
Reactive Symbolic Planning and Control in Dynamic Adversarial
Environments

Laya Shamgah, Tadewos G. Tadewos, Ali Karimoddini, Albert C. Esterline

Abstract— Satisfaction of both safety and reachability in
dynamic environments is a complex problem due to the
competitive interactions of the system with its environments.
The presence of adversarial objects, particularly when little
information about their dynamics and intentions is available,
makes the problem more challenging. This paper addresses
path planning and control of autonomous vehicles involved
in a dynamic adversarial reach-avoid scenario. In the studied
scenario, there are two non-cooperative vehicles with the
competitive objectives “reaching a target and avoiding the
other vehicle” for one of them, called attacker, and “protecting
the target and capturing the opponent vehicle” for the other
one, called defender. In the proposed solution, first, a discrete
version of the problem is formally captured by Linear Temporal
Logic formulas. Using a temporal game structure and µ-
calculus formulas, two algorithms are developed to find discrete
strategies that guarantee both safety and reachability. Finally,
a novel correct-by-design hybrid controller is proposed to
generate smooth control signals that preserve the satisfiability
of these requirements of interest.

Keywords: Reach-avoid; Symbolic planning and control;
Adversarial environment; Temporal logic; Reactive synthesis

I. INTRODUCTION

Classical motion planning techniques are developed to de-
sign trajectories from a starting point to a specific destination.
With technological advances in control, computation, and
communication tools, it has become possible to consider
more complex environments and scenarios. For example,
static obstacles and no-fly zones can now be avoided by
the vehicles under control. The combination of these two
objectives (reaching the desired point and avoiding static
obstacles) has led to the emergence of new path planning
scenarios called reach-avoid problems [1], [2]. For these
sophisticated scenarios, more advanced control techniques
are required to achieve extra levels of reliability, robustness,
and efficiency. An interesting recent trend in Robotics society
is to employ and connect Temporal Logics [3], [4], and
Hybrid Control Systems [5]–[8], together with their fast
developing tools. Linear Temporal Logic (LTL) formulas [9]–
[11] makes it possible to formally describe requirements,
such as safety and reachability, in different scenarios (e.g.,
persistent monitoring [12], search and rescue [13], etc.).
Combined with hybrid control techniques, symbolic control
approaches [14], [15] generate correct-by-design, computa-
tionally efficient solutions for robot motion planning and
control problems, particularly when the environment does
not change [16]–[18]. However, in practice, the environment
is dynamic. Addressing a problem where there exist non-
cooperative agents in the environment is beyond the scope
of the developed techniques for static environments.

This paper, therefore, targets for planning and control of
autonomous vehicles being driven in dynamic adversarial
environments where there exit moving objects with intercept-
ing and adversary intents, with many practical applications,
for example, a flight collision avoidance [19], or an air-
to-air combat [20]. Specifically, we consider a dynamic
reach-avoid scenario involving two competing vehicles: the
attacking vehicle, which aims to reach a target region while
avoiding the other vehicle, and the defending vehicle, which
aims to capture the attacking vehicle to protect the target.
The existing methods either formulate the dynamic reach-
avoid problem as a pursuit-evasion game [21]–[24], or use
probabilistic formulations [25]–[27] to minimize a cost func-
tion that is defined based on the probability distribution of
the moves of dynamic obstacles. More recently improved
techniques formulate the reach-avoid problem as differen-
tial zero-sum games [28], [29], and use Hamilton-Jacobi
reachability analysis to obtain winning strategies against
the behavior of the defenders. Although these numerical
methods are very successful in solving static reach-avoid
problems, they suffer from several limitations in dealing with
the dynamic version of the problem. These methods provide
an open-loop solution according to the initial positions of
the vehicles, without incorporating real-time information
feedbacked from the opponent vehicle. This will result in
conservative solutions in the absence of information about
the opponent’s actions.

This paper addresses the dynamic reach-avoid problem
by developing a correct-by-design controller for the vehicle
under control to reactively respond to adversarial actions of
the opponent vehicle, while also avoiding static obstacles and
no-fly zones. For this purpose, a hybrid symbolic planning
technique is developed over a rectangular partitioned envi-
ronment. We, then, effectively capture the assumptions about
the environment and requirements of the vehicle under con-
trol using LTL formulas in the form of General Reactivity(1),
GR(1), [30]–[32]. This allows us to handle the reactive nature
of the reach-avoid problem while synthesizing a discrete
supervisor that is guaranteed to win the game. Our focus in
this paper is to design a controller for the attacker. However,
the solution can be similarly synthesized for the defender in
a symmetric way if the intention is to control the defender.
Compared to our preliminary results in [33] and [34], in this
paper, we have calculated winning initial regions from which
the attacker can start the mission and win the reach-avoid
game. For this purpose, the dynamic reach-avoid problem
is formulated as a two-player game. Appropriate operators
are introduced to find the safe and winning solution of the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

game as a fixed-point of these operators through an iterative
process. It is proven that the solution of the formulated game
exists. An algorithm is provided to implement the proposed
technique that is proved to return the solution within a
finite number of iterations. After finding the winning initial
regions, an algorithmic approach is provided to extract the
winning strategies for an initial position through which the
attacker can reach the target before being captured by the
defender.

Finally, a novel hybrid controller is designed to generate
control signals for executing the winning strategies by driv-
ing the attacker to win the reach-avoid game while respecting
the dynamics of the system. In this paper, we consider
the dynamics of the attacking autonomous vehicle modeled
with a class of multi-affine nonlinear systems of the form
ẋ = f(x) + Bu which describes well-known models like
Euler, Volterra, Lotka-Volterra equations, attitude and veloc-
ity control systems for autonomous vehicles, such as aircraft
and underwater vehicles. Commonly, the continuous signals
generated from symbolic controllers over partitioned spaces
are discontinuous, as it is observed in [35], which may cause
discomfort and negatively impact the actuators and reduce
the reliability of the system [36], [37]. However, a salient
feature of the proposed hybrid controller is the smoothness
of the generated control signals, which is achieved by the
proper control of the vector field when the system moves
over the edges of partitions while guaranteeing the execution
of the high-level discrete commands.

The rest of the paper is organized as follows. Section
II formulates the dynamic adversarial reach-avoid problem.
Section III provides the formal descriptions of the reach-
avoid problem and captures the assumptions about the envi-
ronment and requirements of the vehicle under control using
LTL formulas. In Section IV, the reach-avoid problem is
formulated as a two-player game, based on which initial
winning regions are calculated. Section V synthesizes the
high-level winning strategies that can lead the vehicle under
control to win the game for any action of the opponent
vehicle. Section VI constructs a hybrid controller, which
generates smooth control signals to drive the vehicle under
control to execute the winning strategies. Section VII pro-
vides the simulation results, and Section VIII concludes the
paper.

II. PROBLEM DESCRIPTION

A dynamic reach-avoid scenario consists of two vehicles:
an attacking vehicle, which aims to reach a target while
avoiding collision with another vehicle, and a defending
vehicle, which aims to prevent the attacking vehicle from
reaching the target, by capturing it. A general schematic for
this game is illustrated in Fig. 1.

In this paper, we address the problem of path planning and
control for the attacking vehicle in a dynamic reach-avoid
scenario. However, the results can be similarly extended for
the defending vehicle in a symmetric way.

Fig. 1. A general schematic of a dynamic reach-avoid problem.

A. Operation Region

We assume that the vehicles operate within a 2-D bounded
region Ω ⊂ R2 and never leave this region. In the dynamic
adversarial reach-avoid problem, the attacker tries to reach
the target while keeping a safe distance from the defender.

Definition 1: The minimum safe distance between the
attacker’s position, xa, and the defender’s position, xd, is
δD. If ‖xd − xa‖ < δD, it is assumed that the attacker is
captured by the defender.

Definition 2: The minimum desired distance between the
attacker’s position, xa, and the target’s position, xt, is δT . If
the attacker approaches the target such that ‖xa−xt‖ < δT ,
it is assumed that the attacker has captured the target.

Consider the rectangle P = {x ∈ R2|a1 ≤ x1 ≤ b1, a2 ≤
x2 ≤ b2} be the minimum rectangle which embraces the
region Ω. To manage the complexity of the reach-avoid
problem, we employ symbolic motion planning techniques
by rectangular partitioning of P . We set the length of the
partitions as:

δ = min{ δD√
2
,
δT√

2
} (1)

where δD and δT are defined in Definitions 1 and 2.
This will partition P into nm disjoint squares Pij , where

Pij = {x ∈ P |a1 + (j − 1)δ ≤ x1 ≤ a1 + jδ and b2 − iδ ≤
x2 ≤ b2 − (i − 1)δ}, where (a1, b2) are the coordinates of
the top-left corner of P .

B. Discrete Information over the Partitioned Space

We assume that the positions of both vehicles are known
during the game. We define the following sets of Boolean
propositions:

A = {aij} , i ∈ {1, . . . , n}; j ∈ {1, . . . ,m}
D = {dij} , i ∈ {1, . . . , n}; j ∈ {1, . . . ,m} (2)

The sets A and D include propositions about the positions
of the attacker and the defender, respectively. At each time,
only one of the elements of these sets is True and the rest
are False. The indices of these true elements are equivalent
to the partitions where the vehicles are located. For example,
a12 = True means that the attacker is in partition P12.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

We also define a proposition ead which is True whenever
the distance of the attacker and the defender is less than
δD, i.e., ‖xa − xd‖ < δD. Similarly, we define eat as a
proposition, which is True if the distance of the attacker
and the target is less than δT , i.e., ‖xa − xt‖ < δT .

C. Attacker’s Continuous Dynamics

Here, we assume that the attacking vehicle’s model is
represented by a class of nonlinear systems, called multi-
affine, which can be written as:

ẋ(t) = f(x(t)) +Bu(t) (3)

where x(t) ∈ Rn describes the position of the system, u(t) ∈
U ⊂ Rq is the control input, B ∈ Rn×q is a constant matrix,
and the function f(x) is affine in each of elements of x as
presented in the following:

f(x) = f(x1, ..., xn) =
∑
i

ci
∏

j=1,··· ,n
x
bij
j (4)

where bij ∈ {0, 1} and ci ∈ Rn.
We also assume that the velocities of both vehicles are

bounded by Um.
Planning for the attacker in a dynamic reach-avoid sce-

nario, the aim is to reach the target before being captured
by the defender. The first question is whether this goal is
feasible, or under what conditions the attacker will win this
adversarial game. This is described in Problem 1:

Problem 1: Consider a reach-avoid scenario with the
partitioned region P , a defending vehicle with the initial
position xd(0) ∈ Pd0 , and an attacking vehicle with the
continuous dynamics described in (3). The attacker aims
to reach a target at position xt before being captured by
the defender. Obtain the set of guaranteed winning initial
positions W a

init from which the attacker can eventually win,
i.e. ‖xa − xt‖ < δT , before being captured by the defender,
i.e., always ‖xa − xd‖ ≥ δD.

If a solution for Problem 1 exists, the next step is to control
the attacker and drive it to win the reach-avoid game:

Problem 2: Assume the initial position of the attacker is
xa(0) ∈W a

init. Design a controller to generate a trajectory
xa(t) ∈ P that satisfies the attacker’s objective which is to
reach the target, i.e., ∃tw ≥ 0 such that ||xa(tw)−xt(tw)|| <
δT , while avoiding the defender with initial position xd(0),
i.e ∀0 ≤ t ≤ tw, ||xa − xd|| ≥ δD.

III. FORMAL REPRESENTATION OF THE DYNAMIC
ADVERSARIAL REACH-AVOID USING VIA TEMPORAL

LOGIC

In this section, we use Linear Temporal Logic (LTL)
to formally describe the dynamic adversarial reach-avoid
problem. This allows us later to check the feasibility of a
winning strategy for the attacker, as stated in Problem 1,
and to synthesize a hybrid controller to address Problem 2.

A. Linear Temporal Logic

a) LTL Syntax: Linear temporal logic (LTL) formulas
[10] are constructed over a finite set of atomic propositions,

Σ, using the standard Boolean operators, negation (¬),
disjunction (

∨
), conjunction (

∧
), and the temporal operators,

next (©), until (U), eventually (♦), and always (�).
b) LTL Semantics: Consider an ordered sequence σ =

σ0σ1 . . . over propositions in Σ, where σi is the set of
propositions at position i. We say σ, i � ϕ if σ satisfies
a formula ϕ at position i.

Table I presents syntax and semantics of LTL formulas.
c) Interpretation of Boolean propositions: By inter-

pretation we mean assigning a truth value to a Boolean
proposition. The interpretation of a boolean proposition p is
either True (or equivalently 1), or False (or equivalently
0). Accordingly, we define ΠΣ as the set of all possible
interpretations of the variables in Σ.

B. LTL Specification for the Dynamic Reach-avoid Scenario

To capture the interactions of the attacker with environ-
ment (including the defender actions), we use a special class
of LTL formulas called General Reactivity(1), or simply
GR(1), ϕ = ϕe → ϕs, where ϕe contains all assumptions
about the environment and ϕs represents the assumptions on
the system and its desired behaviors. The formulas ϕe and
ϕs are formed by the conjunction of some sub-formulas in
all three forms of B, �B, and �♦B, where B could be a
Boolean or temporal formula.

Formulating the reach-avoid problem within GR(1) for-
malism, we consider the attacker, which we are going to
control, as the system and the defender as environment. This
can be captured by a GR(1) formula:

ϕ = ϕd → ϕa (5)

where ϕd and ϕa can be represented as:

ϕγ = ϕγinit ∧ ϕ
γ
sing ∧ ϕ

γ
term ∧ ϕ

γ
rul ∧ ϕ

γ
obs ∧ ϕ

γ
obj (6)

where γ ∈ {a, d} includes superscripts a and d for the at-
tacker and the defender, respectively. The sub-formulas ϕγinit,
ϕγsing , ϕγterm, ϕγrul, ϕ

γ
obs, and ϕγobj capture the initial condi-

tion, the singularity condition, the termination condition, the
transition rules, the obstacle avoidance requirements, and the
objectives of the vehicles, respectively. These sub-formulas
are described in the following:

1) Initial condition: Initially (based on Problem 1), the
defender is in Pd0 , with d0 = (id0 , jd0). Therefore, ϕdinit
can be described as:

ϕdinit = did0 jd0 ∧ ¬ead (7)

The attacker, however, could start from any of the parti-
tions as described by ϕainit:

ϕainit =
∨

(i,j)∈M

aij (8)

where M = {(i, j)|i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} is the
set of all indices of partitions in P . Later, we will find the
initial positions from which the attacker can win the game.

2) Singularity requirement: Each vehicle can physically
be only in one partition at each step. Hence, only one of the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

TABLE I
LINEAR TEMPORAL LOGIC (LTL) SYNTAX AND SEMANTICS

Syntaxes Description Semantics

p Boolean proposition σ, i � p ⇐⇒ p ∈ σ(i), for p ∈ Σ,
¬ϕ Boolean operator (Negation) σ, i � ¬ϕ ⇐⇒ σ, i 2 ϕ
ϕ ∨ ψ Boolean operator (Disjunction) σ, i � ϕ ∨ ψ ⇐⇒ σ, i � ϕ or σ, i � ψ
ϕ→ ψ Boolean operator (Implication) σ, i � ϕ→ ψ ⇐⇒ σ, i � ¬ϕ or σ, i � ψ
ϕ ∧ ψ Boolean operator (Conjunction) σ, i � ϕ ∧ ψ ⇐⇒ σ, i � ϕ and σ, i � ψ
©ϕ Temporal operator (Next) σ, i �©ϕ ⇐⇒ σ, i+ 1 � ϕ
ϕ U ψ Temporal operator (Until) σ, i � ϕ U ψ ⇐⇒ there exists k ≥ i s.t. σ, k � ψ and

σ, j � ϕ for all i ≤ j < k
♦ϕ Temporal operator (Eventually) σ, i � ♦ϕ ⇐⇒ there exists k ≥ i s.t. σ, k � ϕ
�ϕ Temporal operator (Always) σ, i � �ϕ ⇐⇒ for all k ≥ i, σ, k � ϕ

propositions aij can be True at each time. The same is true
for dij . We call this property the Singularity Requirement
which can be described as:

ϕγsing = �[
∨

(i,j)∈M

(γij ∧ (
∧

(`,k)∈M−{(i,j)}

¬γ`,k))] (9)

where γ ∈ {a, d}.
3) Termination requirement: Once either of the vehicles

achieves its goal (the attacker reaches the target and eat
becomes True, or the defender captures the attacker and
ead becomes True) the game terminates. In this case, both
players are required to stay at their last position.

The termination requirement for the attacker and the
defender γ ∈ {a, d}, can be described as:

ϕγterm = �[(eat ∨ ead) ∧ (
∧

(i,j)∈M

γij →©γij)] (10)

4) Transition rules:
a) Defender’s transition rules: First, we define the next

decision set for the defender POSTD(dij) for any dij , i =
1, · · · ,m, j = 1, · · · , n, as:

POSTD(dij) = {d`k|(`, k) ∈ (N ′d(Pij)−Obs)} (11)

where N ′d(Pij) contains all indices of the diagonal, vertical,
and horizontal neighbor partitions of Pij including itself, and
Obs includes all indices of obstacle regions.

Since from the perspective of the attacker, there is no
control on the transitions of the defender, we only assume
that the defender transits to one of its (diagonal, vertical, or
horizontal) adjacent partitions, which is not an obstacle or
target partition. The defender may also stay in its current
partition. These assumptions capture all possible behaviors
of the defender and can be described as:

ϕdrul = �[
∧

(i,j)∈M

(dij →
∨

(`,k)∈POSTD(dij)

©d`k) ∧ ¬ditjt]

(12)
where (it, jt) is the index of the region where the target is
located.

The LTL formula in (12) indicates the strategies for the

evolution of defender propositions and basically states that
if the defender is in partition Pij , then for the next step,
it will either move to one of the adjacent regions which
is not obstacle or target, or stay in its current partition.
Therefore we consider all possible moves of the defender, as
our intention is not to assume any limitation on the transitions
of the defender.

b) Attacker’s transition rules: Here, we propose an
algorithm to derive the attacker’s transition rules to optimally
make decision and move over the partitioned space. For
this purpose, first, similar to the defender, we define the
next decision set for the attacker POSTA(aij) for any aij ,
i = 1, · · · ,m, j = 1, · · · , n, as:

POSTA(aij) = {ai′j′ |(i′, j′) ∈ (N ′a(Pij)−Obs− (i, j))}
(13)

where N ′a(Pij) contains all indices of the vertical and
horizontal neighbor regions of Pij , excluding the obstacle
partitions.

Then, we construct a finite two-player zero-sum game in a
matrix form based on the current position of the attacker, aij ,
and the defender, d`k. Let ai′j′ and d`′k′ to be two possible
next decisions of the attacker and the defender, respectively.
The vehicles share the same objective function, L, defined
as:

L(ai′j′ , d`′k′) = (14)
∞, if (i′, j′) = (`′, k′)

0, if (i′, j′) = (it, jt)

α‖(i′, j′)− (it, jt)‖+
β

‖(i′, j′)− (`′, k′)‖
, o.w.

where (it, jt) is the index of the region where the target is
located. In this game, the attacker is the minimizer player
while the defender is the maximizer. By using this game
configuration, the attacker tries to minimize the cost function
in (14) by maximizing the distance between two vehicles,
‖(i′, j′)− (`′, k′)‖, and by minimizing its distance from the
target ‖(i′, j′) − (it, jt)‖. If the attacker and the defender
are in the same region, we will have L = ∞, meaning that
the attacker looses the game, and if the attacker reaches the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

target, we will have L = 0, meaning that the attacker wins
the game. Either way, the game is over and the players should
remain in their last position. The parameters α, β ∈ R are
weight factors.

Lemma 1: [38] For any finite two-player zero-sum game
in a matrix form, there is at least one security decision.

Lemma 1 assures that a zero-sum game for different
configurations (positions of the vehicles) can provide at least
one security decision for the attacker to make. For example,
consider the current status of the game as shown in Fig. 2,
where the attacker is in Pij , and the defender is in Plk.
Since the attacker is under our control, we drive it to move
constantly and leave its current region by making a different
decision, until it reaches the target. Also, we assume that the
attacker exits its current region through the edges and not the
vertices. Therefore, at each step, the attacker has at most four
options to go next, excluding obstacle regions. In contrast,
the defender is out of our control and we must consider
all its possible behaviors. Accordingly, we assume that the
defender may go to either of the eight adjacent partitions
of its current partition excluding the obstacles or stay at its
current partition. For the specific case shown in Fig. 2, the
attacker has three options as one of the adjacent partitions,
Pi−1,j , is an obstacle. and the defender has six options as
three of its neighbor partitions are out of P . The matrix-game
for this situation is shown in Table II.

The rational strategy for the attacker is to minimize its
loss based on the most adversarial decision of the defender.
According to the matrix game in Table II, the best decision
for the attacker can be obtained as:

min
a′∈POSTA(aij)

{ max
d′∈POSTD(dlk)

{L(a′, d′)}} (15)

For all possible configurations, this game should be solved,
and the resulting strategies should be included in ϕdrul with
the following general structure:

ϕarul = �
∧

(i,j)∈M,(l,k)∈(M−{(i,j)})

(16)

[(aij ∧ dlk)→
∨

(f,g)∈Qij,lk

©afg]

where Qij,lk contains the solutions of (15) for the case that
the attacker is in aij and the defender is in dlk.

Proposition 1: For a dynamic reach-avoid scenario over a
region with n×m partitions, totally (nm(nm−2)) zero-sum
games need to be solved to obtain the transition rules of the
attacker.

Proof: For a n ×m partitioned region, there are nm
possible discrete positions for the attacker. Also, the defender
can be in nm possible discrete positions, but for two of them
the game is not valid: One case is when the defender is in
target region (we excluded this case and assumed that the
defender do not stay in the target region to avoid confusion
about the winning conditions), and the other case is when
the defender is in the same region of the attacker (when
the defender captures the attacker and wins). Hence, totally
for nm(nm − 2) permutations, zero-sum games should be

solved for which, based on Lemma 1, there exists at least
one decision.

5) Obstacle avoidance requirement: The set Obs contains
the indices of all obstacle partitions. The requirement that
the vehicles cannot enter these partitions is expressed in the
following temporal formula:

ϕγobs = �[
∧

(s,t)∈Obs

¬γst] (17)

where γ ∈ {a, d}.
6) Players’ objectives: The objective of the attacker is to

reach the target, which can be expressed as follows:

ϕaobj = �♦at (18)

where t is the index of the target region.
The objective of the defender can be written as �♦True

since the defender is not under our control, therefore, we
cannot make any assumptions about the defender’s objective.

IV. WINNING INITIAL POSITIONS

Here, we address Problem 1 by finding the set of winning
initial positions, W a

init, from which it is guaranteed that there
is at least one winning strategy for the attacker against every
possible behavior of the defender. For this purpose, based
on the captured specifications in (5), we model the dynamic
reach-avoid problem as a temporal game described as the
following Reach-Avoid Game Structure (RAGS):

RAGS =< S,A,D,Θa,Θd, ρa, ρd, ϕ
a
obj > (19)

where:
• S = A ∪ D is the set of Boolean propositions for this

game, where A and D are defined in (2). We define ΠA

and ΠD as the set of all interpretations of sets A and
D, respectively. For example, πa = (a11 = True, a12 =
False, . . . , anm = False) ∈ ΠA is an interpretation of
A. For any πa ∈ ΠA and πd ∈ ΠD, the state π =
(πa, πd) ∈ Π describes the positions of the vehicles at
a particular instance of the game, where Π = ΠA×ΠD

is the state space of RAGS.
• Θa = {πa ∈ ΠA|πa |= ϕasing} captures the set of all

possible initial positions of the attacker,
• Θd = {πd ∈ ΠD|πd |= ϕdinit ∧ ϕdsing} captures the

initial position of the defender, which is initially located
at Pid0 ,jd0 ,

• ρd = {((πa, πd), π′d) ∈ ΠA × ΠD × ΠD | σ = ππ′ |=
ϕdsing ∧ ϕdterm ∧ ϕdrul ∧ ϕdobs, where π = (πa, πd),
π′ = (π′a, π

′
d), and π′a ∈ ΠA} is the defender’s

transition relation, and the sequence σ = ππ′ captures
two successive states of the game,

• ρa = {((πa, πd), (π′a, π′d)) ∈ ΠA × ΠD × ΠA ×
ΠD|(πa, πd, π′d) ∈ ρd and σ = ππ′ |= ϕasing ∧ ϕaterm ∧
ϕarul ∧ ϕaobs, where π = (πa, πd), π′ = (π′a, π

′
d)} is the

attacker’s transition relation,
• ϕaobj is the winning condition of the game.
Each state of RAGS, π ∈ Π, represents one position of the

attacker and one position of the defender over the partitioned

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

ai′,j′−1 ai′+1,j′ ai′,j′+1

d`′,k′−1 L(ai′,j′−1, d`′,k′−1) L(ai′+1,j′ , d`′,k′−1) L(ai′,j′+1, d`′,k′−1)

d`′,k′ L(ai′,j′−1, d`′,k′) L(ai′+1,j′ , d`′,k′) L(ai′,j′+1, d`′,k′)

d`′,k′+1 L(ai′,j′−1, d`′,k′+1) L(ai′+1,j′ , d`′,k′+1) L(ai′,j′+1, d`′,k′+1)

d`′+1,k′−1 L(ai′,j′−1, d`′+1,k′−1) L(ai′+1,j′ , d`′+1,k′−1) L(ai′,j′+1, d`′+1,k′−1)

d`′+1,k′ L(ai′,j′−1, d`′+1,k′) L(ai′+1,j′ , d`′+1,k′) L(ai′,j′+1, d`′+1,k′)

d`′+1,k′+1 L(ai′,j′−1, d`′+1,k′+1) L(ai′+1,j′ , d`′+1,k′+1) L(ai′,j′+1, d`′+1,k′+1)

TABLE II
ZERO-SUM GAME MATRIX FOR DECISION-MAKING FOR THE EXAMPLE IN FIG.2

Fig. 2. A possible configuration of a reach-avoid game. The defender has six options (P`′,k′−1, P`′,k′ , P`′,k′+1, P`′+1,k′−1, P`′+1,k′ ,P`′+1,k′+1)
as three of its adjacent partitions (P`′−1,k′−1, P`′−1,k′ , P`′−1,k′+1) are out of region P . The attacker, on the other hand, must leave its current region
through edges, and has only three options (Pi′,j′−1, Pi′,j′+1, Pi′+1,j′) as one of its neighbor partitions, Pi′+1,j′ , is obstacle.

space. The objective is to explore and obtain a safe subset
of Π as the winning set of states, W , from which we can
guarantee that for any sequence of actions of defender, there
exists a sequence of attacker actions, which keeps the state
of the game in W and ends at Πt. In this way, we satisfy
both safety (by staying in W) and reachability (by reaching
Πt).

A. The Solution of RAGS

To find the solution of RAGS, we formulate it as a
µ-calculus fixed-point problem with a solution W , which
contains all winning states of the RAGS. The solution to
Problem 1 is then a subset of W , in which the defender’s
initial position is fixed to did0 ,jd0 . For this purpose, we define
V ar = {X,Y } a set of rational variables. Each rational

variable is assigned to a specific subset of Π through the
function ξ : V ar → 2Π.

In [31], it is shown that the solution of a GR(1) game can
be found using µ-calculus. Compared to [31], we use lattice
theory to formally prove the existence and correctness of the
solution. The µ-calculus formulas are defined over S and
V ar as follows:

φ =: s | ¬s | X | ξ(X) | ¬φ | φ ∨ φ | φ ∧ φ (20)
| µX.ξ(X) | νX.ξ(X) | Pre(φ)

where,

• X ∈ V ar and s ∈ S,
• µ and ν are the least and greatest fixed-point operators,

respectively,

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

• and for a positive monotone function ξ : V ar → 2Π,
we have1:

– µX.ξ(X) = ∪iXi, where X0 = ∅ and Xi+1 =
ξ(Xi)

– νX.ξ(X) = ∩iXi, where X0 = Π and Xi+1 =
ξ(Xi)

• Pre(φ) = {π = (πa, πd) ∈ Π | ∀π′d ∈
ΠD,∃π′a ∈ ΠA such that ((πa, πd), π

′
d) ∈ ρd,

((πa, πd), (π
′
d, π
′
a)) ∈ ρa, and π′ ∈ [[φ]]}, where [[φ]] =

{(π′a, π′d) | (π′a, π
′
d) |= φ} and π′ = (π′a, π

′
d) contains

the information about the next position of the attacker
and the defender.

Here, Pre(φ) computes the set of all the states from
which the attacker can make a single-step safe transition,
independent of the defender moves, where the new position
of the attacker, π′a, and the new position of defender, π′d, form
a state π′ = (π′a, π

′
d) consistent with φ. The transition rules

ρa and ρd impose the GR(1) formula in (5). We introduce
the function ξ(X,Y) : 2Π × 2Π → 2Π as:

ξ(X,Y) = (Πt ∧ Pre(Y)) ∨ Pre(X) (21)

where Πt = {π ∈ Π | π |= at ∧ ϕasing ∧ ϕdsing} contains
all the states that capture the situations when the attacker is
in the target partition whereas the defender can be in any
partitions.

The solution of RAGS is the set of winning states W
which can be represented as the following µ-calculus for-
mula,

W = νY.µX.ξ(X,Y) (22)

In (22), the greatest fixed-point operator, νY , calculates
the states that are safe for the attacker (not being captured
by the defender), while the least fixed-point operator, µX ,
starts from Πt ∧ Pre(Y) with the most recent updated Y ,
then, recursively and in a backward way computes the set of
states from which the attacker can reach one of the states in
Πt ∧Pre(Y). In this way, the solution of the game satisfies
both safety and reachability.

Algorithm 1 implements the recursive procedure in
νY.µX.ξ(X,Y) through two while loops by initially setting
X = ∅ and Y = Π. Then, the inner-loop finds the least fixed-
point of ξ(X,Y) for a given Y , and the outer loop calculates
the greatest fixed-point of the function ξ′(Y) = µX.ξ(X,Y).

The procedure starts with Y = Π assuming that all the
states of RAGS are safe. The inner-loop (lines 8-12) starts
from mX[0] = Πt ∧ Y and finds mX[i + 1] = mX[i] ∨
Pre(X) until mX[i] = mX[i − 1] producing the sequence
mX[0],mX[1], · · · ,mX[maxi]. The final set mX[maxi]
contains all the reachable states to the target. However, the
safety requirement for these states (not being captured by the
defender) is not guaranteed yet.

1Intuitively the least fixed-point operator starts by under-approximation
and converges to the solution by consecutively expanding the initially under-
approximated solution. In contrary, the greatest fixed-point operator starts by
over-approximation and converges to a solution by consecutively reducing
the initially over-approximated solution.

Algorithm 1: Winning Regions Calculation
Input : RAGS =< S,A,D,Θa,Θd, ρa, ρd,�♦at >
Output: W = winning states, W a

init = winning initial
positions

1 Let i, j := 0
2 Let X := ∅; Y := Π
3 do
4 mY [j] := Y
5 j := j + 1
6 X := Πt ∧ Pre(Y)
7 i := 0
8 do
9 mX[i] := X

10 X = X ∨ Pre(X)
11 i := i+ 1
12 while (mX[i− 1] 6= X);
13 maxi = i− 1
14 Y := mX[maxi]
15 while (Y 6= mY [j − 1]);
16 maxj = j − 1
17 Let W := mY [maxj]
18 Let W a

init = {aij |∃(πa, πd) ∈W, πa |= aij and
πd |= ϕdinit}

19 Return W a
init, W , mX

The outer loop checks if mY [j] is the greatest fixed-point
of the function µX.ξ(X,Y), i.e., if mY [j] = mY [j − 1].
This is equivalent to finding the safe reachable states. For
this purpose, the unsafe regions are removed from the initial
approximation of the least fixed-point mX[0] (line 6). Then,
the least fixed-point mX[maxi] is recomputed in the inner-
loop (lines 8-12), which is an approximation of the greatest
fixed-point mY [j]. This will be used to update the initial
approximation of the least fixed-point mX[0], from which
the unsafe states should be removed again. This recursive
process will result in a sequence of approximations of the
greatest fixed-point mY [0],mY [1],mY [2], · · · in the outer-
loop until mY [j] = mY [j − 1].

Finally, we let W = mY [maxj], where W contains all
winning permutations so that for any finite sequence of
actions of the defender π1

d, π
2
d, ..., π

n
d , there exists a safe

(non-colliding) sequence of attacker actions π1
a, π

2
a, ..., π

n
a ,

ending in any target states πna |= at}, while πk = (πka , π
k
d)

remains in W , k = 1, . . . , n.
Once W is calculated, for a particular initial position

of the defender did0 jd0 , we can calculate the set W a
init =

{aij | πa |= aij and ∃(πa, πd) ∈W,πd |= ϕdinit}.

B. Discussion on the correctness and termination of the
algorithm

Next, we show that Algorithm 1 returns the solution of
RAGS after a finite number of iterations, but first, we need
the following definitions and lemmas.

Definition 3: A pair
〈
Σ,�

〉
is a partially ordered set

(poset), where Σ is a set and � is a partial order relation.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Definition 4: [39] A poset
〈
Σ,�

〉
is a lattice if for any

finite Z ⊆ Σ we have supZ, infZ ∈ Σ. If this property
holds for any arbitrary Z ⊆ Σ, then

〈
Σ,�

〉
is a complete

lattice. Clearly, any lattice
〈
Σ,�

〉
over a finite set, Σ, is

complete.
Lemma 2: The poset

〈
2Π,⊆

〉
is a complete lattice, where

Π is the state space of RAGS in (19).
Proof: The set Π is finite, so is 2Π. Therefore, to prove

that
〈
2Π,⊆

〉
is a complete lattice, it suffices to show that it

is a lattice. For any power set 2Σ, we have sup(2Σ) = Σ and
inf(2Σ) = ∅. We also know that for any Z ⊆ 2Σ, we have
supZ ⊆ sup2Σ. This means that supZ ⊆ Σ, concluding that
supZ ∈ 2Σ as all subsets of Σ are a member of 2Σ. Similarly,
since we have infZ ⊆ Σ, then infZ ∈ 2Σ. Therefore,〈
2Π,⊆

〉
is a lattice, and since 2Π is finite, it is a complete

lattice.
Lemma 3: Functions ξ(X,Y) = (Πt∧Pre(Y))∨Pre(X)

and ξ′(Y) = µX.ξ(X,Y) are positive monotone.
Proof: First, we prove the positive monotonicity of

ξ(X,Y) with respect to both X and Y . All Boolean op-
erators, including conjunction (∧) and disjunction (∨), are
increasing, except for negation (¬). The function ξ(X,Y)
does not have any negation, and hence to prove positive
monotonicity of ξ(X,Y), we only have to show the operator
Pre(∗) is increasing. Let, Z1 ⊆ Z2. Then pre(Z2) =
pre(Z1) ∪ pre(Z2\Z1), implying that pre(Z1) ⊆ pre(Z2).
Therefore, for any X1 ⊆ X2 and Y1 ⊆ Y2, we have
ξ(X1, Y1) ⊆ ξ(X2, Y2).

Now, we show that ξ′(Y) is positive monotone. According
to (20), ξ′(Y) = µX.ξ(X,Y) = ∪i=0ξ

i(X,Y), where
ξ0(X,Y) = X , and ξi+1(X,Y) = ξ(ξi(X,Y), Y). For any
X and any Y1 ⊆ Y2, since ξ(X,Y) is positive monotone,
we have:

Y1 ⊆ Y2 ⇐⇒ ξ(X,Y1) ⊆ ξ(X,Y2) (23)

⇐⇒ ξ(ξi(X,Y1), Y1) ⊆ ξ(ξi(X,Y2), Y2)

⇐⇒ ∪i=0ξ
i(X,Y1) ⊆ ∪i=0ξ

i(X,Y2)

⇐⇒ µX.ξ(X,Y1) ⊆ µX.ξ(X,Y2)

⇐⇒ ξ′(Y1) ⊆ ξ′(Y2)

Theorem 1: [Existence of solution] The least fixed-point
of ξ(X,Y) = (Πt ∧ Pre(Y)) ∨ Pre(X) and the greatest
fixed-point of µX.ξ(X,Y) exist.

Proof: a) First we show that over the complete lattice〈
2Π,⊆

〉
, the least fixed-point of the function ξ(X,Y) with

respect to X exists.
Let prefix = {X | ξ(X,Y) ⊆ X} with the greatest lower

bound p. We show that p exists and is the least fixed-point
of ξ with respect to X .

Since
〈
2Π,⊆

〉
is a complete lattice, p = inf(prefix)

exists. Then, for any X ∈ prefix, we have p ⊆ X .
Since, ξ is positive monotone and X ∈ prefix, we have
ξ(p, Y) ⊆ ξ(X,Y) ⊆ X , meaning that ξ(p, Y) is a lower
bound of prefix. As p is the greatest lower bound of prefix,
ξ(p, Y) ⊆ p, which means p ∈ prefix.

In addition, since ξ(X,Y) is positive monotone, from

ξ(p, Y) ⊆ p we have ξ(ξ(p, Y), Y) ⊆ ξ(p, Y). As a result,
ξ(p, Y) ∈ prefix and given that p is the greatest lower
bound, p ⊆ ξ(p, Y).

From the above derivations, we have ξ(p, Y) ⊆ p and
p ⊆ ξ(p, Y), which implies that p = ξ(p, Y). Therefore,
provided that any fixed-point is a member of prefix and p
is the greatest lower bound of this set, we can conclude that
p is the least fixed-point of ξ.

b) Now, we show that the greatest fixed-point of ξ′(Y) =
µX.(Πt ∧ Pre(Y))∨ Pre(X) exists. Let post = {Y | Y ⊆
ξ′(Y)} with the least upper bound q. We show that q is the
greatest fixed-point of ξ′(Y).

Since
〈
2Π,⊆

〉
is a complete lattice, q = sup(post) exists.

Then, for any Y ∈ post, we have Y ⊆ q. Since, ξ′ is positive
monotone and Y ∈ post, we have Y ⊆ ξ′(Y) ⊆ ξ′(q),
meaning that ξ′(q) is an upper bound of post. As q is the
least upper bound of post, q ⊆ ξ′(q), which means q ∈ post.

As ξ′(Y) is positive monotone and q ⊆ ξ′(q), then ξ′(q) ⊆
ξ′(ξ′(q)). As a result, ξ′(q) ∈ post and given that q is the
least upper bound, ξ′(q) ⊆ q.

From the above derivations, we have ξ′(q) ⊆ q and q ⊆
ξ′(q), concluding that q = ξ′(q). Therefore, provided that
any fixed-point is a member of post and q is the least upper
bound of this set, we can conclude that q is the greatest
fixed-point of ξ′, which also serves as the solution of the
game as q = νY.ξ′(Y) = νY.µX.ξ(X,Y).

Theorem 2: The solution of RAGS can be implemented
through a finite search.

Proof: As proved in Theorem 1, the least and greatest
fixed-points of ξ and ξ′ exist. Also, based on Lemma 3, both
functions ξ and ξ′ are positive monotone, which allows us to
use (20) to calculate these fixed-points through an iterative
process. Next, we show that Algorithm 1 returns the solution
of RAGS after a finite number of iterations.

According to (20), we can calculate the least fixed-point of
ξ(X,Y) as µX.ξ(X,Y) = ∪iXi where Xi+1 = ξ(Xi, Y) =
(Πt∧Pre(Y))∨Pre(Xi) = X1∨Pre(Xi) and X0 = ∅. This
recursive procedure is implemented within the inner-loop of
Algorithm 1 (lines 8-12). The variable X is being updated in
line 10 as X = X∨Pre(Xi) to form X = ∪iXi until Xi =
Xi−1, which can happen when Pre(Xi) = Pre(Xi−1), i.e.,
no other state can be added to X . Since, X = X ∨Pre(Xi)
is monotonically increasing over the finite set Π, this inner-
loop either ends at X ⊂ Π, or continues until X = Π.

Similarly, according to (20), we can calculate the greatest
fixed-point of ξ′ as νY.ξ′(Y) = ∩jYj where Yj+1 =
ξ′(Yj) = µX.ξ(X,Yj) and Y0 = Π, as implemented in the
outer-loop of Algorithm 1 (lines 3-15). Since ξ′ is positive
monotone, for any two successive approximation of the
greatest fixed-point Yj+1 ⊆ Yj , we have ξ′(Yj+1) ⊆ ξ′(Yj).
Since, Y0 = Π and Y1 = µX.ξ(X,Y0) ⊆ Π, we have
Y1 ⊆ Y0. Therefore, starting from Y0, we will have a
decreasing sequence Y0, Y1, · · · over the finite set Π until
Yj = Yj−1. Therefore, the outer-loop will terminate after a
finite number of iterations.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 3. A schematic of the sets mX[i] ∈ mX for i = 1, · · · ,maxi.

V. HIGH-LEVEL PLANNING

Assume that the attacker is initially located in Pi0j0 . If
ai0j0 ∈ W init

a , then there exists a winning strategy for the
attacker against any behavior of the defender. Therefore,
we can control the attacker to win the game to address
Problem 2. We solve this problem in two steps: first, in this
section, we use the winning set, W , to extract the winning
strategies over the partitioned environment. Then, in the next
section, using the resulting winning strategies, we construct
a hybrid controller to smoothly drive the attacker over the
operation region, P , to win the game.

To extract the winning strategies, having the result of
Algorithm 1 including the winning states W of the game
structure RAGS, Algorithm 2 obtains the winning strategies
for the attacker by constructing the transition relation ρ′

over the winning set W . The transition relation ρ′ can be
constructed by refining ρ as the following:

ρ′ =

maxi⋃
i=1

(
(mX[i] ∩ ¬mX[< i]),mX ′[< i])

)
(24)

where:
•
(
(mX[i] ∩ ¬mX[< i]),mX ′[< i])

)
∈ ρ,

• ρ = {
(
(πa, πd), (π

′
a, π
′
d)
)
| ((πa, πd), π

′
d) ∈

ρd, ((πa, πd), (π
′
d, π
′
a)) ∈ ρa},

• mX[i] is the set of intermediate winning states obtained
from Algorithm 1 (mX[0] ⊆ Πt and mX[maxi] = W),

• mX[< i] = ∪l∈[1,··· ,i−1]mX[l],
• mX ′[< i] = mX[< i]−mX[< i− 1],
• ¬mX[< i] = W −mX[< i].
To construct the winning strategies, ρ′, we start in a

backward way and find the transitions from the states in
mX[1] ∩ ¬mX[< 1] = mX[1] − mX[0] to the states in
mX ′[< 1] = mX[0] ⊆ Πt. Similarly, at the ith step, we find
the possible transitions from the states in mX[i]∩¬mX[< i]

(the red area in Fig. 3) to the states in mX ′[< i] = mX[<
i] −mX[< i − 1] (the green area in Fig. 3). At the end of
this process, we will have the set of the winning strategies,
ρ′, which is achieved by revising the original ρ so that by
following ρ′, the attacker wins the game against all possible
moves of the defender.

Algorithm 2: Winning Strategies
Input : ρ, maxi, mX , W
Output: ρ′: Transition Relation

1 ρ′ = {
(
(πa, πd), (π

′
a, π
′
d) ∈ ρ

)
|(πa, πd) ∈

mX[0], and ((π′a, π
′
d)) ∈W}

2 Let mXp = mXp′ = mX[0]
3 forall r ∈ {1, · · · ,maxi} do
4 ¬mXp = W −mXp
5 ρ′ = ρ′ ∪ {

(
(πa, πd), (π

′
a, π
′
d) ∈ ρ

)
| (πa, πd) ∈

mX[r] ∩ ¬mXp, (π′a, π′d) ∈ mXp′}
6 mXp′ = mX[r]−mX[r − 1]
7 mXp = mX[r] ∪mXp
8 end
9 Return ρ′

The relation ρ′ might not be deterministic, as, for some
defender decisions, there may exist different winning options
for the attacker. Therefore, in Algorithm 3, we make the
transition relations of the attacker deterministic by selecting
the best action of the attacker that is the move to a safe
region which is the closest to the target.

VI. HYBRID CONTROLLER SYNTHESIS

In order to drive the attacker to achieve its objective, the
high-level plans achieved in the previous section, should be

2dist(π′a, πt) = ||(ia, ja)− (it, it)||, where π′a |= aiaja , π
′
t |= aitjt

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 4. The proposed hybrid controller structure.

Algorithm 3: Deterministic Winning Strategies
Input : ρ′, W
Output: δa: Deterministic Transition Relation

1 δa = ∅
2 forall (πa, πd) ∈W do
3 Γ = {π′a|∃π′d, ((πa, πd), (π′a, π′d)) ∈ ρ′}
4 Pick π′min from argmin

π′
a∈Γ

dist2(π′a, πt)

5 δa = δa ∪ {((aij , dlk), ai′j′)| πa |= aij and πd |=
dlk and πmin |= ai′j′}

6 end
7 Return δa

converted to continuous control signals. For this purpose, we
propose a hybrid controller, shown in Fig. 4 as follows:

H = (Q,Z,W, Y, fH , Init, Inv, δ, γ) (25)

where:

• Q = A × S is the set of discrete states of the hybrid
controller, where A is defined in (2) and s ∈ S =
{Rest, Stay, Left, Right, Up,Down} is the previous
high-level command of the controller (with the assump-
tion that the controller is initially at the Rest situation).

• Z = t is the continuous state of the controller, which
captures the time.

• W = Ω × D is the input set of the controller. For any
input (x, dij) ∈W , x ∈ Ω is the state (position) of the
(attacker) system, and dij ∈ D is the position of the
defender.

• Y is the output of the control system (the input to the
attacker).

• fH = ṫ = 1 is the vector field.
• Init = (a0, s0, t0) is the initial state of the hybrid

control system, where a0 ∈ W a
init, s0 = Rest, and

z0 = t0 = 0.
• Inv : Q → Z × Ω assigns to each state of the hybrid

controller an invariant set, where Inv(q = (aij , s)) =
{(t, x)|x ∈ Pij}.

• δ : Q × W → Q is the transition relation. δ(q =
(aij , s), w = (x, d`k)) = (ai′j′ , s

′) = q′ if there
exists a wining transition δa(πa, πd) = π′a (defined
in (19)), where πa |= aij , πd |= d`k, π′a |= ai′j′ ,
and s′ ∈ S is the proper discrete output (high-level
command) to guide the attacker from Pij to Pi′j′ , where
s′ = ς(aij , ai′j′) can be found from:

ς(aij , ai′j′) =

Stay, if i′ = i, j′ = j

Down, if i′ > i, j′ = j

Right, if i′ = i, j′ > j

Up, if i′ < i, j′ = j

Left, if i′ = i, j′ < j

(26)

• γ : Q × Z × W → Y is the output map function,
where γ(q, t, x, d) = ĝ(x, t). For any q and d, we design
ĝ(x, t) in Section VI-A.

Assume that the attacker is currently in region Pij ∈ P and
the discrete state of the hybrid controller H is q = (aij , s).
The proposed hybrid controller observes the behavior of the
defender and based on the defender’s position, d`k ∈ D,
triggers a discrete transition from Pij to Pi′j′ , denoted by
δ(q, d`k) = q′. To move to the new state q′, when the
attacker and the defender are in the partitions Pij and
P`k, respectively, we design a smooth control signal u =
ĝ(x, t) = γ(aij , s, t, x, d`k). Since we have considered all
possible transitions (decisions) of the defender in Algorithms
1 and 2, all actions of the defender will be reacted by
an action of the attacker with a smooth control signal,
leading the attacker to win the game. The mechanism for
the generation of a smooth control signal is discussed next.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

A. Smooth Continuous Control Signal Generation

Having the discrete transitions (high-level plan), we should
generate a continuous path for the attacker. Knowing that the
dynamics of the attacker is multi-affine given in (3), we can
take advantage of an important property that the value of a
multi-affine function g(x), inside a polygon can be described
as a unique convex combination of its values at the vertices of
that polygon [35]. To mathematically describe this property,
consider a two-dimensional rectangular partition Pij = {x ∈
P |(a1 + (j − 1)δ ≤ x1 ≤ a1 + jδ) and (b2 − iδ ≤ x2 ≤
b2− (i−1)δ)}, where (a1, b2) are the coordinates of the top
left corner of P . For the rectangle Pij , we define the set of
vertices, Vij :

Vij = {v1
ij , v

2
ij , v

3
ij , v

4
ij} (27)

where

v1
ij =

(
a1 + (j − 1)δ

b2 − iδ

)
, v2
ij =

(
a1 + jδ
b2 − iδ

)
(28)

v3
ij =

(
a1 + jδ

b2 − (i− 1)δ

)
, v4
ij =

(
a1 + (j − 1)δ
b2 − (i− 1)δ

)
We also define the set of facets, Eij , as:

Eij = {e1
ij , e

2
ij , e

3
ij , e

4
ij} (29)

where the facets e`ij and their corresponding outward unit
normal vector nT` , ` = 1, · · · , 4 are defined in the following:

e1
ij = {x ∈ Pij |x2 = b2 − iδ}, nT1 = (0,−1) (30)

e2
ij = {x ∈ Pij |x1 = a1 + jδ}, nT2 = (1, 0)

e3
ij = {x ∈ Pij |x2 = b2 − (i− 1)δ}, nT3 = (0, 1)

e4
ij = {x ∈ Pij |x1 = a1 + (j − 1)δ}, nT4 = (−1, 0)

The graphical visualization of the vertices and facets is
provided in Fig. 5. Now, it can be verified that at any point
x inside Pij , the value of g(x) can be written as follows:

g(x) =
∑

`=1,··· ,4

λ`(x, v
`
ij)g(v`ij) (31)

where g(v`ij) is the control value at the vertex v`ij , and:

λ`(x, v
1
ij) =

1

δ2
(a1 + jδ − x1)(b2 − (i− 1)δ − x2) (32)

λ`(x, v
2
ij) =

1

δ2
(x1 − a1 − (j − 1)δ)(b2 − (i− 1)δ − x2)

λ`(x, v
3
ij) =

1

δ2
(x1 − a1 − (j − 1)δ)(x2 − b2 − iδ)

λ`(x, v
4
ij) =

1

δ2
(a1 + jδ − x1)(x2 − b2 − iδ)

Remark 1: It can be simply verified that∑
`=1,··· ,4 λ`(x, v

`
ij) = 1.

By using the aforementioned properties and designing the
feedback control signal u = Bg(x), the vector field of the
system in (3) will be h(x) = f(x) + Bg(x). Since both
functions f and g are multi-affine, h is a multi-affine function
as well.

In order to construct the control signal u = Bg(x) to

implement a discrete command s ∈ S, we first, determine
g(v) at the vertices v ∈ Vij . These can be selected in a
way that the vector field at the vertices, h(v) = f(v) +
Bg(v), has the values given in Table III. In this table, βu > 0
is a constant determined by the upper-bound of the control
signal u. Therefore, having the values of the vector field at
the vertices, h(v), and the system function f(v), the control
values at the vertices will be:

Bg(v) = h(v)− f(v) (33)

TABLE III
VECTOR FIELD VALUES h(v) OVER THE VERTICES FOR DISCRETE

COMMANDS s ∈ S

s h(v1) h(v2) h(v3) h(v4)

Stay βu

(
1
1

)
βu

(
−1
1

)
βu

(
−1
−1

)
βu

(
1
−1

)
Down βu

(
1
−1

)
βu

(
−1
−1

)
βu

(
−1
−1

)
βu

(
1
−1

)
Right βu

(
1
1

)
βu

(
1
1

)
βu

(
1
−1

)
βu

(
1
−1

)
Up βu

(
1
1

)
βu

(
−1
1

)
βu

(
−1
1

)
βu

(
1
1

)
Left βu

(
−1
1

)
βu

(
−1
1

)
βu

(
−1
−1

)
βu

(
−1
−1

)

Once we found the control values at the vertices, at any
point x, the control signal u = Bg(x) can be designed by
substituting the control values at the vertices into (31). Using
this controller, the resulted vector field, h(x) = f(x) +
Bg(x), for the system in (3) will drive it to transit from
a rectangle to a desired adjacent rectangle. The proof is
similar to [8] and [35]. The problem is when the hybrid
controller requires the system to move from Pij to Pi′j′ , the
implementation of this transition may cause a discontinuity in
the value and direction of the control signal, from gold(x, θ

−)
to gnew(x, θ+), where gold and gnew are generated control
signals when the hybrid controller is at q = (aij , s) and
q′ = (ai′j′ , s

′), respectively, and θ is the time when the
discrete command resets upon entering a new region Pi′j′ .
This may accordingly cause a discontinuity in the vector
field,

h(x) = f(x) +Bg(x) (34)

In order to avoid such discontinuity in the vector field of
the system and the control signals during the transitions from
Pij to Pi′j′ , we propose to use the following smooth control
signal for x ∈ Pij :

ĝ(x, t) (35)

=
∑
v`∈VJ

λ`(x, v`)[(gnew(v`)− gold(v`))erf(γ(t− θ))

+ gold(v`)] +
∑

v`∈Vij/VJ

λ`(x, v`)gnew(v`)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 5. The implementation of the discrete command s′ = Stay, after the command s = Right: The system moves to the right and enters Pij and stays
in this region. The values of the vector field hold(v) and hnew(v) are shown with red arrows at the vertices of the corresponding regions. Note that in
this case, no change is observed at the vector field at the vertices during this transition to Pij to execute the command Stay.

where VJ ⊆ Vij∩Vi′j′ is the set of common vertices at which
there is a jump in the control value, gold is the previous value
of the control signals at vertices before entering the region
Pij , and gnew is the value of the control signals after entering
Pij to drive the system to Pi′j′ . The values of control signals
g are calculated using (33). Here, θ is the time instance
when the system enters Pi,j , γ is the transition rate, and
the function erf (t) = 2/

√
π
∫ t

0
e−λ

2

dλ is a special function
of sigmoid shape with erf (t = 0) = 0 and erf (t ≥ 3) = 1.
Using the erf function, the change in the value of the vector
field at the common facet will be smooth. Accordingly, the
smooth control values will result in a smooth vector field:

ĥ(x, t) = f(x) +Bĝ(x, t) (36)

Theorem 3: The proposed hybrid controller in (25) can
drive the system to any adjacent rectangle in a finite time,
or keep the system in any rectangle, by generating smooth
control signals in the form of (35).

Proof: By construction, from (35), the value of the
control signal ĝ is smooth despite the fact that the values of
g at the vertices on the common facet may change when the
system transits from one region to another region. Since ĝ
has no jump, so does ĥ = f +Bĝ.

Now, we need to show that using the proposed smooth
controller, the closed-loop system can implement any gener-
ated discrete command (stay in a rectangle or transit to an
adjacent rectangle) as it is discussed through the following
cases:

Case 1: The discrete command Stay: The discrete
command Stay requires the system to remain inside its
current partition. Without loss of generality, assume that the

system just moved from the region Pi0j0 to Pij following
the discrete command s = Right. Now, consider the new
discrete command is s′ = Stay. This has been shown in
Fig. 5.

To implement s′ = Stay, according to (33) and Table III,
we chose the value of g at the vertices so that:

hnew(v1) = βu

(
1
1

)
, hnew(v2) = βu

(
−1
1

)
(37)

hnew(v3) = βu

(
−1
−1

)
, hnew(v4) = βu

(
1
−1

)
The previous values of h at the common vertices for the

command Right are shown in Fig. 5. As it can be seen in
this figure, at two common vertices of these regions (v2

i0j0
≡

v1
ij and v3

i0j0
≡ v4

ij) the values of h(v) do not change, and
hence, hnew(v4

ij) = hold(v
4
ij) and hnew(v1

ij) = hold(v
1
ij).

Therefore, ĥ, calculated by (36), and h, calculated by (34),
will be the same.

We show that using (36) to construct ĥ, the system cannot
leave the region Pij from any of its facets, when the discrete
command is Stay.

The common facet between Pi0j0 and Pij , is e4
ij = {x ∈

Pij |x1 = a1 + (j − 1)δ} with the outer normal vector
nT4 = (−1, 0). With the values of hnew(v) defined in (37),
the vector field ĥ(x, t) at all the points over the facet e4

ij will
be:

ĥ(x, t) = h(x) =
∑

v`∈{v1ij ,v4ij}

λ(x, v`)hnew(v`) (38)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Therefore, we have:

nT4 ĥ(x, t) = nT4 h(x) (39)
= (−1, 0)h(x)

= (−1, 0)
∑

v`∈{v1ij ,v4ij}

λ(x, v)h(v)

= −βu
∑

v`∈{v1ij ,v4ij}

λ(x, v)

= −βu < 0

as βu > 0.

This means that the vector field ĥ(x, t) = h(x) at all
points on the facet e4

ij is always toward the inside of the
rectangle, and hence, the system cannot exit the rectangle
Pij from this facet. Similar reasoning is valid for all other
three facets of this rectangle, meaning that the trajectories of
the system using the generated control signal, ĝ(x, t), never
exit Pij from any of its facets, and always remain inside this
partition.

Case 2: The discrete command Up:

Without loss of generality, assume that the system just
moved from the region Pi0j0 to Pij following the discrete
command s = Right. Now, consider the new discrete
command is s′ = Up, which rerquires the system to transit
to Pi′j′ . This has been shown in Fig. 6. We show that for
this case, with the generated control law ĝ and the resulting
vector field ĥ, the system exits Pij from the desired facet
e3
ij = {x ∈ Pij |x2 = b2 − (i − 1)δ}, with the outer normal
nT3 = (0, 1). For this purpose, based on (33) and Table III,
the values of the control signal at the vertices are selected
so that the values of the vector field h at the vertices are as
follows:

hnew(v1) = βu

(
1
1

)
, hnew(v2) = βu

(
−1
1

)
(40)

hnew(v3) = βu

(
−1
1

)
, hnew(v4) = βu

(
1
1

)
In general, if s = s′, no change in the value of h(v ∈ Vij)

will occur. However, if s 6= s′, a change in the direction
of the control value at the common vertices among the three
partitions Pi0j0 , Pij , and Pi′j′ , i.e., Vc = Vi0j0∩Vij∩Vi′j′ , is
inevitable. For example, here, since s = Right 6= s′ = Up,
it can be easily verified that the value of the vector field
changes at the common vertex Vc = Vi0j0 ∩ Vij ∩ Vi′j′ =
{v3
i0j0
≡ v4

ij} as shown in Fig. 6. At this vertex, we have:{
hold(v

3
i0j0

) = βu(1,−1)T ; when x ∈ Pi0j0
hnew(v4

ij) = βu(1, 1)T ; when x ∈ Pij
(41)

Hence, at this vertex, we have hnew(v) − hold(v) =
(0, 2βu)T . For all other vertices, there is no jump in the
values of the vector field as shown in Fig. 6.

Applying the control law in (35), the smoothened vector

field inside the region Pij will be:

ĥ(x, t) =
∑

v∈Vij/VC

λ(x, v)hnew(v) (42)

+
∑
v∈VC

λ(x, v)[(hnew(v)− hold(v))erf(γ(t− θ))

+ hold(v)]

Now we show that starting from any x ∈ Pij , the system’s
trajectory cannot leave Pij from any of its facets other than
e3
ij . Consider, for example, the facet e1

ij = {x ∈ Pij |x2 =
b2− iδ} with the outer normal vector nT1 = (0,−1). At any
points x on the facet e1

ij , we have:

nT1 ĥ(x, t) = (0,−1) ĥ(x, t) (43)

= (0,−1)
∑

v∈{v1ij ,v2ij}

λ(x, v)hnew(v)

= −βu
∑

v∈{v1ij ,v2ij}

λ(x, v)

= −βu < 0

This means that the system trajectories cannot leave the
rectangle Pij from the facet e1

ij . Similar reasoning is valid
for all other facets except the desired exit facet e3

ij .
Now, consider the facet e3

ij = {x ∈ Pij |x2 = b2 − (i −
1)δ}, with the normal outer vector nT3 = (0, 1). Next, we
show that the vector field at all points inside the region Pij
will have a positive value along with nT3 , guaranteeing that
the system trajectories will leave the partition from e3

ij in a
finite time.

Knowing that VC = {v4
ij}, for any x ∈ Pij from (42), the

vector field will be:

ĥ(x, t) =
∑

v∈{v1ij ,v2ij ,v3ij}

λ(x, v)hnew(v) (44)

+ λ(x, v4
ij)[(hnew(v4

ij)− hold(v4
ij))erf(γ(t− θ))

+ hold(v
4
ij)]

According to (41), hnew(v4
ij) − hold(v

4
ij) = (0, 2βu)T ,

and hold(v
4
ij) = βu(1,−1)T . Also, erf(γ(t − θ)) = 1 for

(t− θ) ≥ 3/γ. Therefore, for t ≥ θ + 3/γ, we have:

ĥ(x, t) =
∑

v∈{v1ij ,v2ij ,v3ij}

λ(x, v)hnew(v) (45)

+ βuλ(x, v4
ij)(1, 1)T

According to (40), for v ∈ {v1
ij , v

2
ij , v

3
ij}, we have

nT3 hnew(v) = (0, 1)hnew(v) = βu. Therefore,

nT3 ĥ(x, t) = βu
∑

v∈{v1ij ,v2ij ,v3ij}

λ(x, v) + βuλ(x, v4
ij) (46)

= βu
∑
v∈Vij

λ(x, v) = βu > 0

We showed that the system cannot leave Pij from any
of the facets other than e3

ij . We also showed that for all
the points inside the region Pij , after the transition time,

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 6. The implementation of the discrete command s′ = Up, issued after the command s = Right. By the discrete command s = Right, the
system leaves Pi0j0 and moves to the right and enters Pij . Then, after the discrete command s′ = Up, the system moves up toward the region Pi′j′ .
The values of vector field hold(v) (when the system was at Pi0j0) and hnew(v) (when the system is at Pij and moves toward Pi′j′) are shown
with red arrows at the vertices of the corresponding regions. A change can be observed in h at the common vertex among the three regions, v4ij , as
hold(v

4
ij ≡ v3i0j0) 6= hnew(v4ij).

t ≥ θ+ 3/γ, we have nT3 ĥ(x, t) > 0. We then can conclude
that with the command s′ = Up, the system will leave
Pij from the facet e3

ij , when s = Right. For all other
sequences of discrete commands, a similar argument can be
made, concluding that the control law ĝ in (35) generates
a smooth vector field ĥ which smoothly drives the system
to exit from the desired exit facets based on the discrete
command s′ ∈ {Left,Right,Down,Up}.

VII. SIMULATION RESULTS

Consider a dynamic reach-avoid scenario with an attacking
vehicle with the continuous dynamics ẋ = u, where x ∈
P = [0, 12] × [0, 12] and u ∈ U = [−2, 2] × [−2, 2]. For
the simplicity, assume that δT = δD = 2

√
2, which results

in the partitioning length δ = 2 according to (1). The target
is located at xt = (5, 9)T ∈ P35. Also, there are three static
obstacles in partitions P13, P23, and P44, which the vehicles
have to avoid. Here, we consider three different cases where
the defender is either in region P31, P61, or P14.

We present the solutions of Problems 1 and 2 using
the proposed framework. The first problem is to find the
winning initial regions for the attacker to win the game using
the proposed algorithms. For this purpose, a RAGS game

structure is formulated according to (19). Given this game
structure as input, Algorithm 1 is executed and has resulted
in winning initial states W a

init for the three scenarios with
different initial positions of the defender, as shown in Fig. 7.

Remark 2: The obtained winning set W a
init for each sce-

nario shows the set of initial positions from which the
attacker can win the game for any action of the defender.
However, it does not necessarily mean that the attacker could
not win starting from other partitions, as it depends on the
behavior of the defender. In other words, for bad actions of
the defender, the attacker still can win the game starting from
outside W a

init but it is not guaranteed, and it depends on the
actions of the defender.

Next, we solve Problem 2 to construct a hybrid controller,
H, in the form of (25) to generate control signals for the
control of the attacker in order to win the game. Such a
controller is realizable only if the initial position of the
attacker is in the set of winning initial partitions W a

init.
For this purpose, first, we execute Algorithm 2 to obtain
the winning discrete strategies to make a decision on the
transitions over the partitions. Then, the hybrid controller
H in (25) is constructed. This controller is used for three
arbitrary behaviors of the defender for which the resulting

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

(a) xd(0) ∈ P31 (b) xd(0) ∈ P61

(c) xd(0) ∈ P14

Fig. 7. The winning initial regions, Wa
init, for three different scenarios with different initial positions of the defender. If the attacker starts from any

point in Wa
init, by applying the proposed controller, it is guaranteed that the attacker will reach the target before being captured by the defender. The red

triangles show the initial positions of the defender, the green stars show the positions of the target, and the blue dashed regions show the winning initial
set for the attacker.

trajectories are shown in Fig. 8.
As it can be seen in Fig. 8, the proposed hybrid controller

H is able to generate a winning continuous path for the
attacker, in reaction to adversarial behaviors of the defender.
Further, for the three discussed examples in this section, the
smooth control signals are shown in Fig. 9.

VIII. CONCLUSION

This paper developed a hybrid symbolic control technique
to addresses the path planning and control of autonomous

vehicles involved in a dynamic adversarial reach-avoid sce-
nario. The temporal logic formula in the form of GR(1) for-
mat was used to describe all assumptions and requirements
of interacting vehicles in a dynamic form. The reach-avoid
problem was then formulated as a two-player. Based on the
target’s position and the initial position of the defender, the
solution of the game was found using µ-calculus operators
over a complete lattice, which consists of winning initial
regions from which the attacker can win the game for
any action of the defender. The winning strategies were

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

(a) (b)

(c)

Fig. 8. Simulation results for three different games, in which the attacker has started from one of the regions in winning initial regions shown in Fig. 7,
and has won the game (reached the target before being captured by the defender).

(a) xd(0) ∈ P31 (b) xd(0) ∈ P61 (c) xd(0) ∈ P14

Fig. 9. The control signals for the attacker, in scenarios (a), (b), and (c) in Fig. 8, with no discontinuity.

then extracted. A smooth hybrid controller was designed
to execute the winning strategies. Illustrative examples and

simulation results were provided.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

ACKNOWLEDGMENT

The authors would like to acknowledge the support from
NSF under the award number 1832110 and Air Force Re-
search Laboratory and OSD for sponsoring this research
under agreement number FA8750-15-2-0116. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Labora-
tory, OSD or the U.S. Government.

REFERENCES

[1] J. Barraquand, B. Langlois, J.-C. Latombe, Numerical potential field
techniques for robot path planning, IEEE Transactions on Systems,
Man and Cybernetics 22 (2) (1992) 224–241.

[2] C. Torras, Robot motion planning: A survey, in: Teleoperation: Nu-
merical Simulation and Experimental Validation, Springer, 1992, pp.
27–39.

[3] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic verification
of finite-state concurrent systems using temporal logic specifica-
tions, ACM Transactions on Programming Languages and Systems
(TOPLAS) 8 (2) (1986) 244–263.

[4] P. Wolper, Temporal logic can be more expressive, in: 22nd IEEE
Annual Symposium on Foundations of Computer Science (SFCS),
1981, pp. 340–348.

[5] X. D. Koutsoukos, P. J. Antsaklis, J. A. Stiver, M. D. Lemmon,
Supervisory control of hybrid systems, Proceedings of the IEEE 88 (7)
(2000) 1026–1049.

[6] P. J. Antsaklis, A. Nerode, Hybrid control systems: An introductory
discussion to the special issue, IEEE Transactions on Automatic
Control 43 (4) (1998) 457–460.

[7] R. Alur, T. A. Henzinger, G. Lafferriere, G. J. Pappas, Discrete
abstractions of hybrid systems, 2000 Proceedings of the IEEE 88 (7)
971–984.

[8] A. Karimoddini, H. Lin, Hierarchical hybrid symbolic robot motion
planning and control, Asian Journal of Control 17 (1) (2015) 23–33.

[9] A. Pnueli, The temporal logic of programs, in: 18th IEEE Annual
Symposium on Foundations of Computer Science, 1977, pp. 46–57.

[10] E. A. Emerson, Temporal and modal logic, handbook of theoretical
computer science (jan van leeuwen, ed.) (1990).

[11] M. Y. Vardi, An automata-theoretic approach to linear temporal logic,
in: Logics for concurrency, Springer, 1996, pp. 238–266.

[12] Y. Chen, K. Deng, C. Belta, Multi-agent persistent monitoring in
stochastic environments with temporal logic constraints, in: 2012 IEEE
51st Annual Conference on Decision and Control (CDC), pp. 2801–
2806.

[13] C. Wiltsche, J. Lygeros, F. A. Ramponi, Synthesis of an asynchronous
communication protocol for search and rescue robots, in: 2013 IEEE
European Control Conference (ECC), pp. 1256–1261.

[14] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G. J. Pappas,
Symbolic planning and control of robot motion [grand challenges of
robotics], IEEE Robotics & Automation Magazine 14 (1) (2007) 61–
70.

[15] C. Belta, V. Isler, G. J. Pappas, Discrete abstractions for robot motion
planning and control in polygonal environments, IEEE Transactions
on Robotics 21 (5) (2005) 864–874.

[16] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas, Where’s waldo? sensor-
based temporal logic motion planning, in: 2007 IEEE International
Conference on Robotics and Automation, pp. 3116–3121.

[17] M. Kloetzer, C. Belta, Temporal logic planning and control of robotic
swarms by hierarchical abstractions, IEEE Transactions on Robotics
23 (2) (2007) 320–330.

[18] G. E. Fainekos, A. Girard, H. Kress-Gazit, G. J. Pappas, Temporal
logic motion planning for dynamic robots, Automatica 45 (2) (2009)
343–352.

[19] K. Margellos, J. Lygeros, Hamilton-jacobi formulation for reach-avoid
problems with an application to air traffic management, in: 2010 IEEE
American Control Conference (ACC), pp. 3045–3050.

[20] J. S. McGrew, J. P. How, B. Williams, N. Roy, Air-combat strategy us-
ing approximate dynamic programming, Journal of guidance, control,
and dynamics 33 (5) (2010) 1641–1654.

[21] M. Aigner, M. Fromme, A game of cops and robbers, Discrete Applied
Mathematics 8 (1) (1984) 1–12.

[22] D. Bhadauria, K. Klein, V. Isler, S. Suri, Capturing an evader in
polygonal environments with obstacles: The full visibility case, The
International Journal of Robotics Research 31 (10) (2012) 1176–1189.

[23] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, R. Motwani,
A visibility-based pursuit-evasion problem, International Journal of
Computational Geometry & Applications 9 (04n05) (1999) 471–493.

[24] B. P. Gerkey, S. Thrun, G. Gordon, Visibility-based pursuit-evasion
with limited field of view, The International Journal of Robotics
Research 25 (4) (2006) 299–315.

[25] S. Russell, P. Norvig, A. Intelligence, A modern approach, Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995) 27.

[26] S. Thrun, W. Burgard, D. Fox, Probabilistic robotics, MIT press, 2005.
[27] M. P. Vitus, C. J. Tomlin, Closed-loop belief space planning for linear,

gaussian systems, in: 2011 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2152–2159.

[28] H. Huang, J. Ding, W. Zhang, C. J. Tomlin, A differential game
approach to planning in adversarial scenarios: A case study on capture-
the-flag, in: 2011 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1451–1456.

[29] H. Huang, J. Ding, W. Zhang, C. J. Tomlin, Automation-assisted
capture-the-flag: A differential game approach, IEEE Transactions on
Control Systems Technology 23 (3) (2015) 1014–1028.

[30] N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of reactive (1) designs, in:
Verification, Model Checking, and Abstract Interpretation, Springer,
2006, pp. 364–380.

[31] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of
reactive (1) designs, Journal of Computer and System Sciences 78 (3)
(2012) 911–938.

[32] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas, Temporal-logic-based
reactive mission and motion planning, IEEE Transactions on Robotics
25 (6) (2009) 1370–1381.

[33] L. Shamgah, T. G. Tadewos, A. Karimoddini, A. Homaifar, Path
planning and control of autonomous vehicles in dynamic reach-avoid
scenarios, in: 2018 IEEE Conference on Control Technology and
Applications (CCTA), pp. 88–93.

[34] L. Shamgah, A. Karimoddini, A. Homaifar, A symbolic motion
planning approach for the reach-avoid problem, in: 2016 IEEE In-
ternational Conference on Systems, Man, and Cybernetics (SMC), pp.
3955–3960.

[35] C. Belta, L. C. Habets, Controlling a class of nonlinear systems on
rectangles, IEEE Transactions on Automatic Control 51 (11) (2006)
1749–1759.

[36] J. J. Park, B. Kuipers, A smooth control law for graceful motion of
differential wheeled mobile robots in 2d environment, in: 2011 IEEE
International Conference on Robotics and Automation (ICRA), pp.
4896–4902.

[37] Y. B. Shtessel, I. A. Shkolnikov, A. Levant, Smooth second-order
sliding modes: Missile guidance application, Automatica 43 (8) (2007)
1470–1476.

[38] T. Basar, G. J. Olsder, Dynamic noncooperative game theory, Vol. 23,
Siam, 1999.

[39] G. Birkhoff, Lattice theory, Vol. 25, American Mathematical Soc.,
1940.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3195431

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

