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EXISTENCE AND INCOMPRESSIBLE LIMIT OF A TISSUE
GROWTH MODEL WITH AUTOPHAGY\ast 

JIAN-GUO LIU\dagger AND XIANGSHENG XU\ddagger 

Abstract. In this paper we study a cross-diffusion system whose coefficient matrix is non-
symmetric and degenerate. The system arises in the study of tissue growth with autophagy. The
existence of a weak solution is established. We also investigate the limiting behavior of solutions as
the pressure gets stiff. The so-called incompressible limit is a free boundary problem of Hele-Shaw
type. Our key new discovery is that the usual energy estimate still holds as long as the time variable
stays away from 0.
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1. Introduction. Let \Omega be a bounded domain in RN with Lipschitz boundary
\partial \Omega and T any positive number. We consider the initial boundary value problem

\partial tn1  - div (n1\nabla p) = G(d)n1  - K1(d)n1 +K2(d)n2 \equiv R1

in \Omega T \equiv \Omega \times (0, T ),(1.1)

\partial tn2  - div (n2\nabla p) = (G(d) - D)n2 +K1(d)n1  - K2(d)n2 \equiv R2 in \Omega T ,(1.2)

b\partial td - \Delta d =  - \psi (d)n+ an2 in \Omega T ,(1.3)

n1\nabla p \cdot n = n2\nabla p \cdot n = 0 on \Sigma T \equiv \partial \Omega \times (0, T ),(1.4)

d = db on \Sigma T ,(1.5)

(n1(x, 0), n2(x, 0), d(x, 0)) = (n01(x), n02(x), d0(x)) on \Omega ,(1.6)

where n is the unit outward normal to \partial \Omega and

n = n1 + n2, p = n\gamma , \gamma \geq 1.(1.7)

This problem was proposed as a tissue growth model with autophagy in [9]. In the
model, cells are classified into two phases: normal cells and autophagic cells, and
n1, n2 are their respective densities. The third unknown function d represents the
concentration of nutrients. We assume that both cells have the same birth rate.
Their death rates are different because autophagic cells have an extra death rate D
due to the ``self-eating"" mechanism. Thus if G(d) is the net growth rate of normal
cells, then G(d) - D gives the net growth rate for autophagic cells. Two types of cells
can change from one to another. The transition rates are denoted by K1(d),K2(d),
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5216 JIAN-GUO LIU AND XIANGSHENG XU

respectively. Since autophagy is a reversible process, we have

(1.8) K1(d) \geq 0, K2(d) \geq 0.

Both cells consume nutrients with the consumption rate \psi (d). However, autophagic
cells also provide nutrients by degrading its own constituents with a supply rate a.
We assume

(1.9) D, a \in (0,\infty ).

Moreover,

(1.10) \psi (0) = 0, \psi (d) is increasing, and there is d0 > 0 such that \psi (d0) = a.

ondition in (1.10) means that when there is no nutrient the consumption rate should
be zero. The number d0 is the so-called critical nutrient concentration. When d < d0,
autophagic cells supply more nutrients than they consume, while d > d0 indicates
that autophagic cells consume more nutrients than they supply.

For the spatial motion of cells, we take a fluid mechanical point of view. That is,
it is driven by a velocity field equal to the negative gradient of the pressure (Darcy's
law) [15]. And the pressure arises from mechanical contact between cells. Denote by
p the pressure. Then we can assume that (1.7), (1.1), and (1.2) hold.

One can also model tissue growth as free boundary problems [10]. They are also
called geometric or incompressible models and describe tissue as a moving domain (see
[6] and the references therein). Building a link between these two classes of models
has attracted the attention of many researchers in recent years. The first result in this
direction was obtained in [15] for a purely mechanical model. It indicates that the
limit of the mechanical model gives rise to a free boundary problem as the pressure
becomes stiff. Since then the same result has been achieved for a variety of models,
which include active motion [16], viscosity [18], different laws of state [8], more than
one species of cells [4], and multispace dimensions and viscosity [7]. In each case the
limit model turns out to be a free boundary model of Hele-Shaw type.

The objective of this paper is to study the existence assertion for (1.1)--(1.6) and
the limiting behavior of solutions as \gamma \rightarrow \infty .

We largely follow the approach adopted in [19] for the existence assertion. To
understand the nature of the limiting model for our problem, we define a family of
maximal monotone graphs [2] in R\times R by

\varphi \gamma (s) =
\bigl( 
s+
\bigr) \gamma +1

=

\biggl\{ 
s\gamma +1 if s \geq 0,

0 if s < 0.

Obviously,

(1.11) \varphi \gamma (s) \rightarrow \varphi \infty (s) \equiv 
\biggl\{ 

[0,\infty ) if s = 1,

0 if s < 1

in the sense of graphs as \gamma \rightarrow \infty [2]. The total density n = n(\gamma ) satisfies the problem

\partial tn
(\gamma )  - \gamma 

\gamma + 1
\Delta v(\gamma ) = G(d(\gamma ))n(\gamma )  - Dn

(\gamma )
2 \equiv R(\gamma ) in \Omega T ,

v(\gamma ) =
\Bigl( 
n(\gamma )

\Bigr) \gamma +1

a.e. on \Omega T ,(1.12)

\nabla v(\gamma ) \cdot n = 0 on \Sigma T ,

n(\gamma )(x, 0) = n0 \equiv n01 + n02 on \Omega .
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A TISSUE GROWTH MODEL WITH AUTOPHAGY 5217

Thus if we formally take \gamma \rightarrow \infty , we expect to arrive at the following problem:

\partial tn
(\infty )  - \Delta v(\infty ) = G(d(\infty ))n(\infty )  - Dn

(\infty )
2 \equiv R(\infty ) in \Omega T ,(1.13)

v(\infty ) \in \varphi \infty (n(\infty )) a.e. on \Omega T ,(1.14)

\nabla v(\infty ) \cdot n = 0 on \Sigma T ,(1.15)

n(\infty )(x, 0) = n0 on \Omega .(1.16)

If n0 \leq 1 a.e on \Omega , a result of [3] asserts that the limit problem (1.13)--(1.16) has an
integral solution n(\infty ) and lim\gamma \rightarrow \infty n(\gamma ) = n(\infty ) in L1(0, T ;L1(\Omega )) (also see [23] for
related results). If n0 > 1 on a set of positive measure, the initial condition is no longer
compatible with \varphi \infty and the resulting problem (1.13)--(1.16) becomes singular. Thus
identifying the limit of the sequence \{ n(\gamma )\} is an interesting issue. When R(\gamma ) \equiv 0, this
problem was solved in [5] through an application of the Aronson--B\'enilan inequality
[1]

(1.17) \partial tn
(\gamma ) \geq  - n

(\gamma )

\gamma t
.

The precise result there is the following: If \Omega = RN , n0(x) has a star-shaped profile,
and R(\gamma )=0, then n(\infty ) \equiv lim\gamma \rightarrow \infty n(\gamma ) exists and is given by

n(\infty )(x) =

\biggl\{ 
1 if x \in A,
n0(x) if x /\in A,

where A is the coincident set of the solution of the following variational inequalities:

 - \Delta w \geq n0  - 1, w \geq 0, (\Delta w + n0  - 1)w = 0 in RN .

A remarkable fact is that the limit n(\infty ) is a function of x only. A similar result
was established for hyperbolic conservation laws in [22]. However, if R(\gamma ) changes
sign, inequalities of the Aronson--B\'enilan type no longer hold [17]. To circumvent this
difficulty, the authors of [6] established a weaker version of (1.17) along with an L4

estimate for the gradient of the pressure. Our problem here does not quite fit the
framework developed in [6]. This forces us to take a totally different approach. It

seems more convenient for us to work with v(\gamma ) =
\bigl( 
n(\gamma )

\bigr) \gamma +1
instead of the pressure.

Our key estimate is\int T

\tau 

\int 
\Omega 

\Bigl( 
v(\gamma )

\Bigr) 2
dxdt+

\int T

\tau 

\int 
\Omega 

\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| 2 dxdt \leq c

\tau 
for all \gamma \geq 1 and \tau \in (0, T ).

Here and in what follows the letter c denotes a generic positive constant whose
value is determined by the given data. That is, the sequence \{ v(\gamma )\} is bounded
in L2(\tau , T ;W 1,2(\Omega )) for each \tau \in (0, T ).

Before we introduce our remaining results, we state the definition of a weak
solution.

Definition 1.1. We say that (n1, n2, d) is a weak solution to (1.1)--(1.6) if the
following:

(D1) n1, n2, d are all nonnegative and bounded with
(1.18)

\partial tn1, \partial tn2, \partial td \in L2(0, T ;
\bigl( 
W 1,2(\Omega )

\bigr) \ast 
), n

\gamma +1
2 , d \in L2(0, T ;W 1,2(\Omega )),

where n is given as in (1.7) and
\bigl( 
W 1,2(\Omega )

\bigr) \ast 
denotes the dual space ofW 1,2(\Omega ).
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5218 JIAN-GUO LIU AND XIANGSHENG XU

(D2) There hold

 - 
\int 
\Omega T

n1\partial t\xi 1dxdt+

\int 
\Omega T

n1\nabla n\gamma \cdot \nabla \xi 1dxdt

=

\int 
\Omega T

R1\xi 1dxdt - \langle n1(\cdot , T ), \xi 1(\cdot , T )\rangle +
\int 
\Omega 

n01(x)\xi 1(x, 0)dx

for each \xi 1 \in H1(0, T ;W 1,2(\Omega ))

 - 
\int 
\Omega T

n2\partial t\xi 2dxdt+

\int 
\Omega T

n2\nabla n\gamma \cdot \nabla \xi 2dxdt

=

\int 
\Omega T

R2\xi 2dxdt - \langle n2(\cdot , T ), \xi 2(\cdot , T )\rangle +
\int 
\Omega 

n02(x)\xi 2(x, 0)dx

for each \xi 2 \in H1(0, T ;W 1,2(\Omega )), and

 - b

\int 
\Omega T

d\partial t\zeta dxdt+

\int 
\Omega T

\nabla d \cdot \nabla \zeta dxdt

=

\int 
\Omega T

( - \psi (d)n+ an2)\zeta dxdt - b\langle d(\cdot , T ), \zeta (\cdot , T )\rangle + b

\int 
\Omega 

d0(x)\zeta (x, 0)dx

for each \zeta \in H1(0, T ;W 1,2
0 (\Omega )) ,

where \langle \cdot , \cdot \rangle denotes the duality pairing between W 1,2(\Omega ) and
\bigl( 
W 1,2(\Omega )

\bigr) \ast 
and

H1(0, T ;W 1,2(\Omega )) = \{ v \in L2(0, T ;W 1,2(\Omega )) : \partial tv \in L2(0, T ;W 1,2(\Omega ))\} .
(D3) (1.5) is satisfied.

To see that the three equations in (D2) make sense, we can conclude from (D1) that
n1, n2, d \in C([0, T ];

\bigl( 
W 1,2(\Omega )

\bigr) \ast 
). Since n is bounded and \gamma \geq \gamma +1

2 , we also have
n\gamma \in L2(0, T ;W 1,2(\Omega )).

Theorem 1.2. Assume the following:
(H1) G,K1,K2, \psi are all continuous functions.
(H2) (1.8), (1.9), and (1.10) hold.
(H3) b \in (0,\infty ) and \partial \Omega is Lipschitz.
(H4) n01, n02 \in W 1,2(\Omega ) \cap L\infty (\Omega ), d0 \in L\infty (\Omega ), and db \in L2(0, T ;W 1,2(\Omega )) \cap 

L\infty (\Omega T ).
Then there is a weak solution to (1.1)--(1.6).

Set

L = max\{ \| db\| \infty ,\Sigma T
, \| d0\| \infty ,\Omega , d0\} ,(1.19)

G0 = max
s\in [0,L]

G(s).(1.20)

Theorem 1.3. Let the assumptions of Theorem 1.2 hold. Assume the following:
(H5) G\prime (s) is bounded.
(H6) db \in W 1,s(\Omega T ) for some s > N + 2 and d0 \in W 1,\infty (\Omega ).
(H7) | \{ n0(x) \geq \sigma \} | \leq 1

eG0T \| n0\| \infty ,\Omega 
| \Omega | for some \sigma \in 

\bigl( 
0, e - G0T

\bigr) 
.

(H8) \partial \Omega is C1,1.
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A TISSUE GROWTH MODEL WITH AUTOPHAGY 5219

Denote by (n(\gamma ), n
(\gamma )
1 , n

(\gamma )
2 , d(\gamma )) the solution obtained in Theorem 1.2. Then there is

a subsequence of (n(\gamma ), n
(\gamma )
1 , n

(\gamma )
2 , d(\gamma )), which will not be relabeled, such that

(n(\gamma ), n
(\gamma )
1 , n

(\gamma )
2 ) \rightarrow (n(\infty ), n

(\infty )
1 , n

(\infty )
2 ) weak\ast in (L\infty (\Omega T ))

3

and strongly in
\Bigl( 
C([\tau , T ];

\bigl( 
W 1,2(\Omega )

\bigr) \ast 
)
\Bigr) 3

for each \tau \in (0, T ),(1.21)

v(\gamma ) \rightarrow v(\infty ) weakly in L2(\tau , T ;W 1,2(\Omega )) for each \tau \in (0, T ),(1.22)

\nabla v(\gamma ) \rightarrow \nabla v(\infty ) strongly in L2(\tau , T ; (L2(\Omega ))N ) for each \tau \in (0, T ),(1.23)

n
(\gamma )
2

n(\gamma )
\rightarrow \eta (\infty ) weak\ast in L\infty (\Omega T ),(1.24)

d(\gamma ) \rightarrow d(\infty ) weak\ast in L\infty (0, T ;W 1,\infty (\Omega )) and strongly in L2(\Omega T ).(1.25)

The limit (n(\infty ), v(\infty ), n
(\infty )
1 , n

(\infty )
2 , \eta (\infty ), d(\infty )) satisfies

 - 
\int 
\Omega T

n(\infty )\partial t\xi 1dxdt+

\int 
\Omega T

\nabla v(\infty ) \cdot \nabla \xi 1dxdt =
\int 
\Omega T

R(\infty )\xi 1dxdt

 - 
\int 
\Omega T

n
(\infty )
1 \partial t\xi 2dxdt+

\int 
\Omega T

\Bigl( 
1 - \eta (\infty )

\Bigr) 
\nabla v(\infty ) \cdot \nabla \xi 2dxdt =

\int 
\Omega T

R
(\infty )
1 \xi 2dxdt

 - 
\int 
\Omega T

n
(\infty )
2 \partial t\xi 3dxdt+

\int 
\Omega T

\eta (\infty )\nabla v(\infty ) \cdot \nabla \xi 3dxdt =
\int 
\Omega T

R
(\infty )
2 \xi 3dxdt, and

 - b
\int 
\Omega T

d(\infty )\partial t\xi 4dxdt+

\int 
\Omega T

\nabla d(\infty ) \cdot \nabla \xi 4dxdt =
\int 
\Omega T

( - \psi (d(\infty ))n(\infty )

+ an
(\infty )
2 )\xi 4dxdt

 - b\langle d(\infty )(\cdot , T ), \xi 4(\cdot , T )\rangle 

+ b

\int 
\Omega 

d0(x)\xi 4(x, 0)dx

for each (\xi 1, \xi 2, \xi 3) \in 
\bigl( 
H1(0, T ;W 1,2(\Omega ))

\bigr) 3
with (\xi 1, \xi 2, \xi 3) = 0 near t = 0 and

(\xi 1, \xi 2, \xi 3)| t=T = 0 and each \xi 4 \in H1(0, T ;W 1,2
0 (\Omega )), where R(\infty ) is given as in

(1.13) and

R
(\infty )
1 = G(d(\infty ))n

(\infty )
1  - K1(d

(\infty ))n
(\infty )
1 +K2(d

(\infty ))n
(\infty )
2 ,

R
(\infty )
2 =

\Bigl( 
G(d(\infty )) - D

\Bigr) 
n
(\infty )
2 +K1(d

(\infty ))n
(\infty )
1  - K2(d

(\infty ))n
(\infty )
2 .

Moreover, (1.14) holds and

(1.26) v(\infty )
\Bigl( 
\Delta v(\infty ) +R(\infty )

\Bigr) 
= 0.

If we compare the equations in (D2) with the ones here, two pieces are missing.

One is that we are no longer able to identify the initial conditions for (n(\infty ), n
(\infty )
1 , n

(\infty )
2 ).

This is to be expected due to the fact that \varphi \infty is not defined on the set \{ n0 > 1\} . A
redeeming feature is that we can view (1.26), the so-called complementary condition,
as some kind of compensation for this lack of initial conditions. More significantly,
this condition connects our limits to the geometric form of the Hele-Shaw problem
[6]. At least formally, it says

 - \Delta v(\infty ) = R(\infty ) on \Omega (t) \equiv \{ v(\infty )(x, t) > 0\} .

D
ow

nl
oa

de
d 

09
/2

1/
21

 to
 1

52
.3

.1
02

.2
54

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5220 JIAN-GUO LIU AND XIANGSHENG XU

The second one is that we have not been able to show

(1.27) \eta (\infty ) =
n
(\infty )
2

n(\infty )
.

This can be derived from the precompactness of \{ n(\gamma )\} in some Lq(\Omega T ) space with
q \in [1,\infty ) (see the proof of (2.59) in section 2 below). Unfortunately, this result is
not available to us because in the generality considered here the sequence \{ \nabla n(\gamma )\} 
cannot be shown to be bounded in a function space. Furthermore, it does not seem to
be possible to obtain any estimates on \partial tv

(\gamma ) that are uniform in \gamma . As a result, the
precompactness of \{ v(\gamma )\} in some Lq(\Omega T ) space is also an issue. This is so in spite of
the fact that we have (1.23).

We can easily see that (1.14) is equivalent to the following:

n(\infty ) \leq 1 on \Omega T and(1.28) \Bigl( 
1 - n(\infty )

\Bigr) 
v(\infty ) = 0 on \Omega T .(1.29)

Obviously, we can no longer expect n(\infty ) to be independent of t due to the presence
of R(\infty ). The term \Delta v(\infty ) may be a pure distribution. We define

v(\infty )\Delta v(\infty ) = div
\Bigl( 
v(\infty )\nabla v(\infty )

\Bigr) 
 - 
\bigm| \bigm| \bigm| \nabla v(\infty )

\bigm| \bigm| \bigm| 2 in the sense of distributions.

Also note that the assumption (H7) implies that n0 is close to 0 on a large set. The
smaller T is, the easier it is for (H7) to hold.

The remainder of the paper is devoted to the proof of the above two theorems.
To be specific, section 2 contains the proof of Theorem 1.2, while Theorem 1.3 is
established in section 3.

2. Existence of a global weak solution and proof of Theorem 1.2. The
proof will be divided into several lemmas. Before we begin, we state the following
three well known results.

Lemma 2.1. Let h(s) be a convex and lower semicontinuous function on R [13].
Assume that

(C1) f \in W2(0, T ) \equiv \{ \varphi \in L2(0, T ;W 1,2(\Omega )) : \partial t\varphi \in L2(0, T ;
\bigl( 
W 1,2(\Omega )

\bigr) \ast 
)\} ;

(C2) g \in L2(0, T ;W 1,2(\Omega )) with the property g(x, t) \in \partial h(f(x, t)) for a.e (x, t) \in 
\Omega T , where \partial h is the subgradient of h.

Then the function t \mapsto \rightarrow 
\int 
\Omega 
h(f(x, t))dx is absolutely continuous on [0, T ] and

(2.1)
d

dt

\int 
\Omega 

h(f)dx = \langle \partial tf, g\rangle .

If h(s) = s2, this lemma is a special case of the well known Lions--Magenes lemma
([21, pp. 176--177]). Formula (2.1) is trivial if f is smooth. The general case can be
established by suitable approximation. See ([13, p. 101]) for the details.

Lemma 2.2 (Lions--Aubin). Let X0, X, and X1 be three Banach spaces with
X0 \subseteq X \subseteq X1. Suppose that X0 is compactly embedded in X and that X is continu-
ously embedded in X1. For 1 \leq p, q \leq \infty , let

Wp,q(0, T ) = \{ u \in Lp([0, T ];X0) : \partial tu \in Lq([0, T ];X1)\} .
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A TISSUE GROWTH MODEL WITH AUTOPHAGY 5221

Then the following hold:
(i) If p <\infty , then the embedding of Wp,q(0, T ) into L

p([0, T ];X) is compact.
(ii) If p = \infty and q > 1, then the embedding of Wp,q(0, T ) into C([0, T ];X) is

compact.

The proof of this lemma can be found in [20]. We mention in passing that Lemmas
2.1 and 2.2 imply that W2(0, T ) is contained in C([0, T ];L2(\Omega )).

Lemma 2.3. Let \Omega be a bounded domain in RN with Lipschitz boundary and 1 \leq 
p < N . Then there is a positive number c = c(N) such that

\| u - uS\| p\ast \leq cdN+1 - p
N

| S| 
1
p

\| \nabla u\| p for each u \in W 1,p(\Omega ),

where S is any measurable subset of \Omega with | S| > 0, uS = 1
| S| 
\int 
S
udx, and d is the

diameter of \Omega .

This lemma can be inferred from Lemma 7.16 in [12].
Our approximate problems are similar to those in [19]. For each \varepsilon > 0, we consider

\partial tn - \varepsilon \Delta n = \gamma div (n\gamma \nabla n) +G(d)n1 + (G(d) - D)n2 in \Omega T ,(2.2)

\partial tn1  - \varepsilon \Delta n1 = \gamma div
\bigl( 
n1n

\gamma  - 1\nabla n
\bigr) 
+G(d)n1  - K1(d)n1

+ K2(d)n2 in \Omega T ,(2.3)

\partial tn2  - \varepsilon \Delta n2 = \gamma div
\bigl( 
n2n

\gamma  - 1\nabla n
\bigr) 
+ (G(d) - D)n2 +K1(d)n1

 - K2(d)n2 in \Omega T ,(2.4)

b\partial td - \Delta d =  - \psi (d)n+ an2 in \Omega T ,(2.5)

\nabla n \cdot n = \nabla n1 \cdot n = \nabla n2 \cdot n = 0 on \Sigma T ,(2.6)

d = db on \Sigma T ,(2.7)

(n, n1, n2, d)| t=0 = (n0(x), n01(x), n02(x), d0(x)) on \Omega .(2.8)

Lemma 2.4. Assume that (H1)--(H4) hold. Then for each fixed \varepsilon > 0 there exists

a quadruplet (n, n1, n2, d) in the function space (W2(0, T ))
4 \cap (L\infty (\Omega T ))

4
such that

(2.2)--(2.8) are all satisfied in the sense of Definition 1.1.

Proof. This lemma will be established via the Leray--Schauder fixed point theorem
([12, p. 280]). For this purpose, we introduce a cut-off function

(2.9) \theta \ell (s) =

\left\{     
0 if s \leq 0,

s if 0 < s < \ell ,

\ell if s \geq \ell ,

where \ell > 0 will be selected as below. We define an operator M from
\bigl( 
L2(\Omega T )

\bigr) 4
into

itself as follows: Let (w, v1, v2, u) \in 
\bigl( 
L2(\Omega T )

\bigr) 4
. We first consider the initial boundary
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5222 JIAN-GUO LIU AND XIANGSHENG XU

value problem

\partial tn - div
\Bigl[ 
\varepsilon + \gamma (\theta \ell (v1) + \theta \ell (v2)) \theta 

\gamma  - 1
\ell (w)\nabla n

\Bigr] 
= \theta \ell (v1)G(\theta \ell (u))

+ (G(\theta \ell (u)) - D) \theta \ell (v2) in \Omega T ,(2.10)

\nabla n \cdot n = 0 on \Sigma T ,

n(x, 0) = n0(x) on \Omega .(2.11)

For given (w, v1, v2, u) the above problem for n is linear and uniformly parabolic.
Thus we can conclude from the classical result ([14, Chap. III]) that there is a unique
weak solution n to (2.10)--(2.11) in the spaceW2(0, T ). Use the function n so obtained
to form the following two initial boundary problems:

\partial tn1  - \varepsilon \Delta n1 = \gamma div
\Bigl[ 
\theta \ell (v1)\theta 

\gamma  - 1
\ell (w)\nabla n

\Bigr] 
+ (G(\theta \ell (u)) - K1(\theta \ell (u))) \theta \ell (v1)

+ \theta \ell (v2)K2(\theta \ell (u)) in \Omega T ,(2.12)

\nabla n1 \cdot n = 0 on \Sigma T ,

n1(x, 0) = n01(x) on \Omega ,

\partial tn2  - \varepsilon \Delta n2 = \gamma div
\Bigl[ 
\theta \ell (v2)\theta 

\gamma  - 1
\ell (w)\nabla n

\Bigr] 
+ (G(\theta \ell (u)) - K2(\theta \ell (u)) - D) \theta \ell (v2)

+ \theta \ell (v1)K1(\theta \ell (u)) in \Omega T ,(2.13)

\nabla n2 \cdot n = 0 on \Sigma T ,(2.14)

n2(x, 0) = n02(x) on \Omega .(2.15)

Each of the two problems here has a unique solution in W2(0, T ). Then we solve the
following linear problem:

b\partial td - \Delta d =  - (\psi (\theta \ell (u)) - a)\theta \ell (w) - a\theta \ell (v1) in \Omega T ,

d = db on \Sigma T ,

d(x, 0) = d0(x) on \Omega .

We define (n, n1, n2, d) = M(w, v1, v2, u). Evidently, M is well-defined.

Claim 2.5. For each fixed pair \varepsilon > 0 and \ell > 0, the operator M is continuous
and its range is precompact.

Proof. The key observation here is that each initial boundary value problem in the
definition of M is linear and uniformly parabolic. This together with (H1) implies that

M is continuous. One can easily verify that the range of M is bounded in (W2(0, T ))
4
,

which is compactly embedded in
\bigl( 
L2(\Omega T )

\bigr) 4
. It is similar to the proof of Lemma 2.4

in [19]. We shall omit the details.
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A TISSUE GROWTH MODEL WITH AUTOPHAGY 5223

Now we are in a position to apply Corollary 11.2 in ([12, p. 280]), thereby obtaining

that M has a fixed point. That is, there is a (n, n1, n2, d) in (W2(0, T ))
4
such that

\partial tn - \varepsilon \Delta n = \gamma div
\Bigl[ 
(\theta \ell (n1) + \theta \ell (n2))\theta 

\gamma  - 1
\ell (n)\nabla n

\Bigr] 
+ \theta \ell (n1)G(\theta \ell (d))

+ (G(\theta \ell (d)) - D) \theta \ell (n2) in \Omega T ,(2.16)

\nabla n \cdot n = 0 on \Sigma T ,

n(x, 0) = n0(x) on \Omega ,

\partial tn1  - \varepsilon \Delta n1 = \gamma div
\Bigl[ 
\theta \ell (n1)\theta 

\gamma  - 1
\ell (n)\nabla n

\Bigr] 
+ (G(\theta \ell (d)) - K1(\theta \ell (d))) \theta \ell (n1)

+ \theta \ell (n2)K2(\theta \ell (d)) in \Omega T ,(2.17)

\nabla n1 \cdot n = 0 on \Sigma T ,

n1(x, 0) = n01(x) on \Omega ,

\partial tn2  - \varepsilon \Delta n2 = \gamma div
\Bigl[ 
\theta \ell (n2)\theta 

\gamma  - 1
\ell (n)\nabla n

\Bigr] 
+ (G(\theta \ell (d)) - K2(\theta \ell (d)) - D) \theta \ell (n2)

+ \theta \ell (n1)K1(\theta \ell (d)) in \Omega T ,(2.18)

\nabla n2 \cdot n = 0 on \Sigma T ,(2.19)

n2(x, 0) = n02(x) on \Omega ,(2.20)

b\partial td - \Delta d =  - (\psi (\theta \ell (d)) - a)\theta \ell (n) - a\theta \ell (n1) in \Omega T ,(2.21)

d = db on \Sigma T ,

d(x, 0) = d0(x) on \Omega .(2.22)

Now we pick

(2.23) \ell \geq L,

where L is given as in (1.19). Note that

\theta \ell (d) = min\{ d, \ell \} .

On account of (1.10), we have

(\psi (\theta \ell (d)) - a)(d - L)+ = (\psi (\theta \ell (d)) - \psi (d0))(d - L)+ \geq 0 in \Omega T .

With this in mind, we use (d - L)+ as a test function in (2.21) to derive

b

2

d

dt

\int 
\Omega 

\bigl[ 
(d - L)+

\bigr] 2
dx+

\int 
\Omega 

\bigm| \bigm| \nabla (d - L)+
\bigm| \bigm| 2 dx

=

\int 
\Omega 

[ - (\psi (\theta \ell (d)) - a)\theta \ell (n) - a\theta \ell (n1)] (d - L)+dx \leq 0.

Integrate to obtain

(2.24) d \leq L in \Omega T .

Note that

\theta \ell (n1) = 0 in \{ n1 \leq 0\} .

With this in mind, we use n - 1 as a test function in (2.12) to derive

 - 1

2

d

dt

\int 
\Omega 

\bigl( 
n - 1
\bigr) 2
dx - \varepsilon 

\int 
\Omega 

| \nabla n - 
1 | 2dx =

\int 
\Omega 

\theta \ell (n2)K2(\theta \ell (d))n
 - 
1 dx \geq 0.
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5224 JIAN-GUO LIU AND XIANGSHENG XU

Consequently,

n1 \geq 0.

By the same token,

n2 \geq 0.

Use d - as a test function in (2.21) to get

 - b
2

d

dt

\int 
\Omega 

\bigl( 
d - 
\bigr) 2
dx - 

\int 
\Omega 

\bigm| \bigm| \nabla d - \bigm| \bigm| 2 dx
=

\int 
\Omega 

[ - (\psi (\theta \ell (d)) - a)\theta \ell (n) - a\theta \ell (n1)] d
 - dx

= a

\int 
\Omega 

[\theta \ell (n) - \theta \ell (n1)] d
 - dx \geq 0.

Here we have used the fact that \psi (0) = 0. Integrate to obtain

(2.25) d \geq 0 in \Omega T .

This together with (2.24) implies

(2.26) \theta \ell (d) = d.

Add (2.17) to (2.18) and subtract the resulting equation from (2.16) to derive

\partial t(n - (n1 + n2)) - \varepsilon \Delta (n - (n1 + n2)) = 0 in \Omega T .

Recall the initial boundary conditions for (n  - (n1 + n2)) to deduce

(2.27) n = n1 + n2.

Let \lambda \in (0,\infty ), and define

(2.28) w = e - \lambda tn.

We easily check that w satisfies

\partial tw + \lambda w  - \varepsilon \Delta w = \gamma div
\Bigl[ 
(\theta \ell (n1) + \theta \ell (n2))\theta 

\gamma  - 1
\ell (e\lambda tw)\nabla w

\Bigr] 
+ e - \lambda t\theta \ell (n1)G(d)

+ e - \lambda t (G(d) - D) \theta \ell (n2) in \Omega T ,(2.29)

\nabla w \cdot n = 0 on \Sigma T ,

w(x, 0) = n0(x) on \Omega .

Set

(2.30) M0 = max
\Bigl\{ 

max
d\in [0,L]

| G(d)| , max
d\in [0,L]

| G(d) - D| 
\Bigr\} 
.

Then the last two terms in (2.29) can be estimated as follows:\bigm| \bigm| e - \lambda t\theta \ell (n1)G(d) + e - \lambda t (G(d) - D) \theta \ell (n2)
\bigm| \bigm| 

\leq e - \lambda t\theta \ell (n1)| G(d)| + e - \lambda t | G(d) - D| \theta \ell (n2)

\leq M0e
 - \lambda t(\theta \ell (n1) + \theta \ell (n2))

\leq 2M0e
 - \lambda t\theta \ell (n) \leq 2M0w.
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A TISSUE GROWTH MODEL WITH AUTOPHAGY 5225

It immediately follows that

\partial tw + (\lambda  - 2M0)w  - div
\Bigl[ 
\varepsilon + \gamma (\theta \ell (n1) + \theta \ell (n2))\theta 

\gamma  - 1
\ell (e\lambda tw)\nabla w

\Bigr] 
\leq 0 in \Omega T .

Choose \lambda = 2M0. Then use (w - \| n0\| \infty ,\Omega )
+ as a test function in the above differential

inequality to derive

w \leq \| n0\| \infty ,\Omega a.e. in \Omega T .

This immediately implies

(2.31) n \leq e2M0T \| n0\| \infty ,\Omega a.e. in \Omega T .

Thus if, in addition to (2.23), we further require

\ell \geq e2M0T \| n0\| \infty ,\Omega ,(2.32)

then

\theta \ell (n) = n, \theta \ell (n1) = n1, \theta \ell (n2) = n2

and problem (2.16)--(2.22) reduces to problem (2.2)--(2.8). This completes the proof
of Lemma 2.4.

Let \varepsilon \in (0, 1). Replace n01(x) by n01(x) + \varepsilon in (2.8) and denote the resulting

solution to (2.2)--(2.8) by (n(\varepsilon ), n
(\varepsilon )
1 , n

(\varepsilon )
2 , d(\varepsilon )). That is, we have

\partial tn
(\varepsilon )  - \varepsilon \Delta n(\varepsilon ) = \gamma div

\Bigl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\nabla n(\varepsilon )

\Bigr] 
+G(d(\varepsilon ))n

(\varepsilon )
1

+ (G(d(\varepsilon )) - D)n
(\varepsilon )
2 in \Omega T ,(2.33)

\partial tn
(\varepsilon )
1  - \varepsilon \Delta n

(\varepsilon )
1 = \gamma div

\biggl[ 
n
(\varepsilon )
1

\Bigl( 
n(\varepsilon )

\Bigr) \gamma  - 1

\nabla n(\varepsilon )

\biggr] 
+ G(d(\varepsilon ))n

(\varepsilon )
1  - K1(d

(\varepsilon ))n
(\varepsilon )
1 +K2(d

(\varepsilon ))n
(\varepsilon )
2 in \Omega T ,(2.34)

\partial tn
(\varepsilon )
2  - \varepsilon \Delta n

(\varepsilon )
2 = \gamma div

\biggl[ 
n
(\varepsilon )
2

\Bigl( 
n(\varepsilon )

\Bigr) \gamma  - 1

\nabla n(\varepsilon )

\biggr] 
+ (G(d(\varepsilon )) - D)n

(\varepsilon )
2

+ K1(d
(\varepsilon ))n

(\varepsilon )
1  - K2(d

(\varepsilon ))n
(\varepsilon )
2 in \Omega T ,(2.35)

b\partial td
(\varepsilon )  - \Delta d(\varepsilon ) =  - \psi (d(\varepsilon ))n(\varepsilon ) + an

(\varepsilon )
2 in \Omega T ,(2.36)

\nabla n(\varepsilon ) \cdot n = \nabla n(\varepsilon )
1 \cdot n = \nabla n(\varepsilon )

2 \cdot n = 0 on \Sigma T ,(2.37)

d(\varepsilon ) = db on \Sigma T ,(2.38)

(n(\varepsilon ), n
(\varepsilon )
1 , n

(\varepsilon )
2 , d(\varepsilon ))

\bigm| \bigm| \bigm| 
t=0

= (n0(x) + \varepsilon , n01(x) + \varepsilon , n02(x), d0(x)) on \Omega .(2.39)

In addition, we have

n
(\varepsilon )
1 \geq 0, n

(\varepsilon )
2 \geq 0, n(\varepsilon ) = n

(\varepsilon )
1 + n

(\varepsilon )
2 \leq c,

0 \leq d(\varepsilon ) \leq c.(2.40)

Here and in what follows the letter c is independent of \varepsilon . As we shall see, the addition
of \varepsilon in (2.39) is to ensure that n(\varepsilon ) stays away from 0 below.
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5226 JIAN-GUO LIU AND XIANGSHENG XU

Lemma 2.6. We have\int 
\Omega T

\bigm| \bigm| \bigm| \bigm| \nabla \Bigl( n(\varepsilon )\Bigr) \gamma +1
2

\bigm| \bigm| \bigm| \bigm| 2 dxdt+ \varepsilon 

\int 
\Omega T

\Biggl( \bigm| \bigm| \bigm| \bigm| \nabla \sqrt{} n(\varepsilon )1

\bigm| \bigm| \bigm| \bigm| 2 + \bigm| \bigm| \bigm| \bigm| \nabla \sqrt{} n(\varepsilon )2

\bigm| \bigm| \bigm| \bigm| 2
\Biggr) 
dxdt \leq c.

Proof. Pick \tau > 0. Use ln(n
(\varepsilon )
1 + \tau ) as a test function in (2.34) to derive

d

dt

\int 
\Omega 

\Bigl( 
(n

(\varepsilon )
1 + \tau ) ln(n

(\varepsilon )
1 + \tau ) - n

(\varepsilon )
1

\Bigr) 
dx+

\int 
\Omega 

n
(\varepsilon )
1

n
(\varepsilon )
1 + \tau 

\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\nabla n(\varepsilon )

1 dx

+ \varepsilon 

\int 
\Omega 

1

n
(\varepsilon )
1 + \tau 

| \nabla n(\varepsilon )
1 | 2

=

\int 
\Omega 

\Bigl( 
G(d(\varepsilon ))n

(\varepsilon )
1  - K1(d

(\varepsilon ))n
(\varepsilon )
1 +K2(d

(\varepsilon ))n
(\varepsilon )
2

\Bigr) 
ln(n

(\varepsilon )
1 + \tau )dx

\leq 
\int 
\Omega 

\bigm| \bigm| \bigm| \Bigl( G(d(\varepsilon )) - K1(d
(\varepsilon ))
\Bigr) 
n
(\varepsilon )
1 ln(n

(\varepsilon )
1 + \tau )

\bigm| \bigm| \bigm| dx
+

\int 
\{ n(\varepsilon )

1 +\tau \geq 1\} 
K2(d

(\varepsilon ))n
(\varepsilon )
2 ln(n

(\varepsilon )
1 + \tau )dx

\leq 3C0

\int 
\Omega 

n(\varepsilon )(n
(\varepsilon )
1 + \tau )dx+ 2C0

\int 
\{ n(\varepsilon )

1 +\tau \leq 1\} 
| n(\varepsilon )

1 lnn
(\varepsilon )
1 | dx \leq c.

Here

(2.41) C0 = max
\Bigl\{ 

max
d\in [0,L]

| G(d)| , max
d\in [0,L]

K1(d), max
d\in [0,L]

K2(d)
\Bigr\} 
.

Integrate and take \tau \rightarrow 0 to get\int 
\Omega T

\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\cdot \nabla n(\varepsilon )

1 dxdt+ 4\varepsilon 

\int 
\Omega T

\bigm| \bigm| \bigm| \bigm| \nabla \sqrt{} n(\varepsilon )1

\bigm| \bigm| \bigm| \bigm| 2 dxdt \leq c.

Similarly, \int 
\Omega T

\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\cdot \nabla n(\varepsilon )

2 dxdt+ 4\varepsilon 

\int 
\Omega T

\bigm| \bigm| \bigm| \bigm| \nabla \sqrt{} n(\varepsilon )2

\bigm| \bigm| \bigm| \bigm| 2 dxdt \leq c.

Add up the two preceding inequalities to obtain the desired result.

Lemma 2.7. The sequences \{ n(\varepsilon )\} and \{ d(\varepsilon )\} are precompact in Lp(\Omega T ) for each
p \geq 1.

Proof. It follows from (2.30) and (2.33) that

(2.42) \partial tn
(\varepsilon )  - \varepsilon \Delta n(\varepsilon ) \geq \gamma div

\Bigl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\nabla n(\varepsilon )

\Bigr] 
 - M0n

(\varepsilon ) in \Omega T .

Let w(\varepsilon ) = eM0tn(\varepsilon ). Then we have

(2.43) \partial tw
(\varepsilon )  - \varepsilon \Delta w(\varepsilon ) \geq \gamma div

\Bigl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\nabla w(\varepsilon )

\Bigr] 
in \Omega T .

Use (\varepsilon  - w(\varepsilon ))+ as a test function in (2.43) to get
(2.44)

 - 1

2

d

dt

\int 
\Omega 

\Bigl[ 
(\varepsilon  - w(\varepsilon ))+

\Bigr] 2
dx - \gamma 

\int 
\Omega 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
| \nabla (\varepsilon  - w(\varepsilon ))+| 2dx - \varepsilon 

\int 
\Omega 

| \nabla (\varepsilon  - w(\varepsilon ))+| 2dx \geq 0.
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A TISSUE GROWTH MODEL WITH AUTOPHAGY 5227

Recall from (2.39) that w(\varepsilon )(x, 0) = n(\varepsilon )(x, 0) \geq \varepsilon . Integrate to obtain

(2.45) n(\varepsilon ) \geq \varepsilon e - M0T .

Consequently,
\bigl( 
n(\varepsilon )

\bigr) r \in L2(0, T ;W 1,2(\Omega )) for each r \in R. We derive from (2.33) that

\partial t

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2

=
\gamma + 1

2

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - 1

\partial tn
(\varepsilon )

=
\gamma + 1

2
div

\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2 \nabla 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma \biggr] 
 - \gamma + 1

2
\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2 \cdot \nabla 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
+

(\gamma + 1)\varepsilon 

2
div

\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - 1

\nabla n(\varepsilon )

\biggr] 
 - (\gamma + 1)\varepsilon 

2
\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - 1

\cdot \nabla n(\varepsilon )

+
\gamma + 1

2

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - 1

(G(d(\varepsilon ))n
(\varepsilon )
1 + (G(d(\varepsilon )) - D)n

(\varepsilon )
2 )

= \gamma div

\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2

\biggr] 
 - \gamma (\gamma  - 1)

\gamma + 1

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - 1

\bigm| \bigm| \bigm| \bigm| \nabla \Bigl( n(\varepsilon )\Bigr) \gamma +1
2

\bigm| \bigm| \bigm| \bigm| 2
+ \varepsilon \Delta 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - (\gamma 2  - 1)\varepsilon 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - 1 \bigm| \bigm| \bigm| \nabla \sqrt{} n(\varepsilon )\bigm| \bigm| \bigm| 2

+
\gamma + 1

2

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - 1 \Bigl( 

G(d(\varepsilon ))n
(\varepsilon )
1 + (G(d(\varepsilon )) - D)n

(\varepsilon )
2

\Bigr) 
.(2.46)

Remember that \gamma +1
2  - 1 > 0. We can conclude from Lemma 2.6 that the sequence

\{ \partial t(n(\varepsilon ))
\gamma +1
2 \} is bounded in L2(0, T ; (W 1,2(\Omega ))\ast ) + L1(\Omega T ) \equiv \{ \psi 1 + \psi 2 : \psi 1 \in 

L2(0, T ;
\bigl( 
W 1,2(\Omega )

\bigr) \ast 
), \psi 2 \in L1(\Omega T )\} . Now we are in a position to use (i) in Lemma

2.2, thereby obtaining the precompactness of \{ 
\bigl( 
n(\varepsilon )

\bigr) \gamma +1
2 \} in L2(\Omega T ).

It is easy to see from (2.36) that \{ d(\varepsilon )\} is bounded in W2(0, T ). The lemma
follows from (2.40).

We may extract a subsequence of \{ (n(\varepsilon ), n
(\varepsilon )
1 , n

(\varepsilon )
2 , d(\varepsilon ))\} , still denoted by the same

notation, such that

n(\varepsilon ) \rightarrow n a.e. in \Omega T and strongly in Lp(\Omega T ) for each p \geq 1,(2.47)

d(\varepsilon ) \rightarrow d a.e. in \Omega T and strongly in Lp(\Omega T ) for each p \geq 1,(2.48)

n
(\varepsilon )
1 \rightarrow n1 weak\ast in L\infty (\Omega T ),

n
(\varepsilon )
2 \rightarrow n2 weak\ast in L\infty (\Omega T ), and\Bigl( 

n(\varepsilon )
\Bigr) \gamma +1

2 \rightarrow n
\gamma +1
2 weakly in L2(0, T ;W 1,2(\Omega )) as \varepsilon \rightarrow 0.(2.49)

Since \{ n(\varepsilon )\} is bounded, we also have\Bigl( 
n(\varepsilon )

\Bigr) p
\rightarrow np weakly in L2(0, T ;W 1,2(\Omega )) for each p \geq \gamma +1

2 .

This combined with (2.43) implies

\partial tn
(\varepsilon ) \rightarrow \partial tn weakly in L2(0, T ;

\bigl( 
W 1,2(\Omega )

\bigr) \ast 
).
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5228 JIAN-GUO LIU AND XIANGSHENG XU

Remember that G,K1,K2, \psi are all continuous functions. We also have

G(n(\varepsilon )) \rightarrow G(n) strongly in Lp(\Omega T ) for each p \geq 1,(2.50)

\psi (n(\varepsilon )) \rightarrow \psi (n) strongly in Lp(\Omega T ) for each p \geq 1, and(2.51)

Ki(n
(\varepsilon )) \rightarrow Ki(n) strongly in Lp(\Omega T ) for each p \geq 1, i = 1, 2.(2.52)

Our key result is the following.

Lemma 2.8. Passing to a subsequence if necessary, we have\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

\rightarrow n\gamma +1 strongly in L2(0, T ;W 1,2(\Omega )).

Proof. We have

(2.53) n(\varepsilon )\nabla (n(\varepsilon ))\gamma =
\gamma 

\gamma + 1
\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

.

Thus we can write (2.33) in the form

(2.54) \partial tn
(\varepsilon )  - \gamma 

\gamma + 1
\Delta w(\varepsilon ) = R(\varepsilon ),

where

w(\varepsilon ) =
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

+
\varepsilon (\gamma + 1)

\gamma 
n(\varepsilon ),

R(\varepsilon ) =
\Bigl( 
G(d(\varepsilon ))n

(\varepsilon )
1 + (G(d(\varepsilon )) - D)n

(\varepsilon )
2

\Bigr) 
.

We may assume that n(\varepsilon ) is a classical solution to (2.54) because it can be viewed
as the limit of a sequence of classical approximate solutions. Use \partial tw

(\varepsilon ) as a test
function in (2.54) to derive

(2.55)

\int 
\Omega 

\partial tn
(\varepsilon )\partial tw

(\varepsilon )dx+
\gamma 

\gamma + 1

\int 
\Omega 

\nabla w(\varepsilon ) \cdot \nabla \partial tw(\varepsilon )dx =

\int 
\Omega 

R(\varepsilon )\partial tw
(\varepsilon )dx.

We proceed to evaluate each integral in the above equation as follows:\int 
\Omega 

\partial tn
(\varepsilon )\partial tw

(\varepsilon )dx = (\gamma + 1)

\int 
\Omega 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma \Bigl( 
\partial tn

(\varepsilon )
\Bigr) 2
dx

+
\varepsilon (\gamma + 1)

\gamma 

\int 
\Omega 

\Bigl( 
\partial tn

(\varepsilon )
\Bigr) 2
dx,\int 

\Omega 

\nabla w(\varepsilon ) \cdot \nabla \partial tw(\varepsilon )dx =
1

2

d

dt

\int 
\Omega 

\bigm| \bigm| \bigm| \nabla w(\varepsilon )
\bigm| \bigm| \bigm| 2 dx,\int 

\Omega 

R(\varepsilon )\partial tw
(\varepsilon )dx = (\gamma + 1)

\int 
\Omega 

R(\varepsilon )
\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\partial tn

(\varepsilon )dx

+
\varepsilon (\gamma + 1)

\gamma 

\int 
\Omega 

R(\varepsilon )\partial tn
(\varepsilon )dx

\leq \gamma + 1

2

\int 
\Omega 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma \Bigl( 
\partial tn

(\varepsilon )
\Bigr) 2
dx

+
\gamma + 1

2

\int 
\Omega 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma \Bigl( 
R(\varepsilon )

\Bigr) 2
dx

+
\varepsilon (\gamma + 1)

2\gamma 

\int 
\Omega 

\Bigl( 
\partial tn

(\varepsilon )
\Bigr) 2
dx+

\varepsilon (\gamma + 1)

2\gamma 

\int 
\Omega 

\Bigl( 
R(\varepsilon )

\Bigr) 2
dx.

D
ow

nl
oa

de
d 

09
/2

1/
21

 to
 1

52
.3

.1
02

.2
54

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Plug the preceding three results into (2.55) and integrate to derive\int 
\Omega T

\biggl( 
\partial t

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +2
2

\biggr) 2

dxdt+ \varepsilon 

\int 
\Omega T

\Bigl( 
\partial tn

(\varepsilon )
\Bigr) 2
dxdt+ sup

0\leq t\leq T

\int 
\Omega 

\bigm| \bigm| \bigm| \nabla w(\varepsilon )
\bigm| \bigm| \bigm| 2 dx \leq c.

Note

\partial t

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

= 2
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +2
2

\partial t

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +2
2

,

\nabla 
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

= (\gamma + 1)
\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\nabla n(\varepsilon ).

On account of (2.40), \{ \partial t(n(\varepsilon ))\gamma +1\} is bounded in L2(\Omega T ), while \{ (n(\varepsilon ))\gamma +1\} is bounded
in L\infty (0, T ;W 1,2(\Omega )). By (ii) in Lemma 2.2, the sequence \{ (n(\varepsilon ))\gamma +1\} is precompact

in C([0, T ], L2(\Omega )). Consequently, \{ 
\bigl( 
n(\varepsilon )

\bigr) \gamma +1\} is precompact in C([0, T ], Lp(\Omega )) for
each p \geq 1. This asserts

(2.56)

\int 
\Omega 

\Bigl( 
n(\varepsilon )(x, t)

\Bigr) q
dx\rightarrow 

\int 
\Omega 

nq(x, t)dx for each t \in [0, T ] and each q \geq \gamma + 1

(pass to a subsequence if need be).
Take \varepsilon \rightarrow 0 in (2.54) to obtain

\partial tn - \gamma 

\gamma + 1
\Delta n\gamma +1 = R \equiv G(d)n1 + (G(d) - D)n2.

Subtract this equation from (2.54) and keep (2.53) in mind to get

\partial t(n
(\varepsilon )  - n) - \gamma 

\gamma + 1
\Delta 

\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

 - n\gamma +1

\biggr] 
 - \varepsilon \Delta n(\varepsilon ) = R(\varepsilon )  - R.(2.57)

Use
\bigl( 
n(\varepsilon )

\bigr) \gamma +1  - n\gamma +1 as a test function in (2.57) to derive

\gamma 

\gamma + 1

\int 
\Omega T

\bigm| \bigm| \bigm| \bigm| \nabla \biggl[ \Bigl( n(\varepsilon )\Bigr) \gamma +1

 - n\gamma +1

\biggr] \bigm| \bigm| \bigm| \bigm| 2 dxdt
+ \varepsilon 

\int 
\Omega T

\nabla n(\varepsilon ) \cdot \nabla 
\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

 - n\gamma +1

\biggr] 
dxdt

=

\int 
\Omega T

(R(\varepsilon )  - R)

\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

 - n\gamma +1

\biggr] 
dxdt

 - 
\int T

0

\biggl\langle 
\partial t(n

(\varepsilon )  - n),
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

 - n\gamma +1

\biggr\rangle 
dt.(2.58)

We will show that the last three terms in the above equation all go to 0 as \varepsilon \rightarrow 0. It
is easy to see from Lemma 2.6 that\bigm| \bigm| \bigm| \bigm| \varepsilon \int 

\Omega T

\nabla n(\varepsilon ) \cdot \nabla 
\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

 - n\gamma +1

\biggr] 
dxdt

\bigm| \bigm| \bigm| \bigm| 
= 4\varepsilon 

\bigm| \bigm| \bigm| \bigm| \int 
\Omega T

\sqrt{} 
n(\varepsilon )\nabla 

\sqrt{} 
n(\varepsilon ) \cdot 

\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2 \nabla 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
2  - n

\gamma +1
2 \nabla n

\gamma +1
2

\biggr] 
dxdt

\bigm| \bigm| \bigm| \bigm| 
\leq c

\surd 
\varepsilon \rightarrow 0 as \varepsilon \rightarrow 0.
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Obviously, we have\int 
\Omega T

(R(\varepsilon )  - R)

\biggl[ \Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

 - n\gamma +1

\biggr] 
dxdt\rightarrow 0 as \varepsilon \rightarrow 0.

Finally, we compute from Lemma 2.1 and (2.56) that\int T

0

\biggl\langle 
\partial t(n

(\varepsilon )  - n),
\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

 - n\gamma +1

\biggr\rangle 
dt

=
1

\gamma + 2

\int T

0

\biggl[ 
d

dt

\int 
\Omega 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +2

dx+
d

dt

\int 
\Omega 

n\gamma +2dx

\biggr] 
dt

 - 
\int T

0

\Bigl\langle 
\partial tn

(\varepsilon ), n\gamma +1
\Bigr\rangle 
dt - 

\int T

0

\biggl\langle 
\partial tn,

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
\biggr\rangle 
dt

=
1

\gamma + 2

\biggl[ \int 
\Omega 

\Bigl( 
n(\varepsilon )(x, T )

\Bigr) \gamma +2

dx+

\int 
\Omega 

n\gamma +2(x, T )dx

\biggr] 
 - 2

\gamma + 2

\int 
\Omega 

(n0(x))
\gamma +2

dx - 
\int T

0

\Bigl\langle 
\partial tn

(\varepsilon ), n\gamma +1
\Bigr\rangle 
dt

 - 
\int T

0

\biggl\langle 
\partial tn,

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1
\biggr\rangle 
dt

\rightarrow 2

\gamma + 2

\int 
\Omega 

n\gamma +2(x, T )dx - 2

\gamma + 2

\int 
\Omega 

(n0(x))
\gamma +2

dx - 2

\int T

0

\bigl\langle 
\partial tn, n

\gamma +1
\bigr\rangle 
dt

= 0.

This completes the proof.

Proof of Theorem 1.2. Equipped with the preceding lemmas, we can complete
the proof of Theorem 1.2. Keeping (2.45) in mind, we can set

\eta 
(\varepsilon )
1 =

n
(\varepsilon )
1

n(\varepsilon )
, \eta 

(\varepsilon )
2 =

n
(\varepsilon )
2

n(\varepsilon )
.

Suppose

\eta 
(\varepsilon )
1 \rightarrow \eta 1, \eta 

(\varepsilon )
2 \rightarrow \eta 2 weak\ast in L\infty (\Omega T ).

We calculate

n
(\varepsilon )
1 \nabla 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
= \eta 

(\varepsilon )
1 n(\varepsilon )\nabla 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
=

\gamma 

\gamma + 1
\eta 
(\varepsilon )
1 \nabla 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma +1

\rightarrow \gamma 

\gamma + 1
\eta 1\nabla n\gamma +1 = \eta 1n\nabla n\gamma weakly in

\bigl( 
L2(\Omega T )

\bigr) N
.

We claim that

(2.59) \eta 1n = n1 a.e. on \Omega T .

To see this, for each \delta > 0 we deduce from Lemma 2.7 that

\eta 
(\varepsilon )
1 (n(\varepsilon )  - \delta )+ \rightarrow \eta 1(n - \delta )+ weak\ast in L\infty (\Omega T ).
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Note that (n(\varepsilon ) - \delta )+

n(\varepsilon ) \leq 1. As a result, we have

\eta 
(\varepsilon )
1 (n(\varepsilon )  - \delta )+ = n

(\varepsilon )
1

(n(\varepsilon )  - \delta )+

n(\varepsilon )
\rightarrow n1

(n - \delta )+

n
weak\ast in L\infty (\Omega T ).

We obtain

n1
(n - \delta )+

n
= \eta 1(n - \delta )+ for each \delta > 0.

This implies that

n1 = n\eta 1 on the set \{ n > 0\} .

If n = 0, then n1 = 0, and we still have n1 = n\eta 1. This completes the proof of (2.59).
Similarly, we can show

n
(\varepsilon )
2 \nabla 

\Bigl( 
n(\varepsilon )

\Bigr) \gamma 
\rightarrow n2\nabla n\gamma weakly in

\bigl( 
L2(\Omega T )

\bigr) N
.

We are ready to pass to the limit in (2.34) and (2.35), thereby finishing the proof of
Theorem 1.2.

3. The limit as \bfitgamma \rightarrow \infty and proof of Theorem 1.3. Once again, the proof
will be divided into several lemmas. Now the solution to our problem (1.1)--(1.6) is

denoted by (n(\gamma ), n
(\gamma )
1 , n

(\gamma )
2 , d(\gamma )). That is, we have

\partial tn
(\gamma )  - \gamma 

\gamma + 1
\Delta 
\Bigl( 
n(\gamma )

\Bigr) \gamma +1

= G(d(\gamma ))n(\gamma )  - Dn
(\gamma )
2 \equiv R(\gamma ) in \Omega T ,(3.1)

\partial tn
(\gamma )
1  - div

\Bigl( 
n
(\gamma )
1 \nabla 

\Bigl( 
n(\gamma )

\Bigr) \gamma \Bigr) 
= G(d(\gamma ))n

(\gamma )
1  - K1(d

(\gamma ))n
(\gamma )
1

+ K2(d
(\gamma ))n

(\gamma )
2 \equiv R

(\gamma )
1 in \Omega T ,(3.2)

\partial tn
(\gamma )
2  - div

\Bigl( 
n
(\gamma )
2 \nabla 

\Bigl( 
n(\gamma )

\Bigr) \gamma \Bigr) 
= (G(d(\gamma )) - D)n

(\gamma )
2 +K1(d

(\gamma ))n
(\gamma )
1

 - K2(d
(\gamma ))n

(\gamma )
2 \equiv R

(\gamma )
2 in \Omega T ,(3.3)

b\partial td
(\gamma )  - \Delta d(\gamma ) =  - \psi (d(\gamma ))n(\gamma ) + an

(\gamma )
2 in \Omega T ,(3.4)

n
(\gamma )
1 \nabla 

\Bigl( 
n(\gamma )

\Bigr) \gamma 
\cdot n = n

(\gamma )
2 \nabla 

\Bigl( 
n(\gamma )

\Bigr) \gamma 
\cdot n = 0 on \Sigma T \equiv \partial \Omega \times (0, T ),(3.5)

d(\gamma ) = db on \Sigma T ,(3.6) \Bigl( 
n(\gamma ), n

(\gamma )
1 , n

(\gamma )
2 , d(\gamma )

\Bigr) \bigm| \bigm| \bigm| 
t=0

=

\biggl( 
n0(x) +

1

\gamma 
, n01(x) +

1

\gamma 
, n02(x), d0(x)

\biggr) 
on \Omega .(3.7)

As before, the term 1
\gamma is added in (3.7) to ensure that n(\gamma ) stays away from 0 below.

Therefore, it possesses enough regularity properties. We wish to find and identify the
limit of solutions as \gamma \rightarrow \infty . By our analysis in the preceding section, we have

n
(\gamma )
1 \geq 0, n

(\gamma )
2 \geq 0, n(\gamma ) = n

(\gamma )
1 + n

(\gamma )
2 \leq c,(3.8)

0 \leq d(\gamma ) \leq L,(3.9)

where L is given as in (1.19). In (3.8) and what follows, the generic positive number c is
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independent of \gamma . We may assume that there is a subsequence of (n
(\gamma )
1 , n

(\gamma )
2 , n(\gamma ), d(\gamma )),

not relabeled, such that

(3.10) n
(\gamma )
1 \rightarrow n

(\infty )
1 , n

(\gamma )
2 \rightarrow n

(\infty )
2 , n(\gamma ) \rightarrow n(\infty ), d(\gamma ) \rightarrow d(\infty ) weak\ast in L\infty (\Omega T ).

Lemma 3.1. Assume that

(3.11) \partial tdb \in L2(0, T ;W 1,2(\Omega )), d0 \in W 1,2(\Omega ).

Then we have

(3.12)

\int 
\Omega T

\Bigl( 
\partial td

(\gamma )
\Bigr) 2
dxdt \leq c.

Furthermore, if (H6) and (H8) hold, then we have

(3.13) \| \nabla d(\gamma )\| \infty ,\Omega T
\leq c.

Proof. Use \partial t(d
(\gamma )  - db) as a test function in (3.4) to get

b

\int 
\Omega 

\Bigl( 
\partial td

(\gamma )
\Bigr) 2
dx+

1

2

d

dt

\int 
\Omega 

| \nabla d(\gamma )| 2dx

= b

\int 
\Omega 

\partial td
(\gamma )\partial tdbdx+

\int 
\Omega 

\nabla d(\gamma ) \cdot \nabla \partial tdbdx

+

\int 
\Omega 

\Bigl( 
 - \psi (d(\gamma ))n(\gamma ) + an

(\gamma )
2

\Bigr) 
\partial t(d

(\gamma )  - db)dx.

Integrate to derive

(3.14)

\int 
\Omega T

\Bigl( 
\partial td

(\gamma )
\Bigr) 2
dxdt+ sup

0\leq t\leq T

\int 
\Omega 

| \nabla d(\gamma )| 2dx \leq c.

With the aid of our assumptions (H6) and (H8), we can easily modify the proof of
Proposition 2.3 in [24] to obtain (3.13). The basic strategy there is to derive an
equation for \partial xi

d(\gamma ) and then apply a parabolic version of the DeGiorgi iteration
technique to the resulting equations. The boundary estimate is achieved by flattening
the relevant portion of the boundary. All these steps can be carried out here. We
shall omit the details. The proof is complete.

Clearly, this lemma implies (1.25). Consequently,

(3.15) R(\gamma ) \rightarrow R(\infty ) = G(d(\infty ))n(\infty )  - Dn
(\infty )
2 weak\ast in L\infty (\Omega T ).

The core of our development is the following lemma.

Lemma 3.2. We have

(3.16)

\int 
\Omega T

t
\Bigl( 
v(\gamma )

\Bigr) 2
dxdt+

\int 
\Omega T

t
\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| 2 dxdt \leq c.

Proof. Let G0 be given as in Theorem 1.3. Then

(3.17) R(\gamma ) \leq G0n
(\gamma ).
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Use this in (3.1) and multiply through the resulting inequality by e - G0t to get

(3.18) \partial tw
(\gamma )  - \gamma e\gamma G0t

\gamma + 1
\Delta 
\Bigl( 
w(\gamma )

\Bigr) \gamma +1

\leq 0 in \Omega T ,

where
w(\gamma ) = e - G0tn(\gamma ).

For each \varepsilon > 0 we let

\eta \varepsilon (s) =

\left\{   1 if s > \varepsilon ,
1
\varepsilon s if 0 \leq s \leq \varepsilon ,
0 if s < 0.

We can easily check that

\eta \varepsilon (s) \rightarrow sgn+0 (s) =

\biggl\{ 
1 if s > 0,
0 if s \leq 0,

as \varepsilon \rightarrow 0.

Let \sigma \in 
\bigl( 
0, e - G0T

\bigr) 
be given as in (H7). Clearly, \eta \varepsilon 

\bigl( 
w(\gamma )  - \sigma 

\bigr) 
\geq 0. Multiply through

(3.18) by this function to get\int 
\Omega 

\int w(\gamma )(x,t)

0

\eta \varepsilon (s - \sigma ) dsdx \leq 
\int 
\Omega 

\int w(\gamma )(x,0)

0

\eta \varepsilon (s - \sigma ) dsdx.(3.19)

Take \varepsilon \rightarrow 0 in the above inequality to obtain\int 
\Omega 

\Bigl( 
w(\gamma )(x, t) - \sigma 

\Bigr) +
dx \leq 

\int 
\Omega 

\Bigl( 
w(\gamma )(x, 0) - \sigma 

\Bigr) +
dx

\leq 
\biggl( 
\| n0\| \infty ,\Omega +

1

\gamma 
 - \sigma 

\biggr) \bigm| \bigm| \bigm| \bigm| \biggl\{ n0(x) + 1

\gamma 
\geq \sigma 

\biggr\} \bigm| \bigm| \bigm| \bigm| .
Or equivalently,\int 

\Omega 

\Bigl( 
n(\gamma )(x, t) - \sigma eG0t

\Bigr) +
dx \leq eG0t

\biggl( 
\| n0\| \infty ,\Omega +

1

\gamma 
 - \sigma 

\biggr) \bigm| \bigm| \bigm| \bigm| \biggl\{ n0(x) + 1

\gamma 
\geq \sigma 

\biggr\} \bigm| \bigm| \bigm| \bigm| .(3.20)

On the other hand,\int 
\Omega 

\Bigl( 
n(\gamma )(x, t) - \sigma eG0t

\Bigr) +
dx \geq 

\int 
\{ n(\gamma )(x,t)\geq 1\} 

\Bigl( 
n(\gamma )(x, t) - \sigma eG0t

\Bigr) +
dx

\geq (1 - \sigma eG0t)
\bigm| \bigm| \bigm| \Bigl\{ n(\gamma )(x, t) \geq 1

\Bigr\} \bigm| \bigm| \bigm| .
This combined with (3.20) implies

\bigm| \bigm| \bigm| \Bigl\{ n(\gamma )(x, t) \geq 1
\Bigr\} \bigm| \bigm| \bigm| \leq eG0t

\Bigl( 
\| n0\| \infty ,\Omega + 1

\gamma  - \sigma 
\Bigr) 

1 - \sigma eG0t

\bigm| \bigm| \bigm| \bigm| \biggl\{ n0(x) + 1

\gamma 
\geq \sigma 

\biggr\} \bigm| \bigm| \bigm| \bigm| 
\rightarrow eG0t (\| n0\| \infty ,\Omega  - \sigma )

1 - \sigma eG0t
| \{ n0(x) \geq \sigma \} | (as \gamma \rightarrow \infty )

\leq eG0t (\| n0\| \infty ,\Omega  - \sigma )

1 - \sigma eG0t

1

eG0T \| n0\| \infty ,\Omega 
| \Omega | .(3.21)
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5234 JIAN-GUO LIU AND XIANGSHENG XU

The last step is due to our assumption (H7). We easily check

eG0t (\| n0\| \infty ,\Omega  - \sigma )

1 - \sigma eG0t
< eG0t\| n0\| \infty ,\Omega .

Hence we can pick a number \sigma 0 \in (
eG0t(\| n0\| \infty ,\Omega  - \sigma )

1 - \sigma eG0t
1

eG0T \| n0\| \infty ,\Omega 
, 1). Consequently,

(3.22) sup
0\leq t\leq T

\bigm| \bigm| \bigm| \Bigl\{ n(\gamma )(x, t) \geq 1
\Bigr\} \bigm| \bigm| \bigm| \leq \sigma 0| \Omega | at least for \gamma sufficiently large.

Using (w(\gamma ) - \| n0\| \infty ,\Omega  - 1
\gamma )

+ as a test function in (3.18), we derive the weak maximum
principle

(3.23) w(\gamma ) \leq \| n0\| \infty ,\Omega +
1

\gamma 
in \Omega T .

This together with (3.17) implies

(3.24) R(\gamma ) \leq G0e
G0t

\biggl( 
\| n0\| \infty ,\Omega +

1

\gamma 

\biggr) 
.

Let v(\gamma ) be given as in (1.12). Use tv(\gamma ) as a test function in (3.1) to deduce

1

\gamma + 2

d

dt

\int 
\Omega 

t
\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx+
\gamma t

\gamma + 1

\int 
\Omega 

\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| 2 dx
=

1

\gamma + 2

\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx+ t

\int 
\Omega 

R(\gamma )v(\gamma )dx

\leq 
eG0T

\Bigl( 
\| n0\| \infty ,\Omega + 1

\gamma 

\Bigr) 
\gamma + 2

\int 
\Omega 

v(\gamma )dx+G0e
G0T

\biggl( 
\| n0\| \infty ,\Omega +

1

\gamma 

\biggr) 
t

\int 
\Omega 

v(\gamma )dx.(3.25)

Since \bigm| \bigm| \bigm| \Bigl\{ n(\gamma )(x, t) \geq 1
\Bigr\} \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \Bigl\{ n(\gamma )(x, t) < 1

\Bigr\} \bigm| \bigm| \bigm| = | \Omega | ,

the inequality (3.22) implies\bigm| \bigm| \bigm| \Bigl\{ n(\gamma )(x, t) < 1
\Bigr\} \bigm| \bigm| \bigm| > (1 - \sigma 0)| \Omega | .

Evidently, \Bigl( 
v(\gamma )  - 1

\Bigr) +
= 0 on

\bigl\{ 
n(\gamma )(x, t) < 1

\bigr\} 
.

This puts us in a position to apply Lemma 2.3. Upon doing so, we arrive at

(3.26)

\int 
\Omega 

\Bigl( 
v(\gamma )  - 1

\Bigr) +
dx \leq c

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \nabla \Bigl( v(\gamma )  - 1
\Bigr) +\bigm| \bigm| \bigm| \bigm| dx = c

\int 
\{ n(\gamma )(x,t)\geq 1\} 

\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| dx.
To estimate the first term on the right-hand side of (3.25), we use (n(\gamma )  - 1)+ as a
test function in (3.1) to get

(3.27) sup
0\leq t\leq T

\int 
\Omega 

\Bigl[ 
(n(\gamma )  - 1)+

\Bigr] 2
dx+ \gamma 

\int 
\Omega T

\Bigl( 
n(\gamma )

\Bigr) \gamma \bigm| \bigm| \bigm| \nabla (n(\gamma )  - 1)+
\bigm| \bigm| \bigm| 2 dxdt \leq c.
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For each \varepsilon > 0 we estimate\int 
\Omega 

v(\gamma )dx =

\int 
\{ n(\gamma )(x,t)\geq 1\} 

v(\gamma )dx+

\int 
\{ n(\gamma )(x,t)<1\} 

v(\gamma )dx

\leq 
\int 
\Omega 

\Bigl( 
v(\gamma )  - 1

\Bigr) +
dx+ c

\leq c

\int 
\{ n(\gamma )(x,t)\geq 1\} 

\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| dx+ c

= c(\gamma + 1)

\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma \bigm| \bigm| \bigm| \nabla (n(\gamma )  - 1)+
\bigm| \bigm| \bigm| dx+ c

\leq \varepsilon 

\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma 
dx+ c(\varepsilon )(\gamma + 1)2

\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma \bigm| \bigm| \bigm| \nabla (n(\gamma )  - 1)+
\bigm| \bigm| \bigm| 2 dx+ c

\leq \varepsilon 

\| n(\gamma )\| \infty ,\Omega T

\int 
\Omega 

v(\gamma )dx+ c(\varepsilon )(\gamma + 1)2
\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma \bigm| \bigm| \bigm| \nabla (n(\gamma )  - 1)+
\bigm| \bigm| \bigm| 2 dx+ c.

By choosing \varepsilon suitably small, we immediately get

(3.28)

\int 
\Omega 

v(\gamma )dx \leq c(\gamma + 1)2
\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma \bigm| \bigm| \bigm| \nabla (n(\gamma )  - 1)+
\bigm| \bigm| \bigm| 2 dx+ c.

Use this in (3.25), then integrate, and apply (3.27) to obtain

1

\gamma + 2
sup

0\leq t\leq T

\int 
\Omega 

t
\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx+
\gamma 

\gamma + 1

\int 
\Omega T

t
\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| 2 dxdt

\leq c(\gamma + 1)

\int 
\Omega T

\Bigl( 
n(\gamma )

\Bigr) \gamma \bigm| \bigm| \bigm| \nabla (n(\gamma )  - 1)+
\bigm| \bigm| \bigm| 2 dxdt+ c

\int 
\Omega T

tv(\gamma )dxdt+ c

\leq c

\int 
\Omega T

t| \nabla v(\gamma )| dxdt+ c

\leq \gamma 

2(\gamma + 1)

\int 
\Omega T

t
\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| 2 dxdt+ c.

Consequently, \int 
\Omega T

t
\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| 2 dxdt \leq c.

By a calculation similar to (3.26),\int 
\Omega T

t
\Bigl( 
v(\gamma )

\Bigr) 2
dxdt \leq 

\int 
\Omega T

t

\biggl[ \Bigl( 
v(\gamma )  - 1

\Bigr) +\biggr] 2
dxdt+ c

\leq c

\int 
\Omega T

t

\bigm| \bigm| \bigm| \bigm| \nabla \Bigl( v(\gamma )  - 1
\Bigr) +\bigm| \bigm| \bigm| \bigm| 2 dxdt+ c \leq c.

This completes the proof of Lemma 3.2.

We see that the sequence \{ v(\gamma )\} is bounded in L2(\tau , T ;W 1,2(\Omega )) for each \tau \in 
(0, T ). Thus we may assume that (1.22) holds.

Proof of (1.28) and (1.29). We shall employ an argument from [11]. For each
\delta > 0 define

(3.29) \Omega 
(\gamma )
\delta =

\Bigl\{ 
(x, t) \in \Omega T : n(\gamma )(x, t) \geq 1 + \delta 

\Bigr\} 
.
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5236 JIAN-GUO LIU AND XIANGSHENG XU

We argue by contradiction. Suppose that (1.28) is not true. Then there is a \delta > 0
such that

(3.30)
\bigm| \bigm| \bigm| \Omega (\infty )

2\delta 

\bigm| \bigm| \bigm| > 0.

We claim

(3.31) lim inf
\gamma \rightarrow \infty 

\bigm| \bigm| \bigm| \Omega (\gamma )
\delta 

\bigm| \bigm| \bigm| \equiv c0 > 0.

To see this, we estimate from (3.9) that\int 
\Omega T

n(\gamma )n(\infty )\chi 
\Omega 

(\infty )
2\delta 

dxdt =

\int 
\Omega 

(\infty )
2\delta \cap \Omega 

(\gamma )
\delta 

n(\gamma )n(\infty )dxdt+

\int 
\Omega 

(\infty )
2\delta \setminus \Omega (\gamma )

\delta 

n(\gamma )n(\infty )dxdt

\leq e2G0T

\biggl( 
\| n0\| \infty ,\Omega +

1

\gamma 

\biggr) 2 \bigm| \bigm| \bigm| \Omega (\gamma )
\delta 

\bigm| \bigm| \bigm| + (1 + \delta )

\int 
\Omega 

(\infty )
2\delta 

n(\infty )dxdt.

If c0 in (3.31) is 0, we take \gamma \rightarrow \infty in the above inequality to derive

(3.32)

\int 
\Omega 

(\infty )
2\delta 

n(\infty )n(\infty )dxdt \leq (1 + \delta )

\int 
\Omega 

(\infty )
2\delta 

n(\infty )dxdt.

This is possible only if | \Omega (\infty )
2\delta | = 0. But this contradicts (3.30). Thus (3.31) holds.

On the other hand, for each \tau \in (0, T ) we have
(3.33)

c \geq 
\int 
\Omega 

(\gamma )
\delta 

tv(\gamma )dxdt \geq 
\int 
\Omega 

(\gamma )
\delta \cap (\Omega \times (\tau ,T ))

tv(\gamma )dxdt \geq \tau (1 + \delta )\gamma +1
\bigm| \bigm| \bigm| \Omega (\gamma )

\delta \cap (\Omega \times (\tau , T ))
\bigm| \bigm| \bigm| .

That is,

lim sup
\gamma \rightarrow \infty 

\bigm| \bigm| \bigm| \Omega (\gamma )
\delta \cap (\Omega \times (\tau , T ))

\bigm| \bigm| \bigm| \leq 0 for each \tau \in (0, T ).

Obviously, this contradicts (3.31). This completes the proof of (1.28).
Fix \tau \in (0, T ). First, we claim

(3.34) lim
\gamma \rightarrow \infty 

\int T

\tau 

\int 
\Omega 

\bigm| \bigm| \bigm| 1 - n(\gamma )
\bigm| \bigm| \bigm| v(\gamma )dxdt = 0.

To see this, let \varepsilon \in (0, 1) be given. We estimate from (3.16) that\int T

\tau 

\int 
\Omega 

\bigm| \bigm| \bigm| 1 - n(\gamma )
\bigm| \bigm| \bigm| v(\gamma )dxdt = \int 

\{ | 1 - n(\gamma )| \leq \varepsilon \} \cap (\Omega \times (\tau ,T ))

\bigm| \bigm| \bigm| 1 - n(\gamma )
\bigm| \bigm| \bigm| v(\gamma )dxdt

+

\int 
\{ n(\gamma )>1+\varepsilon \} \cap (\Omega \times (\tau ,T ))

\bigm| \bigm| \bigm| 1 - n(\gamma )
\bigm| \bigm| \bigm| v(\gamma )dxdt

+

\int 
\{ n(\gamma )<1 - \varepsilon \} \cap (\Omega \times (\tau ,T ))

\bigm| \bigm| \bigm| 1 - n(\gamma )
\bigm| \bigm| \bigm| v(\gamma )dxdt

\leq c\varepsilon + c
\bigm| \bigm| \bigm| \{ n(\gamma ) > 1 + \varepsilon \} \cap (\Omega \times (\tau , T ))

\bigm| \bigm| \bigm| 12 + c(1 - \varepsilon )\gamma +1.

Consequently,

(3.35) lim sup
\gamma \rightarrow \infty 

\int T

\tau 

\int 
\Omega 

\bigm| \bigm| \bigm| 1 - n(\gamma )
\bigm| \bigm| \bigm| v(\gamma )dxdt \leq c\varepsilon .

Since \varepsilon can be arbitrarily small, we yield (3.34).
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Observe from (3.1) that the sequence \{ \partial tn(\gamma )\} is bounded in L2(\tau , T ; (W 1,2(\Omega ))\ast ).
We can infer from the Lions--Aubin lemma that \{ n(\gamma )\} is precompact in C([\tau , T ];
(W 1,2(\Omega ))\ast ). We may assume that

(3.36) n(\gamma ) \rightarrow n(\infty ) strongly in C
\Bigl( 
[\tau , T ];

\bigl( 
W 1,2(\Omega )

\bigr) \ast \Bigr) 
.

Once again, we pass to a subsequence if need be. With this in mind, we can deduce
from (1.22) that\int T

\tau 

\int 
\Omega 

\Bigl( 
1 - n(\gamma )

\Bigr) 
v(\gamma )dxdt =

\int T

\tau 

\langle 1 - n(\gamma ), v(\gamma )\rangle dt

=

\int T

\tau 

\langle 1 - n(\infty ), v(\infty )\rangle dt =
\int T

\tau 

\int 
\Omega 

\Bigl( 
1 - n(\infty )

\Bigr) 
v(\infty )dxdt.

This together with (3.34) and (1.28) implies\Bigl( 
1 - n(\infty )

\Bigr) 
v(\infty ) = 0,(3.37)

from which (1.29) follows.

Now we are ready to prove (1.23).

Proof of (1.23). Use t2\partial tv
(\gamma ) as a test function in (3.1) to get

(\gamma + 1)t2
\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma \Bigl( 
\partial tn

(\gamma )
\Bigr) 2
dx+

\gamma 

2(\gamma + 1)

d

dt

\int 
\Omega 

t2| \nabla v(\gamma )| 2dx

=
\gamma 

\gamma + 1

\int 
\Omega 

t| \nabla v(\gamma )| 2dx+ t2
\int 
\Omega 

R(\gamma )\partial tv
(\gamma )dx.(3.38)

To estimate the last integral in the above equation, we compute from (3.3) that

 - Dt2
\int 
\Omega 

n
(\gamma )
2 \partial tv

(\gamma )dx =  - D d

dt

\int 
\Omega 

t2n
(\gamma )
2 v(\gamma )dx+ 2Dt

\int 
\Omega 

n
(\gamma )
2 v(\gamma )dx(3.39)

+ Dt2
\int 
\Omega 

\partial tn
(\gamma )
2 v(\gamma )dx

=  - D d

dt

\int 
\Omega 

t2n
(\gamma )
2 v(\gamma )dx+ 2Dt

\int 
\Omega 

n
(\gamma )
2 v(\gamma )dx

 - \gamma Dt2

\gamma + 1

\int 
\Omega 

n
(\gamma )
2

n(\gamma )

\bigm| \bigm| \bigm| \nabla v(\gamma )\bigm| \bigm| \bigm| 2 dx+Dt2
\int 
\Omega 

R
(\gamma )
2 v(\gamma )dx.

Integrate and then apply (3.16) to deduce

(3.40)  - D

\int \tau 

0

t2
\int 
\Omega 

n
(\gamma )
2 \partial tv

(\gamma )dxdt \leq c.

Similarly,

t2
\int 
\Omega 

G(d(\gamma ))n(\gamma )\partial tv
(\gamma )dx =

\gamma + 1

\gamma + 2

d

dt

\int 
\Omega 

t2G(d(\gamma ))
\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx

 - 2(\gamma + 1)t

\gamma + 2

\int 
\Omega 

G(d(\gamma ))
\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx

 - \gamma + 1

\gamma + 2

\int 
\Omega 

t2G\prime (d(\gamma ))\partial td
(\gamma )
\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx.
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5238 JIAN-GUO LIU AND XIANGSHENG XU

Integrate and then use (H5), (3.16), and (3.12) to derive

(3.41)

\int \tau 

0

\int 
\Omega 

t2G(d(\gamma ))n(\gamma )\partial tv
(\gamma )dxdt \leq \gamma + 1

\gamma + 2

\int 
\Omega 

\tau 2G(d(\gamma ))n(\gamma )v(\gamma )dx+ c.

Integrate (3.38) and then take into consideration (3.40) and (3.41) to obtain

(\gamma + 1)

\int \tau 

0

\int 
\Omega 

t2
\Bigl( 
n(\gamma )

\Bigr) \gamma \Bigl( 
\partial tn

(\gamma )
\Bigr) 2
dxdt

+
\gamma 

2(\gamma + 1)

\int 
\Omega 

\tau 2| \nabla v(\gamma )| 2dx \leq \gamma + 1

\gamma + 2

\int 
\Omega 

\tau 2G(d(\gamma ))n(\gamma )v(\gamma )dx+ c.(3.42)

We easily infer from (3.26) that\int 
\Omega 

v(\gamma )dx \leq c

\int 
\Omega 

| \nabla v(\gamma )| dx+ c \leq \varepsilon 

\int 
\Omega 

| \nabla v(\gamma )| 2dx+ c(\varepsilon ), \varepsilon > 0.(3.43)

Use this in (3.42) and choose \varepsilon suitably small in the resulting inequality to derive

(3.44) (\gamma + 1)

\int 
\Omega T

t2
\Bigl( 
n(\gamma )

\Bigr) \gamma \Bigl( 
\partial tn

(\gamma )
\Bigr) 2
dxdt+ sup

0\leq t\leq T

\int 
\Omega 

t2| \nabla v(\gamma )| 2dx \leq c.

This combined with (3.43) yields

(3.45) sup
0\leq t\leq T

\int 
\Omega 

t2
\Bigl( 
v(\gamma )

\Bigr) 2
dx \leq c.

Use t2
\bigl( 
v(\gamma )  - v(\infty )

\bigr) 
as a test function in (3.1) to deduce\int 

\Omega 

t2\partial tn
(\gamma )
\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) 
dx

+
t2\gamma 

\gamma + 1

\int 
\Omega 

\nabla v(\gamma ) \cdot \nabla 
\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) 
dx = t2

\int 
\Omega 

R(\gamma )
\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) 
dx.(3.46)

Note that

(3.47)

\int 
\Omega 

t2\partial tn
(\gamma )v(\gamma )dx =

1

\gamma + 2

d

dt

\int 
\Omega 

t2
\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx - 2t

\gamma + 2

\int 
\Omega 

\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dx.

Integrate to get\int 
\Omega T

t2\partial tn
(\gamma )v(\gamma )dxdt =

1

\gamma + 2

\int 
\Omega 

T 2
\Bigl( 
n(\gamma )(x, T )

\Bigr) \gamma +2

dx

 - 2

\gamma + 2

\int 
\Omega T

t
\Bigl( 
n(\gamma )

\Bigr) \gamma +2

dxdt

\rightarrow 0 as \gamma \rightarrow \infty .

The last step is due to (3.45). Keeping this and (3.46) in mind, we calculate

lim sup
\gamma \rightarrow \infty 

\int 
\Omega T

t2
\bigm| \bigm| \bigm| \nabla \Bigl( v(\gamma )  - v(\infty )

\Bigr) \bigm| \bigm| \bigm| 2 dxdt
\leq lim sup

\gamma \rightarrow \infty 

\int 
\Omega T

t2\nabla v(\gamma ) \cdot \nabla 
\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) 
dxdt

\leq 
\int T

0

\langle t\partial tn(\infty ), tv(\infty )\rangle dt+ lim sup
\gamma \rightarrow \infty 

\int 
\Omega T

t2R(\gamma )
\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) 
dxdt.(3.48)
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Observe that

R(\gamma ) =
\Bigl( 
G(d(\gamma )) - G(d(\infty ))

\Bigr) 
n(\gamma ) +G(d(\infty ))n(\gamma )  - Dn

(\gamma )
2 .

Remember that \{ tn(\gamma )\} , \{ tn(\gamma )
2 \} are precompact in C([0, T ];

\bigl( 
W 1,2(\Omega )

\bigr) \ast 
). Further-

more, we have G(d(\infty )) \in L\infty (0, T ;W 1,\infty (\Omega )) due to (H5) and (3.13). Hence

lim
\gamma \rightarrow \infty 

\int 
\Omega T

t2R(\gamma )
\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) 
dxdt

= lim
\gamma \rightarrow \infty 

\int T

0

\Bigl\langle 
tn(\gamma ), tG(d(\infty ))

\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) \Bigr\rangle 
dt

 - D lim
\gamma \rightarrow \infty 

\int T

0

\Bigl\langle 
tn

(\gamma )
2 , t

\Bigl( 
v(\gamma )  - v(\infty )

\Bigr) \Bigr\rangle 
dt = 0.(3.49)

Use this in (3.48) to obtain

(3.50) lim sup
\gamma \rightarrow \infty 

\int 
\Omega T

t2
\bigm| \bigm| \bigm| \nabla \Bigl( v(\gamma )  - v(\infty )

\Bigr) \bigm| \bigm| \bigm| 2 dxdt \leq \int T

0

\langle t\partial tn(\infty ), tv(\infty )\rangle dt.

We wish to show that the right-hand side of the above inequality is 0. To this end,
we introduce a function

\Psi (\infty )(s) =

\biggl\{ 
0 if s \leq 1,
\infty if s > 1.

Obviously, \Psi (\infty )(s) is convex and lower semicontinuous ([13, p. 49]) and

(3.51) \partial \Psi (\infty )(s) = \varphi \infty (s),

where \varphi \infty (s) is given as in (1.11). We claim that t \mapsto \rightarrow 
\int 
\Omega 
\Psi (\infty )(n(\infty )(x, t))dx is an

absolutely continuous function on (0, T ) and

(3.52)
d

dt

\int 
\Omega 

\Psi (\infty )(n(\infty )(x, t))dx = \langle \partial tn(\infty ), v(\infty )\rangle for a.e. t \in (0, T ).

Note that Lemma 2.1 is not applicable here because we do not have

n(\infty ) \in L2(\tau , T ;W 1,2(\Omega )).

We shall give a direct proof. To do this, we infer from (1.14) that\int 
\Omega 

\Psi (\infty )(n(\infty )(x, t+ \varepsilon ))dx - 
\int 
\Omega 

\Psi (\infty )(n(\infty )(x, t))dx

\geq 
\int 
\Omega 

v(\infty )(x, t)
\Bigl( 
n(\infty )(x, t+ \varepsilon ) - n(\infty )(x, t)

\Bigr) 
dx

= \langle n(\infty )(\cdot , t+ \varepsilon ) - n(\infty )(\cdot , t), v(\infty )(\cdot , t)\rangle , \varepsilon > 0.(3.53)

Let \zeta (t) \in C\infty 
0 (0, T ) be such that \zeta (t) \geq 0. Multiply through (3.53) by 1

\varepsilon \zeta (t), integrate
the resulting inequality over (0, T ), and thereby obtain\int T

0

\int 
\Omega 

\Psi (\infty )(n(\infty )(x, t))dx
\zeta (t - \varepsilon ) - \zeta (t)

\varepsilon 
dt

\geq 
\int T

0

\biggl\langle 
n(\infty )(\cdot , t+ \varepsilon ) - n(\infty )(\cdot , t)

\varepsilon 
, v(\infty )(\cdot , t)

\biggr\rangle 
\zeta (t)dt for \varepsilon suitably small.(3.54)
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We can easily take the limit \varepsilon \rightarrow 0 on the left-hand side of the preceding inequality.
To show that we can do the same for the right-hand side, we integrate (1.13) over
(t, t+ \varepsilon ) to get

(3.55) n(\infty )(x, t+ \varepsilon ) - n(\infty )(x, t) - \Delta 

\int t+\varepsilon 

t

v(\infty )ds =

\int t+\varepsilon 

t

R(\infty )(x, s)ds in \Omega .

Using 1
\varepsilon v

(\infty )(x, t) as a test function in the above equation gives\biggl\langle 
n(\infty )(\cdot , t+ \varepsilon ) - n(\infty )(\cdot , t)

\varepsilon 
, v(\infty )(\cdot , t)

\biggr\rangle 
=  - 

\int 
\Omega 

1

\varepsilon 

\int t+\varepsilon 

t

\nabla v(\infty )ds \cdot \nabla v(\infty )dx+

\int 
\Omega 

1

\varepsilon 

\int t+\varepsilon 

t

R(\infty )(x, s)dsv(\infty )dx.(3.56)

We can verify

(3.57)
1

\varepsilon 

\int t+\varepsilon 

t

\nabla v(\infty )(x, s)ds\rightarrow \nabla v(\infty )(x, t) a.e on \Omega T .

It follows from (3.44) that

(3.58) sup
t\geq \tau 

\bigm\| \bigm\| \bigm\| \bigm\| 1\varepsilon 
\int t+\varepsilon 

t

\nabla v(\infty )(x, s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 
2,\Omega 

\leq c(\tau ), \tau \in (0, T ).

This together with (3.57) implies

(3.59)
1

\varepsilon 

\int t+\varepsilon 

t

\nabla v(\infty )(x, s)ds\rightarrow \nabla v(\infty )(x, t) weakly in
\bigl( 
L2(\Omega \times (\tau , T ))

\bigr) N
.

Similarly,

1

\varepsilon 

\int t+\varepsilon 

t

R(\infty )(x, s)ds\rightarrow R(\infty )(x, t) strongly in Lq(\Omega T ) for each q > 1.

We are ready to evaluate

lim
\varepsilon \rightarrow 0

\int T

0

\biggl\langle 
n(\infty )(\cdot , t+ \varepsilon ) - n(\infty )(\cdot , t)

\varepsilon 
, v(\infty )(\cdot , t)

\biggr\rangle 
\zeta (t)dt

=  - 
\int T

0

\int 
\Omega 

\bigm| \bigm| \bigm| \nabla v(\infty )
\bigm| \bigm| \bigm| 2 dx\zeta (t)dt+ \int T

0

\int 
\Omega 

R(\infty )v(\infty )dx\zeta (t)dt

=

\int T

0

\Bigl\langle 
\partial tn

(\infty ), v(\infty )(\cdot , t)
\Bigr\rangle 
\zeta (t)dt.(3.60)

The last step is due to (1.13). Taking \varepsilon \rightarrow 0 in (3.54) yields

d

dt

\int 
\Omega 

\Psi (\infty )(n(\infty )(x, t))dx \geq \langle \partial tn(\infty ), v(\infty )\rangle in the sense of distributions.

Replacing each occurrence of \varepsilon by  - \varepsilon in the preceding proof, we can derive

d

dt

\int 
\Omega 

\Psi (\infty )(n(\infty )(x, t))dx \leq \langle \partial tn(\infty ), v(\infty )\rangle in the sense of distributions.

This completes the proof of (3.52).
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With (3.52) in mind, we calculate\int T

0

\langle t\partial tn(\infty ), tv(\infty )\rangle dt =
\int T

0

t2\langle \partial tn(\infty ), v(\infty )\rangle dt

=

\int T

0

t2
d

dt

\int 
\Omega 

\Psi (\infty )(n(\infty )(x, t))dxdt

=

\int T

0

d

dt

\int 
\Omega 

t2\Psi (\infty )(n(\infty )(x, t))dxdt

 - 2

\int T

0

\int 
\Omega 

t\Psi (\infty )(n(\infty )(x, t))dxdt

= 0.(3.61)

The last step is due to the fact that \Psi (\infty )(n(\infty )(x, t)) \equiv 0. Combining (3.61) with
(3.50) yields (1.23).

To complete the proof of Theorem 1.3, we still need to verify (1.26). To this end,
we multiply through (3.1) by v(\gamma ) to get

1

\gamma + 2
\partial t

\Bigl( 
n(\gamma )

\Bigr) \gamma +2

 - \gamma 

\gamma + 1

\Bigl( 
div(v(\gamma )\nabla v(\gamma )) - | \nabla v(\gamma )| 2

\Bigr) 
= R(\gamma )v(\gamma ).

Even though it is not clear if \{ tv(\gamma )\} is precompact in L2(\Omega T ) because we do not have
any estimates on \partial tv

(\gamma ), (1.23) and (3.49) are enough to justify passing to the limit
in the above equation, thereby obtaining (1.26). This finishes the proof of Theorem
1.3.
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