Mathematical Neuroscience and Applications

Math. Neuro. and Appl. 1 (2021), article no. 2, 1-36.
ISSN: 2801-0159 DOI: https://doi.org/10.46298/mna.7203

Investigating the integrate and fire model as the limit
of a random discharge model: a stochastic analysis
perspective

Jian-Guo Liu*  Ziheng Wang®  Yantong Xie*  Yuan Zhang?®
Zhennan Zhou'

Abstract

In the mean field integrate-and-fire model, the dynamics of a typical neuron within
a large network is modeled as a diffusion-jump stochastic process whose jump takes
place once the voltage reaches a threshold. In this work the main goal is to estab-
lish the convergence relationship between a regularized process and the original one
where in the regularized process, the jump mechanism is replaced by a Poisson dy-
namic, and jump intensity within the classically forbidden domain goes to infinity as
the regularization parameter vanishes. On the macroscopic level, the Fokker-Planck
equation for the process with random discharges (i.e. Poisson jumps) is defined on
the whole space, while the equation for the limit process is defined on the half space.
However, using an iteration scheme the difficulty due to the domain differences has
been greatly mitigated and the convergence for the stochastic process and the firing
rates can be established. Moreover, we find polynomial-order convergence for the
distribution by a re-normalization argument in probability theory. Finally, using nu-
merical experiments we quantitatively explore the rate and the asymptotic behavior
of convergence for both linear and nonlinear models.
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1 Introduction

The classical description of the dynamics of a large set of neurons is based on de-
terministic/stochastic differential systems for the excitatory-inhibitory neuron network
[26, 35, 40, 50]. One of the most famous models is the noisy leaky integrate and fire
(LIF) model [35], where the collective behavior of a neural network can be averaged as
a self-consistent environment and within the network the typical behavior of a neuron
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is approximated by a stochastic process [3, 4, 11, 15, 28, 33, 37, 38, 39, 46, 47, 49] and
the influence from the network is given by an average synaptic input by a mean-field
approximation [15, 33, 46, 49]. In this model, the membrane potential of a typical neu-
ron within the network is denoted by the state variable X;. When the synaptic input of
the network (denoted by I(t)) vanishes, the membrane potential relaxes to the resting
value Vi,. In the single neuron approximation, the synaptic input I(¢), which itself is
another stochastic process, is replaced by a continuous-in-time counterpart I.(t) (see
e.g. [3, 4, 37,42, 46, 47]), which takes the drift-diffusion form

ITdt=I.dt = p.dt + o.dBy. (1.1)

Here, B; is standard Brownian motion, and in principle the two processes I.(t) and I(t)
have the same mean and variance. Thus between the firing events, the evolution of the
membrane potential is given by the following stochastic differential equation

dXt = (—Xt—f—VL-i-,U/C)df—f—O'CdBt. (12)

Another important ingredient in the modeling is the firing-and-resetting mechanism:
whenever the membrane voltage X; reaches a threshold value Vy, it is immediately
reset to a specific value Vr < Vp. Namely,

Xe=Vy if X;- =Vp. (1.3)

The reader may refer to [46] for a thorough introduction to this subject.

From the perspective of probability theory, the jump-diffusion processes of type (1.2)
and (1.3) were first introduced and studied by Feller [22, 23] (in terms of transition semi-
groups), which apparently was not motivated by applications in neuroscience. More
specifically, [23] named such a process an “elementary return process" and presented
its Fokker-Planck equation in a weak form, the proof of which was based on a Markov
semigroup argument in [22]. In[1, 2, 43, 44], the authors were concerned with the spec-
tral properties of the generator of the stochastic process or related models, and showed
the exponential convergence in time towards the stationary distribution. In particular,
[43] applied their results to a neuronal firing model driven by a Wiener process and
computed the distribution of the first passage time. In the work [45, 48], the authors
made assumptions on the stochastic process that were more relaxed than or modified
from those in [27] and proved the existence of a pathwise solution of such process in a
generalized sense.

For the jump-diffusion process (1.2) and (1.3), there has been a growing interest
in studying the partial differential equation model for the dynamics of the probability
density function with which the stochastic process X; is associated. From the heuristic
viewpoint using Ité’s calculus, it is widely accepted ([5, 29]) that the evolution of the
probability density f(z,t) > 0 of finding neurons at voltage x at time ¢ > 0 satisfies the
following Fokker-Planck equation on the half line with a singular source term

af 9] 0% f

E(wvt) + %[hf(xat)] - a@

where the drift velocity is h = —x + Vi, + p., the diffusion coefficient is a = 02/2, §(x)
denotes the Dirac function and the precise definition of the mean firing rate N(¢) is
given by (1.7). We complement (1.4) with the following Dirichlet and initial boundary
conditions:

(x,t) = N({t)o(x — Vg), x= € (—o0,VF), t>0, (1.4)

f(Vr,t) =0, f(-00,t)=0, f[(z,0)= fin(z)=0. (1.5)
Equation (1.4) is supposed to be the evolution of a probability density, therefore
VF VF
f(z,t)dx = fin(x)dx = 1. (1.6)
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Due to the Dirichlet boundary condition at x = VF, there is a time-dependent boundary
flux escaping the domain, and a Dirac delta source term is added to the reset location
x = Vg to compensate for the loss. It is straightforward to check that the conservation
equation (1.6) characterizes the mean firing rate N(¢) as the flux of neurons at the firing
voltage, which is implicitly given by
of
N(t) := —a=—(Vp,t) > 0. 1.7
(t) az (Ve t) = (1.7)
We remark that this delta function source term on the right hand side of (1.4) is
equivalent to setting the equation on (—oco, Vi) U (Vg, VF) instead and imposing the
following conditions

PV ) = FVE8), o f(Vid) — a f(ViE ) = N(B), ¥t >0
or Or
The firing events generate currents that propagate within the neuron network, which
can be incorporated into this PDE model by expressing the drift velocity h and the
diffusion coefficient a as functions of the mean-firing rate N(t) (see e.g. [5, 6, 9, 311).
In the simplest form, the following choice has been widely considered

h(z,N(t)) = —x +bN(t), a(N(t))=ao+ a1 (N(t)). (1.8)

In particular, the term —x describes the leaky behavior and b models the connectivity
of the network: b > 0 describes excitatory networks and b < 0 describes inhibitory
networks. In Sections 2 and 3, we only consider the simple case when b = a; = 0 and
ag = 1, while in Section 4 we numerically investigate the nonlinear case when b # 0.

Many recent works are devoted to investigating the properties of solutions of such
PDE models, including the finite-time blow-up of weak solutions, the multiplicity of
steady solutions, the relative entropy estimate, the existence of classical solutions,
structure-preserving numerical approximations, etc. (see e.g. [5, 6, 7, 8, 9, 31] and
the references therein.) However to the best of our knowledge, due to the firing-and-
resetting mechanism in (1.2), the rigorous derivation of the Fokker-Planck equation
(1.4) in the classical sense from the microscopic stochastic process had not yet been
achieved by conventional methods.

In [29], we established the rigorous connection between the linear Fokker-Planck
equation (1.4) and the microscopic stochastic model (1.2) and (1.3). For simplicity, we
assume for the rest of the work that

V=0, Ve=0, V=1, pu.=0, o=+2, (1.9)

which means the LIF model becomes a linear model with the interactions among the
network neglected. With these assumptions, the process (1.2) and (1.3) becomes the
standard O-U process with a “hard wall" at 1, i.e., whenever at time t, X; hits 1, it
immediately jumps to 0 and then we restart the O-U-like evolution independent of the
past. Unlike the standard jump-diffusion process, the jumping time for X; is determined
by the hard wall boundary and thus the classical Itd calculus is not directly applicable.
Inspired by the renewal nature of X; that agrees with the pioneering work of Feller
[23], a novel strategy based on an iterated scheme was proposed in [29] to show that
the probability density function (abbreviated by p.d.f.) of X; is the classical solution of
its Fokker-Planck equation.

In fact, with the introduction of the auxiliary stochastic process counting the num-
ber of firing events, the density f(x,t) of the potential X; can be decomposed as a

summation of sub-density functions {f,(z,t)}52,. Each sub-density naturally links to a
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less singular sub-PDE problem which is determined iteratively and of better regularity.
Besides, with the exponential decay of decomposition all the regularities are preserved
in the limit, and thus we concluded the desired properties for the PDE problem (1.4).

In this paper, we continue to study a family of related jump-diffusion processes (2.3)
parameterized by J, which are used to approximate the process X; as 6 — 07. Intro-
duced in [7], such jump-diffusion processes are used to explore the reasonable mod-
elling of the mean firing events on the macroscopic level, which are associated with the
Fokker-Planck equations of neurons with random firing thresholds. As shown in [5], the
solution of the Fokker-Planck equation with a deterministic firing potential may blow
up in finite time, which is speculated to be related to the synchronization activity of
neuronal networks. The random discharge mechanism in [7] provides an alternative
scenario of incorporating the synchronous states besides introducing time delay, refrac-
tory states, etc (see [3, 4, 7, 13, 34]). However, all the regularization models are mostly
based on scientific intuition or technical insights of the PDE theory, among which the
random discharge model is tractable on the microscopic level and is reminiscent of the
well-studied kinetic equations on the macroscopic level. Thus, we choose to focus on the
random discharge model to rationalize the regularization effect and show the conver-
gence relationship between such a model and its limit as the regularization parameter
vanishes.

We denote such processes by X?, and the associated jumping rate \° (Xf ) = 0 when
X? < 1,and N(X?) = O(6~ 1) when X > 1+ §. Between the firing events, X; propa-
gates along the O-U process

dX? = —X? dt +v2dB;. (1.10)

Recall that there exists a “hard wall" boundary for X;, i.e. the firing event takes place
whenever X; reaches 1. However, the jumps of Xf are determined by a state-dependent
Poisson measure, for it evolves as the standard O-U process when X < 1 and can
jump with a high rate once Xf exceeds 1, and such a jump process can be interpreted
as a “soft wall" boundary when Xf > 1. The precise definition of Xf can be found
in (2.2) and (2.3). The Poisson jump model frequently appears in kinetic models [10,
14, 17, 20] and with Ito’s formula, we can derive its Dynkin’s formula, forward and
backward Kolmogorov equation and Feynman-Kac formula, etc. However, Itd calculus
is not directly applicable when § = 0 and thus X; is seen as the singular limit of a family
of regularized processes. The primary goal of this paper is to justify whether and in
what sense the regularized model converges to the original one.

Formally speaking, X; can be seen as the limit of X{ as § — 0%, for the distribution
of the process X/ is supposed to converge to the process X; as § — 0. The rigorous
justification of such convergence is challenging due to the domain differences, and the
main contribution of this paper is to rigorously establish the relationship between the
two processes. We first present the strong Feller property (2.5) of the limit process
X; by comparing it with the regular O-U process. Then by a similar iteration strategy
as that in [29], (see the decomposition (3.9) and the iteration relationship in Proposi-
tion 3.1 for details) we get convergence for the marginal distribution. Utilizing the
strong Feller property for X;, we easily generalize the convergence result to any finite
dimensional distribution by induction, which together with the relatively compactness
of {X?}s~o implies the weak convergence (2.6) for the processes. Also, by using the
decomposition and iteration strategy, the weak convergence of the mean firing rate
(2.7) can be established. Finally by a standard re-normalization method in probability
theory, we rigorously prove a polynomial-order convergence rate (2.8) for the marginal
distribution.

As a complement and extension to the convergence justification, we numerically
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explore the convergence rate and asymptotic behavior of the process X and its density
function for both the linear cases considered in previous analysis and nonlinear cases
where the analysis is still intractable in the current framework. The numerical scheme
is based on the Scharfetter-Gummel reformulation and preserves certain structures
of the Fokker-Planck equation for X/ [31]. We also find numerical evidence of the
existence of an asymptotic profile. More specifically, the simulation results strongly
suggest that one can numerically identify two parameters « and 3 such that

Fo(x,t) = 5% (6°(x — 1)) +0(6%), Va € [1,+00), (1.11)

where ¢ is a profile function independent of §. Equation (1.11) suggests how f° vanishes
on the half-space {z > 1} in a self-similar fashion.

It is worth mentioning that some recent works [12, 13] are devoted to exploring the
long time behavior of some non-linear McKean-Vlasov type SDEs arising from neuron
models, where the firing mechanism follows the same random discharge dynamic as the
one in this work but the diffusion process is absent. In particular, it is proved in [12] that
the SDE admits time periodic solutions through a Hopf bifurcation analysis. Although
in this paper we only focus on the linear case, the convergence result may provide tools
and insights for studying nonlinear models, especially for the long time behavior of the
random discharge model. However, analysis of nonlinear models is beyond the scope of
this paper.

The rest of the paper is outlined as follows. In Section 2, we first review the jump
process X; and give the precise definition of X?. After laying out their Fokker-Planck
equations, we summarize the main convergence results between X/ and X;. In Sec-
tion 3 we rigorously show by a probabilistic approach that the distribution and mean
firing rate of the random discharge model weakly converge to those of the original
model. Also, a polynomial order convergence rate for the marginal distribution is es-
tablished. In Section 4, we investigate using numerical experiments the rates and the
asymptotic behavior of related convergence for both linear and nonlinear models. In
Section 5, we conclude this paper and give some future research directions. For the
rest of this work, we use v, C, Cy, C) and Cr to denote generic constants.

2 Preliminaries and main results

We first briefly review the results for the jump process X; in [29]. The stochastic
process X; has been formally defined in (1.2) and (1.3), and the interested readers may
refer to [29] for the rigorous construction of such a process. In the integrate and fire
model, the process X; is used to describe the mean field behavior of the neuron network.
Let the distribution of X be denoted by u. For technical reasons we suppose that p is
a probability measure on (—oo,1 — ] for some 5 > 0 and let fi,(x) be its density. Then
with the iteration idea, we have already shown in [29] that for any fixed T" > 0, the
Fokker-Planck equation for X; is

af o2f
_ o, _ 0 0 ,,._
f(O 7t):f(0+7t)a %f(o ,t),%‘f(OJF’t):,%f(l 7t)a tE(OvT]a 2.1)
f(=00,t)=0, f(1,t)=0, te][0,T],
f(z,0) = fin(x), z€(—00,1).

In the rest of this paper, we define

N(t) := —a%f(r,t), t>0,

MNA 1 (2021), paper 2. https://mna.episciences.org/
Page 5/36


https://doi.org/10.46298/mna.7203
https://mna.episciences.org/

Investigating the IF model as the limit of a random discharge model

which serves as the definition of the mean firing rate.

In this paper, we consider a related family of jump-diffusion processes parameter-
ized by ¢ as in (1.10), which is related to the Fokker-Planck equation for neurons with
random firing thresholds, to approximate the original process X;. Introduced in [7],
we use the random discharge model to rationalize the regularization effect for X;. The
precise definition of X} is as follows.

For a fixed § > 0, we define the discharge rate function:

0, <1
)\6(,7:) = zégl, x € [1,1+ 4] (2.2)
%, r>14+9

Then consider the following state-dependent jump-diffusion process as defined in Chap-
ter VI of [30]:
dX? = —X2dt +V2dB, + [-X? 1dP’(t, X?) (2.3)

where P°(t, X7) is a Poisson point process with intensity \°(X}).

Remark 2.1. For the rest of this paper, we only consider the simplified initial condition
for the processes, i.e. both X; and Xf start from a fixed point z € (—o0,1). In the
following, E* and P® denote the expectation and probability of a stochastic process
starting from x. The natural extension to general and proper initial conditions can be
obtained by convolution.

First by Itd’s formula, we can directly derive the Fokker-Planck equation for X} .

Theorem 2.2. Let f%(x,t) denote the p.d.f. of the process X{ starting fromy < 1. It
satisfies the following PDE problem in the sense of distributions
afé o B a2f6

o~ on @) = G = N W) - N (@) @ 1), zEeR, >0,

Né(t)z/RAé(z)fé(z,ﬁ)dz, £>0, 2.1
fo(=00,t) = fo(+00,t) =0, t>0,
f°(x,0) = 6(z —y) in D'(R),

where N°(t) is the modified mean firing rate and §(z) denotes the Dirac function.

Remark 2.3. To prevent confusion, we clarify that §(«) is Dirac function and § denotes
the parameter in the intensity (2.2).

Equation (2.4) is referred to as the Fokker-Planck equation for neuron networks with
random discharges [7]. We observe that, in this variant model, the mean firing rate
NY(t) is modified to an integral of the density function, which admits a global estimate
as shown in [7]. The proof of Theorem 2.2 is elementary, and we choose to omit the
details in this work.

However for the process X, Itd’s calculus is not directly applicable when § = 0
and the approximation error between the two processes is not quantifiable. The main
contribution of this paper is to rigorously establish the relationship between the two
processes. We first prove the strong Feller property of the limit process X;, which plays
a key role in the proof of weak convergence. With the iteration strategy, we can prove
weak convergence between the stochastic processes and the convergence rate of the
marginal distribution, which is summarized in the following theorem.

Theorem 2.4. (i) (Strong Feller property.) For any bounded and Borel measurable
function ¢ and any t > 0, E*[p(X})] is continuous against the starting point x. ILe., for
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any ¢ € By(—00,1), € > 0 and = € (—o0,1), there exists 6y € (0,e) such that for any
y € (—o0, 1) such that |y — z| < &y, we have

[E*[p(X)] — EV[p(X)]] <e. (2.5)

(ii) (Weak convergence of stochastic process.) Let the stochastic processes X 9 and X.
start from any fixed x € (—o0,1). Without loss of generality, suppose that Xg =Xp=0.
Then X?° converges weakly to X. as 6 — 07, i.e., for any bounded and continuous
function ¢ € Cy(DRr[0,00)),
lim E%p(X°%) = E%(X)), (2.6)
§—0t
where Dg[0, c0) denotes the space of right continuous functions z : [0,00) — R with left
limits.
(iii) (Convergence for the mean firing rate.) The modified mean firing rate N9 (t) also
converges weakly to the mean firing rate N (t), i.e. for any fixed T > 0 and ¢ € C,[0,T],

T T
lim ©(t)N°(t)dt = / @(t)N(t)dt. (2.7)
6—0t1 Jo 0

(iv) (Convergence rate for marginal distribution.) Let F°(x,t) and F(x,t) denote the

cumulative distribution functions of X{ and X; respectively. Without loss of generality,

suppose that Xg = Xo = 0. Then for any fixed T' < oo, there is a constant v € (0,00) s.t.

V(z,t) € R x [0,T], we have

|F(x,t) — F(z,t)| = 0(67) as ¢ —07. (2.8)

The detailed proof of the theorem is presented in Section 3, and is hereby outlined
as follows.

e In Section 3.1, we show the strong Feller property (2.5) by using the connection
between the jump diffusion process X; and the standard O-U process.

¢ In Section 3.2.1, by the coupling method and the iteration approach in [29] we
prove the convergence for the marginal distribution, i.e., for any fixed 7' < co and
Ve >0, thereisany >0, s.t. Vd < 1y, we have

|F°(x,t) — F(z,t)| < e for (z,t) € R x [0,T]. (2.9)

e Then in Section 3.2.2, by the strong Feller property for X;, we get convergence
for any finite marginal distribution by induction, which together with the relatively
compactness of {X?}s-0 gives the weak convergence for processes.

* In Section 3.3, we prove weak convergence of the mean firing rate by the decom-
position and iteration approach in [29].

» Finally in Section 3.4, we rigorously prove a polynomial upper bound on the rate
at which F°(z,t) — F(z,t) as § — 07 with a multiscale renormalization argument
in probability theory.

3 The random discharge model and its convergence

In Section 2, we precisely defined a family of jump-diffusion processes X that are
associated with the Fokker-Planck equations with random discharges. With the jumping
criterion slightly altered, we are able to derive the Fokker-Planck equation of X! by
classical It0’s calculus, which is reckoned as a regularized model (see Theorem 6.1 in
[7]). However, the rigorous justification of such convergence is challenging.
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3.1 Strong Feller property

First, we prove the strong Feller property of process X;, which is useful in getting
convergence for the finite dimensional distributions. Dr. Lihu Xu at the University of
Macau taught us the following nice and easy proof through direct communication.

Proof of the strong Feller property in Theorem 2.4: Similarly to [29], we can strictly con-
struct the jump process X; starting from z and let T}° denote the first time it hits 1. By
the proof of Theorem 2 in [29], we know that for any g > 0 the p.d.f ley(-) of the first
hitting time is uniformly continuous with respect to all y < 1 — ¢¢. Thus for any fixed
t >0, ¢ € Cy(—00,1) and Ve > 0, there exists ¢y € (0,¢) such that for Vy <1 —¢,

19
PTY <tp) < ————— .
T <1) < giole 7 D

Recall that Skorohod [27] has proved that X; is Markovian, thus

Gp,t—to () = E*[p(Xi—t,)]

is clearly bounded and measurable against z € (—oo, 1). Now applying the strong Feller
property of the regular OU process {OU,; };>¢ on ¢y,t—t,, we have that for any v < 1 2¢,
there exists dy € (0,¢) such that V]y — z| < do,

(3.1)

(B [¢,t-10(OU, )] = E¥[9g 11, (OUy, )| < 5 (3.2)

N ™

Now to compare E*[¢(X;)] and E¥[p(X})], we have
E*[p(X1)] = B [o(Xe) Ly <ty + BT [(Xo) Ly >0 =2 [T + 13

Using (3.1), we immediately have that |I7| < ¢, and by the Markov property of X;, we
have

I; =E* [B* (X))

th:| 1T§>to}

= [ Eleeno |, = e e

— 00

1
:/ E*[p(Xi—t,)]f0 (2, t0)dz (3.3)

_loo 1
:[ ¢‘P7t—t0 (Z)fozu(z’ to)dz + [ ¢‘P7t—t0 (Z) [fg(z, tO) - f;cu(zﬂ to)] dz
=13+ 1,

where f§(y,t)dy = P*(X; € dy, T > t) and fZ (y,t) denotes the p.d.f. of standard OU
process starting from z. Noting that f§(y, t) is the p.d.f. for the killed OU process, then
1& (y,t) > f&¥(y,t) and thus for I, we have

1
IHE / F2 (2 to) — 3 (2 to)dz

1
< lellzee [1—/ fo””(zvto)dz} (3.4)
= |lpllL=P*(T7" < to)
&
< —.
=8

Similarly, for y we have
EY (X)) = I + 13
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1 1
= / Dot—to(2) F1a(z o) dz + / botto(2)fY (2 t0) — flu(zto))d

=:I{+1j.

(3.5)

Then |I7] < ¢ by (3.1) and with the same argument in (3.4), we have [I¥] < ¢ and thus
[E*[p(Xe)] = EV[p(Xo)|| < 7|+ [IY]| + | IF] + || + 115 — | < e. (3.6)

where the term |[I§ — I¥| is small because of (3.2) and since ¢ is arbitrary, the strong
Feller property for X, is valid. |

3.2 Weak Convergence

3.2.1 Convergence of the marginal distribution

Now we prove the marginal distribution convergence (2.9). For any ¢t > 0, let
F%(z,t) = P(X? < z) denote the cumulative distribution function (abbreviated by c.d.f.)
of X7, and F(x,t) and f(x,t) are the c.d.f. and p.d.f. of X, respectively. In [29], we let n,
denote the counting process of jumping times of X; and 7}, be its n-th jumping time, with
which we decompose F'(z,t) as the summation of sub-c.d.f. F,,(z,t) = P (X; < x,n; = n).
Similarly for X?, define

nd = |{s:s<t,X2#X2} (3.7)

to be the counting process which denotes the number of jumping times before ¢. And
for each n > 1, define the stopping times:

T? =inf{t > 0:n? = n}. (3.8)

Let F'ps(t) and frps(t) be the c.d.f and p.d.f of T? respectively. Moreover, for each n > 0,
we also define:
Fo(z,t) =P (X) <z,n) =n). (3.9)

Using similar arguments as in section 2 of [29], we have the following relationship and
the exponential decay of F°(z,t) with respect to n.

Proposition 3.1. Foralln > 1,
t
F(x,t) = / )y (.t — s)dFrs(s) (3.10)
0

t
Frs(t) = / Frs (t—s)dFrs(s), (3.11)
0 n—1
and there is a § > 0 such that for any T € (0, c0),
Fi(z,t) < exp(—6n +T) (3.12)

forallt <T and x € (—o0,1].

With the exponential decay of F?(z,t) with respect to n, we know that F°(z,t) is
absolutely continuous with respect to the Lebesgue measure and use f°(x,t) to denote
the p.d.f..

Before the discussion of technical details, we first outline the major steps as follows.

(i) We use the technique of coupling to compare the difference between Fg (x,t) and
Fy(,t) together with Fps(t) and Fr, (1).
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(ii) We prove the uniform continuity of F,(x,t) by the regularity of Fy(z,t) and the
iteration approach.

(iii) With the uniform continuity, parallel to step (i), we estimate the difference be-
tween F),(z,t) and F?(z,t).

(iv) With the exponential decay property of both F),(z,t) and F;f (x,t), we complete the
proof. In fact, we can decompose the difference between F(z,t) and F°(x,t) into
two terms. The first term is small because of the argument in step (iii), and the
second term is small due to the exponential decay property.

We first state the following result for the c.d.f Fr, (¢) for T1; the proof can be found in
section 2 of [29].

Proposition 3.2. For any fixed T > 0, Frp,(-) is uniformly continuous on [0,T], i.e.,
Ve > 0, there exists ;1 = m1(T) > 0, s.t. Vt,t' € [0,T], |t — t'| < n1, we have

|Fr, () — Fr, ()] <e.
Now we compare the difference between F¢(z,t) and Fy(,t) together with Frs(t)
and F‘T1 (t)

Lemma 3.3. Fix any T > 0 and for any ¢ > 0, there is an 19 > 0 such that for all
6 € (0,m0] and all (z,t) € R x [0,T],

|F{ (2,t) — Fy(z,t)] < e. (3.13)
At the same time, we have:
’FTI (t) — Frs (t)‘ <e. (3.14)

Proof. Noting that for any y € R,
t
Z¥ =e Tty + \/ie—t/ e*dB, (3.15)
0

is an O-U process starting from y, we couple two stochastic processes X;rr, and XfAT&
as follows: '
(i) Let {Z?};>0 denote the standard O-U process starting from 0 and let I' obey the
exponential distribution exp(1) and be independent of the process Z;.

(i) Consider the following two stopping times:

t
TO =inf{t>0: 2" =1}, T*° =inf{t>0: / X(Z%)ds =T}.
0

sae 0 0 . . . . 5
By definition, Z ATO and ZmTf"‘ are identically distributed as Xia7, and X IATS” and at
the same time we have 70 < T . Thus one has
Fo(z,t) = PY(Z20 < 2,10 > 1) < Fo(2,t) = PY(Z0 < 2, TY° > t) (3.16)
while
FQ(,t) — Fo(x,t) <P < t, T > t). (3.17)

By the strong Markov property of the O-U process, if we restart Z; at 77, then {Z_ ..} .
17 s>
forms a new O-U process starting at 1 which is independent of 7}. Denote this process
by Z;. Moreover, defining a new stopping time Tf’5 = Tf’5 — T? with respect to {Zs}s>0,
one may have:
t
PO(T? < t,T0° > t) :/O PY (T >t — §)dFro(s). (3.18)
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As we have previously seen in Proposition 3.2, Fr,(s) is uniformly continuous on
[0, 7] and note that 7y and 7} have the same distribution. Thus Ve > 0, 3n; = m(T) > 0
s.t. Vs > 0, we have Fr, (s +m1) — F, (s) < e. Then for ¢ < n;, we have

t
POT? <, TY° > t) < / dFr, (s) < Fr, (m) < e.
0

For t > 11, we have
t A
PY T < t,T° > t) = [ PY(T™ >t — s)dFr, (s)

t
PYTY° > t — s)dFr, (s) +/ P (1™ >t — s)dFr, (s)

t—nl

t—7]1

o— —

<PYTY® > m) + (Pry(t) — Pry(t —m))
<PYTY° > ) +e.
(3.19)

Hence, it suffices to prove that for any fixed 7; > 0,

lim P (77 > 1) = 0. (3.20)
6—0

For any 71 > 0 and § > 0, consider the following random subset generated by Zy
which denotes the time that Z; is above the level 1 + ¢ before 7;:

I(m,68) :={s <m : Zs > 1+8}. (3.21)

By definition, one may see that

R T10+771
{Tf’5 < m} ) / N (Z2%ds >T
TO

1

— / N(Z,)ds +/ X(Zg)ds > T (3.22)
{s<n1:X5€[1,1+5]} {s<n1:25>1+6} :
55 < (f(nl,é))
> / N(Zyds>T =4 """ 51
{s<n1:25>1+6} d

Thus,

~>
—
3
=
(=%}
=
N———

A e(
P (T <p)>P' | ——— 2L >T (3.23)

where £ denotes the Lebesgue measure in R. Recall that I" ~ exp(1). Thus it suffices to
prove that

£ 1(77175)
lim P! er =1.
6—0

First we consider the case § = 0. With (3.15), we know that

t
Zy=e b+ \/5/ e~ (=9 4B,
0

MNA 1 (2021), paper 2. https://mna.episciences.org/
Page 11/36


https://doi.org/10.46298/mna.7203
https://mna.episciences.org/

Investigating the IF model as the limit of a random discharge model

Moreover, by the pathwise continuity of X,, one may see that I (m,0) is a.s. either
an empty set or an nonempty open set. We first show it is a.s. nonempty. Letting
T, =inf{t > 0: Z; > 1}, it suffices to prove that

PYT, =0)=1. (3.24)

The proof of (3.24) relies on the 0 — 1 Law for standard Brownian motion. See
Theorem 7.2.3 on Page 362 of [19] for details.
(i) For any At > 0, {T1 < At} D {Za; > 1} = {e 2t — \/ﬁfome—@t—S)st > 1} € Far,
where F is the natural filtration generated by Zs.
(i) Thus for At,, — 0, {T1 = 0} D {Xas, > 1,i.0.} € F&, where F£ is the infinitesimal
increment o-field of Brownian motion {B,};>¢ and i.o. stands for infinitely often.
(iii) By the 0 — 1 Law, we now only need to prove that P! (ZAtn > 1,i.0.) > 0. At the same
time, with (3.15) we have

N 1 — eBtn
Now noting that \/% = O(At,) — 0 as n — oo, we have lim,_,oo P*(Za;, > 1) =

1 > 0. Thus we have proved (3.24) and hence

PY(L((n1,0)) > 0) = 1. (3.26)
Note that events {£(I (7, Ly>ipy {£(I(n1,0)) > 0} as n — oo. Thus for any € > 0,
dN s.t. foralln > N

P! <2(f(51, %)) > %F) >1—ce. (3.27)

Fixing any § < % and recalling that ¢ is arbitrary, together with (3.23), we get (3.20).
Combining (3.20), (3.17) and (3.19), when ¢ is small we have

FO(z,t) — Fy(x,t) < POUTY < £, T > ) <PYTY® > ) + e < 2.

and thus the proof of Lemma 3.3 is complete.
O

Before proceeding with the iterative argument, we need to iteratively derive the
uniform continuity of F,,(«x,t). Recalling Proposition 3.1 of [29], we immediately get the
following essential uniform continuity of Fy(z,t).

Proposition 3.4. Fix any T > 0 and for the 1 = n1(T) > 0 in Proposition 3.2, there
exists o = n2(T') € (0,71) such that for all x € R and t,t' € [, T), [t' — t| < n2, we have

|Fo(x,t) — Fola, )] <e. (3.28)

Next for Fi(z,t), by Lemma 2.2 of [29], we have
t
Fi(z,t) = / Fo(z,t — s)dFr,(s),
0

t/
Fi(x,t') = / Fo(x,t' — s)dFr, (s).
0

Now we prove:
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Corollary 3.5. Fix any T' > 0 and recall the definition of 11,71y in Proposition 3.2-3.4.
Forall0 <t <t < T such thatt —t < 1y, and any x € R, we always have

|Fy(x,t) — Fy(z,t")| < 3e. (3.29)
Remark 3.6. Here we no longer need ¢, t’ to be away from 0.

Proof. First, supposing t € [, 7], we may write:

t—nl t
Fi(z,t) = / Fo(x,t — s)dFr, (s) + / Fo(x,t — s)dFr,(s)
0 t—m
= Al + A27

while

t—m t’
Fy(x,t') = / Fy(x,t' — s)dFr,(s) + / Fy(x,t' — s)dFr,(s)
0 ¢

—m
= Bl + BQ.

Using the uniform continuity of Fr, (¢) and since Fy(z,t) < 1, we have

Ay < [, dPp(s)<e
By < fi;?l dFr, (s) + ftt_m dFr, (s) < 2,

which together with Proposition 3.4 imply that
|F1(.Z‘,t) — F1($,t/)| S |A1 — Bl| + |A2 — BQ|
t—m
< / |Fo(z,t' — s) — Fo(z,t — s)|dFr, (s) + 2¢
0
t—7]1
< / edFr, (s) + 2 < 3e.
0

When t < 7;, we have

Filat) = /0 Foa,t — s)dPr, (s) < /O " AP (5) = Fr(m) < .

And note that 7y < 7, while ¢ — ¢ € (0,72)

t t
Fu(a,t) < / AP, (s) + / AP, (s) < 2.
0 t

Thus |Fi(z,t) — Fi(z,t)] < 2e.

Similarly, one may inductively prove:

Corollary 3.7. FixanyT > 0 and forallm > 1, anyxz € Rand all0 < ¢ <t < T such
thatt’' —t < 19, we have

|Fo(z,t) — Fo(z,t)] < (2n + 1)e.

Now with the uniform continuity of F,,(z,t), we can continue the proof of Theorem
2.4. First, parallel to the proof of Lemma 3.3, we can consider the difference between
Fy(z,t) and F{(z,t). Specifically, we have the following lemma.
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Lemma 3.8. Fix any T > 0 and recall the definition of § in Lemma 3.3. We have for any
(z,t) € R x [0,T), |Fy(x,t) — F{(x,t)] < be.

Proof. Note that

{F1 (2,t) = [ Fo(z,t — s)dPr, (s),
F(x,t) = [y F (2.t — s)dFps (s).

For any t € [0,T], we introduce the intermediate term:

/0 Fo(z,t — s)dFps (s).

Recalling (3.13) and (3.14) together with the fact that FO‘S, Fy € [0,1], we have
‘Fl(z, t) — Ff(z, t)‘
g/ot | (@t — 5) — Fola,t — 5)| dFyps (s) + ‘/Ot Fo(a.t = 5)d (Fr,(s) FT{S(S))‘ (3.30)
<eFyps(t) + ’EO [Fo(z, t— T{’)]l{TloSt}} B [Fo(z, t— Tf*‘s)]l{Tlo,sSt}} ‘ .

Now recall the definition of 7, in Proposition 3.4 and consider the following “good
event”

Gi={TP <t—m —m, T =T < n}. (3.31)
Recalling Proposition 3.2-3.4 and (3.20), we have
,0
‘Eo {Fo(z, t— T{))]l{Tlogt}] _E° [Fo(x,t — 7?0 )B{T{),Jgt}} ‘
<E° HFo<x,t — 1Y) — Fo(a,t — Tf"s)\ : ng} +POUGE N{T? < 1}) (3.32)
<e +PUTY € (t —m — 12, 1)) + POTY — TP > 1pp) < de.

Combining with (3.30), we complete the proof.

Now one may inductively prove

Lemma 3.9. Fix any T > 0 and recall the definition of 6 in Lemma 3.3. We have for all
n>1andanyx € R x [0,T), |Fp(z,t) — FS(x,t)] < (n+ 2)%.

Proof. By Lemma 3.3 and Lemma 3.8, the result has been shown to be true for n = 0
and 1. Now suppose Proposition 1 holds for all £ < n — 1. Now for k = n, we have:

{ Fo(,t) = [y Fo1(z,t — s)dFr, (s), (3.33)

Fg(xat) = fot Fg—l('rvt - S)dFTf ().

Again there is

t
[Fulot) = Flw )| < [ |FE (@t 9) = Faca(ant = 9)| dFgg ()
0

+ ‘EO [Fn_l(ac,t - T{’)n{T{)St}] _EO [Fn_l(x,t - Tlo’é)]l{Tlo,JSt}} ‘ .
(3.34)
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Recall the “good event" G = {10 <t — 12, Tlo,a — TP < n2}. We have

‘EO [Fn,l(x, t— TP)JL{T{)Q}} —E° [Fn,l(z, t— Tf*‘s)]l{Tf,aSt}} ‘

<E° [ Fo_y(,t — TO) — Fo_y (2.t — Tf"s)’ - ]14 +PYGC N {T? < 1)) (3.35)
<(2n —1)e + PU(TY € (t — 2, t]) + PUTY? — T > 1)
<(2n+1)e.
Thus we have
|Fu(2,t) — F2 (2, )] < [(n+ 1)+ 2n+ 1)]e < (n+2)%.
|

Finally, forall T' < oo, and any ¢ € [0,T], z < 1,
Fo(x,t) <PUT, <t), F(x,t) <PYTS <t).

By the argument in Lemma 2.3 of [29], we have already implied that 3 a constant C
depending only on T such that

PO(T? <t) < PYT, <t) <exp(—Ch). (3.36)

What’s more, we can decompose the difference between F(x,t) and F°(z,t) into two
terms. That is,

n +oo
|F(z,t) = FO(z,t)] <Y |Fi(a,t) = F(x,t)| + > |Fi(a,t) — F(x,1)]. (3.37)
=0 i=n+1

Now using Lemma 3.9 we know that the first term of (3.37) is small, while the second
term is small due to the exponential decay property (3.36). Thus the proof of (2.9) is
complete.

3.2.2 Weak convergence in the sense of process

Now we can prove weak convergence in the sense of stochastic process X° — X. as
§ — 0T. We first prove the convergence of the finite dimensional marginal distribution
and then use the relative compactness to conclude weak convergence for process.

Proposition 3.10. For all integern > 0,0 < t] <ty < --- < t, < o0 and —oco0 < a; <
b;<1,1=1,2,--- ,n, we have

PY(X} € (ai,bi),i=1,2,--,n) = P°(Xy, € (a;,b;],i=1,2,---,n) as §—0", (3.38)

ie.,
(Xfl ? X6

tz’.

LX) = (X, Xy oo, X)) (3.39)

where P°(-) denotes the process starts from 0.

When n = 1, the result for X, Xf starting from 0 has been proved in Section 3.2.1.
By the same proof we have convergence with respect to any X = X, = xg, where
xo belongs to some compact subset of (—oco,1). Moreover, the ¢ can be chosen to be
uniform, i.e.,
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Corollary 3.11. For any —co < a < b < 1, and any x¢ € [a,b], we let F>%(x,t) and
F7(x,t) be the c.d.f. of X} and X, starting from x,. Then for any T < oc and ¢ > 0,
there exists ng = n(T,a,b,e) > 0 s.t. forall0 < ¢ < ng, o € [a,b], (z,t) € R x [0,T], we
have

| o0 (z,t) — Fo(z,t)| < e. (3.40)

Thus we conclude the case for n = 1 and then by the strong Feller property for X;
and induction, we can get Proposition 3.10; the detailed proof can be found in Appendix
A.

With the finite dimensional weak convergence shown as above, the rest of the proof
of weak convergence for processes follows from a standard relative compactness ar-
gument. Note that (R, B) is clearly complete and separable. By Theorem 3.7.2 and
Theorem 3.7.8 of [21], in order to show that X — X, it suffices to prove the following:
(i) For any T' < oo and € > 0, 3 a compact set I' C (—o0, +00) such that for any § > 0, we
have

PU(X) e, vt € [0,T]) > 1 —e (3.41)

(ii) For any T' < oo and € > 0, 3 ¢ > 0 such that for any § > 0, we have
PO(w'(X°,0,T) > €) <e. (3.42)

where
w'(X%,0,T) = inf max sup |X° — X7
{ti} © steltioi,t)

and {¢;} ranges over all partitions of the form 0 =ty < t; < -+ < tp,—1 < t, = T with
t; —t;_1 > o for all i. See (6.2) in Chapter 3 of [21] for details.

In order to verify the conditions above, we first need to recall the constructions in
Section 2.2 of [29]. For claim (i), note that 7,, < T,f for all § > 0 and by exponential
decay, we have for any fixed T' < co and ¢ > 0, 3 ng, s.t.

(T}, < T) < P(T,, <T) < 3

Note that by Doob’s inequality, we have that there is an My < 0o s.t.

P(maX|Y( |>MO)<POmaX|/edB|>MO) €
t<T 2n
Now consider I' = [—MO,MO] and event A = {T)} > T} N U, {max;<r V9| < My},
where P°(A) > 1 — 5 —ng - 2n0 = 1 — €. Then recalling that the trajectory of X/ can
be decomposed by parts of Yt(z),t € [0,7], thus in event A for any § > 0,¢ € [0,T], X?
belongs to I', which gives (3.41).
Finally, in order to check claim (ii), we first note that by Proposition 3.1 of [29],
le() € C[0,T] with fr,(0) = 0. Thus for all e > 0, I ng < oo, s.t. fr (t) < 55 for all
t < -L. Then consider the event By = N;%, {r; > ;=-}, where

T "0 e €
P(Bf) < ngP°(ry < —) < myg - —dt < —. 3.43
(B) <P < oy < [ i< (3.43)

Moreover, note that the OU-process Yt(i) is a.s. uniformly continuous. Thus 3 o; > 0
s.t. for each 3,

; €
PO(As <te[0,T),t—s<op, V) V| >¢) < 5 (3.44)
no
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Then consider event
By =1, (Vs <t e[0,T),t—s <oy, |V =YD <o),

and P°(BS) < ng - ﬁ < 5. Thus let 0 = min{%, %} and B = B; N By. Then in the
event B, the jump-diffusion process {Xf }telo, 1) is composed of at most ng uniformly con-
tinuous O-U process each with length at least nlo > o. Thus one may always construct a
partition with
max sup  |X%(s) — X°(t)] <.
ost€[ti—1,ti)
So we have
PO(w' (X%,0,T) <€) >P°B) >1—¢,

which gives (3.42) and thus the proof of the weak convergence for process is complete.

3.3 Weak Convergence for the Mean Firing Rate

In this section we consider the convergence of the mean firing rate by the iteration
approach. Clearly, the density function f 5(:5, t) for the jump-diffusion process Xf in (2.3)
and the mean firing rate N°(t) = [, f°(y,t)A°(y)dy admit the following expansions

fo(x,t) = i fo(x,t), NO(t) = iNg(t). (3.45)
n=0 n=0

where f(z,t) is the density function of the measure induced by F?(-,¢) in (3.9) and for
n >0,

) R ) )
N (t) = /R 13,07 () dy.

To prove (2.7), we need to build a connection between N/(¢) and the p.d.f. frs(t) of the

jumping time in (3.8). We first derive the Dynkin’s formula for the killed process )A(E
that is obtained by stopping the process Xf at the first jumping time 7. To be specific,

~ X9, t<TY,
xXp={"" s (3.46)
XT167 t Z Tl;

First, we derive the Fokker-Planck equation for fg and its decay property for further
iteration calculations.

Lemma 3.12. Let f{(x,t) be the density of the measure induced by F{(-,t) defined in
(3.9). Then it is the classical solution of the following equation

afe o 5
a_to T or (zfo) -

O[3
02
f3(x,0) = §(x) in D' (—o0, +00),

_ _ O 5

where 6(x) denotes the Dirac function. Moreover, for any t > 0, and |z| sufficiently
large, one should have 3 C' > 0 s.t.

0 02
max{‘fg(ac,t)‘ , ‘%fg(x,t) , ‘@fg(x,t)’} < exp(—C2?), (3.48)

Remark 3.13. The proof follows the standard argument as in [16].
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Proof. Recall in (3.15) that we use Z? to denote an O-U process starting from 0. The
proof of (3.48) follows the same argument as in Lemma 3.1 of [29]. For any fixed 7' > 0,
according to Theorem 3.5 in Chapter V of [25] by Garroni and Menaldi, there exists
a unique Green’s function G : R x [0,7] x R x [0,7] > (y,s,z,t) — G(y, s, z,t) for the
parabolic operator

Ly =—ydy- +a;y C=A

That is for a given (z,t) € R x [0,7T], the function R x [0,¢) > (y,s) — G(y, s,x,t) is a
solution of the PDE

{GSG(y, s,x,t) + ‘CyG(ya s,2,t) =0, (y,5) € R x[0,1), (3.49)

G(y,t,x,t) = 6(y — z) in D'(R)

Following Theorem 5 in Chap. 9 of [24], for any given (y,s) € R x [0,T), the function
R x (s,T] 3 (z,t) = G(y,s,x,t) is also known to be Green’s function of the adjoint
operator

x

i.e.
®G(y, s,x,t) = LI1G(y, s,z,t), (x,t) € R x (s,T], P
G(y,s,z,s) =d0(z —y) in D'(R), '
Morever, it belongs to C%! in z,t and satisfies the following estimate:
1 — (z —y)?
[0°Gy.s,2.0)| <C(t—s)" % exp(~Co—~ ), 0<s<t<T. (3.51)

where £ = 0,1,2, 8 = 9%, = 0™y, £ = 2m + n, for m,n € No.
Thus given any smooth test function ¢ : R x [0, 7] with compact support, the PDE
problem

asu(yv S) = yayu(yv S) - ayyu(ya S) + Aa(y)u(y, S) - ¢(ya S)a (ya S) S R X [05 T)a (3 52)
u(y, T)=0 yeR '
admits a unique classical solution
T —+00
u(y, s) :/ / G(y, s, x, t)¢(x, t)dxdt. (3.53)

Set t
My :=u(Z),t) and N, := exp{*/ N (Z0)ds}
0

— they are both semimartingales. Then by It6’s formula (see Exercise 5.32 on Page 209
of [36] for details), we have

d(M;N;) = MydNy + NydM; + d(M, N),. (3.54)

Note that dN; = —Nt)\‘S(Z?)dt, thus NV; is of bounded variation and then the quadratic
variation (N); = 0. By (M, N); < (M)(N);, we know the covariance process (M, N); is
equal to 0. Hence

t t
d(MtNt):—u(ZtO,t)exp{—/ A‘s(ZSO)ds}XS(ZtO)dt—i—exp{—/ N (Z9)ds}
0 0 (3.55)

: ( [ (Z0,8) — un(Z0,4) 20 + e (Z0,1)] dt + v/2u (20, t)dBt) .
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With (3.55) and the boundary condition of « in (3.52), we have

T
0=u(Z2,T) exp(—/0 XN (Z9)dt)

T t
—u(0,0) = [ u(Z0. 0N (2 expl~ [ N(ZD)ds)a
0 0 (3.56)

! 0 1) — zu 0 n 0 exp(— t 5(7%ds
+/0 [40(Z0,1) — 2 (Z9,8) + usa (29, 1)] exp( /Ouzs)d )t

+\/§/0Tux(Zf,t) exp(— /Ot X (Z9)ds)dB.

Taking the expectation of (3.56) and recalling (3.52), we have

T t
u(0,0) = E° / (271 exp(f/ Aé(Zg)ds)dt]
0 0 (3.57)
T ¢
= [ ez e [ Xz a
0 0
Now applying formula (8.2.10) on Page 139 of [41] with f(-) = &(-,¢),
t —+00
E° [Qj(ZtO,t) exp(—/o Aé(Zg)ds)] =E° [qb(Xf,t)]l{T{s%}} :/_ B(x, ) 3 (x, t)d.
(3.58)

By (3.53) we have

T +o0 T +oco
/ / o(z,t)G(0,0, z, t)dzdt = u(0,0) = / / oz, ) f (, t)dxdt,
0 —0oo 0 —c0

which implies that G(0,0,x,t) coincides with f{(x,t). Thus we conclude that fJ(x,t)
satisfies (3.47) and the decay property (3.48) is valid because of (3.51).
|

Next we can prove

Lemma 3.14. Foranyn > 1 andt > 0,
frs(t) = Np_(t). (3.59)

Proof. We prove (3.59) inductively. First for the case when n = 1, with (3.47) and (3.48),
one has for any ¢ > 0,

_ d PO T5 < _ d e ) d
I () =BT <) =~ | gl )
+oo d
+o00 a2f6 B '
_ 5 5 0 5
7/700 [)\ ()13, 0) = S — = (afd) | da
—+o0
:/ N () f (x, t)da.
Now we assume that (3.59) holds for all k¥ < n and note that
t t —+o00
frs (0= [ gt = izg(ds = [ [ 5ot - 9X @dafrs (o)
0 0 —o0
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By Fubini’s formula,

/—:O /ot fo—1(@,t =) frs (s)dsA’ (x)dx = /*"O

— 00

fg(z, t))\‘s(z)dz = N,(t).

(3.61)
|

Now we can show the weak convergence of N° as § — 0. More precisely, given
T > 0, for any smooth test function ¢(t) € C[0,T], we have

/T ()N (£)dt — /T G(L)N(t)dt
0 0

Notice that both N(¢) and N°(t) have series representations. In light of the following
decomposition

-0, as d—0".

(3.62)

¢(t)N‘5(t)dt—/O P(t)N(t)dt

dtf/ O(t)Fy, (t)dt| +

<Z

:le—f—lg.

+oo

/¢ dt/quT)dt

1=N+1

Due to the exponential decay property (3.36), [o — 0 as § — 07 and thus it suffices to
estimate [, noting that ¢ is bounded

/<z> JdFys /¢ (t)dFr,

Noting that 77 — 73 in distribution and 7, T,f are the i.i.d. summation of 77,7} respec-
tively, we have 7 — T, in distribution as § — 0 and thus for any n

/¢ Py (1 /¢ ()dFr,

Noting that the summation in I; is finite, we conclude that I; — 0 as § — 0". Hence
the proof for the weak convergence of N° is complete

lim
§—0t

=0.

3.4 Convergence rate

Finally, we aim to rigorously prove a polynomial-order convergence rate of F(z, t)
F(x,t) as 6 — 07 as in (2.8). For any sufficiently small ¢ > 0, let ¢g = €2 and ng =
CLT log(ey *). By lemma 3.3 and Lemma 3.9, for all ¢ > 0, 3 19 = no(€o) > 0 s.t. V6 < ng
n >0 and (z,t) € R x [0,T]

‘Fg(x,t) — Fy(z,t)| < (n+2)%
Moreover, recalling (3.36), for any fixed T < oo, there 3 Cr > 0 s.t

PUTS <t) <PYT, <t) < exp(—Crn)
MNA 1 (2021), paper 2.

https://mna.episciences.org/
Page 20/36


https://doi.org/10.46298/mna.7203
https://mna.episciences.org/

J.G. Liu, Z. Wang, Y. Xie, Y. Zhang, and Z. Zhou

Then for all § < no(e), t € [0,7] and z € R,

|F6($at) - F(.Z',t)|
no—1

<R (@, t) = Fala,t)] + 2P°(T,, < 1) (3.63)
n=0

<(no 4 2)%eo + 2€0 < €.

Thus to get the convergence rate of a polynomial-order, we only need to find a lower
bound for 7y, which is polynomial with respect to e. In the order to prove the result of
interest, it suffices to show the following polynomial-order relationship:

(i) The n; and 72 defined in Proposition 3.2 and Proposition 3.4 are both of a polynomial-
order of e.

(ii) The 7ny in Lemma 3.3 is of a polynomial order of 7; and 7y, and thus also a
polynomial-order of e.

Proof of (i): For n;, we can always set 7; = m
= 1

7 by Proposition 3.2. As for 7,
3

when ¢ < 1 is sufficiently small, one may let 1, = 7} = R and prove that it

€
[max; <7 fr, (t)

satisfies the condition in Proposition 3.4. Forany n; < t' <t < T, t —t' < 19, we have
that for any = € R,

T T t d
Foant) = Fote )l =| [ o) ot Nan| < [ [ 5000 asar. @00
—c0 —oo Jt/

By the estimation of the Green’s function (38) of [29], 3 C, Cy < oo that depend only on
T s.t. for any s € [t, 1],

dfo - y? - y?
‘E(y, s)’ < Cs lexp (—CO? < Cnytexp _COT .
Thus ) )
|Fo(z,t) — Fo(z,t)| <ni- C/ exp (Coy?) dy < e. (3.65)
O

For (ii), recalling the proof of Lemma 3.3, the choice of 7, is decided by (3.20), thus
with the following lemma we can find a polynomial order of 7; as a lower bound for 7.

Proposition 3.15. For all sufficiently small ¢ > 0, 3 v € (0,00) such that V6 < €7, we

have
PY(T™ > €) < e (3.66)
In order to prove (3.66), recalling (3.22) we have
A I (i(e,a))
{Tf’5§e}3 fzf
Thus it suffices to show that for any ¢ < €
£ (1(e.9)) 3 PR
p! ———% =T :P1<‘[0{Z+”}2r>21—6, (3.67)

where Zt1 denotes a standard O-U process starting from 1 as in (3.15) where T" is an
independent exponential distribution obeying exp(1).
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Now we use a renormalization argument which is standard for Brownian Motion
(abbreviated by B.M.) to prove (3.67). We first introduce a sequence of scales as follows:
define ¢, = ¢- 27" for all n > 0 and a decreasing sequence of stopping times,

T, =inf{t >0, |Z} — 1| =€, }. (3.68)
We hereby outline our argument as follows:

1. We first introduce a sequence of geometrically shrinking “boxes", all centered at
1, where the size of box n equals ¢,,, which is half that of its predecessor.

2. Note that by ¢ = ¢, an O-U process starting from 1 on average will wander a
distance at least O(¢”%) > € away from 1. So with high probability, the O-U
process has already escaped the largest box by time e.

3. By scaling invariance of B.M,, i.e. for any a > 0, ﬁBat 4 B, we can prove that for
all n > 0 with at least a uniformly positive probability p > 0, an O-U process stays
at the right of 1 for some positive fraction of time between 7,, and 7,1 to trigger
the Poisson jump under the intensity (2.2), and we say the O-U process “succeeds"
in the nth step when such an event happens.

4. We can choose an appropriate constant v independent of ¢ whose exact value can
be found in (3.76), and n; = O(loge™!) s.t. (1 —p)™ < §. Then when § < ¢! with
high probability, any success in step n < ng can trigger our Poisson jump.

5. In order not to trigger the Poisson jump, the O-U process must not jump in all of
the first n; steps. Thus by the strong Markov property, we know that the proba-
bility of not jumping is no larger than the product of these uniform upper bounds
(1—-p)™ < ¢/3.

Now returning to the detailed proof, we firstly show that with high probability 7y < e.

Lemma 3.16. For 7 in (3.68), Ja > 0 s.t. Pl(1p > €) < exp(—€®) for all sufficiently
small e > 0.

Proof. Recall that .
zl = 1—/0 Zlds + B.
Let 7. = inf{t > 0, |B;| = €3}. Noting that {ry > ¢} C {7 > €} and by the scaling
invariance and the Markov property of B.M. B;,
Pl(mo > €) <P°(% > ¢)
=P'(7, > €7 9)

1
<(1— min P*(|By| > 1))l *!
z€[—1,1]

(3.69)
<(1—P°(|By| > 2))l ¥

<exp (76_%)

for all sufficiently small ¢, where || denotes the integer part. Thus let & = 1 and the
proof is complete. O

Now for any integer n > 1, we say step n is a “success" if the event

Tn—1
A, = {/ T gtonseydt > 63} (3.70)

happens. To find a lower bound for the probabilities of success in each step, we first
consider the following technical lemma for B.M. at scale of order 1:
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Lemma 3.17. For B; the standard B.M., let
I, =inf{t >0: By =x}. (3.71)

Then

Ty 2.8
P <F4 < F7%7F4 < 4,/ 3 l{Bte[iyé]}dt > 1,/ H{Bt€[2.2,2.5]}dt > 1) =!p > 0.
0 0
(3.72)

Proof. Note that a standard B.M. can approximate any continuous function starting
from 0 with a positive probability. (See Theorem 5.4 on Page 206 of [18] for details.) Thus
by easily choosing a continuous function satisfying the condition in the event of (3.72),
we conclude the result of interest by noting that Brownian motion can approximate such
a continuous function with positive probability. O

Remark 3.18. The seemingly mysterious constants in (3.72) are purposely chosen to
meet the later needs in the proof of Lemma 3.20. Particularly, we need these constants
to create a certain level of “redundancy” so that after introducing the drift term, our
O-U process can still stay within the intervals of interest.

Then by the scaling invariance of B;, we immediately have for all § > 0,

Fge FZ.SG
P <F49 <T 19, T4 < 492,/0 ’ Lip,e(1o, 1oyt > 927/0 1B, e[2.20,2.50)}dt > 92) =p.

(3.73)
Now we return to the probability of A,. Let Zt”E” be the O-U process starting from
1+e¢€,, ie, Ztl“” =14+¢€, — fot Zl*ends + By. Then by the strong Markov property for
the O-U process,

Tn—1 Tn—1
P(A,) = min {P (/o Ligitensipe,ydt > 6721) P </0 Ligi-ensipe,ydt > fi)}

Now letting 0 = ¢, we look at the event

Lz 2.8y,
Fen — {1“4% <Py, Tae, < 4672“/0 s LB efden,benydt > ei,/o 1B, c2.2¢, 250,30t > ei}.
(3.74)
Lemma 3.19. Given the event E», we have Z; T € [0,2] a.s. Vt € [0, Ty, ].
Proof. Otherwise let I'y and I', be the first time Zt““e" hits 0 or 2 respectively. Without
loss of generality, suppose Z; "“" hits 0 before 2 at [0, Ty, ] in the event E» and thus we

look at the event {T'g < Iy, , o < T2} N E°. Then within this event there is a.s. t < 4¢2
s.t. Z; 7" <0, B, > —1e, and Z1T% < 2,Vs < t. Note that

t
Zter =146, — / ZMtends + B,
0

However,
1
RHS > (1+en)—2-4ei—§en>o

which implies that
P ({To < T4e,,Lo <o} NE™) =0.

Similarly, one also has
P ({fg < F4€n,f‘2 < 1:‘0} n EE") =0.
O
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Now we are able to show that with at least a uniformly positive probability p > 0, an
O-U process stays to the right of 1 for some positive fraction of time between 7,, and
Tn_1 to trigger the Poisson jump; the detailed proof can be found in Appendix B.

Lemma 3.20. For all sufficiently smalle > 0 andn > 1,
Tn—1
P (/0 Ligirensiye,ydt > 631) > P(E™) =p,

Tn—1 (3.75)
P (/0 Lezi-ensipe,y @t > 6721) > P(E™) =p.

Thus we have
P(A,) > P(E™) = p >0,

With the above preparation, we can finish the proof of (3.67).

Proof of Proposition 3.15: For any € > 0 (without loss of generality € < %), define n; =

\fog(eﬂ-i—log 3

loz(1L) J + 1 and a constant v € (1,4o00) that depends only on p as
oel1-5

Alog2
=282 (3.76)

o ()

so we have ¢,, = €-27" > ¢7. Recall that I" obeys the exponential distribution exp(1)
and we define a “globally failed event"”,

B={T>e7}U{mn >eUniL AS
and call B¢ the globally successful event. By Lemmas 3.19 and 3.20 we have

P(B) <exp(—¢ ") +exp(—e 1) + (1 —p)™
1 1 1 (3.77)
<§€+ §€+§€<€.

Recalling the random set I (m,9) in (3.22), then for any § < et < €n,, within B¢ we have
{0 < e}and Tk € [1,nq] s.t.

£ (I(Gaé)) B fOE ]l{Z}>1+5}dt S f;&il Lizis14e,yd > 5311 S 27 (3.78)
= € > T,
1) ) - 1) -5
which gives (3.67). Thus we have found a polynomial order of n; as the lower bound for
1o and the same for 7, and the proof of (2.8) is complete. O

4 Numerical tests

In previous sections we have shown that the state-dependent jump-diffusion process
Xf converges to X; in distribution with a polynomial-order convergence rate. However,
quantifying the correct convergence rate of X remains an open question. Recently, a
structure-preserving numerical scheme for the Fokker-Planck equation (2.1) based on
Scharfetter-Gummel reformulation was proposed in [31]. With this numerical scheme,
we aim to explore the convergence structure and study X, in terms of density functions
through the Fokker-Planck equation (2.4) together with its nonlinear cases. Numerical
study of the density function f° not only provides numerical evidence of the conver-
gence rate of the process, but also indicates signs of self-similar structure when § — 0.

This section is outlined as follows. First, in Section 4.1, we introduce the Scharfetter-
Gummel reformulation on Fokker-Planck equation and the detailed construction of the
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numerical schemes. Then, in Section 4.2, we numerically examine the convergence rate
of the approximation error. Last, in Section 4.3, we study the self-similar structure of
f? when it vanishes on (1, 40c) as § — 0. We also note that the Fokker-Planck equation

(3.47) for the killing process Xf (defined in Equation (3.46)) is also considered in this
section.

4.1 Introduction to the scheme

First we introduce the nonlinear extensions of the Fokker-Planck equations for the
jump-diffusion process X and the killing process X7, which are similar to the Fokker-
Planck equation (1.4) associated with X;. We only show the following nonlinear equa-
tion for the density function f° of the jump-diffusion process Xf ; the nonlinear equation

for the density function fJ of the killing process X can be derived in a similar way.

5 2 r6
O (@) + 2o+ ON*(0)) (o 1)) — N (1) (a1
= N°(t)6(z) — X°(2) f*(x,t), (x,t) € (—00,1) x [0, +00), (4.1)

N5(t>=/A5<y)f‘5(y,t)dy,f‘5(—oo,t)=f5(+oo,t)=0, t>0,
R

where the terms a(N°(t)) and —v + bN®(t) incorporate the effect of the mean firing rate
on the dynamics of the density function at the macroscopic level. In particular, b models
the connectivity of the neuron networks: b > 0 describes excitatory networks and b < 0
describes inhibitory networks. In this section, we assume a = 1 and we are concerned
with the convergence behavior with different connectivity parameters b.

The Scharfetter-Gummel reformulation on Equation (4.1) is given as follows:

§ 5 T
o) =g (w00, (L7320)) = N (0a() - N (@) w0,

(x,t) € (—o0,1) x [0, 400), (4.2)
where

(z = bN°(1))?
2a ) '

M?®(z,t) = exp (—

The numerical scheme for Equation (4.1) is based on this reformulated equation.

Even though the jump-diffusion process X} is of better regularity than X;, numer-
ical approximation of f‘s(x, t) near x = 1 is still at risk of being inaccurate especially
when ¢ is close to 0. Therefore, we apply the logistic scaling of the density function to
partition a denser grid around = 1. We take the computation domain as [—4, 4] and
assume homogeneous Dirichlet boundary condition for the density functions. We make

the substitution )

y=hy(r) = Tre @

x € [—4,4], (4.3)

and denote ¢°(y,t) = f°(gr(y),t), where g;, stands for inverse function of the logistic
function hy. Figure 1 shows an illustration of the scaling.

Then we put Equation (4.3) into Equation (4.2) to derive an equation for ¢°(y,t) on
the computational domain

, . a M? (gL(y),t) ¢ (y,1) _ o B
5 W g’L(y)ay< 91, (v) 8y<1\4‘5(gL(y),t))>N(M(y ur)

X (gr() @’ (y. 1), (y.t) € [

e AL
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Figure 1: Illustration of the logistic scaling. In the figure, we partition a denser grid
near V; = 1 through the logistic scaling.

where ¢/ (y) = y7—1yQ and the reset point y, = hz(0) = 1= In addition, the mean firing
rate function N? is given as follows:

1 _
1+e*3

N = [T LN (91(2)) a2, 1) (4.5)

1+ed

The numerical scheme applied in this section is based on discretization of Equa-
tions (4.4) and (4.5). Let Q?,m stand for the numerical value of ¢° at y; = jh + H% €
(135 77e==] and t,,, = m7 > 0, where h and 7 denote spatial and temporal step lengths.
Let N;fI denote the numerical approximation of the firing rate function N? at t,,. Also
note that the reset point y,- is a grid point denoted as ¥y, = yp where D € IN*.

We apply the semi-implicit scheme to discretize the equations [31]. In other words,
we treat ¢} implicitly but treat N explicitly (including the N in the term M°(z,t)). The
scheme is as follows:

9
q?,mﬂ - q?,m B a M (gL (yﬂ%) ’tm) q?+1,m+1 B q?,mﬂ
T h2g1, (y;) d, (yﬂ;) M? (gL, (Yj+1) s tm) M2 (gL (y5) s tm)
2

4
_M (!]L (yj—%) 7Ifm) q?,m+1 - q?—l,m+1
g (v-3) M (g1, () tm) M (g1 (yj-1) )
2

= —N3I(y; = yp) — N’ (92 (¥5)) @ ms1- (4.6)

and
Now=hY g1 (W) N (92 (47)) G (4.7)
J

where I(y) is the indicator function.
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In our numerical simulations, we simulate excitatory and inhibitory networks with
different connectivity parameters b. We use the same Gaussian distribution as the initial
condition for all of the numerical tests:

1 _(z—mg)?
alz) = e 275 (4.8)
fa(z) o
where 7o = —1 and 2 = 0.01 are two given parameters. Since we assume that X; and

X start at a given point in previous sections, we choose oy to be very small in order to
approximate the one-point initial distribution of the processes. The computing time is
fixed to tax = 1. In addition, we consider the rate function \° (z) as follows:

0, =<1
) _ ) >~ 1,
A (w)—{ Voo (4.9)

which is slightly different from the continuous rate of Equation (2.2).

Remark 4.1. In fact, with the same initial data, numerical solutions of the Fokker-
Planck equations with two different rate functions are almost the same. Convergence
and asymptotic behavior for the two cases (Equations (2.2) and (4.9)) are similar, though
the convergence exponents are slightly different. However, (4.9) is of a simpler form,
which facilitates the convergence study. Hence, we only consider the rate function
defined in Equation (4.9) in numerical tests.

4.2 Convergence rates
In this subsection we aim to investigate the convergence of the jump-diffusion pro-

cess Xf (defined in Equation (1.10)) and the killing process Xf (defined in Equation
(3.46)) as § — 0 through numerical examination of the Fokker-Planck equations of the
two processes (see Equations (2.4) and (3.47)). We compute the discrepancies between
the density functions and firing rate functions (defined in Equation (4.1)) of the two
processes, i.e. we consider density discrepancy

DI (6) = || f(x,1) = f(z,1)|| . DP(8) =|f3(x,1) = folz, 1), (4.10)
and firing rate discrepancy
DN(8) = |[N°(t) = N(t)|| .. D™(5) =||NS(t) — No(t)|| . » (4.11)

where |[|-||, denotes the L°° norm in space or time. Here the density functions f(z,t), fo(z,t)
and firing rate functions N (¢), No(t) of X; and its killing process X; (defined in a similar
way using Equation (3.46)) are obtained by numerically solving the nonlinear Fokker-
Planck equation (1.4) with nonlinear drift and diffusion term (1.8) using the scheme in
Section 4.1.

In Figure 2, we show the results of simulating the cases § = 2% O0O<Ek<T7kE€e
IN) with different parameters b, where we consider the evolution of the discrepancy
functions defined in Equations (4.10) and (4.11) as § goes to 0. The convergence of the
density functions and firing rate functions are roughly linear when ¢ is moderately small,
while the rates of convergence of the cases with different connectivity parameters b
vary.

Then we define the convergence rates for the discrepancy functions as § — 0 as
follows:

DY (5) = A;67 + o(67),5 = 0, (4.12)

where R’ denotes the convergence rate of density function f° and A ¢ is a fixed param-
eter. We can define convergence rates R/, RV, R™o for the discrepancy functions in
Equations (4.10) and (4.11) in the similar way to Equation (4.12).
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In Table 1 we show the convergence rates of the functions with different 5. The
convergence rates are computed through linear fitting after eliminating the data when
¢ is too large or too small in order to avoid inaccuracy. More specifically, we retain only
the data when § = 5 where k = 4,5,6, 7 for the linear fitting.

We remark that the connectivity parameter b is chosen to be moderately small such
that the solution of (1.4) with non-linear terms (1.8) does not blow up, and we have
observed that f°(z,t) converges to f(z,t) as § — 0. However, when b > 0 increases, the
solution to (1.4) with non-linearity (1.8) may blow up in finite time while the solution
of (4.1) remains globally well posed. In fact, time periodic solutions have been shown
to exist or been numerically observed for variant regularized models. The interested
reader may refer to [12] and [32] for detailed discussions.

4.3 Self-similar structure

As § — 0, the jump-diffusion process Xf converges to X;, which takes values on the
half space (—o0, 1] rather than the whole space. The exact process of how Xf vanishes
on (1, +00) remains an open question. In this subsection, we aim to study the self-similar
profile of the density function f° of X on (1, 4+00) through numerical experiments.

Jump-diffusion process X} | b=1 b=05 b=0 b=-05 b=-1

Convergence rate R/ 0.3716 0.3187 0.3505 0.3766 0.3961
Convergence rate R/ 0.3365 0.3832 0.4092 0.4262 0.4307

Killing process )f(vf ‘ b=1 b=05 ©b=0 b=-05 b=-1

Convergence rate RV 0.3416 0.3856 0.4122 0.4219 0.4228
Convergence rate R0 0.4166 0.4302 0.4309 0.4322 0.4302

Table 1: Convergence rates for density functions and firing rate functions of the Fokker-
Planck equations of two processes with different connectivity parameter b. See Equa-
tion (4.12) for the definition of the convergence rates of the functions. See Equations
(2.4), (3.47) and (4.1) for the Fokker-Planck equations of the jump-diffusion process Xf

and the killing process X;.

We assume an ansatz for f° when 6 — 0 as follows:
Fox,t) =6 (6°(x — 1)) +0(6%), Va € [L,+00), (4.13)

where ) is defined on R' and «, 8 are two fixed parameters. In this subsection, we
aim to explore the self-similar structure of f5 (defined in Equation (2.4)) with such an
ansatz and find the fixed parameters a and /3 numericagy. Moreover, we also make a
similar ansatz for the density fg of the killing process X (defined in Equation (3.47))
as a reference, since the fg display a similar vanishing structure to f°.

Numerical examinations involve the cases of § = 2% (0 <k <7,k € N) with different
parameters b. Through similar data choices and linear fitting, numerical results for a
and ( are shown in Table 2.

Finally, in Figure 3, we take the values a and ( in Table 2 in ansatz (4.13) for Xf and
plot the profiles of i for each § with connectivity parameter b = 0, 1. Numerically, v is
nearly independent of § and decays exponentially in y. Therefore, we conclude that it is
very likely that f?(x) exhibits the self-similar profile in Equation (4.13) when = > 1.
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Figure 2: (Convergence of the density functions and the firing rate functions of the jump-
diffusion process Xf and killing process X with parameter b = 0 and b = 1.) These
figures show the evolution of the discrepancy functions defined in Equations (4.10) and
(4.11) as § — 0. Top: the density discrepancy D/ (§) and firing rate discrepancy D" (4)
of the jump-diffusion process Xf with connectivity parameter b = 0 and b = 1. See
Equations (2.4) and (4.1) for the Fokker-Planck equations of the process Xf . Bottom:
the density discrepancy D0 (§) and firing rate discrepancy D™0(§) of the killing process

Xf with connectivity parameter b = 0 and b = 1. See Equations (3.47) and (4.1) for the

Fokker-Planck equations of the process )/(vf

Jump-diffusion process X} | b=1 b=0.5 b=0 b=-05 b=-1
Values of a 0.2713 0.3187 0.3505 0.3766 0.3961

Values of 3 -0.4256 -0.4363 -0.4283 -0.4317 -0.4268

Killing process )A(ES ‘ b=1 b=0.5 b=0 b=-05 b=-1
Values of « 0.3448 0.3856 0.4122 0.4344 0.4507

Values of 3 -0.4307 -0.4148 -0.4136 -0.4317 -0.4317

Table 2: Numerical values of the parameters a and S in ansatz (4.13). Parameters of
the two processes with different connectivity b are shown in the table. See Equations
(2.4), (3.47) and (4.1) for the Fokker-Planck equations.
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—6=1/16
—6=1/32
—0=1/64

¥(x)

In(¥(x))

—4=1/16
0=1/32
—6=1/64

In((x))

Figure 3: (Image for ¢ and In(¢)) with connectivity parameter b = 0,1.) In this figure,
we put the values of « and 3 in Table 2 into the ansatz (4.13) for the density function f°
with different §. Numerically, we see the profile of ¢ is independent of §, which indicates
that f9 is likely to exhibit self-similar structure when = > 1 as § — 0. See Equations
(2.4) and (4.1) for the Fokker-Planck equations of the process Xf . Left: Image for .
Right: Image for In(y). Top: b = 0. Bottom: b = 1.
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5 Conclusion and Discussion

In this work we aim to reduce the gap in understanding between the mean-field
integrate-and-fire model as a stochastic process and the PDE model as an evolving den-
sity function. As shown in [5], it is possible to find an initial probability distribution
such that the solution of the nonlinear Fokker-Planck equation with a deterministic
firing potential must blow up in finite time, which is conjectured to be linked to the
multiple firing events (synchronization) of neuronal networks. The random discharge
mechanism is introduced to prevent the blow up of the solution of the PDE model such
that the synchronized state becomes possible on the macroscopic level. In this paper,
we have rigorously justified that the regularized solution is indeed an approximation to
the original one, which confirms the scientific intuition behind the random discharge
mechanism. As the continuation of [29], we only focus on the linear cases and show
that the relevant random discharge model converges to the original integrate-and-fire
model in distribution as the regularization parameter goes to 0. Mathematically, the it-
erated scheme can effectively reduce the difficulties of analyzing the problems with the
firing-and-resetting mechanism, and gives more intuitive stochastic interpretations of
the macroscopic quantities of the PDE, which are otherwise obscure. Using specifically
designed numerical experiments, we have observed evidence for the convergence rate
and the asymptotic behavior for both the linear cases and the more sophisticated nonlin-
ear cases, which motivates us to carry out a rigorous asymptotic analysis in subsequent
work. It is worth noting that we have not yet incorporated the dependence on the mean
firing rate in the drift velocity and in the diffusion coefficient and we shall investigate
those directions in later work. However, there are still additional challenges due to the
interacting nature and the nonlinearity within the model.

Appendix
A Proof of Proposition 3.10

Proof. To prove the case when n = 2, by the Markov property, we first have:

b1
PY(X} € (a1,b1], X, € (as,ba)) :/ PY(X} _,, € (a2,b2))f° (t1, y)dy.

a1
and .
PO(th € (alvbl]aXt2 € (aQabQ]) :/ Py(thfh € (a27b2])f(t17y)dy-
Thus s s
PO(th S (al,bl],Xt2 c (GQ,bQ]) — PO(th S (al,bl],th S (a2,b2])

b1
<| [P € (0] [ 010) — Fo1,0)]
‘Zl (A.1)
1
b [ IPYKE € G ba]) — PP (X € (a2 ba))] £ 11,y
ai
=:L+1
For I, consider the function
PY(X,,_ b if b
o(y) = (Xty—t, € (a2,b2]) ifye (§1, 1) (A.2)
0 otherwise.

According to the strong Feller property of X;, PY(X:,_+, € (a2,b2]) is a continuous
function with respect to y € (—o0,1). Thus ¢(y) is a bounded measurable function with
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discontinuities at a; and b;. Moreover, by Proposition 3.1 of [29], F(¢,y) is continuous
in y and thus puts 0 measure on {a1,b;}. Thus by Theorem 3.2.10 of [19] and the fact
that E%[p(X? )] — E%[p(Xy,)] as 6 — 0T, we get I; — 0.

For I, by Corollary 3.11, for all § < 7y we have

by
I, <e Fo(t,y)dy < e. (A.3)
ay
Thus we have proved Proposition 1 for n = 2. In general, suppose Proposition 3.10
holds for all & < n. Now for & = n+ 1, we can similarly define o™ (y) fory = (y1,--- ,Yn)
as

oy JPU X e, € (ang1,bpga])  ify € (a1, b1] x -+ X (an, bal, Al
" (y) = _ (A.4)
0 otherwise.
and have
PO(X1561 € (0’17 bl]a Xf‘z € (G‘Qa b2]7 e ,an € (a’nv bn]a Xtan+1 € (a’nJrlv bn+1])
7P0(Xt1 € (a’lv bl]a Xt2 € (ag, b?]v te ;th S (an7 bn]a th+1 S (an+17 bn+1])

< ‘EO [cp(")(th,"' 7th)} —E° [cp(")(Xfl,"' aXfl):H

+/ ‘Py(anH—tn € (an41,bn11]) = PY(Xe, 11, € (@ng1, busa]) [ dF(y).
(al,b1]><~~~><(an,bn]

(A.5)
where F(")(y) is the distribution of (X;,,---, X;, ). Note that (") (.) is a bounded mea-
surable function on R™ whose discontinuities are given by

Dy ={y:{y1=arorbi}U---U{y, =a, orb,}}

Since F(-,t;), i = 1,2, --n are all continuous on (—oo, 1], the joint distribution F()(-) of
(X4, X¢,) puts 0 mass on D). Thus by (vi) of Theorem 3.10.1 in [19], we have

‘EO |:(P(n) (tha t aXt1)} —-E’ [(p(n) (Xt61’ e ’Xtél)i| ‘ — 0.
At the same time, by a similar argument as in (A.3), we have

/ ‘Py(an+l_tn € (an-i-l’ bn+1]) - Py(th+1—tn, € (an+1’ bn+1])‘ dF(n) (y) <e
(al,b1]><~~-><(an,bn]
Thus by induction, the proof of Proposition 3.10 is complete. O

B Proof of Lemma 3.20
Proof. Recall Lemma 3.19, the definition of £ and the OU process

t
Ziter =146, - / ZItnds + By.
0

In event E¢" there is

Zrfrn > 14 ey =246, +den > 1426, =1+ 6,1, (B.1)
Thus we know that 7,,_1 < I'4c, in event E°*. And for any ¢ < I'y., < 46% with 'y, <
Fféen'
1
Ztl“" > 1+en—2-4ei—§en >1—-2¢,=1—¢€,_1.
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Thus we know that Zt”ﬁ" does not hit 1 — ¢,_; before I'y,. Thus it must hit 1 + ¢,
before Iy, . However, note that V¢ <T'z, < T,

2
Zite < I+en—0—zen <1426 =1+en,
Thus we have Fgen < Tp—1 < T4, in E°». And in E°* for any ¢t < Iy, such that
B; € [ien, %en],
1
Ziten > 1+en—2~4ei+zen >1+ep.
Thus in event EF»

2.

Tn—1 Iy
n 2
/O ]]‘{Z,£1+€”'>1+en}dt 2 /0 ]‘{BtG[ien,%en]}dt 2 €ns
and then

P </O ]].{Zt1+en>1+€n}dt > 6%) > P(EE").

Similarly, given E», for all t < T'y., < 46%, since I'y., < T'_1. , we have

—le,s
1—e 2 1
Z; "Z1—6n—2-46n—§€n>1—26n=1—6n_1

and
Zi > 1 —e, —2-4€2 446, > 1426, =1+ €,1.

F4en,

At the same time, Vt < I'z 5., < I'4¢,, we have
Zlm o <1 -6, —0+4286, <142, =1+¢€,_1.
Thus o ge, < Th—1 < 4¢,. And for any t < Ty, B: € [2.2¢,,2.5¢,], we also have
ZImr > 1 — 6y — 2462 + 2.2, > 1+ .

So again in £ we have

Tn—1 F2.86n 9
/O ]‘{sz6" >1+€n}dt > /0 ]]'{Bte[2.26n72.56n]}dt 2 €ns

and then N
P (/0 Ligi-ensiqe,ydt > 6721) > P(E™).
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