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We discuss new bounds on vectors coupled to currents whose nonconservation is due to mass terms, such

asUð1ÞLμ−Lτ
. Due to the emission of many final state longitudinally polarized gauge bosons, inclusive rates

grow exponentially fast in energy, leading to constraints that are only logarithmically dependent on the

symmetry breaking mass term. This exponential growth is unique to Stueckelberg theories and reverts back

to polynomial growth at energies above the mass of the radial mode. We present bounds coming from the

high transverse mass tail of monoleptonþMET events at the LHC, which beat out cosmological bounds to

place the strongest limit on StueckelbergUð1ÞLμ−Lτ
models for most masses below a keV. We also discuss a

stronger, but much more uncertain, bound coming from the validity of perturbation theory at the LHC.
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I. INTRODUCTION

Recently, new light weakly coupled particles have

increasingly become a focus as either a mediator to a dark

sector [1–3], as dark matter itself [4–8], or to explain

potential anomalies [9–14]. A particularly well motivated

candidate is a vector boson. The currents that these vector

bosons couple to can either be conserved, e.g., Uð1ÞB−L
with Dirac neutrino masses, or they can be nonconserved,

e.g., Uð1ÞL or Uð1ÞLμ−Lτ
.

In this paper we will continue a long line of research into

the bounds that can be placed on vector bosons coupled to

nonconserved currents, see e.g., Refs. [15–22]. As is well

known, these models are nonrenormalizable field theories

and as a result have amplitudes that grow with energy.

Eventually these amplitudes grow so large that tree level

amplitudes violate unitarity at the energy scale Λ, indicat-

ing that perturbation theory has broken down. Requiring

that new physics appears below the scale Λ gives the

unitarity bound. Unitarity bounds have a long storied

history, see, e.g., Refs. [23–26], and the famous application

to the Higgs boson [27–30].

Typically nonconservation of the currents comes from

either anomalies or mass terms. In the first case, amplitudes

involving longitudinal modes are enhanced [15]. Later,

Ref. [19,20] showed that this enhancement led to strong

constraints on anomalous gauge theories. In the second

case, inclusive amplitudes were shown to exhibit expo-

nential growth [31]. We will show that this exponential

growth leads to very strong constraints on these theories.

In this letter we will focus on the case of currents that are

not conserved due to mass terms. Specifying this starting

point locks us into considering the Stueckelberg limit of

gauge theories
1
as including the radial mode renders mass

terms gauge invariant. A Stueckelberg theory coupled to a

nonconserved current can have inclusive rates that grow

exponentially fast in energy due to multiparticle emission

[31]. This exponential growth is unique to the Stueckelberg

limit and becomes polynomial at energies above the mass

of the radial mode.

The exponential growth of amplitudes in these models

gives extremely strong unitarity bounds [31]. Redoing the

unitarity bound using our conventions, we find

Λ ≈
4πmX
ffiffiffiffiffi

27
p

gX
log3=2

�

mX

gXm

�

; ð1Þ
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1
The Stueckelberg limit is when the mass of the radial mode is

taken to be heavier than the energy scale under consideration.
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where gX and mX are respectively the coupling and the

mass of the gauge boson, and m is the symmetry breaking

mass term. To show how strong this unitarity bound is, let

us consider the Stueckelberg limit of Uð1ÞLμ
. Typically one

assumes that the strongest unitarity bound on this model

comes from the fact that this current is anomalous. Redoing

the unitarity bound (for details see the Appendix) using our

conventions leads to a slightly stronger result than the

standard result [15]

Λa ≈

ffiffiffiffiffiffi

4π
p

mX

gX

32π2

g22
; ð2Þ

where g2 is the SUð2ÞW gauge coupling. Comparing this

with Eq. (1) takingmX=gX ≃ 1 GeV, motivated by our later

results, and m ≃ 0.05 eV, as the mass of the neutrino, we

find that Λ ∼ Λa=10. This shows that despite the extremely

small neutrino mass, its nonzero value still gives a unitarity

bound almost an order of magnitude more stringent than the

anomaly does. Thus before considering moving to an

anomaly free theory such as Uð1ÞLμ−Lτ
, one should first

UV complete the symmetry breaking neutrino mass terms.

In contrast, for a HiggsedUð1ÞLμ
one can naturally have the

exact opposite scenario where Λa ≪ Λ.

Unitarity in these models is restored by the inclusion of

the radial mode. However in these UV completions, the

small fermion mass is the result of a higher dimensional

operator so that scattering of the radial mode has its own

unitarity bound. Constraints on the UV completion are

fairly model dependent, however since it is likely that the

UV completion only couples to the SM via the neutrino

mass term, bounds on it are plausibly fairly weak. On the

other hand, for Stueckelberg gauge bosons we obtain

robust, model-independent bounds that do not rely on

the dynamics of the radial mode. While these bounds can

be evaded by going away from the Stueckelberg limit by

including the radial mode at sufficiently low energies, the

radial mode should then be taken into account whenever

processes at energies larger than its mass are studied.

In this paper we will focus on gauge bosons coupled to

the lepton number currents, which are only nonconserved

because of the extremely small neutrino masses. To find

explicit bounds, we consider the total decay width of theW
boson and the high transverse mass tail of mono-leptonþ
MET events at the Large Hadron Collider (LHC). The

bounds we obtain are essentially independent of what the

exact model under consideration is, thus in the introduction

we will only list our bounds on Uð1ÞLμ−Lτ
with Dirac

neutrino masses. A somewhat uncertain bound ofmX=gX ≳

24 GeV comes from requiring that physics is perturbative

at the LHC. We also find

mX

gX
> 1.3 GeV;

mX

gX
> 54 MeV ð3Þ

coming from mono-lepton+METevents at the LHC and the

total decay width of the W boson respectively. In the high

mass limit, this is only a factor of ∼100 weaker than the

extremely precise measurements of the g − 2 of the muon

[32,33]. Meanwhile for mX ≲ 1 keV, this is the strongest

constraint on these models beating out even cosmological

bounds.
2

II. UNITARITY BOUND

In this section, we derive the unitarity bound on these

models, which was also done in Ref. [31] using slightly

different techniques.
3
In order to demonstrate the expo-

nential growth of amplitudes, we will consider the toy

scenario of a gauge boson coupled to only the left handed

piece of a Dirac fermion ν, whose current is not conserved

due to explicit breaking by a small Dirac mass term mν.

Namely we consider a theory with

L ¼ −
1

4
F2
X þ iν̄ð∂ − igX=AXPLÞν −mνν̄νþ

1

2
m2

XA
2
X; ð4Þ

where FX is the field strength of the gauge boson AX. In the

limit of small mν, the scale at which perturbation theory

breaks down, Λ, is much larger than the mass of the gauge

bosons. In this limit, things simplify as the high energy

behavior of AX can be obtained from the Goldstone boson

equivalence theorem. Namely, the matrix element obeys

MðAL
X þ � � �Þ ≈Mðϕþ � � �Þ, where AL

X is a longitudinally

polarized AX and ϕ is the Goldstone boson.

We obtain the theory with Goldstone bosons by leaving

unitarity gauge via a chiral gauge transformation,

νL → expðigXϕ=mXÞνL. As the mass term is not gauge

invariant, it transforms into

V ¼ mνν̄e
igXPLϕ=mXν ¼

X

n

ν̄
mν

n!

�

igXPLϕ

mX

�

n

ν: ð5Þ

From this, it is clear that the theory is nonrenormalizable

and has a UV cutoff. The Goldstone boson equivalence

theorem lets us compute the probability of emitting many

longitudinal gauge bosons by calculating the much simpler

process of emitting many ϕ particles using the above

interaction.

As one can see, considering processes involving n ϕs

gives a matrix element ∼mνðgXE=mXÞn that becomes more

and more insensitive to the small mass parameter mν as n
becomes larger and larger. This causes the best unitarity

bound to come from taking n larger and larger. However, in

2
If the gauge boson instead coupled to Le, the strongest bounds

at low mass are from neutrino oscillations in the earth [34] and it
is only for masses mX ≲ 10−16 eV that our bounds win out.

3
We use a slightly different definition of the unitarity bound

and we consider the process νþ nϕ → νþ nϕ rather than
νþ ν̄ → nϕ, which leads to stronger unitarity bounds.

EKHTERACHIAN, HOOK, KUMAR, and TSAI PHYS. REV. D 104, 035034 (2021)

035034-2



the large n limit, the 1=n! coming from dealing with

identical final state particles penalizes taking n too large.

Thus the optimal unitarity bound comes from taking an

intermediate value of the number of gauge bosons nopt.

A calculation done in the Appendix shows that the

amplitude M̂ of the process νþ nϕ → νþ nϕ is

jM̂ðνþ nϕ → νþ nϕÞj

¼ gXmν

2mXðnþ 1Þ!n!ðn − 1Þ!

�

gXE

4πmX

�

2n−1

ð6Þ

in the limit that E ≫ nmX. Unitarity requires that jM̂j < 1.

In order to obtain the strongest bounds, we choose the n
that maximizes Eq. (6) to obtain in the large n limit

jM̂ðνþ noptϕ → νþ noptϕÞj ∼
gXmν

2mX

e
3ð gXE

4πmX
Þ2=3

: ð7Þ

This maximum value of jM̂j is obtained for

nopt ≈ ðgXE=4πmXÞ2=3. Requiring unitarity holds for

Eq. (7) gives the leading logarithmic behavior

E ¼ Λ ≈
4πmX
ffiffiffiffiffi

27
p

gX
log3=2

�

mX

gXmν

�

: ð8Þ

From this calculation we see the behavior claimed in the

Introduction. Amplitudes have an exponential growth in

energy and the strongest growth comes from emitting

multiple gauge bosons. In this calculation, we made the

approximation that the energy carried by each of the AX

gauge bosons is much larger than the mass when we

utilized the Goldstone boson equivalence theorem.

Combining the expression for nopt with Eq. (8) and the

requirement that E ≫ noptmX, we find that our massless

approximation of the unitarity bound is valid when

gX ≲ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðmX=gXmνÞ=3
p

. In the large log limit, the

massless limit is always a valid approximation.

III. MODELS

We now briefly describe the models under consideration

and set up some notation. The results in the next section

will be given in the 1-flavor approximation so we will also

discuss how to easily take into account the standard 3-

flavor set up. For ease of expression, in this section we will

use Weyl notation for fermions.

As mentioned before, we will be considering the

Stueckelberg limit of different Uð1Þ gauge theories. We

first consider Uð1ÞLμ−Lτ
. We assume Dirac neutrinos and

that the right-handed neutrinos are neutral under Lμ − Lτ.

The flavor basis is related to the mass basis by νF ¼ UνM,

where νF (νM) are the flavor (mass) basis left handed

neutrinos and U is the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix. In the flavor basis the neutrino mass term

is νcMdU
†νF whereMd is a diagonal matrix of the neutrino

masses m1;2;3. To leave unitary gauge, the flavor-basis SM

neutrinos are rotated by,

νF → PνF P ¼ diagð1; eþigXϕ=mX ; e−igXϕ=mXÞ: ð9Þ

Thus the neutrino mass term involving the Goldstone

bosons ϕ becomes

LD
νmass ¼ νcMdU

†PνF þ H:c:

⊃
X

n;j

1

n!

�

igXϕ

mX

�

n

νcjMd;jðU†
jμνμ þ ð−1ÞnU†

jτντÞ:

From this, we see that any 1-flavor process involving n high
energy gauge bosons can be converted into the 3-flavor

result by replacing

m2
ν →

X

3

j¼1

ðjUμjj2 þ jUτjj2Þm2
j : ð10Þ

The other gauge theory we will consider is Uð1ÞL with

Majorana neutrino masses. In this case, after leaving

unitary gauge the mass term is

LM
νmass ¼ e2igXϕ=mXνTMMdνM þ H:c: ð11Þ

From this, the 1-flavor results can be generalized using the

substitution

gX → 2gX; m2
ν →

X

l¼e;μ;τ

X

3

j¼1

jUljj2m2
j : ð12Þ

IV. CONSTRAINTS

We now present exclusions coming from the emission

of many final state gauge bosons. We will consider

three different constraints coming from the total decay

width of the W boson, the tail of high transverse mass

mono-leptonþMET events, and a rough estimate of when

perturbativity breaks down at the LHC. Our results will be

presented in the simplified 1-flavor model. Equations (10)

and (12) can be used to convert the results into the two

specific models of interest. In particular, in Figs. 1 and 2 we

show the results after incorporating the full 3-flavor set-up.

W Boson decay:Wewill consider the partial decay width

of the W boson into leptons and n gauge bosons

ΓnðW−
→ L− þ ν̄þ nAXÞ: ð13Þ

The constraint we will impose is that the sum of these decay

widths is less than the total decay width
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ΓBSM ≡
X

∞

n¼2

Γn < ΓW : ð14Þ

For simplicity we will take n ≥ 2 to avoid the soft

divergence.

Using the Goldstone boson equivalence theorem, we find

the result to leading order in mν to be

ΓBSM ¼ g22m
2
ν

1536πMW

x42F4ðf1; 1g; f2; 3; 3; 5g; x2Þ ð15Þ

where x ¼ gXMW

4πmX
, pFq

is the generalized hypergeometric

function and g2 is the SUð2ÞW gauge coupling. In the limit

of large argument, it simplifies as

2F4ðf1; 1g; f2; 3; 3; 5g; x2Þ ≈
16

ffiffiffi

3
p

πx20=3
e3x

2=3 ð16Þ

showing the exponential growth of the amplitudes men-

tioned earlier.

Bounds are obtained by requiring that this decay width is

smaller than the total decay width of the W boson. For

Uð1ÞLμ−Lτ
(Uð1ÞL) we find that mX=gX > 54 MeV

(mX=gX > 108 MeV). Because of the exponential, our

results are insensitive to the details with which we constrain

the model. For example, requiring that this decay width is

smaller than 10−6 of the total decay width of the W boson

(roughly 1 over the number of W bosons produced at LEP)

tightens the above Uð1ÞLμ−Lτ
bound to 76 MeV.

monoleptonþMET events : In the next two subsec-

tions, wewill discuss bounds that stem from the breaking of

perturbativity at the LHC. From the decay of the W boson,

we see that we are faced with a theory which is becoming

dominated by a large number of final state particles. For

black holes [50], when the cross section becomes domi-

nated by a large number of final states, the cross section for

s-channel two-to-two scattering becomes highly sup-

pressed. The nonobservation of this suppression leads to

a constraint. As illustrated below, it is plausible that a

similar feature exists in our case when perturbation theory

breaks down.

The case that we will consider is pp → W⋆
→ lν via an

off-shellW boson.At high enough energies, the tree level off-

shell width of the W boson becomes larger than the

momentum flowing through the propagator, suppressing

the high transverse mass tail of monoleptonþMET events.
4

We obtain a bound by requiring that this suppression is small

enough that the suppression was not observed in Ref. [51].

At high energies, the propagator of the W boson is

given by

i

s −M2
W þ ΣðsÞ ImðΣðsÞÞ ¼ MWΓWðsÞ; ð17Þ

FIG. 2. High mass constraints on a Stueckelberg Uð1ÞLμ−Lτ

gauge boson with Dirac neutrino masses. The solid and dot-

dashed purple lines are the same as in Fig. 1. Other constraints are

from: ΔNeff during BBN due to thermalization of AX and entropy

dump during its decay [35,40,41] (solid: TRH > 4 MeV, see, e.g.,

[42,43]; dashed: TRH > 10 MeV), neutrino trident process at the

CCFR experiment [44,45], and a search for eþe− → μþμ−AX,

AX → μþμ− at BABAR [46]. In the shaded green region, the muon

(g − 2) anomaly [47,48] can be explained by AX at 2σ [9,49].

FIG. 1. Low mass constraints on a Stueckelberg Uð1ÞLμ−Lτ

gauge boson with Dirac neutrino masses. The purple region

shows the constraint derived in Eq. (19) coming from the high

transverse mass tail of mono-lepton+METevents at the LHC. The

dot-dashed purple line denotes the constraint obtained from

demanding the validity of perturbation theory at the LHC, given

by Eq. (20). Other constraints are from: ΔNeff during BBN

through thermalized AX [35], black hole superradiance (BHSR)

instability [36], rare K decays [22], ΔNeff through νν → AXAX

[22,35], constraints on ν decay through terrestrial experiments

[22,37,38]. We also update the cosmological constraints on ν

decay as discussed in the main text, based on the recent result of

Ref. [39]. Given the ν decay bounds from cosmology are model-

dependent and can be relaxed, we show it via dashed lines.

4
Perturbation theory has broken down when this occurs, so that

our calculation is only really an estimate of what happens in the
full nonperturbative theory.
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where the earlier calculation of the decay width of the W
boson gives

MWΓWðsÞ ¼
g22m

2
ν

1536π
x42F4ðf1; 1g; f2; 3; 3; 5g; x2Þ ð18Þ

with x ¼ gX
ffiffi

s
p

4πmX
. When s ≪ MWΓWðsÞ, monoleptonþMET

production is highly suppressed.

Ref. [51] observes the highMT tail of the monoleptonþ
MET events

5
to be the expected SM result when

MT ≲ 2 TeV. Given MT ≤
ffiffiffi

s
p

by definition, it implies

that at center of mass energies of at least 2 TeV, we do not

see any deviation from the SM expectation. The observed

events dominantly come from pp→ W⋆
→ lν. The off-

shell W contribution would be suppressed by at least a

factor of 2 if
ffiffiffi

2
p

s ¼ MWΓWðsÞ and would have been

observed for any MT ≲ 2 TeV. We obtain a bound by

requiring that
ffiffiffi

2
p

s≳MWΓWðsÞ at 2 TeV. ForUð1ÞLμ−Lτ
we

find that

mX=gX > 1.3 GeV: ð19Þ

ForUð1ÞL with Majorana masses we findmX=gX>2.6GeV.

Calculability : The next bound we place is that pertur-

bation theory at the LHC is valid. This is necessarily a

somewhat fuzzy bound because the breakdown of pertur-

bation theory is not very well defined. For example, the

unitarity bound derived in Ref. [31] is weaker than ours by

a factor of ∼3 indicating that different techniques giveOð1Þ
different estimates of when perturbation theory breaks

down. However, it is undeniable that we can calculate

observables at the LHC and so perturbation theory must

be valid.

We will use the unitarity bounds given in Eq. (8) as an

order of magnitude estimate for when perturbation theory

breaks down. The highest center of mass energy collision at

the LHC was one that had a center of mass energy of

∼8 TeV [52]. Requiring that LHC processes are calculable

at a center of mass energy of 8 TeV gives the constraint

mX=gX ≳ 24 GeV ð20Þ

for Uð1ÞLμ−Lτ
. As mentioned before, the breakdown of

perturbation theory is a somewhat nebulous concept and

thus this bound should be considered as only an estimate of

where the bound coming from the breakdown of perturba-

tion theory must lie.

An astute reader will notice that the previous bounds are

actually slightly weaker than the unitarity bound found

using their relevant energy scales. As our previous bounds

came from tree level calculations, they require that pertur-

bation theory is valid. As such, strictly speaking, they only

apply if the stronger calculability constraint has misesti-

mated the breakdown of perturbation theory by a factor

of few.

We show our constraints visually in Figs. 1 and 2 for

Uð1ÞLμ−Lτ
. We take normal ordering of the neutrino masses

with the lightest neutrino being massless. As explained in

the text, the bounds are not sensitive to the precise value of

the mass. For other neutrino mixing parameters, we use the

results from Table III of Ref. [53].

In Fig. 1 we have updated the cosmological bounds on

thesemodels coming from the decay of the heavier neutrinos,

which requires τ0 ≳ 4 × 105−6 secðm3=50 meVÞ5 [39]. The
two ν decay (cosmology) bounds represent the uncertainty in

the bound on the ν lifetime. After refining the calculation of

the damping of anisotropic stress due to neutrino decay and

inverse decay, this new bound was obtained and found to be

several orders of magnitude weaker than previous work

(e.g., [54,55]). For theΔNeff constraints, we takeTRH < mμ.

Additionally, in both figures we have neglected constraints

coming froma possible coupling to electrons as those bounds

are model dependent and can be avoided.

V. PARTIAL UV COMPLETION

Unitarity in the emission of gauge bosons can be restored

by introducing the radial mode. To see the behavior of a UV

completion, we consider a complex scalar Φ with charge 1

and give the neutrinos a charge q ¼ gX=g so that the

coupling of AX to neutrinos is given by gX while the

coupling of AX to Φ is given by g. The symmetry breaking

mass term comes from the higher dimensional operator

V ¼ yΦq

Λ
0q HLνc mν ¼

yvfq

Λ
0q ; ð21Þ

which gives the standard neutrino mass term afterΦ obtains

a vev f. The radial mode can be partially decoupled by

taking g → 0 and q, f → ∞ while holding mX ¼ gf and

gX ¼ qg constant. This limit attempts to decouple the radial

mode mΦ ≲ f but at the same time sends the symmetry

breaking mass term to zero, mν → 0. Thus, when the

neutrino mass is nonzero, the radial mode cannot be

decoupled.

Using Eq. (21), one can show that the unitarity bound Λ

satisfies

Λ ≈
4πmX
ffiffiffiffiffi

27
p

gX
log3=2

�

mX

gXmν

�

> mΦ ð22Þ

showing that unitarity did indeed predict the correct scale of

new physics in these models. In this UV theory, one can

easily show that scattering involving gauge bosons no

5
The transverse mass MT is defined as MT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl
Tp

miss
T ð1 − cosΔϕÞ

p

, where Δϕ is the azimuthal angle

between p⃗l
T and p⃗miss

T .
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longer grows. However, the price is that scattering involv-

ingΦ does grow. Thus this partial UV completion will itself

require a UV completion at the scale Λ0. As this particular
higher dimensional operator is identical to those seen in

Froggatt-Nielsen models [56], its UV completion proceeds

along a manner completely analogous to those models and

will not be expounded upon here. For a full UV completion

see Ref. [57].

It is worth mentioning that while the partial

UV completion presented above can easily obtain

mΦ ≫ 4πmX=gX, it cannot saturate Λ ∼mΦ. In this model,

mΦ ∼
ffiffiffi

λ
p

f which can satisfy mΦ > mX=gX ∼ f=q while

perturbation theory is still under control λq ≲ 1. However

in this limit Λ ∼
ffiffiffi

q
p

f > mΦ, so that saturating the unitarity

bound is not possible. Even when one allows λq > 1 and

instead uses semiclassical methods [58], one still finds that

it is impossible to saturate the unitarity bound in this model.

The importance of multiparticle emission in Stueckelberg

theories could have been anticipated from this partial UV

completion. In the UV completion, the symmetry breaking

mass term arises from a higher dimensional operator of

dimension∼q, see Eq. (21). Discovering the bad high energy

behavior of a higher dimensional operator of dimension ∼q

requires∼q states. The IR Stueckelberg theory shouldmatch

theUVHiggs theory at the scale of the radialmode.However,

the IR Stueckelberg theory does not know which UV Higgs

theory to match onto. Thus all it can do is at a given energy

scale E, match onto the UV Higgs theory which has

mΦ ¼ Eþ ϵ. As the energy scale E increases, the IR theory

has tomatch onto different UV theorieswith larger and larger

mΦ and hence larger and larger q. Thus when scattering

particles at higher and higher energies, the dominant final

state involves an ever increasing number of particles.

VI. CONCLUSION

In this paper, we considered Stueckelberg gauge bosons

coupled to nonconserved currents broken by mass terms

and calculated the bounds on these models coming from

mono-lepton+MET events at the LHC. For large gauge

boson masses, these constraints are only a bit weaker than

even the strongest of bounds, such as g − 2 experiments.

For most masses below a keV, these constraints are the

strongest bounds on these models.

The strength of these bounds comes from the exponential

growth of inclusive rates, a feature only present in the

Stueckelberg limit [31]. This growth is a double edged

sword. On one hand, it allows one to use very crude

measurements to place extremely stringent constraints. On

the other hand, it does not benefit from precision mea-

surements so that it is not easy to improve on the constraints

without access to a higher energy environment. For

example, a 100 TeV collider would improve upon the

LHC bounds by about an order of magnitude.
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APPENDIX: UNITARITY BOUNDS—n-TO-n

SCATTERING

When discussing our unitarity bounds, we will follow the

conventions and discussions of Ref. [59,60] and for sim-

plicity we will be working in the limit of massless particles.

Any S matrix can be decomposed into S ¼ 1þ iT. The
identitymatrix describes the situationwhere particles pass by

without interacting while the transition matrix T describes

nontrivial processes. The states wewill be considering have a

continuous label P, the total momentum, and discrete labels

α. These states are normalized as

hP0; α0jP; αi ¼ ð2πÞ4δ4ðP − P0Þδαα0 : ðA1Þ

The amplitude M̂ is defined by

hP0; α0jTjP; αi ¼ ð2πÞ4δ4ðP − P0ÞM̂αα0

hP0; α0jSjP; αi ¼ ð2πÞ4δ4ðP − P0ÞSαα0 : ðA2Þ

The main result that we will use is that jM̂αα0 j ≤ 1 for all α

and α0 at tree level. When α ≠ α0, this statement follows

directly from the conservation of probability. For α ¼ α0 we
use unitarity

1 ¼ δαα ¼
X

γ

S†αγSγα ¼ 1 − 2ImM̂αα þ
X

γ

jM̂γαj2: ðA3Þ

From this we have

2ImM̂αα ¼
X

γ

jM̂γαj2 ≥ jM̂ααj2 ðA4Þ

which can be massaged into the form 1 ≥ jReM̂ααj2þ
jImM̂αα − 1j2. From this we see that jReM̂ααj ≤ 1. Since

M̂αα is real at tree level, we have jM̂ααj ≤ 1.

We now have the unitarity bound jM̂αα0 j ≤ 1 so we can

apply it to the theory described in Eq. (4). We will be

considering the initial and final states each with a neutrino ν

and n Goldstone bosons ϕ. We define our states as

jP; n; αi ¼ Cn

Z

d4xe−iPxϕð−ÞðxÞnνð−Þα ðxÞj0i ðA5Þ
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where Cn is a normalization constant, (−) are the part of the

fields that contain the creation operators, and α is the spinor

index of the fermion. These states are normalized as

hP0; n0; _αjP; n; αi ¼ ð2πÞ4δ4ðP − P0Þδnn0
Pα _α

E
ðA6Þ

where E is the total energy. This normalization was chosen

to reproduce Eq. (A1) in the center of mass frame, which

we will be using from here on. From this, we have the

normalization constant

1

jCnj2
¼ 1

2ðnþ 1Þðn − 1Þ!

�

E

4π

�

2n−1

: ðA7Þ

We can finally calculate the amplitude of interest using

Eq. (5) to give

hP0;n;αjð−iÞ
Z

d4xν̄ðxÞ mν

ð2nÞ!

�

igXPLϕðxÞ
mX

�

2n

νðxÞjP;n;αi

¼ ð2πÞ4δ4ðP−P0ÞiM̂ðνþnϕ→ νþnϕÞ ðA8Þ

jM̂ðνþ nϕ → νþ nϕÞj

¼ gXmν

2mXðnþ 1Þ!n!ðn − 1Þ!

�

gXE

4πmX

�

2n−1

ðA9Þ

Imposing jM̂j ≤ 1 gives the results shown in the text. For

reference, the amplitude M̂ is related to the more familiar

matrix element M by normalization constants and phase

space integrals

M̂αα0 ¼ C⋆
αCα0

Z

dΦαdΦα0Mαα0 : ðA10Þ

The phase space differentials dΦα will be given below.

1. Unitarity bounds on an anomalous Uð1Þ
In this section we calculate the unitarity bounds on an

anomalous gauge theory in a manner analogous to what we

did for n-to-n scattering. We leave unitarity gauge by a

gauge transformation ϕ=mX. Because the theory is anoma-

lous, an anomaly term is added to the Lagrangian

L ⊃
g22A

32π2
gXϕ

mX

WaW̃a; ðA11Þ

where W̃μν ¼ 1
2
ϵμνρσWρσ andW

a are the gauge bosons with

which Uð1ÞX is anomalous and A is the anomaly

coefficient.

We will consider 2-to-2 scattering of W1 gauge bosons

via the Goldstone boson ϕ, which contains all of the

leading high energy behavior in Feynman-’t Hooft gauge.

The largest amplitude occurs when all four gauge bosons

have the same helicity. A short calculation gives the

amplitude

jM̂ðW1 þW1
→ W1 þW1Þj ¼ s

4π

�

gX

mX

g22A

32π2

�

2

ðA12Þ

Requiring the unitarity bound jM̂j < 1 be saturated at the

center of mass energy Λa, we arrive at the result

Λa ¼
ffiffiffiffiffiffi

4π
p

mX

gX

32π2

g22A
: ðA13Þ

2. Decay width of the W boson

Here we compute the decay width of the W boson into a

lepton, a neutrino and n gauge bosons. The decay is

dominated by the decay into longitudinal modes which

we calculate using the Goldstone boson equivalence

theorem.

The relevant process is shown in Fig. 3.We denote the four

momenta of the W boson, the outgoing lepton l, the

intermediate neutrino and the outgoing neutrino as pW ,

pl, q and pν, respectively. We also denote the collec-

tive momenta of the n Goldstone bosons ϕ as

pϕ ¼ p1 þ p2 þ � � � þ pn. We will ignore the masses of

ϕ, ν and l throughout our calculation, except those appearing
in the neutrino-Goldstone bosoncoupling.Wewill consider a

single neutrino flavor, and later generalize to the standard

three-flavor structure. The matrix element is

iM ¼ −

�

g2

2
ffiffiffi

2
p

�

ūðplÞγαð1 − γ5Þϵα
i=q

q2
κnvðpνÞ; ðA14Þ

where κn denotes the coupling of neutrinos to n-Goldstone
bosons, obtained from Eq. (5). We see that κn ∝ γ5 for odd

values of n. However, it can be checked that iM is the same

for both even and odd values of n. The amplitude can be

squared to give

FIG. 3. The decay W → nϕþ lþ ν.
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1

3

X

jMj2 ¼ 2

3

�

g2κn

2
ffiffiffi

2
p

�

2

Tr½γβplγ
αqpνq ð1þ γ5Þ�

1

q4
Παβ; ðA15Þ

where Παβ ¼ ð−ηαβ þ
pWαpWβ

M2
W

Þ. The factor of 1=3 comes from averaging over initialW polarizations. After some algebra this

can be reduced to,

1

3

X

jMj2 ¼
�

g2κn

2
ffiffiffi

2
p

�

2 1

3q4
ð8gαβ½q2ðpl · pνÞ − 2ðq · pνÞðq · plÞ� þ 32ðq · pνÞpα

l q
β − 16q2pα

l p
β
νÞΠαβ: ðA16Þ

Let us now integrate over the phase space of the n ϕ and the outgoing neutrino. To this end, wewill use the following identities

involving k-body phase space of massless particles [60],

ΦkðPÞ ¼
Z

dΦkðPÞ≡
Z

d3p1

ð2πÞ3
1

2E1

� � � d
3pk

ð2πÞ3
1

2Ek

ð2πÞ4δ4ðp1 þ � � � þ pk − PÞ ¼ 1

8πðk − 1Þ!ðk − 2Þ!

�

E

4π

�

2k−4

; ðA17Þ

Z

dΦkðPÞpμ
1 ¼

1

k
ΦkðPÞPμ; ðA18Þ

Z

dΦkðPÞp1 · p2 ¼
1

2ðk
2
ÞΦkðPÞP2; ðA19Þ

with E ¼
ffiffiffiffiffiffi

P2
p

being the center of mass energy. Utilizing the above identities and doing the contraction with Παβ we get,

Z

dΦnþ1ðqÞ
�

1

3

X

jMj2
�

¼ 8

3q2

�

g2κn

2
ffiffiffi

2
p

�

2
�

ðpl · qÞ þ
2ðpW · qÞðpl · pWÞ

M2
W

�

Φnþ1ðqÞ
ðnþ 1Þ ;

¼
�

g2κn

2
ffiffiffi

2
p

�

2 q2n−4

3πðnþ 1Þ!ðn − 1Þ!
1

ð4πÞ2n−2
�

3ðpW · plÞ −
2ðpW · plÞ2

M2
W

�

: ðA20Þ

As a final step, we go to the rest frame of the W and integrate over the lepton momenta to get,

ΓðW → lþ νþ nϕÞ ¼ g22M
2n−1
W κ2n

ð4πÞ2n
1

16πðn!Þ2ðnþ 2Þ!ðn − 1Þ for n > 1: ðA21Þ

Herewe have also multiplied by a factor of 1=n! to account for the n identicalϕs in the final state. The total decay width of the
W-boson into a final state containing an arbitrary number of ϕs is then obtained after summing over n,

ΓBSM ≡
X

n>1

ΓðW → lþ νþ nϕÞ ¼ 1

16π × 96

g22m
2
ν

MW

�

MWgX

4πmX

�

4

2F4

�

f1; 1g; f2; 3; 3; 5g;
�

MWgX

4πmX

�

2
�

: ðA22Þ

Then ¼ 1 case is special as there is a soft divergence leading to a log enhancement of the form log ðmW=mXÞ. As this log is only
present for n ¼ 1, we conservatively neglect the n ¼ 1 contribution to the decay width.
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