.26) with the
symmetric relations in (2.39) and (2.40). It shows that the solution u exists and is
uniquely determined by u+

1 (x, 0+) = ϕΓ(x).

Step 2. Regularity of u in R2\Γ. By the Fourier representation formula (2.25)-
(2.26), we can take any derivatives w.r.t y. Recall identities (2.36). For any 0 ≤
m ≤ [s+ 1

2 ], we have for y > 0

(iξ)s+
1
2−m∂my û

+
1 (ξ, y) = (iξ)s+

1
2−m(−|ξ|)mû+

1 (ξ, 0+)

(
1− m− |ξ|y

2− 2ν

)
e−|ξ|y.

(2.62)
For y > 0, from (2.62), we estimate∫

R2
+

|(−∂xx)
s+ 1

2
−m

2 ∂my u
+
1 |2 dx dy ≤ C

∫
R2

+

|ξ|2s+1|û+
1 (ξ, 0+)|2(1+|ξ|2y2)e−2|ξ|y dξ dy.

(2.63)
Notice the identity

−
[(3 + 2|ξ|2y2 + 2|ξ|y

4|ξ|

)
e−2|ξ|y

]′
= (1 + |ξ|2y2)e−2|ξ|y.

We have

−
(

3 + 2|ξ|2y2 + 2|ξ|y
4|ξ|

)
e−2|ξ|y

∣∣∣∞
0
≤ 3

4|ξ|
.

Thus we obtain the uniform bound∫
R2

+

|(−∂xx)
s+ 1

2
−m

2 ∂my u
+
1 |2 dx dy ≤ C

∫
R
|ξ|2s|û+

1 (ξ, 0+)|2 dξ = C‖u+
1 ‖2Ḣs . (2.64)

for y > 0 and any 0 ≤ m ≤ [s + 1
2 ]. This estimate also holds for u2 or y < 0.

Therefore we obtain the stability and regularity estimate

‖u‖2
Λ̇

s+ 1
2

Γ (R2)
≤ C‖u+

1 ‖2Ḣs(R)
. (2.65)

Remark 4. The elastic extension established in Theorem 2.7 shows that for any

function u+
1 |Γ ∈ Ḣs(R) with s ≥ 1

2 , there exists u ∈ Λ̇
s+ 1

2

Γ (R2) such that u+
1 |Γ is

the trace of the first component of u. This is an inverse trace theorem.

2.5. Existence, uniqueness and regularity for the full PN model. In this
section, we establish the existence and uniqueness of the solution to Euler–Lagrange
equation (2.12), which is referred to as the full PN model, subject to the boundary
conditions (1.1) and (1.2). After the reduced model on Γ is solved in the last
subsection, the solution of the full model is determined by an elastic extension from
the solution on Γ.

We first have the following mirror symmetry property for the displacement u in
the whole space due to mirror symmetry boundary conditions in (1.1).

Lemma 2.8. Let u ∈ Λ̇
s+ 1

2

Γ (R2) for some s ≥ 1
2 be the solution to the elasticity

system in R2\Γ (the first equation in (2.12)). Then u satisfies the mirror symmetry
condition in the whole space

u+
1 (x, y) = −u−1 (x,−y), u+

2 (x, y) = u−2 (x,−y), x ∈ R, y ∈ R+. (2.66)
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The proof of this lemma directly follows the expressions of u1 and u2 in (2.32)–
(2.35) and the relationship of the coefficients in (2.39) and (2.40) in the proof of
Lemma 2.3.

After establishing the connection between solutions to the reduced model and the
full model by the elastic extension. We state the existence and regularity theorem
below.

Theorem 2.9. Assume that the nonlinear potential W satisfies (2.5). We have the
following conclusions for solutions to the full PN model.

(i) There exists a classical solution (unique up to translations) u ∈ Λ̇
s+ 1

2

Γ (R2)
for any s > 1

2 to problem (2.12) with boundary conditions (1.1) and (1.2).
Moreover, the solution u satisfies the symmetry condition in (2.66).

(ii) The displacement component u1 of the solution u on Γ u+
1 (x) = u+

1 (x, 0+) is

a classical solution in Ḣs, for any s > 1
2 of the nonlocal equation (1.7) with

boundary conditions (2.52) at x = ±∞.
(iii) The unique solution u in (i) can be regarded as the elastic extension of u+

1 (x)
on Γ (which is the solution of the reduced problem of (1.7) and (2.52)) defined
in Theorem 2.7.

Proof. We first apply Proposition 2.5 to obtain the existence of a solution (unique
up to translations) u+

1 (x) to problem (1.7) with boundary condition (2.52), such

that ∂xu
+
1 (x) < 0 in R. The regularity u+

1 ∈ Ḣs(R) for any s > 1
2 comes from

Proposition 2.6. Thus we have (ii). The solution u of the full PN model is obtained
by the elastic extension of u+

1 (x) on Γ, which is uniquely determined, following

Theorem 2.7. From (2.61),the regularity of u ∈ Λ̇
s+ 1

2

Γ (R2) for any s > 1
2 is ensured

by the regularity of u+
1 (x). Thus we conclude (iii) and the existence and regularity

in (i). The symmetric property of u in (i) is a conclusion of Lemma 2.8.

3. Global minimizer of total energy for the full system. The goals in this
section are to connect the total energy in the two half spaces with the reduced
energy on Γ, which are both infinite for a single straight dislocation, and then to
prove the static solution u obtained in the last section is a unique global minimizer
of the total energy E(u) in the sense of Definition 1. Besides, the first component
trace u1|Γ of the global minimizer u of the total energy is also a global minimizer
of the reduced energy EΓ(u1) defined in (3.1) below, vice versa. To ensure all the
energy estimates in this section meaningful, the natural idea is to compare the
difference between E(u) and E(u + ϕ) such that the total Burgers vector for the
perturbed displacement fields ϕ is zero. We will show the precise relation between
reduced energy EΓ on slip plane Γ and the total energy E in (2.1) in Theorem 3.1.
We will see in the next section the reduced system on Γ has its own gradient flow
structure with respect to EΓ. From now on, with slight abuse of notation, we use
u1 = u1|Γ := u+

1 (x, 0+) to denote the restriction of the first component of vector
fields u on the slip plane Γ.

3.1. Energy relations between the full system and the reduced system.
From the Dirichlet to Neumann map established in Section 2.2, we will reduce
rigorously the total energy of the full PN model to an energy on the slip plane Γ.
Indeed, we define the free energy EΓ for the reduced system on the slip plane Γ as

EΓ(u1) :=

∫
Γ

|(−∂xx)
1
4u1|2 dx+

∫
Γ

W (u1) dx, (3.1)
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which is finite for u1 ∈ H
1
2 . However for the static solutions obtained in the last

section, u1|Γ ∈ Ḣs with s > 1
2 and EΓ is infinite ; see also example in (2.18). Hence

the idea is to state the connection for E(u+ϕ)−E(u), where u is the static solution
obtained in Theorem 2.9. Similar to (2.8), we define the perturbation elastic energy
of u on Γ with respect to the trace ϕ1|Γ of the perturbation ϕ as

ÊΓe
(ϕ1;u1) :=

∫
Γ

|(−∂xx)1/4(u1 + ϕ1)|2 − |(−∂xx)1/4u1|2 dx

=

∫
Γ

|(−∂xx)1/4ϕ1|2 dx+ 2

∫
Γ

ϕ1(−∂xx)1/2u1 dx

(3.2)

and the perturbed total energy on Γ as

ÊΓ(ϕ1;u1) := ÊΓe
(ϕ1;u1) +

∫
Γ

W (u1 + ϕ1)−W (u1) dx. (3.3)

It is easy to see the perturbed energy above is well-defined for any perturbations
ϕ ∈ H1(R2\Γ) with ϕ1|Γ ∈ H

1
2 (R) satisfying (2.10).

We first summarize the energy connections in two cases. The proof of this theo-
rem will be left to the end of this section after establishing some lemmas.

Theorem 3.1. Given u1|Γ ∈ Ḣs(R) for some s ≥ 1
2 and its elastic extension

u ∈ Λ̇
s+ 1

2

Γ (R2), we consider the reduced energy EΓ(u1) and the total energy E(u).

(i) If u1|Γ ∈ H
1
2 (R), then

E(u) = EΓ(u1) <∞. (3.4)

(ii) If u1|Γ /∈ Ḣ 1
2 (R), then

E(u) = +∞; EΓ(u1) = +∞, (3.5)

and the relation of energies is stated in perturbed sense, i.e. for any pertur-
bation ϕ1|Γ ∈ H

1
2 (R) with ϕ ∈ H1(R2\Γ) being its elastic extension, we have

ÊΓ(ϕ1;u1) = Êtotal(ϕ; u) for any s >
1

2
, (3.6)

where Êtotal(ϕ; u) is defined in (2.8) and ÊΓ(ϕ1;u1) is defined in (3.3).

First, we point out this result is standard if u1|Γ ∈ H
1
2 (R), which yields a finite

elastic energy; see Lemma 3.2 below. However, for the trace u1|Γ ∈ Ḣs(R) with
some s > 1

2 , which yields an infinite energy, we will handle it later in Lemma 3.3.

Define the elastic part of EΓ(u) as EΓe
(u) :=

∫
Γ
|(−∂xx)

1
4u1|2 dx. The following

lemma shows that we can reduce the elastic energy in the two half spaces to the
nonlocal energy EΓe on surface Γ.

Lemma 3.2. Assume u ∈ Λ̇1
Γ(R2) is an elastic extension of u1|Γ ∈ H

1
2 (R), then

we have

Eels(u) = EΓe(u1). (3.7)
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Proof. By a density argument, we only prove for u ∈ Λ̇1
Γ(R2) ∩ C2(R2). We know

0 =

∫
{y>0}∪{y<0}

u · (∇ · σ) dx dy

= −
∫
{y>0}∪{y<0}

∇u : σ dx dy +

∫
Γ

σ+
ijn

+
j u

+
i dx+

∫
Γ

σ−ijn
−
j u
−
i dx

= −
∫
{y>0}∪{y<0}

ε : σ dx dy +

∫
Γ

(−σ+
22 + σ−22)u+

2 dx+

∫
Γ

(−σ+
12 − σ

−
12)u+

1 dx

= −
∫
{y>0}∪{y<0}

ε : σ dx dy +

∫
Γ

2G

(1− ν)
|(−∂xx)

1
4u+

1 |2 dx,

where we used σ+
12 + σ−12 = − 2G

(1−ν) (−∂xx)
1
2u+

1 due to Lemma 2.3. Without loss

of generality, we set the physical constant G
(1−ν) to be 1 (otherwise there will be a

coefficient G
(1−ν) in (3.7)), so we obtain

2Eels =

∫
{y>0}∪{y<0}

ε : σ dx dy = 2

∫
Γ

|(−∂xx)
1
4u+

1 |2 dx. (3.8)

Next we extend the lemma above to u1|Γ /∈ Ḣ 1
2 with its elastic extension vector

fields u ∈ Λ̇
s+ 1

2

Γ with s > 1
2 , which is the case (ii) in Theorem 3.1. Since u1|Γ /∈ Ḣ 1

2

implies an infinite reduced energy, instead of proving (3.7) directly, we compare the
difference between E(u) and E(u +ϕ) such that the perturbed displacement fields
ϕ possessing finite energy.

Lemma 3.3. Let u ∈ Λ̇
s+ 1

2

Γ (R2) with trace u1|Γ ∈ Ḣs(R) for some s > 1
2 be the

static solution obtained in Theorem 2.9. Let ϕ1|Γ be any H
1
2 (R) perturbation and

let ϕ ∈ H1(R2\Γ) be the elastic extension of ϕ1|Γ. Then we have

Êels(ϕ; u) = ÊΓe
(ϕ1;u1) (3.9)

Proof. Recall the definition of energy functional Eels and EΓe and the cross term
defined in (2.7)

Cels(u,ϕ) =

∫
R2\Γ

1

2
(εϕ : σu+εu : σϕ) dx =

∫
R2\Γ

1

2
[(εϕ)ij(σu)ij+(εu)ij(σϕ)ij ] dx,

where εu, σu and εϕ, σϕ are the strain and stress tensor corresponding to u and ϕ
respectively. Then we have

Êels(ϕ; u) =

∫
R2\Γ

1

2
(εu + εϕ) : (σu + σϕ)− 1

2
εu : σu dx

=

∫
R2\Γ

1

2
[(εϕ)ij(σϕ)ij + (εϕ)ij(σu)ij + (εu)ij(σϕ)ij ] dx

=Eels(ϕ) + Cels(u,ϕ).

(3.10)

Similarly, define the cross term

CΓe(u1, ϕ1) := 2

∫
Γ

ϕ1(−∂xx)1/2u1 dx.
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Then for the energy functional EΓ, we have

ÊΓe
(ϕ1;u1) =

∫
Γ

|(−∂xx)1/4(u1 + ϕ1)|2 − |(−∂xx)1/4u1|2 dx (3.11)

=

∫
Γ

|(−∂xx)1/4ϕ1|2 dx+ 2

∫
Γ

ϕ1(−∂xx)1/2u1 dx (3.12)

=EΓe
(ϕ1) + CΓe

(u1, ϕ1).

By Lemma 3.2, Eels(ϕ) = EΓe(ϕ1) due to ϕ1|Γ ∈ H
1
2 (R), so it remains to deal with

the cross terms.
Next, we claim the following relation for the cross terms.

Cels(u,ϕ) = CΓe(u1, ϕ1). (3.13)

In fact, from the symmetry of constitutive relation σij = Cijklεkl, we know

(εϕ)ij(σu)ij = (εϕ)ijCijkl(εu)kl = (εϕ)klCijkl(εu)ij = (εu)ij(σϕ)ij ,

which gives us

Cels(u,ϕ) =

∫
R2\Γ

(εϕ)ij(σu)ij dx.

Therefore, noticing ϕ has symmetric properties (2.10) due to the elastic extension,
an integration by parts yields

Cels(u,ϕ) =

∫
R2\Γ

(∇ϕ)ij(σu)ij dx

=

∫
R2\Γ

−(∇ · σu) ·ϕ dx+

∫
Γ

((σu)ijnjϕi)
+ dx+

∫
Γ

((σu)ijnjϕi)
− dx

=

∫
Γ

[−(σu,12)+ − (σu,12)−]ϕ1|Γ dx

=

∫
Γ

2[(−∂xx)1/2u1]ϕ1 dx = CΓe
(u1, ϕ1),

In the last equality, we used the relation in Lemma 2.3 σ+
12+σ−12 = − 2G

(1−ν) (−∂xx)
1
2u+

1

with the physical constant G
(1−ν) = 1. Thus we obtain (3.13) and complete the proof

of this lemma.

Now combing Lemma 3.2 and Lemma 3.3, we give the proof of Theorem 3.1.

Proof of Theorem 3.1. Notice the Taylor expansion of W at u1(±∞) = ∓ b
4 and

Proposition 2.5 (ii). It is easy to check the misfit energy Emis in (2.4) is always

finite. Thus, if u1|Γ ∈ H
1
2 (R), by Lemma 3.2 for the elastic part in the total energy,

we conclude part (i) of Theorem 3.1. If u1|Γ /∈ Ḣ 1
2 (R), by Lemma 3.3, we conclude

part (i) of Theorem 3.1.

3.2. Static solution is a global minimizer of the full system. In this section,
we will prove that the static solution u (unique upto translations) obtained in
Theorem 2.9 are the global minimizers of the full system in the sense of Definition
1.

Assume u ∈ Λ̇
s+ 1

2

Γ (R2) for some s > 1
2 is the static solution obtained in Theorem

2.9, then we first show that u is a minimizer of E in the sense of Definition 1 for
perturbations in [− b

4 ,
b
4 ]; see Proposition 3.6. Then we will remove this constrain

later in Theorem 3.7. Notice Definition 1 for the global minimizer is in terms of
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all the perturbations with compact support. Since u ∈ Λ̇
s+ 1

2

Γ (R2) for any s >
1
2 , Êtotal(ϕ; u) is continuous in H

3
2−s(R2\Γ) w.r.t ϕ. Notice also the function

space for perturbations ϕ in Definition 1 is dense in H1(R2\Γ) ↪→ H
3
2−s(R2) with

symmetry (2.10). It is easy to check the global minimizer defined in Definition
1 can be equivalently generalized to any perturbations ϕ ∈ H1(R2\Γ;R2) with

ϕ1|Γ ∈ H
1
2 (R) satisfying (2.10).

The idea is to use the elastic extension in Theorem 2.7 and the connections
between the energy to the full system and the reduced energy to the slip plane in
Theorem 3.1. In [5, Theorem 1.4], Cabré and Solà-Morales prove that the
static solution to the scalar model from harmonic extension is a minimizer of the
corresponding total energy relative to perturbations in [− b

4 ,
b
4 ]. In order to apply

this result, we restate it in the setting of the reduced model (1.7) on Γ below.

Proposition 3.4. ([5, Theorem 1.4]) Assume u1|Γ ∈ Ḣs(R) for some s > 1
2 is a

static solution to the reduced model (1.7) and (2.52) obtained in Proposition 2.5 (i).

Given any perturbations ϕΓ ∈ H
1
2 (R) such that − b

4 ≤ (ϕΓ + u1|Γ) ≤ − b
4 , we have

ÊΓ(ϕ;u) ≥ 0. (3.14)

Proof. First, let u ∈ C2(R2
+) be the harmonic extension of u1|Γ and ϕ ∈ C2(R2

+)
be the harmonic extension of ϕΓ. Then by maximal principle for Laplace equation,
− b

4 ≤ ϕ+ u ≤ b
4 in R2

+.
Second, from [5, Theorem 1.4], we have for any R > 0

Etotal(u;R) :=
1

2

∫
R2

+∩B(R)

|∇u|2 dx dy +

∫ R

−R
W (u1) dx ≤ Etotal(u+ ϕ;R) (3.15)

for any ϕ ∈ C2(R2
+) with compact support in B+(R)∪Γ such that − b

4 ≤ ϕ+u ≤ b
4 .

It is well known the harmonic extension of u1 satisfies −∂νu1 = (−∂xx)
1
2u1 on Γ.

Then from integration by parts, we obtain

1

2

∫
R

∫ +∞

0

(
|∇u+∇ϕ|2 − |∇u|2

)
dy dx

=

∫
R

∫ +∞

0

1

2
|∇ϕ|2 +∇u∇ϕ dy dx

=

∫
R

∫ +∞

0

1

2
|∇ϕ|2 −∆uϕ dy dx−

∫
R
∂νu1ϕΓ dx

=

∫
R

∫ +∞

0

1

2
|∇ϕ|2 dy dx+

∫
R
ϕΓ(−∂xx)

1
2u1 dx

=

∫
R

1

2
|(−∂xx)

1
4ϕΓ|2 dx+

∫
R
ϕΓ(−∂xx)

1
2u1 dx = 2ÊΓe

(ϕ;u1).

Therefore we have

0 ≤Etotal(u+ ϕ;R)− Etotal(u;R)

=
1

2

∫
R

∫ +∞

0

|∇u+∇ϕ|2 dy dx− 1

2

∫
R

∫ +∞

0

|∇u|2 dy dx+

∫ R

−R
W (u1 + ϕ) dx

−
∫ R

−R
W (u1) dx

=ÊΓ(ϕ;u1)
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for any ϕ ∈ C1(R2
+) with compact support in B+(R)∪Γ such that − b

4 ≤ (ϕ+u)|Γ ≤
b
4 .

Third, since ÊΓ(ϕ;u) is continuous in H
3
2−s(R2) w.r.t ϕ and for any s > 1

2 C
2
c (R2)

is dense in H1(R2) ↪→ H
3
2−s(R2), ÊΓ(ϕ;u) ≥ 0 holds also for any perturbation

ϕΓ ∈ H
1
2 (R) such that − b

4 ≤ (ϕΓ + u1|Γ) ≤ − b
4 .

Before proving a static solution is a global minimizer, we first show that given
ϕ1|Γ ∈ H

1
2 (R), its elastic extension yields a minimizer of the elastic energy Eels.

Lemma 3.5. Given ϕ1|Γ ∈ H
1
2 (R), and its elastic extension ϕ, then ϕ is a mini-

mizer of the elastic energy Eels with trace ϕ1|Γ in the sense that Eels(ϕ) ≤ Eels(ϕ̄)
for any ϕ̄ ∈ H1(R2\Γ) satisfying (2.10) with the same trace ϕ1|Γ.

Proof. Since ϕ1|Γ ∈ H
1
2 (R), same as (3.10), we directly calculate that

Eels(ϕ̄)− Eels(ϕ) = Eels(ϕ̄−ϕ) + Cels(ϕ̄−ϕ,ϕ). (3.16)

Notice the trace of ϕ̄ and the trace of ϕ are same. Using ϕ is the elastic extension
of ϕ1|Γ and the symmetry (2.10) for ϕ̄, we have

Cels(ϕ̄−ϕ,ϕ) =

∫
R2\Γ

(∇(ϕ̄−ϕ))ij(σϕ)ij dx

=

∫
R2\Γ

−(∇ · σϕ) · (ϕ̄−ϕ) dx

+

∫
Γ

((σϕ)ijnj(ϕ̄− ϕ)i)
+ dx+

∫
Γ

((σϕ)ijnj(ϕ̄− ϕ)i)
− dx

=

∫
Γ

[−(σϕ,12)+ − (σϕ,12)−](ϕ̄− ϕ)1 dx = 0.

Then Eels(ϕ̄−ϕ) ≥ 0 implies Eels(ϕ̄)− Eels(ϕ) ≥ 0.

Proposition 3.6. Let u ∈ Λ̇
s+ 1

2

Γ (R2) for some s > 1
2 be a static solution obtained

in Theorem 2.9. Given any perturbations ϕ ∈ H1(R2\Γ;R2) with ϕ1|Γ ∈ H
1
2 (R)

satisfying (2.10) and − b
4 ≤ (ϕ1 + u1)|Γ ≤ b

4 , then we know u is a minimizer of E
such that

0 ≤ ÊΓ(ϕ1;u1) = Êtotal(ψ; u) ≤ Êtotal(ϕ; u), (3.17)

where ψ is the elastic extension of ϕ1|Γ.

Proof. First, since ψ is the elastic extension of ϕ1|Γ, Theorem 3.1(ii) shows that

Êtotal(ψ; u) = ÊΓ(ϕ1;u1). (3.18)

Second, for any perturbation ϕ ∈ H1(R2\Γ;R2) with ϕ1|Γ ∈ H
1
2 (R) satisfying

(2.10), since ψ is the elastic extension of ϕ1|Γ, we know (ψ1 − ϕ1)|Γ = 0 and
(ψ −ϕ) ∈ H1(R2). Therefore by Lemma 3.5, we know

Eels(ψ) ≤ Eels(ϕ).

Notice also CΓe
(u1, ψ1) = CΓe

(u1, ϕ1), which together with the relation (3.10), leads
to

Êels(ψ; u) ≤ Êels(ϕ; u).
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Therefore

Êtotal(ψ; u) = Êels(ψ; u) +

∫
Γ

W (u1 + ϕ1)−W (u1) dx

≤Êels(ϕ; u) +

∫
Γ

W (u1 + ϕ1)−W (u1) dx

=Êtotal(ϕ; u).

(3.19)

Finally, we apply Proposition 3.4 to obtain

0 ≤ ÊΓ(ϕ1;u1).

This, together with (3.18) and (3.19), yields

0 ≤ ÊΓ(ϕ1;u1) = Êtotal(ψ; u) ≤ Êtotal(ϕ; u). (3.20)

This completes the proof of Proposition 3.6.

Similar to Proposition 3.4, Proposition 3.6 above also requires all the perturba-
tions are between [− b

4 ,
b
4 ]. The next theorem develops a new method to show the

static solution for the PN model obtained in Theorem 2.9 is a global minimizer in
the sense of Definition 1 by removing the restriction that perturbation must be in
the range of [− b

4 ,
b
4 ].

Theorem 3.7. Let u ∈ Λ̇
s+ 1

2

Γ (R2) for some s > 1
2 be a static solution obtained

in Theorem 2.9. Then u is a global minimizer of E in the sense that for any
ϕ ∈ H1(R2\Γ), the perturbation energy satisfies

Êtotal(ϕ; u) ≥ 0. (3.21)

Besides, if u is a global minimizer of E then its trace uΓ is also a global minimizer
of EΓ. Conversely, if uΓ is a global minimizer of EΓ then its elastic extension u is
a global minimizer of E.

Proof. First, from Theorem 3.1 and (3.19), we know for any perturbation ϕ1|Γ ∈
H

1
2 (R)

ÊΓ(ϕ1;u1) = Êtotal(ψ; u) ≤ Êtotal(ϕ; u), (3.22)

where ψ is the elastic extension of ϕ1|Γ. Hence it is sufficient to show that

ÊΓ(ϕ1;u1) ≥ 0, (3.23)

where ÊΓ(ϕ1;u1) =
∫

Γ
|(−∂xx)1/4(u1 +ϕ1)|2−|(−∂xx)1/4u1|2 dx+

∫
Γ
W (u1 +ϕ1)−

W (u1) dx defined in (3.3). We have proved in Proposition 3.6 that u is a minimizer
for all the perturbations satisfying − b

4 ≤ (ϕ1 + u1)|Γ ≤ b
4 . For the case (ϕ1 + u1)|Γ

not in [− b
4 ,

b
4 ], we prove the same result using the method of contradiction below.

Suppose that ÊΓ(ϕ1;u1) < 0 for some ϕ ∈ C∞(R2\Γ;R2) and ϕ has compact
support in some B(R) satisfying symmetry (2.10). Let v := (ϕ1 + u1)|Γ, and a cut
off function v̄ := max{min{v, b4},−

b
4}. Since u1 is monotone and connect from b

4

to − b
4 , ϕ̄1|Γ := v̄ − u1 still has compact support in B(R). Denote ϕ̄ as the elastic
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extension of ϕ̄1|Γ. Note that |v̄(x)− v̄(x′)| ≤ |v(x)− v(x′)| for any x, x′ ∈ R. Thus

1

2

∫
Γ

|(−∂xx)1/4v̄|2 − |(−∂xx)1/4u1|2 dx

=
1

4π

∫
R

∫
R

|v̄(x)− v̄(x′)|2

|x− x′|2
− |u1(x)− u1(x′)|2

|x− x′|2
dx dx′

≤ 1

4π

∫
R

∫
R

|v(x)− v(x′)|2

|x− x′|2
− |u1(x)− u1(x′)|2

|x− x′|2
dx dx′

=
1

2

∫
Γ

|(−∂xx)1/4v|2 − |(−∂xx)1/4u1|2 dx. (3.24)

Also note that for v(x) ≥ b
4 or v(x) ≤ − b

4 , v̄(x) = ± b
4 and W (v̄(x)) = 0 ≤W (v(x)).

Thus ∫
Γ

W (v̄)−W (u1) dx ≤
∫

Γ

W (v)−W (u1) dx. (3.25)

Combining Eqs. (3.24) and (3.25), we immediately obtain ÊΓ(ϕ̄; u) ≤ ÊΓ(ϕ1;u1) <

0. On the other hand, Proposition 3.6 implies that 0 ≤ ÊΓ(ϕ̄; u) since − b
4 ≤ v̄ =

(ϕ̄1 + u1)|Γ ≤ b
4 . This contradiction completes the proof of (3.21).

Finally, we clarify the relation between the minimizer of the full system and the
minimizer of the reduced system. On one hand, from (3.22), ÊΓ(ϕ1;u1) ≥ 0 implies

Êtotal(ϕ; u) ≥ 0. On the other hand, Êtotal(ψ; u) ≥ 0 implies ÊΓ(ϕ1;u1) ≥ 0.

4. Global classical solution to dynamic PN model. In this section, we con-
sider the dynamic model with the total energy E in (2.1). Here we focus on the
dynamics of a dislocation structure and neglect the inertia effect of the materials.
In other words, we consider the overdamped regime, which is a gradient flow of the
total energy. This is reasonable since the dislocation dynamics on the slip plane Γ
has a much larger time scale than the relaxation time of the elastic parts. Hence we
take a quasi-static assumption for the upper/lower half space y > 0 and y < 0, i.e.,
∂tu = 0 in R2\Γ. Indeed the quasi-static assumption leads to a homogenous elastic
equation in the upper/lower half space y > 0 and y < 0, which is the key point to
establish the relation between the full system and the reduced system in terms of
solutions as well as energies.

Recall the free energy EΓ on the slip plane is

EΓ(u1) =

∫
Γ

|(−∂xx)
1
4u1|2 dx+

∫
Γ

W (u1) dx; (4.1)

see the specific definition for the perturbed energy in (4.5). After the quasi-static
approximation, we can use the elastic extension in Theorem 2.7 to see that a solution
to the dynamic system on the slip plane Γ gives naturally the displacement fields in
the full space. In other words, from the relation between the trace u1|Γ and solution
u in the full space stated in Theorem 2.9, the dynamic model becomes an elliptic
problem with a nonlinear dynamic boundary condition

∇ · σ = 0 in R2\Γ,

∂tu1 = −2(−∂xx)
1
2u1 −W ′(u1) on Γ,

σ+
22 = σ−22 on Γ.

(4.2)
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We also provide explanations using a gradient flow for the full system with different
mobilities in Remark 5. Here and in the following, we set some physical constants
to be 1 for simplicity.

Our main goal in this section is to prove the uniqueness and existence of the
classical solution to problem (4.2) with boundary conditions (1.1), (1.2) and initial
data u0.

Notice the nonliearity W (·) effects only the first variable u1 and thus by the
elastic extension of u1|Γ we can determine uniquely the solution to Problem (4.2) as
long as we can solve u1 on Γ. We focus on the one dimensional nonlocal equation

∂tu1 + 2(−∂xx)
1
2u1 +W ′(u1) = 0, x ∈ R (4.3)

with boundary condition

u1(+∞) = −1; u1(−∞) = 1. (4.4)

We remark the boundary condition here is well-defined since in the end we obtain
the dynamic solution u1 in the classical sense by proving the perturbation v =
u1 − u∗1 ∈ C((0,∞);H1(R)), where u∗1 is the static solution to the reduce model
(1.7).

Recall the free energy EΓ for the reduced model is infinity. As in the last section,
we still use the perturbed total energy on Γ with respect to the trace u∗1|Γ of the
static solution u∗ obtained in Theorem 2.9

ÊΓ(v; u∗) =

∫
Γ

|(−∂xx)1/4u1|2 − |(−∂xx)1/4u∗1|2 dx+

∫
Γ

W (u1)−W (u∗1) dx, (4.5)

which is equivalent to

ÊΓ(v; u∗) =

∫
Γ

|(−∂xx)1/4(u1 − u∗1)|2 dx+ 2

∫
Γ

(−∂xx)1/4u∗1(−∂xx)1/4(u1 − u∗1) dx

+

∫
Γ

W (u1)−W (u∗1) dx (4.6)

=

∫
Γ

|(−∂xx)1/4(u1 − u∗1)|2 dx−
∫

Γ

W ′(u∗1)(u1 − u∗1) dx+

∫
Γ

W (u1)−W (u∗1) dx,

=

∫
Γ

|(−∂xx)1/4v|2 − vW ′(u∗1) +W (v + u∗1)−W (u∗1) dx,

due to u∗1 is the static solution satisfying (1.7). Thus the reduced system on Γ has
its own gradient flow structure

∂tu1 = −δÊΓ(v; u∗)

δu1
. (4.7)

In the following subsection, we will establish the global classical solution to the
perturbation v = u1−u∗1, which is the difference between u1 and the static solution
u∗1.

Remark 5. We can also explain the quasi-static assumption by a gradient flow
with different mobilities. Recall the total energy of the full system

E(u) = Eels(u) + Emis(u).

From the calculations in Lemma 2.1, the first variation with respect to the admissi-
ble perturbation u̇ ∈ C∞(B(R)\Γ) such that u̇ has compact support in B(R) and
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satisfies (2.10) is

d

dδ

∣∣
δ=0

E(u+δu̇) = −
∫
R2\Γ

(∇·σ) · u̇ dx dy−
∫

Γ

[σ+
12+σ

−
12−W

′(u+
1 )]u̇

+
2 +(σ+

22−σ
−
22)u̇

+
1 dx.

(4.8)

In general, for a over-damped dynamical system, the governing equation is given
by V = −Mf , where V is the time derivative of parameters of the state, f is the
first variation of the free energy with respect to virtual displacement, and M is the
corresponding mobility which is basically the reciprocal of the damping coefficient.
For a crystalline solid with dislocations, denote the mobility for the motion of the
elastic continua as M , however, the MΓ is the mobility for the dynamic of shear
discontinuity u+

1 − u
−
1 . Experimental observations show that M � MΓ for most

dislocations, i.e. the time scale for the motion of the elastic bulk is smaller then the
motion on the interface. In the following we assume M = O(1/ε) and MΓ = O(1)
where ε is a small parameter. We introduce the metrics

g(u̇, v̇) :=
1

M

∫
R2\Γ

u̇v̇ dx dy +
1

MΓ

∫
Γ

u̇1v̇1 dx, (4.9)

where we used different mobilities for the bulk and the interface and assume there
is no damping for the second component on the interface. Therefore the gradient
flow with respect to g

g(∂tu, u̇) = − d

dδ

∣∣
δ=0

E(u+ δu̇) (4.10)

gives the governing equation for dynamic model

1

M
∂tu = −∇ · σ, x ∈ R2\Γ,

1

MΓ
∂tuΓ = −[σ+

12 + σ−12 +W ′(uΓ)], x ∈ Γ,

σ+
22 = σ−22, x ∈ Γ.

Let ε→ 0, 1
M → 0, which indicates −∇ · σ = 0 then u is the elastic extension of uΓ

and coincides with u . Thus Lemma 2.3 part (ii) shows that

σ+
12 = σ−12 = 2(−∂xx)

1
2uΓ, x ∈ Γ.

We obtain the reduced dynamic system on Γ (4.3).

4.1. Global classical solution. In this section, we will use the theory for analytic
semigroup to establish the existence and uniqueness of the global classical solution
to (4.3) by studying the existence and uniqueness in terms of the perturbation

fields. In terms of the reference field u∗ such that 2(−∂xx)
1
2u∗1 = −W ′(u∗1), set the

perturbation v(x, t) := u1(x, t)− u∗1(x). Then from the dynamic equation (4.3), we
know the dynamic equation for v is

∂tv = −2(−∂xx)
1
2 v −W ′(v + u∗1) +W ′(u∗1) (4.11)

with initial data v0(x) = u1(x, 0)−u∗1(x). Denote Hs(R) as the (fractional) Sobolev
space with norm denoted as ‖ · ‖s. Denote ‖ · ‖ as the standard L2(R) norm.

Define the free energy for v as

F (v) :=

∫
Γ

|(−∂xx)1/4v|2 − vW ′(u∗1) +W (v + u∗1) dx. (4.12)
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Notice this energy differs with (4.6) with a term
∫

Γ
W (u∗1) dx whose variation is 0.

Then v satisfies the gradient flow structure

∂tv = −δF (v)

δv
.

Define
Av := ((−∂xx)

1
2 + I)v, (4.13)

T (v) := W ′(u∗1)−W ′(v + u∗1) + v. (4.14)

Then (4.11) becomes
∂tv = −Av + T (v). (4.15)

Since the spectrum for A is σ(A) = [1,+∞), from [23, Definition 1.3.1], A is a
sectorial operator from D(A) = H1(R) ⊂ L2(R)→ L2(R) in the sense that

S1,β := {λ |β ≤ | arg(λ− 1)| ≤ π, λ 6= 1}
is in the resolvent set of A and

‖(λ−A)−1‖ ≤ 1

|λ− 1|
for all λ ∈ S1,β . (4.16)

The existence and uniqueness of the global classical solution to (4.11) is stated
as follows.

Theorem 4.1. Assume initial data v0(x) := u0(x)− u∗1(x) ∈ H 1
2 (R).

(i) There exists a global unique solution

v ∈ C1([0,∞);L2(R)) ∩ C((0,∞);H1(R)) (4.17)

to (4.15) such that v(x, 0) = v0(x) and ∂tv,Av, T (v) ∈ L2(R) for t > 0 and
the equation (4.15) is satisfied in L2(R) for any t > 0;

(ii) the solution can be expressed by

v(t) = e−Atv0 +

∫ t

0

e−A(t−τ)T (v(τ)) dτ ; (4.18)

(iii) for any k, j ∈ N+ and δ > 0 there exist constants c, Cδ,k,j such that

v ∈ Ck((0,∞);Hj(R));

‖∂kt v(·, t)‖j ≤ Cδ,k,ject, t ≥ δ;
(4.19)

(iv) we have energy identity

dF (v(t))

dt
= −

∫
R

[−(−∂xx)1/2v−W ′(v+u∗1)+W ′(u∗1)]2 dx =: −Q(v(t)) ≤ 0, (4.20)

and furthermore, if for misfit energy Emis defined in (2.4), the initial data
v0(x) satisfies Emis(v0 + u∗1) <∞, we have

F (v(t)) ≤ F (v0), for any t ≥ 0. (4.21)

Proof. Step 1. We state some properties for T defined in (4.14). From [5, Theorem
1.6] we know the static solution

|1 + u∗1| ≤
c

1 + |x|
for x > 0, |1− u∗1| ≤

c

1 + |x|
for x < 0,

and

|∂xu∗1| ≤
c

1 + x2
,
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which shows ‖∂xu∗1‖ < +∞. Then we have
(a) T : L2(R)→ L2(R) is global Lipschiz, i.e. there exists a constant L such that

‖T (v1)− T (v2)‖ ≤ (1 + max |W ′|)‖v1 − v2‖ ≤ L‖v1 − v2‖; (4.22)

(b) if v(·) ∈ H1(R), then T (v(·)) ∈ H1(R). Indeed,

‖∂xT (v)‖ ≤ (1 + max |W ′′|)‖vx‖+ π‖v‖,

which implies

‖T (v)‖1 ≤ c‖v‖1. (4.23)

Step 2. Firstly, it is easy to check that the operator A defined in (4.13) is
m-accretive in L2(R). Indeed we know Re〈Ax, x〉 ≥ 0 for all x ∈ D(A) and
σ(A) = [1,+∞). Therefore A is an infinitesimal generator of a linear strongly
continuous semigroup of contractions and ‖e−At‖ ≤ 1. Secondly, from global Lips-
chitz condition (4.22), there exists a unique mild solution expressed by (4.18) and
v ∈ C([0,+∞);L2(R)).

Step 3. Hölder continuity in t of v and T (v).

v(t+ h)− v(t) (4.24)

=e−At(e−Ahv0 − v0) +

∫ t+h

0

e−A(t+h−τ)T (v(τ)) dτ −
∫ t

0

e−A(t−τ)T (v(τ)) dτ

=e−At
[
(e−Ahv0 − v0) +

∫ h

0

e−A(h−τ)T (v(τ)) dτ
]

+

∫ t

0

e−A(t−τ)[T (v(τ + h))− T (v(τ))] dτ

=e−At(v(h)− v0) +

∫ t

0

e−A(t−τ)[T (v(τ + h))− T (v(τ))] dτ

Since ‖e−At‖ ≤ 1,

‖v(t+ h)− v(t)‖ ≤ ‖v(h)− v0‖+

∫ t

0

2‖v(τ + h)− v(τ)‖ dτ.

Then by Gronwall’s inequality, we have

‖v(t+ h)− v(t)‖ ≤ ‖v(h)− v0‖e2t. (4.25)

On the other hand,

v(h)− v0 = (e−Ah − I)v0 +

∫ h

0

e−A(h−τ)[T (v(τ))− T (v0) + T (v0)] dτ. (4.26)

Then from (4.22) and ‖e−At‖ ≤ 1 we know

‖v(h)− v0‖ ≤ ‖(e−Ah − I)v0‖+ L

∫ h

0

‖v(τ)− v0‖ dτ + hL‖v0‖

=hL‖v0‖+ Ch1/2‖A1/2v0‖+ L

∫ h

0

‖v(τ)− v0‖ dτ,

where we used the fact A is sectorial and thus from [23, Theorem 1.4.3]

‖(e−At − I)v0‖ ≤ Ch
1
2 ‖A1/2v0‖.
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Thus Gronwall’s inequality gives us

‖v(h)− v0‖ ≤ h
1
2 (h

1
2L‖v0‖+ C‖A 1

2 v0‖)eLh, (4.27)

which, together with (4.25), leads to the Hölder continuity of v(t)∥∥∥∥v(t+ h)− v(t)

h
1
2

∥∥∥∥ ≤ c‖v0‖ 1
2
e2t+Lh. (4.28)

Then from (4.22) we concludes the Hölder continuity of T (v(t))∥∥∥∥T (v(t+ h))− T (v(t))

h
1
2

∥∥∥∥ ≤ c‖v0‖ 1
2
e2t+Lh. (4.29)

Therefore by [23, Lemma 3.2.1] we know for t > 0∫ t

0

e−A(t−τ)T (v(τ)) dτ ∈ D(A). (4.30)

Notice also

‖Ae−Atv0‖ ≤
c

t
e−t

for t > 0, which shows e−Atv0 ∈ D(A) for t > 0. Therefore by mild solution (4.18)
we concludes v ∈ D(A) and ∂tv = −Av + T (v) ∈ L2 for t > 0, which completes the
proof for (i), (ii).

Step 4. Higher order regularities.
Set w1 := ∂tv and w2 := ∂xv. Then

∂tT (v(t)) = T ′(v)∂tv ∈ C([0, T ];L2(R))

and

∂xT (v(t)) = (1−W ′(u∗1 + v))∂xv − (W ′(u∗1 + v)−W ′(u∗1))∂xu
∗
1 ∈ C([0, T ];L2(R)).

Therefore we can repeat Step 2 and 3 for

∂tw1 +Aw1 = T ′(v)w1 (4.31)

and

∂tw2 +Aw2 = (1−W ′(u∗1 + v))w2 − (W ′(u∗1 + v)−W ′(u∗1))∂xu
∗
1 (4.32)

to obtain

w1, w2 ∈ C((0,∞);L2(R)) ∩ C((0,∞);H1(R))

∂twt, ∂twt ∈ C((0,∞);L2(R))

which concludes v is a global classical solution to (4.11) and satisfies (4.19).

Step 5. (4.20) is directly from (4.11) and above regularity properties. Notice that
if the initial data v0(x) satisfies Emis(v0 + u∗1) < ∞, then from ‖u∗1(·)‖ < c and

v0(x) ∈ H 1
2 (R) we have F (v0) <∞ and thus

F (v(t)) ≤ F (v0) <∞.
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