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Abstract. In this paper we study a cross-diffusion system whose coefficient matrix is non-
symmetric and degenerate. The system arises in the study of tissue growth with autophagy. The
existence of a weak solution is established. We also investigate the limiting behavior of solutions as
the pressure gets stiff. The so-called incompressible limit is a free boundary problem of Hele-Shaw
type. Our key new discovery is that the usual energy estimate still holds as long as the time variable
stays away from O.
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1. Introduction. Let © be a bounded domain in RY with Lipschitz boundary
02 and T any positive number. We consider the initial boundary value problem

6tn1 —div (mVp) = G(d)m - Kl (d)m + Kg(d)ng = R1

(1.1) in Qr = Qx (0,7),

(1.2) Bina — div (n2Vp) = (G(d) — D)y + Ky (d)ny — Ka(d)ns = Ry in Qr,
(1.3) bdyd — Ad = —p(d)n + ans in Qr,

(1.4) nVp-n=nVp-n=0 on X =902 x (0,T),

(1.5) d=dy on X,

(1.6) (n1(x,0),n2(,0), d(2,0)) = (no1(x),no2(x), do(x)) on €,

where n is the unit outward normal to 092 and
(1.7) n=mn;+ng, p=n’, y>1

This problem was proposed as a tissue growth model with autophagy in [9]. In the
model, cells are classified into two phases: normal cells and autophagic cells, and
n1,no are their respective densities. The third unknown function d represents the
concentration of nutrients. We assume that both cells have the same birth rate.
Their death rates are different because autophagic cells have an extra death rate D
due to the “self-eating” mechanism. Thus if G(d) is the net growth rate of normal
cells, then G(d) — D gives the net growth rate for autophagic cells. Two types of cells
can change from one to another. The transition rates are denoted by K;(d), K2(d),

*Received by the editors March 15, 2021; accepted for publication (in revised form) June 21, 2021;

published electronically September 16, 2021.

https://doi.org/10.1137/21M1405253

Funding: The work of the second author was supported by NSF grant DMS-2106988.

TDepartment of Physics and Department of Mathematics, Duke University, Durham, NC 27708
USA (jliu@phy.duke.edu).

tDepartment of Mathematics and Statistics, Mississippi State University, Mississippi State, MS
39762 USA (xxu@ra.msstate.edu).

5215

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/21M1405253
mailto:jliu@phy.duke.edu
mailto:xxu@ra.msstate.edu

Downloaded 09/21/21 to 152.3.102.254 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

5216 JIAN-GUO LIU AND XIANGSHENG XU

respectively. Since autophagy is a reversible process, we have
(1.8) Ki(d) >0, Ks(d)>0.

Both cells consume nutrients with the consumption rate ¢ (d). However, autophagic
cells also provide nutrients by degrading its own constituents with a supply rate a.
We assume

(1.9) D,a € (0,00).
Moreover,
(1.10) ¥(0) =0, v¥(d) is increasing, and there is dy > 0 such that (do) = a.

ondition in (1.10) means that when there is no nutrient the consumption rate should
be zero. The number dj is the so-called critical nutrient concentration. When d < dp,
autophagic cells supply more nutrients than they consume, while d > dy indicates
that autophagic cells consume more nutrients than they supply.

For the spatial motion of cells, we take a fluid mechanical point of view. That is,
it is driven by a velocity field equal to the negative gradient of the pressure (Darcy’s
law) [15]. And the pressure arises from mechanical contact between cells. Denote by
p the pressure. Then we can assume that (1.7), (1.1), and (1.2) hold.

One can also model tissue growth as free boundary problems [10]. They are also
called geometric or incompressible models and describe tissue as a moving domain (see
[6] and the references therein). Building a link between these two classes of models
has attracted the attention of many researchers in recent years. The first result in this
direction was obtained in [15] for a purely mechanical model. It indicates that the
limit of the mechanical model gives rise to a free boundary problem as the pressure
becomes stiff. Since then the same result has been achieved for a variety of models,
which include active motion [16], viscosity [18], different laws of state [8], more than
one species of cells [4], and multispace dimensions and viscosity [7]. In each case the
limit model turns out to be a free boundary model of Hele-Shaw type.

The objective of this paper is to study the existence assertion for (1.1)—(1.6) and
the limiting behavior of solutions as v — oc.

We largely follow the approach adopted in [19] for the existence assertion. To
understand the nature of the limiting model for our problem, we define a family of
maximal monotone graphs [2] in R x R by

7Tl if s >0,

oy(s) = ()" = { .

if s < 0.
Obviously,
[0,00) ifs=1,
1.11 o(8) =
(1L11) o) b pml) = 10T

in the sense of graphs as v — oo [2]. The total density n = n(?) satisfies the problem

™ — — LA™ = G - Dn{” = R in Qr,
v+1
+1
(1.12) v = (n(V))7 a.e. on Qp,

Vo . n=0 on Xp,

n(W)(:c,O) =ng = ng1 + ng2 on .
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Thus if we formally take v — oo, we expect to arrive at the following problem:

) 9y — Av©) = G(d*))n) — D = R in Qy,
1.14) v € oo (n>)) ae. on Qp,

) Vol>®) .n=0 on Ip,

)

n(>)(x,0) =ny on Q.

If ng <1 a.e on €, a result of [3] asserts that the limit problem (1.13)—(1.16) has an
integral solution n(*) and lim,_,o, n(? = n(>) in L1(0,T; L*()) (also see [23] for
related results). If ng > 1 on a set of positive measure, the initial condition is no longer
compatible with ¢., and the resulting problem (1.13)—(1.16) becomes singular. Thus
identifying the limit of the sequence {n(?)} is an interesting issue. When R() = 0, this
problem was solved in [5] through an application of the Aronson—Bénilan inequality

1]

Q0]
1.17 nM >
( ) the ' =2 ~
The precise result there is the following: If Q = RY, ng(z) has a star-shaped profile,
and R(=0, then n(>) = limy o0 n(") exists and is given by

(oo)()_ 1 ifx e A,
)= no(z) ifxé¢ A,

where A is the coincident set of the solution of the following variational inequalities:
~Aw>ng—1, w>0, (Aw+ng—1)w=0 in RV,

A remarkable fact is that the limit n(°) is a function of = only. A similar result
was established for hyperbolic conservation laws in [22]. However, if R() changes
sign, inequalities of the Aronson—Bénilan type no longer hold [17]. To circumvent this
difficulty, the authors of [6] established a weaker version of (1.17) along with an L*
estimate for the gradient of the pressure. Our problem here does not quite fit the
framework developed in [6]. This forces us to take a totally different approach. It

. . 1.
seems more convenient for us to work with v(?) = (n(“*))wr instead of the pressure.
Our key estimate is

T 2 T 2 ¢
/ / (U(’Y)) dxdt + / / )Vv('y)‘ dzdt < = forally>1and 7€ (0,7T).
T Q T Q T

Here and in what follows the letter ¢ denotes a generic positive constant whose
value is determined by the given data. That is, the sequence {v(")} is bounded
in L2(r, T; W12(Q)) for each 7 € (0,T).

Before we introduce our remaining results, we state the definition of a weak
solution.

DEFINITION 1.1. We say that (ny,ns,d) is a weak solution to (1.1)—(1.6) if the
following:
(D1) n1,ne,d are all nonnegative and bounded with
(1.18)

diny, Oyna, Oyd € LP(0,T; (WH2(Q))%), n'%, d € L*(0,T; WH3(2)),

where n is given as in (1.7) and (W”(Q))* denotes the dual space of W12(Q).
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(D2) There hold

—/ nlatfldxdt—i—/ n1Vn7 - V& dxdt
Qr

Qr

= / leldxdt — <n1(-,T),§1(',T)> +/ n01(x)§1(:z:,0)d:c
Qr Q
for each & € HY(0,T; WH2(Q))

—/ ngatfgdxdt—i-/ naVn" - V&dxdt
QT QT

= RoSodzdt — (na(-,T),82(,T)) + /Q no2(x)&2(x, 0)dx

Qrp
for each & € H'(0,T; Wh2(Q)), and

—b [ docdedt+ | Vd-V(dadt
QT QT

- / (—(dyn + ang)¢dedt — bld(- T),C(-T)) + b / do(2)¢(z, 0)dz
Qr Q

for each ¢ € H(0, T; WOIQ(Q)) )

where (-, ) denotes the duality pairing between W2(Q) and (W2 Q))* and
HY0,T;W12(Q)) = {v € L?(0,T; W12(Q)) : dyv € L2(0,T; WH2(Q))}.

(D3) (1.5) is satisfied.

To see that the three equations in (D2) make sense, we can conclude from (D1) that
ni,n2,d € C([0,T); (WH2(€))"). Since n is bounded and v > 2t we also have
nY € L*0,T; WH2(Q)).

THEOREM 1.2. Assume the following:

) G,K1,Ka,v are all continuous functions.

) (1.8), (1.9), and (1.10) hold.

) b€ (0,00) and 0N is Lipschitz.

) nop1,No2 € Wl’Q(Q) ﬂLOO(Q), do € LDQ(Q), and dp € LQ(O,T;WLQ(Q)) n
L>(Qr).

Then there is a weak solution to (1.1)—(1.6).

Set
(1.19) L = max{[ds|oc 5+ |dol|c0.2, do},
(1.20) Go = max_ G(s).

s€l0,L]

THEOREM 1.3. Let the assumptions of Theorem 1.2 hold. Assume the following:
(H5) G'(s) is bounded.

(H6) dy, € W (Qr) for some s > N + 2 and dy € WH>(Q).
(HT) |{no(z) >0} < mh’ﬂ for some o € (0,e=C0T).
(H8) 09 is C1L.
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Denote by (n(“f),n(lv),ng),dh)) the solution obtained in Theorem 1.2. Then there is

a subsequence of (n("Y),n:(LV),ngY),d(”)), which will not be relabeled, such that

(n, 07 05 = () 0 n$) weak* in (L= (Qr))?

3
(1.21) and strongly in (C([T, T7; (W12(Q))*)> for each T € (0,T),
(1.22) v = 0 weakly in L2(r, T; WH2(Q)) for each T € (0,T),
(1.23) Vo — Vo) strongly in L?(r,T; (L*())N) for each T € (0,T),
no)
1.24 2 5 () weak* in L®(Qp
(1.24) U :
n(’Y)
(1.25) d — d®) weak* in L0, T; WH(Q)) and strongly in L?(Qr).

The limit (n<°°),u<°°),n&“),ngm),n(@,d(w)) satisfies

- / n(*)§,& dadt + / V(o)
QT QT

—/ n§°°>at§2dxdt+/ (1—n<°°>) V(o)
QT QT

V& dzdt = / R ¢ dudt

Qr

 Veéydzdt = / R ¢, dadt

Qr

—/ néoo)atfsda?dt-k/ U(m)vv(m)'vgi’)dﬂndt:/ RéOO)§3dmdt’ and
Qr Qr Qr

—b [ A8 dadt + [ V) - VEsdadt = / (=ep(d>))n )

Qr Qr Qr
+ angoo))&dxdt
— b(d) (-, T), &(-, T))

b /Q do()€4(z,0)da

for each (&,&,&) € (H'Y(0,T; Wl’Q(Q)))S with (§1,62,63) = 0 near t = 0 and
(&1,82,83),7 = 0 and each & € H*(0,T; Wy2()), where R s given as in
(1.13) and

R = G(dNnt>) — K, (d)nl>) 4 Ky (d)ns,
RYS) = (G(d™) = D) S + K (d™)nf™) — Ka(d ™).

Moreover, (1.14) holds and
(1.26) (%) (Av<°°> + R(°°>) =0.

If we compare the equations in (D2) with the ones here, two pieces are missing.
One is that we are no longer able to identify the initial conditions for (n (>, ngoo), néoo)).
This is to be expected due to the fact that ¢, is not defined on the set {ny > 1}. A
redeeming feature is that we can view (1.26), the so-called complementary condition,
as some kind of compensation for this lack of initial conditions. More significantly,
this condition connects our limits to the geometric form of the Hele-Shaw problem

[6]. At least formally, it says
—Av(>®) = R on Q(t) = {0 (x,t) > 0}.
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The second one is that we have not been able to show

)

n(e)’

(1.27) 7> =

This can be derived from the precompactness of {n(?} in some L(Qr) space with
q € [1,00) (see the proof of (2.59) in section 2 below). Unfortunately, this result is
not available to us because in the generality considered here the sequence {Vn("}
cannot be shown to be bounded in a function space. Furthermore, it does not seem to
be possible to obtain any estimates on d,v(?) that are uniform in . As a result, the
precompactness of {v(?} in some L?(Qr) space is also an issue. This is so in spite of
the fact that we have (1.23).
We can easily see that (1.14) is equivalent to the following:

(1.28) n(>) <1 on Qp and
(1.29) (1 — n(°°)> v =0 on Qp.

Obviously, we can no longer expect n(>) to be independent of ¢ due to the presence
of R(>). The term Av(*) may be a pure distribution. We define

2
() AY(®) = div (U(OO)V’U(OO)> — ‘Vv(m)‘ in the sense of distributions.

Also note that the assumption (H7) implies that ng is close to 0 on a large set. The
smaller T is, the easier it is for (H7) to hold.

The remainder of the paper is devoted to the proof of the above two theorems.
To be specific, section 2 contains the proof of Theorem 1.2, while Theorem 1.3 is
established in section 3.

2. Existence of a global weak solution and proof of Theorem 1.2. The
proof will be divided into several lemmas. Before we begin, we state the following
three well known results.

LEMMA 2.1. Let h(s) be a convex and lower semicontinuous function on R [13].
Assume that
(C1) feWs(0,T) = {p e L*0,T;WH2(Q)) : dpp € L*(0, T; (WH2(Q)) )}
(C2) g € L20,T;WH2(Q)) with the property g(z,t) € Oh(f(x,t)) for a.e (x,t) €
Qr, where Oh is the subgradient of h.
Then the function t — [, h(f(x,t))dx is absolutely continuous on [0,T] and

(2.) G | nriz = @it.a).

If h(s) = s2, this lemma is a special case of the well known Lions-Magenes lemma
([21, pp. 176-177]). Formula (2.1) is trivial if f is smooth. The general case can be
established by suitable approximation. See ([13, p. 101]) for the details.

LEMMA 2.2 (Lions—Aubin). Let Xo,X, and X; be three Banach spaces with
Xo C X C X;. Suppose that Xy is compactly embedded in X and that X is continu-
ously embedded in X1. For 1 <p,q < oo, let

Wyg(0.T) = {u € LP([0,T); Xo) : Byu € L9([0, T); X1)}
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Then the following hold:
(i) If p < oo, then the embedding of W, 4(0,T) into LP([0,T]; X) is compact.
(i) If p = o0 and q > 1, then the embedding of Wy 4(0,T) into C([0,T]; X) is
compact.

The proof of this lemma can be found in [20]. We mention in passing that Lemmas
2.1 and 2.2 imply that W5(0,T) is contained in C([0,T]; L*(Q)).

LEMMA 2.3. Let Q be a bounded domain in RN with Lipschitz boundary and 1 <
p < N. Then there is a positive number ¢ = ¢(N) such that

cdNtI-x
pr < ———||Vull, for each u € WhP(Q),

|51

||’U,7US

where S is any measurable subset of Q with |S| > 0, ug = ﬁ Jsudz, and d is the
diameter of €.

This lemma can be inferred from Lemma 7.16 in [12].
Our approximate problems are similar to those in [19]. For each € > 0, we consider

(2.2) On — eAn = ydiv (n"Vn) + G(d)n1 + (G(d) — D)ng in Qr,
dny — eAny = ydiv (nin”~'Vn) + G(d)ny — K1(d)ny
(2.3) + Ko(d)ny in Qr,
dna — eAng = ydiv (ngn”~'Vn) + (G(d) — D)ns + K1 (d)ny
(2.4) — Ks(d)ng in Qrp,
(2.5) bod — Ad = —p(d)n + ang in Qr,
(2.6) Vn-n=Vn; - n=Vny,-n=0 on X,
(2.7) d=d, on Xr,
(2.8) (n,n1,n2,d)|,_y = (no(x), no1(x), no2(x), do(x)) on Q.
LEMMA 2.4. Assume that (H1)-(H4) hold. Then for each fixed € > 0 there exists

a quadruplet (n,ny,ny,d) in the function space (Wy(0,T))* N (L®(Qr))* such that
(2.2)—(2.8) are all satisfied in the sense of Definition 1.1.

Proof. This lemma will be established via the Leray—Schauder fixed point theorem
([12, p. 280]). For this purpose, we introduce a cut-off function

0 if s <0,
(2.9) Oe(s)=4¢ s if0<s<d,
¢ ifs>0,

where ¢ > 0 will be selected as below. We define an operator M from (LQ(QT))4 into
itself as follows: Let (w,v1,v2,u) € (L? (QT))4. We first consider the initial boundary
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value problem

Oun — div [+ (65(01) + 04(12)) 6] ™ () V] = 0p(01)G(0e(w))

(2.10) + (G(0¢(u)) — D) O¢(v2) in Qr,
Vn-n=0 on Xp,
(2.11) n(x,0) = no(z) on .

For given (w,wv1,v9,u) the above problem for n is linear and uniformly parabolic.
Thus we can conclude from the classical result ([14, Chap. III]) that there is a unique
weak solution n to (2.10)—(2.11) in the space W2(0,T"). Use the function n so obtained
to form the following two initial boundary problems:

Oyny — eAnq = ~div [Hg(vl)ﬁzfl(w)Vn + (G(0e(w)) — K1(0p(1))) ¢(v1)
(2.12) + 0p(v2) K2 (0¢(u)) in Qr,
Vni-n=0 on Xp,
n1(z,0) = ng1(z) on Q,
Bins — eAny = ~div [ee(m)ag*l(w)w + (G(Bo(w)) — K (0s(u)) — D) Oy(vs)
(2.13) + 0p(v1)K1(0¢(w)) in Qr,
(2.14) Vn2-n=0 on X,
(2.15)  na(x,0) = nga(z) on Q.

Each of the two problems here has a unique solution in W5(0,7T"). Then we solve the
following linear problem:

bord — Ad = —(¥(0p(u)) — a)fe(w) — abe(v1) in Qrp,
d= db on ZT7
d(z,0) = do(z) on Q.

We define (n,ni,na,d) = M(w, vy, vs,u). Evidently, M is well-defined.

CLAM 2.5. For each fized pair e > 0 and £ > 0, the operator M is continuous
and its range is precompact.

Proof. The key observation here is that each initial boundary value problem in the
definition of M is linear and uniformly parabolic. This together with (H1) implies that
M is continuous. One can easily verify that the range of M is bounded in (W5(0,T))*,

which is compactly embedded in (L2 (QT))4. It is similar to the proof of Lemma 2.4
n [19]. We shall omit the details. O
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Now we are in a position to apply Corollary 11.2 in ([12, p. 280]), thereby obtaining
that M has a fixed point. That is, there is a (n,n1,n2,d) in (W(0,T))* such that
din — eAn = div {(Gg(nl) + ae(m))egfl(n)vn] + 00(n1)G(0,(d))
(2.16) + (G(0¢(d)) — D) 0¢(nz) in Qr,
Vn-n=0 on Xp,
n(x,0) = ng(z) on §,
Oyny1 — eAng = ydiv {Hg(nl)ﬁzfl(n)Vn} + (G(6(d)) — K1(0¢(d))) Oe(n1)
(2.17) + 60¢(n2)K2(0,(d)) in Qr,
Vni-n=0 on Xp,

n1(z,0) = no1(z) on £,

Bins — eAny = ydiv [wmgeg*%mw} + (G(06(d)) — Ka(06(d)) — D) Oy(ns)

(2.18) + 0¢(n1)K1(0¢(d)) in Qr,

(2.19) Vnz-n=0 on X,

(2.20)  no(x,0) = ng2(z) on Q,

(2.21) bOrd — Ad = —(¢(0¢(d)) — a)0¢(n) — abe(ny) in Qr,

d=d, on X,
(2.22) d(z,0) = do(z) on €.

Now we pick
(2.23) (>1L,
where L is given as in (1.19). Note that
0¢(d) = min{d, ¢}.
On account of (1.10), we have
(¥(0e(d)) — a)(d — L)" = ((0e(d)) — ¢(do))(d — L)" > 0 in Q.

With this in mind, we use (d — L)™ as a test function in (2.21) to derive

bd
2 ),
- /Q [~ (@(0u(d)) — a)6e(n) — abe(n)] (d — L)*de < 0.

[(d—1)*]? do +/ IV(d - L)t do
Q

Integrate to obtain
(2.24) d<L in Qrp.
Note that

0¢(n1) =0 in {ny <0}.
With this in mind, we use n; as a test function in (2.12) to derive

1d
—5%/ (nl_)Qd:vfs/ |Vn1_|2dx:/Gg(nz)Kz(Qz(d))nl_dfCZO-
Q Q Q
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Consequently,

By the same token,

TlQZO.

Use d~ as a test function in (2.21) to get

bd 2 _2

- /Q = ((Be(d)) — a)fe(n) — aby(ny)) d~de

= a/ [0e(n) — 0¢(n1)]d”dz > 0.
Q

Here we have used the fact that ¢(0) = 0. Integrate to obtain

(2.25) d>0 in Q.

This together with (2.24) implies

(2.26) 0,(d) = d.

Add (2.17) to (2.18) and subtract the resulting equation from (2.16) to derive

O(n—(n1+n2)) —eA(n—(ny +n2)) =0 in Qp.
Recall the initial boundary conditions for (n — (n; 4+ ng)) to deduce
(2.27) n =mni +na.
Let A € (0,00), and define
(2.28) w=e Mn,
We easily check that w satisfies
Orw + Aw — eAw = vdiv [(95(%1) + 95(n2))92*1(e/\tw)vw} + e M,(n1)G(d)

(2.29) + e M (G(d) — D) 0¢(ny) in Qr,

Vw-n=0 on Xp,

w(z,0) = no(x) on Q.
Set

2. My = — D5
(2.30) ) max{dgl[gﬁ]\G(d)\,d%]m(d) 1}

Then the last two terms in (2.29) can be estimated as follows:
le™0,(n1)G(d) + e (G(d) — D) b¢(n2)|
< e MOy(m)|G(d)] + e |G(d) — D| 8y (n2)
< Moe ™ (0p(m1) + Oe(n2))
< 2Mpe MOy(n) < 2Mow.
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It immediately follows that
0w + (A — 2Mp)w — div [E + 7(0e(n1) + 94(n2))92*1(e>\tw)vw <0in Qp.

Choose A = 2Mj. Then use (w—||ngl|co,0)™ as a test function in the above differential
inequality to derive

w < ||nolleo.0 a.e. in Qrp.
This immediately implies
(2.31) n < M7 ngl|l .0 ae. in Q.
Thus if, in addition to (2.23), we further require
(2.32) £ > 7 Ingl| oo,
then
Oc(n) =n, 0O(n1) =n1, 0Oi(n2)=ns

and problem (2.16)—(2.22) reduces to problem (2.2)—(2.8). This completes the proof
of Lemma 2.4. 0

Let € € (0,1). Replace ng1(z) by no1(z) + € in (2.8) and denote the resulting
solution to (2.2)-(2.8) by (n(E),n(f),n(;), d®)). That is, we have

r Y
9 — eAn(® = ~div (n<€>) vn<€>} + G(d)n
(2.33) +(G(d?)) = D)nf? in Qr,
-1
amﬁs’ - sAngs) = ydiv n§5> (n(a))y Vn(e)}

(2.34) + G(dNnS — Ky (d©)n + Ky (d)nl in Qr,

r -1
ains — eAnl) = ydiv |ng” (71(6))7 Vn(ﬂ +(G(d®) - D)ny’

(2.35) + K1 (dO)n — Ky(d©)mS) in Qr,
(2.36) b9,d® — Ad® = —(d)n© + anl in Qr,

(2.37) Vi) .n= vn§E> ‘n= Vngs) ‘n=0 on X,

(2.38) d® =d, on Xp,

(2.39) (n©,n{) nl ) = (n0(x) + £.n01(x) + &m0 (x), do(x)) on 2.

In addition, we have

n >0, nf) >0, 2 =n 40l <c,
(2.40) 0<d® <e

Here and in what follows the letter ¢ is independent of €. As we shall see, the addition
of ¢ in (2.39) is to ensure that n(®) stays away from 0 below.
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LEMMA 2.6. We have

2
/ dzdtJre/ ‘v n$|
QT QT

Proof. Pick 7 > 0. Use ln(nga) + 7) as a test function in (2.34) to derive

(e)
a ((nf) +7) ln(ngg) +7)— ngg)) dzr + / My (n(s))7 Vngg)dac
Q Q

y+1 (2

\Y (n(8)> ’

‘V ngs)

2
) dxdt < c.

dt n 47
1
Oy
Qny
= / (G(d(s))ng (d(s)) )+ Kz(d(s))n§€)> ln(ngs) + 7)dz
Q

< / |(6@®) ~ K (@)l m(n +7)| do

+/ Ky(d®)n éa) ln(nge) + 7)dz
{n 5>+T>1}

/ n T)dz + 200/ |n§6) In nge)\dx <ec.
Q {n§5)+7§1}

Here

2.41 Co = G(d Ki(d Ks(d) ¢.
(2.41) 0 maX{dren[ggl ()Ivdren[gf;] 1 )7;3[% 2( )}

Integrate and take 7 — 0 to get

/ \% (n(a))7 . Vnge)dxdt + 45/ \% nge) dxdt < c.
Qr

Qr
Similarly,
5 2
/ v (n@) -V dudt + e / Vi/n$| dedt < c.
QT QT
Add up the two preceding inequalities to obtain the desired result. 0

LEMMA 2.7. The sequences {n(®)} and {d©)} are precompact in LP(Qr) for each
p2>1.

Proof. Tt follows from (2.30) and (2.33) that

(2.42) 9n'® — eAnl®) > ydiv [(n(s)yy Vn(e)] — Myn'® in Q7.
Let w(®) = ¢Motp(2) Then we have
-

(2.43) ow'® — eAw® > ~div Kn(e)) Vw(e)} in Qrp.
Use (¢ —w(®))* as a test function in (2.43) to get
2.44)

1d 2
——— {(s - w(e))+] dx—y (n(s))y \V(e—w ) Pde—e | |V(e—w')*|2dz > 0.
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Recall from (2.39) that w(®) (z,0) = n(®)(x,0) > e. Integrate to obtain
(2.45) n(&) > ge=MoT,

Consequently, (n(s))r € L?(0,T; Wh2(Q)) for each r € R. We derive from (2.33) that

y+1 y+1

a, (n(e)) T VTH (n(e)) 2 71&%(5)
=7 ; L div [(n()) \Y (n<s>)”] _ VTHV (n<s>) . (n<s>)7
+ %div { n(5)>%1_ vn(ﬂ - @v (n@))%ﬂ_l - Vn®
() TGO + () - D)
. ©\” N7 (=D o\ @) 2
=i [ (n9)"¥ (1) F] - =0 (00) 5 v (u)
+eA (n(e))%ﬂ — (-1 (n(€)>%l_1 ]vm ’
(2.46) + FYTH (n) R (G@nf? +(Gd) - Dnf?).

Remember that 77“ — 1 > 0. We can conclude from Lemma 2.6 that the sequence
{Bt(n(s))%rl} is bounded in L2(0,T; (W12(Q))*) + LY (Qr) = {1 +¢2 : 1 €
L2(0,T; (Wh2(Q))"),v2 € L*(Qr)}. Now we are in a position to use (i) in Lemma

St
2.2, thereby obtaining the precompactness of {(n(¥)) * } in L*(Qr).

It is easy to see from (2.36) that {d®)} is bounded in W5(0,T). The lemma
follows from (2.40). d

We may extract a subsequence of {(n(%), nf), n§8>, d®)}, still denoted by the same

notation, such that

(2.47) n®) = n a.e. in Qp and strongly in LP(Q7) for each p > 1,
(2.48) d® = d a.e. in Qp and strongly in LP(Qr) for each p > 1,
nge) — ny weak™® in L (Qr),
ngg) — ny weak™® in L (Qr), and

ay+1
G|

(2.49) (n(s)) Coa weakly in L2(0,T; W12(Q)) as € — 0.

Since {n(®)} is bounded, we also have

P
(n(e)) — nP weakly in L2(0,T; Wh2(Q)) for each p > 2Et.

This combined with (2.43) implies

9in'®) — dyn weakly in L2(0,T; (WH3())").
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Remember that G, K1, K5, are all continuous functions. We also have

(2.50) G(n'®) = G(n) strongly in LP(Q) for each p > 1,
(2.51) Y(n'®)) = (n) strongly in LP(Qp) for each p > 1, and
(2.52) K;(n'®)) = K;(n) strongly in LP(Qr) for each p > 1,4 =1,2.

Our key result is the following.

LEMMA 2.8. Passing to a subsequence if necessary, we have

(e) T+ +1 . 2 1,2
(n € ) — nT strongly in L?(0,T; W1=(Q)).

Proof. We have

v+1
2.53 Ovip©y = T ( (s)) .
( ) n (n'®)) 7+1V n
Thus we can write (2.33) in the form
2.54 O, (e) _ LA (e) — R(s)
( ) 7 1 w )
where

w® — <n<s>>”+1 L4 @)
0

R = (G(d<€>)n§5> +(G(d®) - D)ngf>) .
We may assume that n(®) is a classical solution to (2.54) because it can be viewed
as the limit of a sequence of classical approximate solutions. Use 9,w(®) as a test
function in (2.54) to derive

(2.55) /8tn(€)8tw(a)dac+ L/ Vuw'® - Vow'de = / R®) 9,0 ) dz.
Q v+1Jg Q

We proceed to evaluate each integral in the above equation as follows:

/Qﬁtn(s)atw(e)dx =(v+ 1)/Q (n(5)>7 ((’9,571(5))2 dx

# S [ (an9)
Q

2
/ Vw'® - Vo' de = 1i/ ’Vw(s) dz,
0 24t

/ RE 9w de = (v + 1)/ R® (n(e))v on'dx
Q Q
Le+1) / RO de
v Q

ST [ () (o)
Q

g ACUNCOR

+‘g(’g;Ll)/Q(am(g))Zd:v+s(72:;1)/Q(R(E))Qd:ﬂ.
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Plug the preceding three results into (2.55) and integrate to derive

/QT <8t (n(s)) w2+2>2 dxdt + € /QT <8tn(5)>2 dxdt + ozltlgT /Q ‘Vw(s)

Note

2
dz < c.

0 (n®) " =2(n) T 5, (n2) T,

\vJ (n(€)>7+1 =(y+1) (71(5))7 vn(®,

On account of (2.40), {9;(n())7*1} is bounded in L?(Q7), while {(n())7*!} is bounded
in L°°(0,T; WH2(Q)). By (ii) in Lemma 2.2, the sequence {(n(*))Y*1} is precompact
in C([0,T], L%()). Consequently, {(n(e))w_l} is precompact in C([0,T], L?(€2)) for
each p > 1. This asserts

(2.56) / (n(e) (z, t))q dx — / ni(z,t)dx for each t € [0,7] and each ¢ > v+ 1
Q Q

(pass to a subsequence if need be).
Take ¢ — 0 in (2.54) to obtain

An — #Amﬂ = R = G(d)n1 + (G(d) — D)na.
Subtract this equation from (2.54) and keep (2.53) in mind to get

y+1
(2.57)  9y(n'®) —n) — #A [(n(€)> _ nvﬂ] _eAn® — RO _ R,

Use (n(g))vJrl —nY*! as a test function in (2.57) to derive
0 ‘V |:<n(5))7+1 — n’H—l]
v+1 Qr

+1
+ € vnl® . v {(n(s))v — n'”'l} dxdt
Qr

+1
_ / (R — R) [(n@y - m“] ddt
Qr
T y+1
(2.58) 7/ <8t(n(5) —n), (n(e)) - n7+1> dt.
0

We will show that the last three terms in the above equation all go to 0 as € — 0. It
is easy to see from Lemma 2.6 that

2
dzdt

v+1
€ vnl®) . v [(M”) — n"*“] dmdt‘
Qr

+1 Y1

/ vVn@Evvn) . [(n(€)> EE v (n(s)) 7 ngangl} dxdt‘
Qr

<cye—0 ase —0.

=4e
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Obviously, we have
+1
/ (R(E) — R) [(n(s))7 — n'y“] dedt =0 ase — 0.
Qr

Finally, we compute from Lemma 2.1 and (2.56) that

T +1
/ <8t(n(5) —n), (n(5)>7 - n7+1> dt
0
1 (T[d T+2 d
- - il (e) el v+2
T¥2 ), [dt/9<n ) dx—|—dt/gn dm]dt
T T +1
—/ <8tn(5),n7+1> dt — / <8tn, (n(5)>7 >dt
0 0

_ % UQ (n<6>(gz:,T))7+2 dm+/ﬂn7+2(x,T)dx}

2 2 Y L on©
~ i3 Q(no(x)) dx — | <6tn N >dt

<[ (o ey

2 2 r
- —— [ W@, T)de — —— | (no(x))"™ da — 2/ (Oyn,n 1) dt
0

Y+2Ja vY+2Ja
= 0.
This completes the proof. ]

Proof of Theorem 1.2. Equipped with the preceding lemmas, we can complete
the proof of Theorem 1.2. Keeping (2.45) in mind, we can set
(e) (e)

(e) _ ™ (e) _ M2
o= n(f)’ Ny~ = n(a) .

Suppose
77%6) — 1, né‘e) — ny weak® in L (Qr).
We calculate

n(f)V (n(g))7 = WEE)H(E)V (n(g))7

- D 0y (n@)”“

v+ 1
— %mVTﬂH =mnVn" weakly in (LQ(QT))N.
Y
We claim that
(2.59) mn =mn; a.e. on Qp.

To see this, for each § > 0 we deduce from Lemma 2.7 that

U;E)(n(a) — 8T = mn—6)" weak® in L>®(Q7).
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Note that ("(:(7;6)+ < 1. As a result, we have
(n() — )+ (n—¥a)* . oo
n%s) (nl® — &)t = ngs) 5 — weak™® in L (Qrp).
We obtain
_ 5t
nl% =mn(n—48)" for each § > 0.

This implies that
n1 = nn on the set {n > 0}.

If n = 0, then ny = 0, and we still have n; = nn;. This completes the proof of (2.59).
Similarly, we can show

néE)V (71(5))7 — noVnY weakly in (LQ(QT))N

We are ready to pass to the limit in (2.34) and (2.35), thereby finishing the proof of
Theorem 1.2. ]

3. The limit as v — oo and proof of Theorem 1.3. Once again, the proof
will be divided into several lemmas. Now the solution to our problem (1.1)—(1.6) is

denoted by (n(V),ng’”,n?), d"). That is, we have

@ — Y A (Y Z ad ™ — D = RO

(31) an) — A (n ) GdD)n™ — Dn{” = RY i Qr,
o — div (nng (nm)”) — G = K1 (d)n?
(3.2) + Ky(dn$) = R in Qy,
Y

omS” — div (n§79 (n)) ") = (G(dD) = D)f? + Ky (@)
) — Ko(dNn$) = RO in Qy,
) b0, d) — Ad?) = —p(d)n) + anl) in Qr,
) ng’Y)V (n(“’))w ‘n= ng”)v (n(’”)’y ‘n=0 on Xr =090 x (0,T),
) d(’Y) = db on ET,
)

= (now + oo+ o). do(x)) on €1

As before, the term % is added in (3.7) to ensure that n(?) stays away from 0 below.
Therefore, it possesses enough regularity properties. We wish to find and identify the

limit of solutions as v — oco. By our analysis in the preceding section, we have

(3.8) ngv) >0, n;”) >0, n) = niw + néw <ec,
0< dO) <L,

where L is given as in (1.19). In (3.8) and what follows, the generic positive number c is
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independent of 7. We may assume that there is a subsequence of (nYY)7 ng’), n), d(“’)),
not relabeled, such that

(3.10) nﬁ” — n§°°), né” — néoo), n) = p) a5 ) weak* in L=(Qr).

LEMMA 3.1. Assume that
(3.11) Oudy, € L*(0,T; WH2(Q)), do € WH2(Q).

Then we have

2
(3.12) / (8td(7)) dwdt < c.
Qr

Furthermore, if (H6) and (H8) hold, then we have
(3.13) IVdD o0, < e

Proof. Use 9;(d") — dp) as a test function in (3.4) to get

2 1d
(v) -2 (7))2
b/Q(atd ) daz+2dt /Q|Vd |“dx

=b / 9, d 8y dyda + / Vd - Vo,dyda
Q Q
+/ (fzb(d(”’))n(w + an(;)> A (d) — dy)dzx.
Q
Integrate to derive

2
(3.14) / (@d(w) dxdt + sup / |VdY2de < e.
Qr Q

0<t<T

With the aid of our assumptions (H6) and (H8), we can easily modify the proof of
Proposition 2.3 in [24] to obtain (3.13). The basic strategy there is to derive an
equation for &Cid('” and then apply a parabolic version of the DeGiorgi iteration
technique to the resulting equations. The boundary estimate is achieved by flattening
the relevant portion of the boundary. All these steps can be carried out here. We
shall omit the details. The proof is complete. 0

Clearly, this lemma implies (1.25). Consequently,
(3.15) RO = R®) = G(d™))n>) — Dn{® weak* in L (Qr).

The core of our development is the following lemma.

LEMMA 3.2. We have
2 2
(3.16) / t(v?) dxdt+/ t\ww] ddt < .
QT QT

Proof. Let Gy be given as in Theorem 1.3. Then

(3.17) R < Gon™.
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—Got

Use this in (3.1) and multiply through the resulting inequality by e to get
YGot ~+1
(3.18) Buw™ — L&A (w("’)) <0 in Qr,
y+1

where
w) = g=Goty, (M)

For each € > 0 we let

1 ifs>e,
ne(s) = %S if0<s<eg,
0 ifs<o.
We can easily check that
1 ifs>0
+ _ )
ns(s)%sgno(s){ 0 ifs<0, as € = 0.

Let 0 € (O7 e‘GoT) be given as in (H7). Clearly, 7. (w(’Y) — a) > 0. Multiply through
(3.18) by this function to get

w (z,t) w™ (2,0)
(3.19) / / Ne (s — o) dsdx < / / Ne (s — o) dsdz.
Jo aJo

Take € — 0 in the above inequality to obtain

+ +
/Q(wm(x,t)—a) dxg/g(w('Y)(x,O)—U) dx

1 1
< ||n0||oo,Q+**CT no(x)ﬁ»fz(j .
v Y
Or equivalently,

+ 1 1
(3.20)/ (n(”’) (x,t) — aecot) dr < efot <||n0||ooyg + - - a) Hno(x) +- > JH .
Q v v
On the other hand,

+ +
/ (n(y) (z,t) — U@G"t) dx > / (n("Y) (z,t) — U@Got) dz
Q {nM(z,t)>1}

{n(”)(x,t) > 1}‘ .

> (1 — ge0t)

This combined with (3.20) implies

w1 <

1 — gelot

eGot (||n0\|oo’9 + % — O') H

Got .
L€ (1||io(|f|;§?t o) [{no(z) > o}| (as v — o0)
(3.21) et (Ing oo, — ) 1 |
. - 1 — geGot eGoTHnOHOO7Q
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The last step is due to our assumption (H7). We easily check

e’ ([[nolle.0 — o)

< e9%"|ng||o0,0-

1 — geCot
G
Hence we can pick a number o € (= Ot(l”fgogéf]‘,‘,rg) eGOTHrlonoo,Q ,1). Consequently,
(3.22) sup Hn(”(z,t) > 1}’ < 00| at least for v sufficiently large.

0<t<T

Using (w™ — ||ng || co.0 — %)* as a test function in (3.18), we derive the weak maximum
principle

1
(3.23) w < |nglloe.q + N in Q.
This together with (3.17) implies

() Got 1
(3.24) R < Goe™" | Inolloc,0 + 5

Let v(7) be given as in (1.12). Use tv(?) as a test function in (3.1) to deduce

1 d v+2 t 2
t(n(w) g+ b / ‘Wm‘ e
v+1Ja

y42dt Jq
__ 1 (nw))”“ do 4t / RO gy
vY+2 Ja Q
e (IInollcr + )
o, 1
(3.25) < i / v0dz + GoeboT <||n000,ﬂ+> ' / oM.
v+ 2 Q vy Q

Since

Hn(”)(m,t) > 1}’ + Hn('y)(x,t) < 1}‘ =19,
the inequality (3.22) implies
‘{nw(x,t) < 1}\ > (1 00)|€].

Evidently,
+
(v(” - 1) =0 on {nM(z,t) <1}.

This puts us in a position to apply Lemma 2.3. Upon doing so, we arrive at

+ +
(3.26) / (v(“’) . 1) dx < c/ \Y (v(” . 1) dzx = c/ ‘V'U(’Y)‘ dx.
Q Q {nM(z,t)>1}

To estimate the first term on the right-hand side of (3.25), we use (n(?) —1)* as a
test function in (3.1) to get

(3.27) sup /Q [(n(v) _ 1)+]2 dr + 7/

0<t<T Qr

(n(“’)y{ ‘V(nm - 1)4"2 dxdt < c.
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For each € > 0 we estimate

/ vz = / v dz +/ vz
Q {nM(z,t)>1} {nM(z,t)<1}
+
< v —1) dz+c
JACED
SC/ Vo] dw + ¢
{(n) (2,)>1}
2!
=c(y+ 1)/ (n("’)) ‘V(n”) — 1)+‘ dr +c
Q
Y Y 2
< 5/ (n(”’)) dz + c(e)(y + 1)2/ (n('y)) ‘V(nm - 1)+’ dx +c
Q Q
c / v dz + c(e)(y +1)? /
Q

o1 2
= W . (n(7)> ‘V(n(’ﬂ — 1)+’ dx + c.
00,01

By choosing ¢ suitably small, we immediately get

(3.28) /QU('Y)d:c <+ 1)2/

2
(n(w)V ’V(n("’) — 1)+’ dz +c.
Q

Use this in (3.25), then integrate, and apply (3.27) to obtain

1 )" gl |
sup t(n”) de + —— t‘Vv'Y‘ dxdt
¥+ 2o0<i<r Jo v+1Jar
0% 2
<c(v+1) / (n("’)) ‘V(nm - 1)+‘ dxdt + c/ todxdt + ¢
Qr Qr

< c/ t|Vo|dadt + ¢
Qr

< v

2
_7/ t’Vv(“’)’ dxdt + c.
2(v+1) Ja,

Consequently,
2
/ t ’VU(V)‘ dxdt < c.
Qr

By a calculation similar to (3.26),

™) @\
/QTt(v ) dmdtSATt[<v —1) ] dxdt + ¢
<o dle ey

dxdt +c <e.
This completes the proof of Lemma 3.2. ]

We see that the sequence {v(")} is bounded in L?(7,T;W2(Q)) for each 7 €
(0,T). Thus we may assume that (1.22) holds.

Proof of (1.28) and (1.29). We shall employ an argument from [11]. For each
0 > 0 define

3.29 o =L@ t) e Qp i n(a,t)>1+4).
§
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We argue by contradiction. Suppose that (1.28) is not true. Then there is a § > 0
such that

(3.30) 25| > 0.
We claim
(3.31) lim inf ‘Qfﬁ" =y > 0.

To see this, we estimate from (3.9) that

n(V)n(oo)X (cydxdt = nMn () dedt + nn() dgdt
Q
Qr 26 Qg?)ﬂggv) Qézo)\ﬂ((;w)

1 2
< (ol + 2 ) [0+ 140) [ oot
Q

b
If ¢ in (3.31) is 0, we take v — oo in the above inequality to derive

(3.32) / n(>n () dedt < (1 + 6)/ n(>)dadt.
of o

This is possible only if |Qé§°)| = 0. But this contradicts (3.30). Thus (3.31) holds.
On the other hand, for each 7 € (0,T) we have

(3.33)
c> / toMdxdt > / todzdt > 7(1 4 6)7H ’Qfﬂ) N(Q x (r,7))|.
) Q" n@x (r,1))
That is,

lim sup ‘Qg’” N (2 x (7, T))’ <0 for each 7 € (0,T).

Y00

Obviously, this contradicts (3.31). This completes the proof of (1.28).
Fix 7 € (0,T). First, we claim

T
(3.34) lim / / ‘1 —n ’ v dadt = 0.
T Q

Y—0o0

To see this, let € € (0,1) be given. We estimate from (3.16) that

T
/ / ‘1 _ n(v)‘ o dadt — / ‘1 . C)) ’ v dzdt
g {|1_n(w)|§5}ﬂ(QX(T7T))

‘1 — v dzdt

“
{nM >14+e}N(Qx(1,T))

+/ ‘1 —nM ’ v dxdt
{nM <1—e}N(Qx (1,T))

-

< cs—l—c‘{n("’) >14en(@Qx(r,T)) : +c(1 —e)r

Consequently,
T
(3.35) lim sup/ / ’1 - n('Y)‘ v dzdt < ce.
Y0 T Q

Since € can be arbitrarily small, we yield (3.34).
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Observe from (3.1) that the sequence {9;7(?)} is bounded in L?(r, T; (Wh2())*).
We can infer from the Lions-Aubin lemma that {n(?} is precompact in C([r,T7;
(W2(Q))*). We may assume that

(3.36) n() = n(>) strongly in C ([77 TY; (W12(Q))*)

Once again, we pass to a subsequence if need be. With this in mind, we can deduce
from (1.22) that

T
/ / (’v) (v)dxdt:/ (1= 0, s
:/ (1 —n(®) p(®Ngt = // (Oo)dxdt

This together with (3.34) and (1.28) implies
(3.37) (1 - n<°°>) ) =,

from which (1.29) follows. O

Now we are ready to prove (1.23).

Proof of (1.23). Use t29,0(") as a test function in (3.1) to get

2 d
+1)t? CAN ™) _r @ / Avaned
(v )t / (n ) (atn ) dz + CEE t*|Vo | dx

(3.38) =1 Vo |2de + tQ/ R a0 dz.
v+1Ja Q

To estimate the last integral in the above equation, we compute from (3.3) that

(3.39) —th/ ngﬂaﬂ,(v)dw - —Di
Q

o t2n(7) wda:—&—QDt/ ng/)v( )dz

Q
+Dt2/ 8tnéwv(7)dx
Q

d
=-D— thQ)u(”da: + 2Dt/ n?)vmda:
Q

dt Q
,YDtQ (7)
— 7_'_1/ = ‘VU(’Y)‘ dx+Dt2/ R )oM d.
n

Integrate and then apply (3.16) to deduce

3.40 - D t2 n(y)atv(wdxdt <ec.
(3.40) 5
0 Q
Similarly,
> Dy () 5,0 () yHLd [ om0y (o)
t/QG(d Vo de = 10 5 | 26 )(n ) dz

2(’7“) o ()T

o+l

+2
- tzG/(d(v))atd(v) (n(v)>7 dr.
v
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Integrate and then use (H5), (3.16), and (3.12) to derive
T 1
(3.41) / / 2G(dYn D g0V dadt < i/ 72G(d )Mo Mde + ¢
0 Jo 7+2Ja
Integrate (3.38) and then take into consideration (3.40) and (3.41) to obtain

(v+1) /OT/Qt2 (nm)w (8tn(7))2dxdt

i} 2172 7+1/ 26(d ™)

3.42 —_— VNode < —— G(d d .

(3.42) +2(’Y+1)/QT|VU | x_’y+2 QT @ o\ dr + ¢

We easily infer from (3.26) that

(3.43) / vMdx < c/ (Vo |de + ¢ < 5/ (Vo |2dz + c(e), &> 0.
Q Q Q

Use this in (3.42) and choose € suitably small in the resulting inequality to derive

o 2
(3.44) (’y—i—l)/ t? (n(y)) ((’%n(”)) dzdt 4+ sup /t2|VU(“’)|2dx <c.
Qr o<t<T Jo
This combined with (3.43) yields
2
(3.45) sup /t2 (v(“’)) dx < c.
0<t<T Jo

Use t2 (v — 0(*°)) as a test function in (3.1) to deduce

/ 29,0 (,U(’Y) — U(OO)) dr
Q
2y
3.46 M9 (™) — ) g :tz/Rm () _ )Y da.
( )+7+1/QVU V(v v )x A (v v )x

Note that

1 d v+2 2t v+2
4 £20,nM oM dy = 7f/ 2 (n dr — —2 ™ der.
(3.47) /Q o'\ dx Sr2dt ), (n ) x 52 ), (n ) x

Integrate to get

1 +2
/ 20,0 dedt = —— / T? (n“)(a:,T))7 dz
Qr T+2 /o

- L t (n(“’))w+2 dxdt
v+2 Ja,

— 0 as vy — oo.

The last step is due to (3.45). Keeping this and (3.46) in mind, we calculate

2
lim sup/ t? ‘V (v(’” — v(‘x’))’ dxdt
Qr

y—>0o0

< lim sup/ ?vo . v (U(W) — v(oo)) dxdt
Qr

y— 00

Y—00

T
(3.48) < / (t9,n > tv*))dt + lim sup/ t2R™) (vm - v(°°)> dxdt.
0 Qrp
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Observe that
RO = (G(dm) - G(d(oo))) n) + G(d(w))n(” — Dny).

Remember that {tn('y)},{tng’)} are precompact in C([0,T]; (W'2())"). Further-
more, we have G(d(®)) € L>®(0,T; W">(Q)) due to (H5) and (3.13). Hence

lim 2R (U(V) — v(°°)> dxdt

y—00 Qr
T
= lim <tn(7),tG(d(°°)) (vh) - v(oo))>dt
y—0o0 0
Tl ¢ (4 _ )
_ . vy v) _ (0 _
(3.49) D’yli)ngo ; <tn2 ,t (U v )>dt 0.
Use this in (3.48) to obtain
2 T
(3.50) limsup/ t? ‘V (U('Y) - v(oo))‘ dxdt §/ (tdyn(>) 1) dt.
Yoo Qp 0

We wish to show that the right-hand side of the above inequality is 0. To this end,

we introduce a function .’
(c0) _ 0 i s S 1,
() { oo if s> 1.

Obviously, U(*)(s) is convex and lower semicontinuous ([13, p. 49]) and
(3.51) W) (5) = oo (s),

where (oo (s) is given as in (1.11). We claim that ¢t — [, T () () (,t))dx is an
absolutely continuous function on (0,7") and

d
(3.52) @/ W) () (g, t))dx = (9n>),v(®)) for ae. t € (0,T).
Q

Note that Lemma 2.1 is not applicable here because we do not have
n>) e L*(r, T; W2 (Q)).

We shall give a direct proof. To do this, we infer from (1.14) that

/\Il((’o)(n(oo)(m,t—ﬁ—6))dx—/\I’(oo)(”(oo)(xat))dm
Q Q

() (g n(>® (g —n(®) (g T
> [0t (1wt +-2) =0 ) d
(3.53) = t+e) —nI( 1), 0 (1)), e>0.

Let ((t) € C§°(0,T) be such that ¢(¢) > 0. Multiply through (3.53) by 1((t), integrate
the resulting inequality over (0,7"), and thereby obtain

/T/ \Ij(oo)(n(oo)(x’t))dxwdt
o Ja €

T (o) (. — nloo)(.
(3.54) > / <n (vt +e) = ’t),v(m)(~,t)> ¢(t)dt for e suitably small.
0

3
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We can easily take the limit £ — 0 on the left-hand side of the preceding inequality.
To show that we can do the same for the right-hand side, we integrate (1.13) over
(t,t+¢) to get
t+e t+e
(3.55)  n®)(z,t+e) —n(x,t) - A/ v ds = / R™)(z,s)ds in Q.
t t

Using év((’o) (z,t) as a test function in the above equation gives

<n(°°)( t+5)_n(oo>< ) oo t)>

t+e t+£
(3.56) / / Vo) ds - Vol dz + / / (z,5)dsv ™) da.
Q€ Q€

We can verify

1 t+e
(3.57) - / Vo) (z, 5)ds — Vo™ (z,t) a.e on Q7.
¢

It follows from (3.44) that

1 t+e
(3.58) sup 7/ Vo) (z, 5)ds <e(r), T€(0,T).
t>7 || € Jt 2,0
This together with (3.57) implies
1 t+e N
(3.59) - Vo) (z, 5)ds — Vo> (x,t) weakly in (L2 x (1,T)))
t

Similarly,

1

t+e
g/ R (z,5)ds — R (x,t) strongly in L(Qr) for each ¢ > 1.
t

We are ready to evaluate

. T <n(<>0)(. t—}—a) — n(oo)(' t>7 (OC)( 7t)>§(t)dt

e—0
/ / ‘vv@o)‘ drC(t)dt + / / RO (%) qu¢ (1) dt

(3.60) _ / (8 = (.0)) Dy

0

The last step is due to (1.13). Taking € — 0 in (3.54) yields
d
7 T () (2, t))dz > (9>, v(>)) in the sense of distributions.

Replacing each occurrence of € by —¢ in the preceding proof, we can derive
d

o T () (2, t))dz < (9n>), 1>} in the sense of distributions.

This completes the proof of (3.52).
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With (3.52) in mind, we calculate

(3.61)

T T
/(tatn<°°>,tv(°°)>dt:/ t2(9yn () (>N dt
0 0
T ,d
_ / pd / B (1) (1)) dadlt
o dtJg
T d
= / — / £20() () (g, ))dwdt
o dt Jo

T
s / / £ (n5°) (3, 1)) dadt
0 Q
=0.

The last step is due to the fact that W(°)(n(>)(z,#)) = 0. Combining (3.61) with
(3.50) yields (1.23).

To complete the proof of Theorem 1.3, we still need to verify (1.26). To this end,
we multiply through (3.1) by v(?) to get

1 v+2
") 0 A Gl T (MY M2) — p(),0)
'y—i—Qat (n ) P (le(’U Vol?) — Vol ) Ry,

Even though it is not clear if {tv(*)} is precompact in L?(Q7) because we do not have
any estimates on 9;v(?), (1.23) and (3.49) are enough to justify passing to the limit
in the above equation, thereby obtaining (1.26). This finishes the proof of Theorem

1.3.

g > > X

|
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