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We discuss new bounds on vectors coupled to currents whose nonconservation is due to mass terms, such
asU(1) L-L.- Due to the emission of many final state longitudinally polarized gauge bosons, inclusive rates
grow exponentially fast in energy, leading to constraints that are only logarithmically dependent on the
symmetry breaking mass term. This exponential growth is unique to Stueckelberg theories and reverts back
to polynomial growth at energies above the mass of the radial mode. We present bounds coming from the
high transverse mass tail of monolepton + MET events at the LHC, which beat out cosmological bounds to
place the strongest limit on Stueckelberg U(1) L-L. models for most masses below a keV. We also discuss a

stronger, but much more uncertain, bound coming from the validity of perturbation theory at the LHC.
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I. INTRODUCTION

Recently, new light weakly coupled particles have
increasingly become a focus as either a mediator to a dark
sector [1-3], as dark matter itself [4-8], or to explain
potential anomalies [9-14]. A particularly well motivated
candidate is a vector boson. The currents that these vector
bosons couple to can either be conserved, e.g., U(1),z_,
with Dirac neutrino masses, or they can be nonconserved,
eg., U) or U(1),, -

In this paper we will continue a long line of research into
the bounds that can be placed on vector bosons coupled to
nonconserved currents, see e.g., Refs. [15-22]. As is well
known, these models are nonrenormalizable field theories
and as a result have amplitudes that grow with energy.
Eventually these amplitudes grow so large that tree level
amplitudes violate unitarity at the energy scale A, indicat-
ing that perturbation theory has broken down. Requiring
that new physics appears below the scale A gives the
unitarity bound. Unitarity bounds have a long storied
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history, see, e.g., Refs. [23-26], and the famous application
to the Higgs boson [27-30].

Typically nonconservation of the currents comes from
either anomalies or mass terms. In the first case, amplitudes
involving longitudinal modes are enhanced [15]. Later,
Ref. [19,20] showed that this enhancement led to strong
constraints on anomalous gauge theories. In the second
case, inclusive amplitudes were shown to exhibit expo-
nential growth [31]. We will show that this exponential
growth leads to very strong constraints on these theories.

In this letter we will focus on the case of currents that are
not conserved due to mass terms. Specifying this starting
point locks us into considering the Stueckelberg limit of
gauge theories' as including the radial mode renders mass
terms gauge invariant. A Stueckelberg theory coupled to a
nonconserved current can have inclusive rates that grow
exponentially fast in energy due to multiparticle emission
[31]. This exponential growth is unique to the Stueckelberg
limit and becomes polynomial at energies above the mass
of the radial mode.

The exponential growth of amplitudes in these models
gives extremely strong unitarity bounds [31]. Redoing the
unitarity bound using our conventions, we find
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"The Stueckelberg limit is when the mass of the radial mode is
taken to be heavier than the energy scale under consideration.
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where gy and my are respectively the coupling and the
mass of the gauge boson, and m is the symmetry breaking
mass term. To show how strong this unitarity bound is, let
us consider the Stueckelberg limit of U(1) L Typically one

assumes that the strongest unitarity bound on this model
comes from the fact that this current is anomalous. Redoing
the unitarity bound (for details see the Appendix) using our
conventions leads to a slightly stronger result than the
standard result [15]

Vazmy 327*
a ™ 5 (2)
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where ¢, is the SU(2),, gauge coupling. Comparing this
with Eq. (1) taking my /gy ~ 1 GeV, motivated by our later
results, and m ~ 0.05 eV, as the mass of the neutrino, we
find that A ~ A,/10. This shows that despite the extremely
small neutrino mass, its nonzero value still gives a unitarity
bound almost an order of magnitude more stringent than the
anomaly does. Thus before considering moving to an
anomaly free theory such as U(1) L,-L,» one should first

UV complete the symmetry breaking neutrino mass terms.
In contrast, for a Higgsed U(1) 1, one can naturally have the

exact opposite scenario where A, < A.

Unitarity in these models is restored by the inclusion of
the radial mode. However in these UV completions, the
small fermion mass is the result of a higher dimensional
operator so that scattering of the radial mode has its own
unitarity bound. Constraints on the UV completion are
fairly model dependent, however since it is likely that the
UV completion only couples to the SM via the neutrino
mass term, bounds on it are plausibly fairly weak. On the
other hand, for Stueckelberg gauge bosons we obtain
robust, model-independent bounds that do not rely on
the dynamics of the radial mode. While these bounds can
be evaded by going away from the Stueckelberg limit by
including the radial mode at sufficiently low energies, the
radial mode should then be taken into account whenever
processes at energies larger than its mass are studied.

In this paper we will focus on gauge bosons coupled to
the lepton number currents, which are only nonconserved
because of the extremely small neutrino masses. To find
explicit bounds, we consider the total decay width of the W
boson and the high transverse mass tail of mono-lepton +
MET events at the Large Hadron Collider (LHC). The
bounds we obtain are essentially independent of what the
exact model under consideration is, thus in the introduction
we will only list our bounds on U(1), _, with Dirac
neutrino masses. A somewhat uncertain bound of my /gy =

24 GeV comes from requiring that physics is perturbative
at the LHC. We also find

"X o 13Gev; ™5 54 Mev (3)
9x 9x

coming from mono-lepton+MET events at the LHC and the
total decay width of the W boson respectively. In the high
mass limit, this is only a factor of ~100 weaker than the
extremely precise measurements of the g — 2 of the muon
[32,33]. Meanwhile for my < 1 keV, this is the strongest
constraint on these models beating out even cosmological
bounds.’

II. UNITARITY BOUND

In this section, we derive the unitarity bound on these
models, which was also done in Ref. [31] using slightly
different techniques.’ In order to demonstrate the expo-
nential growth of amplitudes, we will consider the toy
scenario of a gauge boson coupled to only the left handed
piece of a Dirac fermion v, whose current is not conserved
due to explicit breaking by a small Dirac mass term m,,.
Namely we consider a theory with

L= —%F% + iv(d — igyAxPL)v — m,bv + %m%A%, (4)
where Fy is the field strength of the gauge boson Ay. In the
limit of small m,, the scale at which perturbation theory
breaks down, A, is much larger than the mass of the gauge
bosons. In this limit, things simplify as the high energy
behavior of Ay can be obtained from the Goldstone boson
equivalence theorem. Namely, the matrix element obeys
M(AL + )= M(¢p + - - -), where AL is a longitudinally
polarized Ay and ¢ is the Goldstone boson.

We obtain the theory with Goldstone bosons by leaving
unitarity gauge via a chiral gauge transformation,
v; — exp(igy¢p/my)vy. As the mass term is not gauge
invariant, it transforms into

V= mul—/eigXPqu/me _ ZD@ (ngPL¢) ny' (5)

— n! nmy

From this, it is clear that the theory is nonrenormalizable
and has a UV cutoff. The Goldstone boson equivalence
theorem lets us compute the probability of emitting many
longitudinal gauge bosons by calculating the much simpler
process of emitting many ¢ particles using the above
interaction.

As one can see, considering processes involving n ¢s
gives a matrix element ~m,, (gyE/my)" that becomes more
and more insensitive to the small mass parameter m, as n
becomes larger and larger. This causes the best unitarity
bound to come from taking n larger and larger. However, in

*If the gauge boson instead coupled to L,, the strongest bounds
at low mass are from neutrino oscillations in the earth [34] and it
is only for masses my < 10~1¢ eV that our bounds win out.

"We use a slightly different definition of the unitarity bound
and we consider the process v+ n¢g — v+ n¢g rather than
v+ U — n¢g, which leads to stronger unitarity bounds.
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the large n limit, the 1/n! coming from dealing with
identical final state particles penalizes taking n too large.
Thus the optimal unitarity bound comes from taking an
intermediate value of the number of gauge bosons 7ry.
A calculation done in the Appendix shows that the
amplitude M of the process v+ n¢ — v + ng is

|M(u+ ng — v+ nep)|
gxm, < gxE )2"_1 (6)

" 2my(n+ Dinl(n — 1)! \dzmy

in the limit that E > nmy. Unitarity requires that [M| < 1.
In order to obtain the strongest bounds, we choose the n
that maximizes Eq. (6) to obtain in the large n limit

N m oxE \2/3

MU+ g = v+ nogp)| ~ 2 T (7)
mx

This maximum value of |M| is obtained for

Nope ® (gx E/4mmy)*3. Requiring unitarity holds for

Eq. (7) gives the leading logarithmic behavior

drmy my
E=A~—"1log? (—) 8
V27gx gxm, ®)

From this calculation we see the behavior claimed in the
Introduction. Amplitudes have an exponential growth in
energy and the strongest growth comes from emitting
multiple gauge bosons. In this calculation, we made the
approximation that the energy carried by each of the Ay
gauge bosons is much larger than the mass when we
utilized the Goldstone boson equivalence theorem.
Combining the expression for n,y, with Eq. (8) and the
requirement that £ >> ny,my, we find that our massless
approximation of the unitarity bound is valid when

gx < 4my/log(my/gym,)/3. In the large log limit, the
massless limit is always a valid approximation.

III. MODELS

We now briefly describe the models under consideration
and set up some notation. The results in the next section
will be given in the 1-flavor approximation so we will also
discuss how to easily take into account the standard 3-
flavor set up. For ease of expression, in this section we will
use Weyl notation for fermions.

As mentioned before, we will be considering the
Stueckelberg limit of different U(1) gauge theories. We
first consider U(1) L,-L, We assume Dirac neutrinos and
that the right-handed neutrinos are neutral under L, — L..
The flavor basis is related to the mass basis by vy = Uvy,,
where vp (vy,) are the flavor (mass) basis left handed
neutrinos and U is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix. In the flavor basis the neutrino mass term

is 1M U v where M ; is a diagonal matrix of the neutrino
masses m, 5 3. To leave unitary gauge, the flavor-basis SM
neutrinos are rotated by,

vp = Pup P = diag(1, et9xd/mx _e=ioxd/mx) — (9)

Thus the neutrino mass term involving the Goldstone
bosons ¢ becomes

LD = VMU Pup +He.

L (igxp\" . -
32;(,”)( VM (Ul p, + (=1)"Ul ).
n,j

From this, we see that any 1-flavor process involving n high
energy gauge bosons can be converted into the 3-flavor
result by replacing

m—)

’;
(U1 + U )m3 (10)
Jj=1

The other gauge theory we will consider is U(1), with
Majorana neutrino masses. In this case, after leaving
unitary gauge the mass term is

LM = XXyt M vy + Hee. (11)

From this, the 1-flavor results can be generalized using the
substitution

9x = 29x,

m—> > Z|U,,|2 2 (12)

I=e.u,t j=

IV. CONSTRAINTS

We now present exclusions coming from the emission
of many final state gauge bosons. We will consider
three different constraints coming from the total decay
width of the W boson, the tail of high transverse mass
mono-lepton + MET events, and a rough estimate of when
perturbativity breaks down at the LHC. Our results will be
presented in the simplified 1-flavor model. Equations (10)
and (12) can be used to convert the results into the two
specific models of interest. In particular, in Figs. 1 and 2 we
show the results after incorporating the full 3-flavor set-up.

W Boson decay: We will consider the partial decay width
of the W boson into leptons and n gauge bosons

[,(W- > L™+ 0+ nAy). (13)

The constraint we will impose is that the sum of these decay
widths is less than the total decay width
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FIG. 1. Low mass constraints on a Stueckelberg U(1) L-L.
gauge boson with Dirac neutrino masses. The purple region
shows the constraint derived in Eq. (19) coming from the high
transverse mass tail of mono-lepton+MET events at the LHC. The
dot-dashed purple line denotes the constraint obtained from
demanding the validity of perturbation theory at the LHC, given
by Eq. (20). Other constraints are from: AN during BBN
through thermalized Ay [35], black hole superradiance (BHSR)
instability [36], rare K decays [22], AN through vv — AyxAy
[22,35], constraints on v decay through terrestrial experiments
[22,37,38]. We also update the cosmological constraints on v
decay as discussed in the main text, based on the recent result of
Ref. [39]. Given the v decay bounds from cosmology are model-
dependent and can be relaxed, we show it via dashed lines.

Tgsw = » T, < Ty, (14)

n=2

For simplicity we will take n>2 to avoid the soft
divergence.

Using the Goldstone boson equivalence theorem, we find
the result to leading order in m, to be

gm2 X
Loy = 2™ 4 b 1) 2 1
BSM = e, © 2F a1 {2,3.3,5505) (15)

_ 9xMw
where x = pr— qu

function and g, is the SU(2),, gauge coupling. In the limit
of large argument, it simplifies as

is the generalized hypergeometric

16V3 o
JF4({1,1},{2,3,3,5}, %) ~ e 7 (16)

showing the exponential growth of the amplitudes men-
tioned earlier.

Bounds are obtained by requiring that this decay width is
smaller than the total decay width of the W boson. For
U(l)p,—,, (U(1)y) we find that my/gy > 54 MeV
(my/gx > 108 MeV). Because of the exponential, our
results are insensitive to the details with which we constrain
the model. For example, requiring that this decay width is
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FIG. 2. High mass constraints on a Stueckelberg U(1), _;_
gauge boson with Dirac neutrino masses. The solid and dot-
dashed purple lines are the same as in Fig. 1. Other constraints are
from: AN during BBN due to thermalization of Ay and entropy
dump during its decay [35,40,41] (solid: Try > 4 MeV, see, e.g.,
[42,43]; dashed: Try > 10 MeV), neutrino trident process at the
CCFR experiment [44,45], and a search for eTe™ — uTpu Ay,
Ay — Ty~ at BABAR [46]. In the shaded green region, the muon
(g —2) anomaly [47,48] can be explained by Ay at 26 [9,49].

smaller than 107 of the total decay width of the W boson
(roughly 1 over the number of W bosons produced at LEP)
tightens the above U(1), _; bound to 76 MeV.

monolepton + MET events : In the next two subsec-
tions, we will discuss bounds that stem from the breaking of
perturbativity at the LHC. From the decay of the W boson,
we see that we are faced with a theory which is becoming
dominated by a large number of final state particles. For
black holes [50], when the cross section becomes domi-
nated by a large number of final states, the cross section for
s-channel two-to-two scattering becomes highly sup-
pressed. The nonobservation of this suppression leads to
a constraint. As illustrated below, it is plausible that a
similar feature exists in our case when perturbation theory
breaks down.

The case that we will consider is pp - W* — [v via an
off-shell W boson. Athigh enough energies, the tree level off-
shell width of the W boson becomes larger than the
momentum flowing through the propagator, suppressing
the high transverse mass tail of monolepton + MET events.”
We obtain a bound by requiring that this suppression is small
enough that the suppression was not observed in Ref. [51].

At high energies, the propagator of the W boson is
given by

i

m Im(Z(s)) = MyTy(s), (17)

“Perturbation theory has broken down when this occurs, so that
our calculation is only really an estimate of what happens in the
full nonperturbative theory.

035034-4



BOUNDS ON GAUGE BOSONS COUPLED TO NONCONSERVED ...

PHYS. REV. D 104, 035034 (2021)

where the earlier calculation of the decay width of the W
boson gives

_ pm
15367

My Ty (s) xhFy({1.11.{2.3.3.5}0%) (18

with x = 25 When 5 < M wlw(s), monolepton + MET

4rxmy
production is highly suppressed.

Ref. [51] observes the high M7 tail of the monolepton +
MET events’ to be the expected SM result when
My <2 TeV. Given My <+/s by definition, it implies
that at center of mass energies of at least 2 TeV, we do not
see any deviation from the SM expectation. The observed
events dominantly come from pp — W* — [v. The off-
shell W contribution would be suppressed by at least a
factor of 2 if /25 = MyTy(s) and would have been
observed for any My <2 TeV. We obtain a bound by

requiring that v/2s > My 'y (s) at 2 TeV. For U(1>Lﬂ—L, we
find that

For U(1), with Majorana masses we find my/gy>2.6GeV.

Calculability : The next bound we place is that pertur-
bation theory at the LHC is valid. This is necessarily a
somewhat fuzzy bound because the breakdown of pertur-
bation theory is not very well defined. For example, the
unitarity bound derived in Ref. [31] is weaker than ours by
a factor of ~3 indicating that different techniques give O(1)
different estimates of when perturbation theory breaks
down. However, it is undeniable that we can calculate
observables at the LHC and so perturbation theory must
be valid.

We will use the unitarity bounds given in Eq. (8) as an
order of magnitude estimate for when perturbation theory
breaks down. The highest center of mass energy collision at
the LHC was one that had a center of mass energy of
~8 TeV [52]. Requiring that LHC processes are calculable
at a center of mass energy of 8 TeV gives the constraint

my/gy = 24 GeV (20)

for U(1) L,-L- As mentioned before, the breakdown of

perturbation theory is a somewhat nebulous concept and
thus this bound should be considered as only an estimate of
where the bound coming from the breakdown of perturba-
tion theory must lie.

An astute reader will notice that the previous bounds are
actually slightly weaker than the unitarity bound found
using their relevant energy scales. As our previous bounds

The transverse mass My is defined as My, =
/2 pRss (1 — cos A¢), where A¢ is the azimuthal angle
between p'. and piiss.

came from tree level calculations, they require that pertur-
bation theory is valid. As such, strictly speaking, they only
apply if the stronger calculability constraint has misesti-
mated the breakdown of perturbation theory by a factor
of few.

We show our constraints visually in Figs. 1 and 2 for
U(l) L-L, We take normal ordering of the neutrino masses

with the lightest neutrino being massless. As explained in
the text, the bounds are not sensitive to the precise value of
the mass. For other neutrino mixing parameters, we use the
results from Table III of Ref. [53].

In Fig. 1 we have updated the cosmological bounds on
these models coming from the decay of the heavier neutrinos,
which requires 75 > 4 x 10575 sec(m3/50 meV)? [39]. The
two v decay (cosmology) bounds represent the uncertainty in
the bound on the v lifetime. After refining the calculation of
the damping of anisotropic stress due to neutrino decay and
inverse decay, this new bound was obtained and found to be
several orders of magnitude weaker than previous work
(e.g., [54,55]). For the AN ¢ constraints, we take Try < m,,.
Additionally, in both figures we have neglected constraints
coming from a possible coupling to electrons as those bounds
are model dependent and can be avoided.

V. PARTIAL UV COMPLETION

Unitarity in the emission of gauge bosons can be restored
by introducing the radial mode. To see the behavior of a UV
completion, we consider a complex scalar ® with charge 1
and give the neutrinos a charge ¢ = gyx/g so that the
coupling of Ay to neutrinos is given by gy while the
coupling of Ay to @ is given by g. The symmetry breaking
mass term comes from the higher dimensional operator

(ol vfd
V:yA—,qHLu” mD:yA—,J;, (21)
which gives the standard neutrino mass term after ® obtains
a vev f. The radial mode can be partially decoupled by
taking ¢ - 0 and ¢, f — oo while holding my = gf and
gx = qg constant. This limit attempts to decouple the radial
mode mgq, < f but at the same time sends the symmetry
breaking mass term to zero, m, — 0. Thus, when the
neutrino mass is nonzero, the radial mode cannot be
decoupled.

Using Eq. (21), one can show that the unitarity bound A
satisfies

damy my
A~ ——="1og*? (—) >m 22
V27gx gxm, @ ( )

showing that unitarity did indeed predict the correct scale of
new physics in these models. In this UV theory, one can
easily show that scattering involving gauge bosons no

035034-5



EKHTERACHIAN, HOOK, KUMAR, and TSAI

PHYS. REV. D 104, 035034 (2021)

longer grows. However, the price is that scattering involv-
ing @ does grow. Thus this partial UV completion will itself
require a UV completion at the scale A’. As this particular
higher dimensional operator is identical to those seen in
Froggatt-Nielsen models [56], its UV completion proceeds
along a manner completely analogous to those models and
will not be expounded upon here. For a full UV completion
see Ref. [57].

It is worth mentioning that while the partial
UV completion presented above can easily obtain
mg > 4mmy /gy, it cannot saturate A ~ mg. In this model,
mg ~ V/Af which can satisfy mq > my/gx ~ f/q while
perturbation theory is still under control g < 1. However
in this limit A ~ \ /qf > mg, so that saturating the unitarity
bound is not possible. Even when one allows Ag > 1 and
instead uses semiclassical methods [58], one still finds that
it is impossible to saturate the unitarity bound in this model.

The importance of multiparticle emission in Stueckelberg
theories could have been anticipated from this partial UV
completion. In the UV completion, the symmetry breaking
mass term arises from a higher dimensional operator of
dimension ~g, see Eq. (21). Discovering the bad high energy
behavior of a higher dimensional operator of dimension ~¢
requires ~¢ states. The IR Stueckelberg theory should match
the UV Higgs theory at the scale of the radial mode. However,
the IR Stueckelberg theory does not know which UV Higgs
theory to match onto. Thus all it can do is at a given energy
scale E, match onto the UV Higgs theory which has
mg = E + €. As the energy scale E increases, the IR theory
has to match onto different UV theories with larger and larger
mg and hence larger and larger g. Thus when scattering
particles at higher and higher energies, the dominant final
state involves an ever increasing number of particles.

VI. CONCLUSION

In this paper, we considered Stueckelberg gauge bosons
coupled to nonconserved currents broken by mass terms
and calculated the bounds on these models coming from
mono-lepton+MET events at the LHC. For large gauge
boson masses, these constraints are only a bit weaker than
even the strongest of bounds, such as g — 2 experiments.
For most masses below a keV, these constraints are the
strongest bounds on these models.

The strength of these bounds comes from the exponential
growth of inclusive rates, a feature only present in the
Stueckelberg limit [31]. This growth is a double edged
sword. On one hand, it allows one to use very crude
measurements to place extremely stringent constraints. On
the other hand, it does not benefit from precision mea-
surements so that it is not easy to improve on the constraints
without access to a higher energy environment. For
example, a 100 TeV collider would improve upon the
LHC bounds by about an order of magnitude.
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APPENDIX: UNITARITY BOUNDS—~#-TO-n
SCATTERING

When discussing our unitarity bounds, we will follow the
conventions and discussions of Ref. [59,60] and for sim-
plicity we will be working in the limit of massless particles.
Any S matrix can be decomposed into S =1+ i7. The
identity matrix describes the situation where particles pass by
without interacting while the transition matrix 7" describes
nontrivial processes. The states we will be considering have a
continuous label P, the total momentum, and discrete labels
a. These states are normalized as

(P'.d|P,a) = (27)*6*(P = P')8 . (A1)
The amplitude M is defined by
(P, d|T|P,a) = (27)*6*(P — P )My
(P, d|S|P,a) = (27)*6*(P — P')S . (A2)

The main result that we will use is that [M,,| < 1 for all a
and o at tree level. When a # «’, this statement follows
directly from the conservation of probability. For a = o’ we
use unitarity

1=060 = SkySye=1-2ImM,, + > M2 (A3)
14 14

From this we have

ZImMaa = Z'Mya|2 2 |Maa|2
4

(A4)

which can be massaged into the form 1 > |Re1\7l,m|2+
[ImM,,,, — 1|2. From this we see that [ReM,,| < 1. Since
M, is real at tree level, we have |M,,| < 1.

We now have the unitarity bound |M,,| < 1 so we can
apply it to the theory described in Eq. (4). We will be
considering the initial and final states each with a neutrino v
and n Goldstone bosons ¢. We define our states as

P,n,a) = C,,/d“xe‘ip"gi)(_)(x)"v((x_) (x)|0)  (AS5)
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where C,, is a normalization constant, (—) are the part of the
fields that contain the creation operators, and « is the spinor
index of the fermion. These states are normalized as

Paéz

(P -
E

P.n,a) = (2m)*6*(P = P")S,y (A6)
where E is the total energy. This normalization was chosen
to reproduce Eq. (A1) in the center of mass frame, which
we will be using from here on. From this, we have the
normalization constant

1 1 E 2n—1
Icn|2:2(n+1)(n—1)z<ﬂ> - (A7)

We can finally calculate the amplitude of interest using
Eq. (5) to give

(i) / x5 (x) (Z;)! (ig"P L¢(x))2nv(x)|P,n,a>

my

(P',n,a

= (27)*8*(P — P")iM(v+ ngp — v+ nep) (A8)

\M(U—Fﬂgﬁ = v+ ng)|

E \ 2n-1
_ gxm, Ix (Ag)
2my(n+ 1)!nl(n — 1)! \4zmy

Imposing |[M| < 1 gives the results shown in the text. For
reference, the amplitude M is related to the more familiar
matrix element M by normalization constants and phase
space integrals

Maa’ = C;Ca//dq)adq)a’Maa" (AIO)

The phase space differentials d®, will be given below.

1. Unitarity bounds on an anomalous U(1)

In this section we calculate the unitarity bounds on an
anomalous gauge theory in a manner analogous to what we
did for n-to-n scattering. We leave unitarity gauge by a
gauge transformation ¢/my. Because the theory is anoma-
lous, an anomaly term is added to the Lagrangian

2
BHA gx¢ o
= Wewe,
327[2 my

LD

(Al1)

where W* = %e"”/’”W/,,, and W* are the gauge bosons with
which U(1)y is anomalous and A is the anomaly
coefficient.

We will consider 2-to-2 scattering of W! gauge bosons
via the Goldstone boson ¢, which contains all of the
leading high energy behavior in Feynman-’t Hooft gauge.

The largest amplitude occurs when all four gauge bosons

FIG. 3.

The decay W — n¢p + [+ v.

have the same helicity. A short calculation gives the
amplitude

ZA 2
M(W! + W' > W+ W)= (X% Al2
MW" + - +Whl A \my 3277 ( )

Requiring the unitarity bound |[M| < 1 be saturated at the
center of mass energy A,, we arrive at the result

_ Vammy 3272

A, .
gx 9%-'4

(A13)

2. Decay width of the W boson

Here we compute the decay width of the W boson into a
lepton, a neutrino and n gauge bosons. The decay is
dominated by the decay into longitudinal modes which
we calculate using the Goldstone boson equivalence
theorem.

The relevant process is shown in Fig. 3. We denote the four
momenta of the W boson, the outgoing lepton [/, the
intermediate neutrino and the outgoing neutrino as pyy,
p;» q and p,, respectively. We also denote the collec-
tive momenta of the n Goldstone bosons ¢ as
Py =Pi1+ P2+ +p,. We will ignore the masses of
¢, v and [ throughout our calculation, except those appearing
in the neutrino-Goldstone boson coupling. We will consider a
single neutrino flavor, and later generalize to the standard
three-flavor structure. The matrix element is

== (S )atpral1 = e Bratp). - (a14)
where «, denotes the coupling of neutrinos to n-Goldstone
bosons, obtained from Eq. (5). We see that k,, o y5 for odd
values of n. However, it can be checked that i M is the same
for both even and odd values of n. The amplitude can be
squared to give
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)2 1
S IMP =3 (25 a1+ 75)] T (A15)

P W"p A ) The factor of 1/3 comes from averaging over initial W polarizations. After some algebra this

where I3 = (=145 +
can be reduced to,

Ky 1
AL IMP = (5 LG ) = 2a p)a pil 4 32a p)pi = 162y (ALG)

Let us now integrate over the phase space of the n ¢ and the outgoing neutrino. To this end, we will use the following identities
involving k-body phase space of massless particles [60],

3 -
wu(p) = [avp)= [E0 L P st =P = e () A
[ douprpt = oupip, (A18)
JECIEE s (A19)
2

with E = v/ P? being the center of mass energy. Utilizing the above identities and doing the contraction with I, we get,

[ @@ (3MP ) = s (252) |- 2P PP Pl

() e ! 2pw - p1)?
- (216) 3n(n+ 1)1(n — 1)! (4z)>"=2 (3(PW'P1>‘T%VI>- (A20)

As a final step, we go to the rest frame of the W and integrate over the lepton momenta to get,

gzM%‘ﬁl ! %l 1

TW = l+v+np) = (47)*  167(n!)*(n+2)!(n—1)

for n > 1. (A21)

Here we have also multiplied by a factor of 1/n! to account for the n identical ¢s in the final state. The total decay width of the
W-boson into a final state containing an arbitrary number of ¢s is then obtained after summing over n,

|
Tpov = T(W = [+ v+ ng) = 16“96%‘24’1 <MW9X) 2F4({1 11,{2.3.3,5}, (M”:ngj) ) (A22)

— drmy

The n = 1 case s special as there is a soft divergence leading to a log enhancement of the form log (my,/my ). As this log is only
present for n = 1, we conservatively neglect the n = 1 contribution to the decay width.
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