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With the rapid development of the Internet of Things (IoT), federated learning (FL) has been widely used
to obtain insights from collected data while preserving data privacy. Differential privacy (DP) is an additive
noise scheme that has been widely studied as a privacy-preserving approach on FL. However, privacy protection
under DP usually comes at the cost of model accuracy for the underlying FL process. In this paper, we propose
a novel low-cost (for both communication and computational overhead) adaptive noise perturbation/masking
scheme to protect FL clients’ privacy without degrading the global model accuracy. In particular, we set
the magnitude of the additive noise to adaptively change with the magnitude of the local model updates.
Then, a direction-based filtering scheme is used to accelerate the convergence of the FL model. A maximum
tolerable noise bound for local clients is derived using the central limit theorem (CLT). The designed noise
maximizes privacy protection for clients while preserving the accuracy and convergence rate of the FL model
, as a result of the noise cancelling out and forming a more concentrated distribution after the aggregation
operation on the server. We theoretically prove that FL with the proposed noise perturbation scheme retains
the same accuracy and convergence rate (O(1/T) for convex loss functions and O(1/ ﬁ) for non-convex loss
functions) as that of non-private FL with SGD. We also evaluate the performance of the proposed scheme in
terms of convergence behavior, computational efficiency, and privacy protection against state-of-the-art privacy
inference attacks on real-world datasets. Experimental results show that FL with our proposed perturbation
scheme outperforms DP in the accuracy and convergence rate of the FL model in both client dropout and non-
client dropout scenarios. Compared with DP, our proposed scheme does not incur additional computational and
communication overhead. Our approach provides DP-comparable or better effectiveness in defending against
privacy attacks under the same global model accuracy.

1. Introduction and systems, e.g., in mobile applications such as next-word and emoji
prediction on smartphones [4-6], environmental monitoring [7], smart
healthcare [8,9], and smart city [10].

Although clients do not directly reveal their private data, shared

The development of the Internet of Things (IoT) enables the connec-
tion of a wide range of devices to the Internet [1] to provide ubiquitous
sensing and computation capabilities. The data collected by these de-

vices can be used to train machine learning models. Although the data
on one device may be insufficient to obtain a satisfactory model, the
data on other devices can be benefited via network communication.
Federated learning (FL) [2,3] allows a machine learning algorithm to
learn from data stored on a wide range of physically separated devices.
Technically, FL is a distributed learning system, which allows multiple
local clients to collaboratively train a high-accuracy global model by
taking advantage of a wide range of data without sharing their local
collected data. FL has found its applications in most emerging services
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model updates can unintentionally leak sensitive information about the
data on which they were trained [11]. As pointed out by previous
studies, using FL scheme alone is insufficient in protecting the clients’
local data privacy. For example, from the FL model, an adversary
can infer whether a given data sample was presented in the training
data or not [12,13], recover a representative data sample used in the
training [14], or infer property information about the client’s local
training data [15].
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Ideally, FL with a privacy-preserving mechanism on IoT devices,
such as smartphones, smart watches, and cameras, should take into ac-
count the following constraints: (1) computational capacity is limited,
so computationally expensive encryption algorithms are unaffordable;
(2) devices have limited power supply and network connectivity; (3)
clients are flexible to join or leave training, so dropouts are common.

Several studies have focused on how to preserve privacy in FL.
But none of them can fully address the aforementioned constraints.
In particular, the main approaches are secure multiparty computa-
tion (MPC) and differential privacy (DP). A branch in MPC is based
on homomorphic encryption. Paillier cryptosystem is an additive ho-
momorphic encryption algorithm [16-18], which naturally matches
the aggregation operation in FL. But the main drawback is its high
computational complexity. Another approach uses secret sharing [18],
which is relatively computationally efficient and can also handle client
dropout. However, the requirement of information exchange between
each pair of clients makes this approach impractical in moderate to
large-scale IoT systems. DP is a promising solution that injects random
noise into the data or model updates, providing a statistical privacy
guarantee for individual records and privacy protection against infer-
ence attacks. However, privacy protection comes at the cost of model
accuracy. Additionally, one challenge in training with DP is choosing
an appropriate clipping bound. An inappropriate clipping bound can
degrade model accuracy or even prevent a model from converging due
to the bias introduced by the clipping operation [19].

In this work, we propose a novel low cost (for both communi-
cation and computational overhead) adaptive noise-perturbation
privacy-preserving scheme, which does not sacrifice FL model
accuracy for privacy, while enjoying a DP-comparable or in some
cases better privacy protection. More specifically, our scheme pro-
tects local privacy by adding random noise to each local model update
(i.e., perturbing local model update by adding random noise). These
random noises are deliberately designed so that individually they can
provide sufficient protection for the privacy of each local model. But
when combined at the FL server, the aggregation of these noises will
present a cancel-out effect by the central limit theorem (CLT), so that
the aggregated noises at the server are more condensed and help to
preserve the global model accuracy. In real FL applications, the number
of clients is much larger than 30, which is considered sufficient for CLT
to hold. In addition, unlike random noise in the DP scheme, our noise
masking scheme takes both magnitude and direction into consideration
when adding noise to local model updates to retain high global model
accuracy and expedite global model convergence. Specifically, we in-
troduce an adaptive noise scaling method that sets the magnitude of the
random noise proportional to the magnitude of the local model updates,
i.e., the magnitude of noise changes with that of local model updates
at the same rate, which ensures sufficient privacy protection while
preventing the introduction of excessive noise, especially when the FL
model is close to convergence. To maintain the same convergence rate
and accuracy as in regular FL, the noise scale is chosen on the basis
of the number of participating clients, so that the magnitude of the
aggregation of noise does not exceed the magnitude of local model
updates. Moreover, we monitor the angular distance, calculated from
cosine similarity, between the true local model updates and the noise-
perturbed local model updates. Noise with a large angular distance will
be filtered out, making it easier for the global model to converge. With
deliberately chosen noise magnitude and angular distance, the FL with
the proposed noise scheme achieves the same convergence performance
as the regular FL and similar or better privacy protection compared to
state-of-the-art DP frameworks [20,21].

To the best of our knowledge, we are the first to take both magni-
tude and direction into consideration aiming at protecting FL clients’
privacy while preserving the FL model accuracy. Our contribution in
this paper is threefold:
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» For a strongly convex loss function, we prove that a noise-
perturbed FL is guaranteed to converge to the same value as the
regular FL (i.e., there is no accuracy loss) as long as the magnitude
of the added noise is proportional to the magnitude of the local
model update. Given the number of clients participating in the
perturbed FL, we also derive the maximum tolerable variance of
the added noise at individual clients that guarantees that the mag-
nitude of the aggregated noise at the FL server does not exceed the
magnitude of the aggregation of all local model updates (i.e., the
direction of descent is still preserved), so that the perturbed FL
maintains the same convergence rate O(1/T) as that of SGD on
convex loss functions. These theoretical findings enable us to
develop the proposed adaptive noise perturbation scheme that
maximizes privacy protection for clients while maintaining the
same accuracy as that of regular FL. We also provide a statistical
method to select the angular distance threshold based on the
dimension of the model updates to accelerate the convergence
of the perturbed FL.

For the non-convex loss function scenario, we derive the worst-
case convergence bound for FL under the proposed noise per-
turbation scheme. This bound shows that the noise-perturbed
learning process converges at a rate of O(1/ ﬁ), the same as that
of an SGD on non-convex functions. With the proposed angular
distance filtering scheme, our proof indicates that the actual
convergence is faster than the derived worst-case convergence
bound.

Extensive experiments are conducted on MNIST and CIFAR-10
datasets to validate our theoretical convergence analyses and
evaluate the time and computational efficiency, as well as the
effectiveness of the proposed scheme in defending against state-
of-the-art privacy inference attacks. The numerical results show
that the proposed scheme outperforms DP in convergence rate
and accuracy in both dropout and non-dropout scenarios, which
are consistent with our theoretical convergence analyses. The
proposed scheme does not incur extra computational and com-
munication overhead compared with DP. Our proposed noise
perturbation scheme provides comparable or, in many cases,
stronger privacy protection than DP, under the same global model
accuracy.

The rest of this paper is organized as follows. Section 2 briefly
reviews the FL and related work. Section 3 presents our threat model
and security goals. Section 4 describes our proposed additive noise
scheme. Theoretical convergence analyses are provided in Section 5.
The settings and results of the experiments are presented in Section 6
and Section 7, respectively. We conclude our work and recommend
future research directions in Section 8. And detailed proofs of our key
findings are given in the Appendix.

Throughout this paper, we use the following notation:

I - || denotes the #, norm.

<. denotes slightly greater than. a <. b means b = a + ¢, where
e € N*t.

D denotes the global data and is distributed to N clients, where
D= UnN= Dy, and D, denotes the data on the nth client. A subset
of K clients (K < N) is selected to participate in a round of FL
training.

F,(-) and F(-) denote the loss function on the client k¥ and the
global loss function, respectively.

VF,(-) and VF(-) denote the gradients of the local loss function
and the global loss function, respectively.

w’** denotes the local model weight of client  in z-th local step in
Tth global aggregation, and w”! denotes the global model weight
in Tth global aggregation.

II)Z and @’ denote the noise-perturbed local model weight and
the noise-perturbed global model weight at T'th aggregation,
respectively.

rf denotes the additive noise in the client k in the T'th global
aggregation.
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3. The server aggregates the local model
updates to update the global model.

2. The clients train locally and
send the local model
updates to the server.

1. The server synchronizes the global

model to the clients.

Fig. 1. An illustration of the FL process.

2. Preliminary and related work
2.1. Federated learning

The global data D = UM D, are distributed to N clients and
each client maintains its local data D,. Each time, K (K < N) of
N clients are selected to participate in the training. Specifically, each
client maintains a local model trained from the local training dataset.
A central server maintains a global model by aggregating local model
updates from participating clients in each round. The objective of FL
training is to minimize the loss:

K
Fw) = )} F(w), eh)

k=1
by optimizing over the model parameter w, where F,(w) is the loss
function on the local data of the kth client:

Y, Lw;(x,y), ke [K], @)

(x,y)EDy

Fi(w) =

* |D |
where L is the empirical loss function. Here, we describe FedAvg,
which is probably the most widely used FL algorithm. FedAvg itera-
tively performs the following three steps (illustrated in Fig. 1):

2.1.1. Global model synchronization

In the T'th global aggregation, the central server randomly selects K
from N clients and broadcasts the latest global model w’ to selected
clients: wZ’O —wl.
2.1.2. Local model training

Each client k updates its own local model w, by running an SGD on
the local dataset D, for ¢ steps. The z-th step on the client k follows :

wi ™ e wl T - gV w8, 3

where éjkT'T is a mini-batch of samples randomly chosen from the local
dataset D, and 7 is the local learning rate.

2.1.3. Global model update

After performing local training for ¢ steps, the client transmits the
model updates sz = w!*" —wT back to the central server. The central
server then updates the global model by performing a weighted average
on the local model updates sent from K clients :

K
n

w4+ Z —ksz, 4
=1

where n, = |D;| is the number of training data on the client k and
n= Z,’; | i is the total number of training data used on the selected
clients.

2.2. Privacy-preserving FL

Existing work in privacy-preserving FL can be classified into two
categories: secure multiparty computation and differential privacy.

Secure multiparty computation (MPC). Existing work utilizes homomor-
phic encryption [17,17,22,23] and secret sharing [16,18,24,25] to
preserve privacy in FL. With additive homomorphic encryption, for
example, the Paillier cryptosystem, the server can perform gradient
aggregation without decrypting them. Before training starts, the HE
key pair is distributed to each client through a secure channel. In
each training iteration, each client calculates the local model update,
encrypts it with the public key, and uploads the ciphertext to the server.
The server aggregates the encrypted gradients from all clients and
sends the results back to the clients. Each client decrypts the received
ciphertext using the private key to obtain global model updates due
to additive homomorphism. But such algorithms are computationally
expensive. FL systems with homomorphic encryption suffer from ex-
tremely high computational overhead and can hardly be applied on IoT
devices. Scholars in [26] used secret sharing for secure aggregation in
FL, allowing K parties to obtain the output of a function based on their
K inputs while preventing any leakage of inputs other than the outputs.
In [18], a noninteractive secure aggregation protocol was proposed
based on secret sharing and key agreement, but a trusted authority
was required. And the researchers in [16] proposed a double masking
scheme that supports verification. The weakness of secret sharing lies
in the communication cost. Each client needs to send a secret share to
the majority of participating clients to guarantee the robustness of the
model, or each pair of clients needs to communicate and agree on some
random masks. Neither of them is applicable to IoT systems, in which
devices hardly have direct communications.

Despite the high computational and communication overhead, such
MPC approaches do not eliminate FL information leakage. In FL with
homomorphic encryption, the server may collude with clients to de-
crypt local model updates from the ciphertext. As for secret sharing,
the adversary still has a chance to infer the input information from the
output of the function since the function usually does not change.
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Differential privacy (DP). Differential privacy [23,27] is a noise per-
turbation mechanism that provides a statistical privacy guarantee for
individual records. Existing work incorporates DP into FL from different
perspectives. Shokri et al. [28] were the first scholars to integrate
differential privacy into deep learning to protect training data pri-
vacy. NDAFL was proposed in [29] to protect uplink and downlink
communication. In [30], 2DP-FL was proposed to handle non-i.i.d.
distributions among clients and could adapt to different privacy needs.
Naseri et al. [31] evaluated the feasibility and effectiveness of local
and central differential privacy (LDP/CDP) in FL. In [32], a user-level
differential privacy (UDP) was proposed to allow adjustable privacy
protection for each FL participant. It has been empirically shown
in [12] that DP is effective in defending against membership infer-
ence attacks [26,33], reconstruction attacks [34], and model inversion
attacks [14], but is merely effective in defending against property
inference attacks [31].

Additionally, in DP, bounding the influence of a single client is
necessary for both privacy and the utility of the model. The choice of
the bounding threshold, i.e., the clipping bound, has decisive effects
on both privacy and model utility, due to the fact that the clipping
bound could introduce bias to model updates [19]. Existing work
quantifies the bias in ¢, [35] and £, [36]. Nissim et al. [37] used a
calibrated noise according to smooth sensitivity, but requires additional
knowledge and communication of the original model updates. Adaptive
clipping bounds that utilize the statistics of model updates to track and
predict its change were proposed in [21,38], but such clipping bounds
do not immediately react to the change in model updates, which could
still result in excessive noise injection. Moreover, none of the existing
work investigated the impact of the direction of the additive random
noise on the convergence of the model.

2.3. Privacy attacks against FL

We mainly discuss two privacy attacks in FL: the membership
inference attack and the property inference attack.

Membership inference attack. Shokri et al. [39] demonstrated that an
adversary can infer whether or not a given data sample was presented
in the training data by the difference in the response of the model.
Specifically, a binary classifier, called a shadow model, is trained
for each output class using the same machine learning algorithm.
Each shadow model identifies the membership of data samples of the
corresponding class by outputting the probabilities over the member-
ship and nonmembership classes. Studies in [40-43] demonstrated
the leakage of membership in various areas. Studies in [13,26,33,44]
analyzed membership inference from the perspectives of generative
models, transferability, the relationship with overfitting, and defenses,
respectively.

Property inference attack. The property inference attack was first pro-
posed by Ateniese et al. [45] against Hidden Markov Models and
Support Vector Machine classifiers. Ganju et al. in [46] designed a prop-
erty inference attack on fully connected networks. The adversary trains
meta-classifier to classify target classifier depending on whether or not
it has the property. In [47,48], a training label composition inference
attack was proposed. The adversary could infer the composition of the
training label of a client’s private data by finding a label composition
such that the synthesized model updates are close to the true model
update as much as possible.

3. Problem setup
3.1. Threat model
We consider a potential threat of privacy inference attack dur-

ing the learning process. Specifically, an adversary could infer in-
formation about clients’ private data through the model information
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exchange between clients and the server. Our proposed method is
designed to withstand two potential adversaries: the central server and
eavesdroppers.

» Honest-but-curious server. We assume that the central server
is honest-but-curious, meaning that the server follows the FL
protocol, but may try to infer some private information from the
client’s model updates.

Eavesdroppers. We also consider the potential attack, in which
an eavesdropper monitors the communication link between clients
and the server. We assume that the attacker has no access to
client’s training data, but can eavesdrop model updates from the
communication between clients and the server and infer private
information about clients.

3.2. Design goals

We aim to design a noise perturbation scheme that achieves the
following goals:

« Utility. The scheme should not sacrifice the accuracy of the global
model. In particular, the FL with the noise perturbation should be
able to learn a global model that is as accurate as the regular FL.
Dropout-resilience. The method should handle client dropout
due to communication or power failure. When a dropout occurs,
the server should still be able to get a reliable aggregation of
local model updates from the remaining clients. A limited number
of client dropouts should not affect the accuracy of the final FL
model.

Privacy. The FL with the scheme should be able to mitigate
the inference of private information from the communication of
model updates between clients and the server.

Efficiency. The FL with the scheme should not require additional
training rounds to achieve a similar accuracy to the regular FL.
Additionally, the method should not incur additional compu-
tational and communication overhead, since clients are small
devices that suffer from limited computational resources and
network connectivity in IoT systems.

4. Our approach
4.1. Overview

In light of the drawbacks of DP discussed in Section 2.2, we intro-
duce an adaptive noise scaling method and a direction-based filtering
method in the additive noise perturbation scheme. In each iteration, our
approach follows the three general steps of FL discussed in Section 2.1.
Our approach is similar to FL with the DP scheme in [8,30]. The
difference lies in the second step. Instead of sending the original model
updates, clients send the noise-perturbed local model updates to the
central server, where the noise is generated randomly and locally (see
Fig. 2). Our approach is different from the DP scheme in generating
random noise. Specifically, a clipping bound is required in DP to limit
the influence of a single client. The choice of the clipping bound could
have a decisive impact on the utility and privacy of the model. A low
clipping bound could destroy the direction of the gradients, weakening
its strength in descent of the global model, whereas a high clipping
bound might introduce too much noise to the FL system, resulting
in an accuracy degradation of the global model. Ideally, the clipping
bound should be able to track the change of the norm of the model
updates. But practically the behavior of the norms of model updates
varies and is hard to predict. A popular method is to use the median
of the norms of the unclipped local model updates over the course
of training. However, the norm of model updates decreases along the
training, whereas the clipping bound may not react as fast as the norm
changes. This may introduce excessive noise to the global model, and
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Fig. 2. Geometric illustration of our proposed additive noise perturbation scheme.

this excessive noise could be the cause of the accuracy loss in the global
model.

Furthermore, the direction of the gradients plays a significant role
in both privacy and model utility aspects and is not considered in the
DP scheme. On the one hand, there is plenty of privacy in the direction
of the gradients. As indicated in [48], the presence of a given label class
can be inferred by analyzing the signs of gradients. Therefore, the noise
vector must be well chosen to hide the direction of the gradients. On the
other hand, large-scale noise could impair the accuracy or even destroy
the convergence of the global model. Two noise vectors with the same
magnitude could lead to opposite effects. To be specific, the one in
the descent direction could be beneficial to the model convergence,
while the other in the ascent direction could destroy the global model
convergence.

Our approach is able to achieve a better convergence performance
than DP due to the following three features:

+ As will be shown in Section 5, setting the magnitude of additive
noise to be proportional to the magnitude of local model updates
ensures that the additive noise vanishes with local model updates
when the FL model convergence occurs, preventing the FL model
accuracy degradation.

The scaling factor ¢ chosen based on the number of participating
clients ensures that the FL. model enjoys the same convergence
performance as a result of the cancelling out presented in the
aggregation of noise on the server by the CLT. ¢ can also be chosen
to enable the ability to handle dropout clients.

The proposed direction-based filtering scheme filters out noise
vectors in bad directions, accelerating the convergence of the FL
model.

4.2. Our additive noise scheme

Algorithm 1 details the steps in our proposed noise perturbation
scheme, which consists of two key components: the adaptive noise
scaling step and the direction-based noise filtering step.

4.2.1. Adaptive noise scaling

We introduce the steps to generate the proposed noise perturbation
re,» and how to determine the value of ¢ in both dropout and non-
dropout scenarios. After the client completes the local training, the
noise r, is randomly generated from N'(0, I). Aw, is denoted as local
model updates. Then r, is scaled by C”‘Arwl"”. The impact of ¢ on model
convergence will be theoretically analyzked and numerically evaluated
in Sections 5 and 7, respectively.

Determine the value of ¢ in a non-dropout scenario. As in-
dicated in Theorems 2 and 3 (provided later in Section 5), setting
the magnitude of additive noise in accordance with the magnitude of
local model updates ensures the noise vanishes with the local updates

Algorithm 1 Our CTL based FL privacy-preserving scheme

Input: K clients with local training datasets D,, k € [K]; client learning
rate #; number of local iterations f; number of aggregations T’
angular distance threshold 6,,,.,,-

Output: Global model @' .

1: Initialization global model weight to w°.

2: forT=0:T,,, do

3:  The server synchronizes the latest global model to clients, wf’o -
aT.

4. fork=1:Kdo

5: fort=0:71-1do
. . . T.t+1 Tt
6: The client updates the local weight by w, < w -
nVF(w] ")
7: end for
8: while 6 < 6,,,, do
9: Generate new random noise r{ from N'(0, I), and scale them
Aw” _ .
by max(l, %), where Aw! = Z’T='0 nVFk(wZ’T) and c is a
k
scaler.
10: Calculate the angular distance 6 from the cosine similarity
T, Tt T
cos(Awk > Adw, T+ rk).
11: end while
12: Add the noise to the local model update, ALDZ’T « AwZ’T +rl.

13:  end for

14:  The server aggregates the local model updates from clients,
AT = YK % Aw], and update the global model @™*! «
wl + AT+,

15: end for

when convergence occurs, avoiding accuracy degradation of the global
model. Furthermore, as indicated in Theorem 1 (provided later in
Section 5), the standard deviation of the aggregated noise on the server
is inversely proportional to the number of participating clients K,
indicating that the effect of the scaling factor ¢ will be counteracted
by K when aggregated on the server. For convex optimization algo-
rithms (e.g., gradient descent and proximal quasi-Newton), in which
the loss function descends in every iteration, the magnitude of additive
noise aggregation must not exceed the magnitude of model update
aggregation, that is, || Zle rell <l Zf=l Awy||. Therefore, in a non-
dropout scenario, K is a conservative upper bound for c, i.e., ¢ < K.
For optimization algorithms without monotonic requirement, e.g. SGD,
the global model still converges as long as the descent of the global
loss function is frequently achieved, indicating that ¢ could be slightly
greater than K (¢ = K + ¢, where ¢ € N*), which is denoted by ¢ <, K.

Determine the value of ¢ in a dropout scenario. In a scenario
with d client dropouts, the central server is expected to be able to
get a reliable aggregation from the remaining K — d clients. FL with
our approach can tolerate at most d client dropouts by setting ¢ <,
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Fig. 3. The distribution of aggregated noise with different dropout probabilities.

(K — d), as previously indicated. Note that ¢ controls the privacy
protection strength on clients. Setting a large d results in a reduced
¢, which also reduces the strength of privacy protection for clients.
When there are more than d client dropouts, the distribution of the
noise aggregation becomes wider and there will be more noises falling
in the tails of the distribution, which could cause the loss function to
decrease less frequently (shown in Fig. 3). In particular, when there is
an extra dropout of clients, the standard deviation of noise aggregation
increases slightly and becomes % times the standard deviation of
noise aggregation of K clients. Therefore, for a sufficiently large K, the
impact of a small number of additional client dropouts is limited. There
is still a great chance that the server can get a reliable aggregation from
the remaining clients.

4.2.2. Direction-based noise filtering

Considering the noise scale alone is insufficient. To limit the nega-
tive impact on the accuracy of the FL model, we use cosine similarity to
measure the angular distance between the true local model updates and
the noise-perturbed local model updates. The client only adds a noise
vector whose angular distance is less than the user-defined threshold
O,pres- A smaller 6,,,,. leads to a higher chance of global convergence,
while a larger 0,,,., provides better privacy protection.

Note that realistically the dimension of a neural network’s parame-
ter vector is usually extremely high. As illustrated in Fig. 4, the angular
distance between two arbitrary vectors is Gaussian distributed and
becomes more concentrated as the dimension increases. Especially in an
extremely high-dimensional space, such as the space of model updates,
any two random vectors are orthogonal. Due to this observation, for
a fixed 6,,,,, it could be extremely computationally expensive or even
impossible to find a satisfying noise vector in such a high-dimensional
space. An intuitive way is to partition the model updates into smaller
vectors and apply random noise individually. For convenience, we
partition model updates by layers, and noises are generated and added
to each layer separately. However, this could raise another problem
that setting an absolute value of 6 for all layers could be inappropriate.
To align 6,,,, in each layer, we use the three-sigma rule of thumb,
setting 0,,,,,, = 0 + po,, where § and o, are the mean and standard
deviation of 6, respectively, and p is the multiple of ¢,. § and o, are only
related to the dimension of vectors and can be pre-calculated, so this
operation does not increase the computational cost. More importantly,
this transforms the choice of an absolute value of 6,,,,, into a relative
value p, in which 6,,,,, is self-adjusted by the dimension of each layer.

The use of a larger ¢ should combine with a small p to accelerate
FL convergence. However, a smaller p increases the similarity between
noise-perturbed model updates and original model updates, resulting
in less privacy. Also, it could take more time to find a satisfying noise
vector for a smaller p. Therefore, p should be chosen combining privacy
requirements according to applications, as well as the choice of c. The
numerical results of choosing different settings for p will be presented
in Section 7.
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Fig. 4. Histogram of the angular distance (in degree) between two arbitrary vectors
in 2, 10 and 100 dimensional spaces, respectively (based on 10,000 samples).

5. Theoretical analysis of our approach

In this section, we study the convergence performance of the pro-
posed perturbation scheme for both convex and non-convex loss func-
tions. The proofs show that FL with our proposed perturbation scheme
can achieve the same global model convergence rate and accuracy as
that of a regular FL in the convex case, and the same convergence rate
as that of a regular FL in the non-convex case.

5.1. Assumptions

Denote the optimal value for F(-) by F*, and the optimal value for
F,(-) by F}. Define I" as a measurement of non-i.i.d.-ness across clients:

ri Zf:] %‘F;‘ — F*, where I' > 0 indicates how non-i.i.d. across the
client’s data. Note that given a large enough number of data samples
on clients, we have I' — 0 for i.i.d. data distributions.

Four common assumptions are considered to facilitate the theoreti-
cal analyses of our proposed noise perturbation scheme.

Assumption 1. The loss functions Fy(-) for k € [K] are all L-smooth;
that is, Vv, w € R¢,

Fov) = F(w) < (v — w, VE, () + %llu — w|2,Vk € [K]. )

Assumption 2. The loss functions F,(-) for k € [K] are all u-strongly
convex; that is, Yo, w € R?,

Fo(v) = F(w) > (v — w, VF,(w)) + guu — w|.Vk € [K]. 6

Assumption 3. The expectation of the squared #, norm of the
stochastic gradients is bounded; that is,

E |IVE L™ &l DI | < G*, Vr € [1], |Vk € [K]. )

Assumption 4. For the mini-batch 5,{”, we have the following.
Ec[VF ] &) = VF,(w, ), (®)

where E; denotes the expectation against the randomness of the stochas-
tic gradient.

5.2. Convergence analysis

We present the following theorems to show the theoretical conver-
gence analyses of FedAvg with our proposed noise perturbation scheme.
For simplicity of convergence analysis, we assume that there is no
transmission error between the clients and the central server.

For ease of presentation, we denote the noise aggregated on the
central server by R = Z,’;l "7“rk, and o, denotes the standard deviation
of the local additive noise in each element of r,. We have ¢, « ¢ and
o, « Aw,. For simplicity, wle also assume that each client has the same

amount of data, e.g. % ~ —.
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Theorem 1. For a sufficiently large K, each element in R follows the

Gaussian distribution N'(0, ¥X_, (2‘; ).

Proof. See Appendix A.

Remark 1. Theorem 1 reveals important properties about the number
of participants K and the variance of noise aggregation. (1) The aggre-
gation of additive noise can be characterized by a Gaussian distribution.
(2) For sufficiently large K, that is, K > 30, the contribution of noise
on a single client to the variance of aggregation of noise is arbitrarily
small. (3) A larger noise scale on the client will result in a greater
variance in the aggregation of noise on the server.

The Strongly Convex Case. We analyze the convergence property
of our proposed noise perturbation scheme under strong convexity.

Theorem 2. For a smooth and strongly convex objective function F,,
FedAvg satisfies
T-1
E[ l&"*!" - w*|?] < ATE[|l@° - w*|I?] + Z A'B (9a)
i=0
A =2 — unt + un’t (9b)
1t + D2t + D G?
B =2niT + (1 + 2002 G>(1 + p(1 — ) + %
9m? <
T2
t 7 ;«w : (90)

Proof. See Appendix B.
Remark 2. Since JZ x ¢, we note that B is an increasing function
of the noise scale ¢, while decreasing with the number of participants
K. Furthermore, more non-i.i.d. local distributions between clients,
resulting in higher I and G, will pose a negative impact on the
convergence bound.

4 4
Remark 3. The FL converges iff A < 1, thatis, 5 € [¥ ﬁ]
—1_\/21_7%,—1+ 21_%], the
FL with our proposed scheme converges at a rate of O(1/T), which
matches a typical SGD on strongly convex loss functions. In B, the
noise-related term 91%2 Ef=1 (akT)2 decreases as the FL. model converges,
since 6, « ||Aw,||. When convergence occurs, where lim;_, ||Aw[ | =0,

Let n = LT for sufficiently large T and 5 € [

2
we have limy_ 91% Z,’;l(akT)z = 0, which indicates that the proposed
scheme converges to the same value as the regular FL scheme under
strong convexity.

The Non-convex case. For more general cases, in which the objec-
tive function is not necessarily convex, convergence to global optima
is not guaranteed, so we will only require convergence to a point of
vanishing gradients. We prove the following theorem.

Theorem 3. For a smooth and non-convex objective function F,, FedAvg
satisfies

2AFWP) — F@*) nP L% + D2t + DG?

in E||[VF@")|?* <
e[%l%,?,,x] IVFE@)|~ <

(1 +nt=2nT 6(1 +nt —2n)
mLY 607 2GR 10
K2(14+nt=2n) 1l=—nt—2n"

Proof. See Appendix C.

Remark 4. Lety = LT for a sufficiently large T, Eq. (10) converges at a

7

rate of O(1/ ﬁ ), which matches an SGD on non-convex loss functions.
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. m LY (o])?
The noise-related term, m?f—_:—qu)’ decreases as the FL converges
due to o, o |[lAwy||. Especially when convergence occurs, where
. . . m2L K_ (O_T)Z
limy_, o, [|Aw, || = 0, we have the noise-related term lim;_, ., #;;_2’;’)
= 0. Moreover, since ¢, « ¢, increasing the number of participating
clients K or decreasing ¢ will result in a faster convergence rate.

6. Experiment setup
6.1. Dataset

We evaluate our proposed methods on MNIST, a handwritten digit
recognition dataset. The dataset contains 60,000 training data samples
and 10,000 testing data samples. Each data sample is a square 28 x 28
pixel image of a single hand-written digit between 0 and 9.

6.2. Evaluation

We evaluate our proposed scheme from both model utility and pri-
vacy protection aspects. And we compare our approach with two base-
lines: (1) non-private FL, in which clients and servers follow standard
FL protocol and do not involve any privacy-preserving mechanisms; (2)
FL with local DP, in which clients add DP noise to protect the privacy of
their local data. As stated in Section 3.2, our goal is to protect clients’
local privacy against an honest-but-curious server and eavesdroppers,
thus we only consider adding perturbations on the client’s side. We
compare our proposed scheme with the (e,5)-DP proposed in [21],

which is widely used as a noise pattern on the client’s side [29,30].

\/2log %/e with a fixed

Specifically, we use a popular choice of ¢ =
6 of 1075, The clipping bound is set as the median of the norms of the
unclipped local model updates over the course of training.

We evaluate the effectiveness by experimenting with FL with our
approach and DP against two state-of-the-art FL privacy inference at-
tacks that we have introduced in Section 2.2: the membership inference
attack and the label composition inference attack. The convergence
and security performance of our proposed perturbation scheme are
evaluated using the following four metrics.

1. Global model accuracy and convergence rate. We measure
the global model accuracy under different choices of parame-
ters ¢ and p as a function of the training epoch, and compare
the convergence behavior in both dropout and non-dropout
scenarios.

2. Membership inference attack accuracy and F;-score. The
attack accuracy is defined as the percentage of data samples that
are correctly predicted to be presented in the training dataset.
And the F, score combines precision and recall into a single
value, which is defined as

2 X precision x recall

F,-score = —
precision + recall

A lower accuracy or F,-score indicates a better protection of
privacy.

3. Accuracy of the label composition inference attack. The
accuracy is measured by the 7, difference between the true
label composition and the inferred label composition. A larger
difference indicates better privacy protection.

4. Signal-to-noise ratio (SNR). SNR is a popular metric to quantify
the relative amount of noise added to the data:

variance of actual data
variance of noise

SNR =

A lower SNR indicates that there is a greater amount of noise
being introduced into the system, leading to better privacy pro-
tection. The recovery of the original data becomes erroneous
as the SNR drops below 1 [49]. It is also claimed in [50] that
privacy can be achieved without affecting learning performance
if a small SNR is consistently achieved.
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6.3. FL system settings

We implement FL and privacy inference attacks using the PyTorch
framework. We conduct our experiments on Google Colab Pro (CPU:
Intel(R) Xeon(R) CPU @ 2.20 GHz; RAM: 13 GB; GPU: Tesla P100-PCIE-
16 GB with CUDA 11.2).

The dataset is allocated to 100 clients. The model on each client
consists of two convolutional layers and two fully connected layers.
In each global training epoch, K clients are randomly selected for the
aggregation of the FL. model. We use the Dirichlet distribution [51] with
the hyper-parameter « to generate different data distributions across
clients, in which a smaller o denotes a higher non-i.i.d. level. We set
a = 1 in the experiments of convergence and membership inference
attack, and @ = 0.1,1,10, 00 in the experiments of label composition
inference attack.

For the convergence evaluation, we train the local model with a
mini-batch gradient descent with batch size 128, internal epoch ¢ =
5, and learning rate = 0.1. Ten shadow models and an auxiliary
dataset with 3,000 samples are used in the membership inference
attack. The training data composition inference attack is launched on
local model updates with full-batch gradient descent. To fairly compare
our approach with DP, we choose ¢ in DP such that the accuracy is
comparable with that of our approach.

7. Experimental results

Our approach achieves the security goals. Recall that we have
four security goals (discussed in Section 3.2): utility, resilience to
dropout, privacy and efficiency. Our results show that our approach
achieves the four goals.

7.1. Utility

The utility of the model is evaluated in the scenario where there is
no attack. We fix p = 0 and choose the scaling factor of our approach
to be ¢ = 1,3,5,10 and ¢ = 15,20,30 in DP and compute the model
accuracy as a function of global training epochs. We also include the
regular FL to serve as a baseline. As shown in Fig. 5, the trend and
final accuracy of our approach are similar to those of the regular FL.
For all chosen ¢, the global model converges to the same accuracy as
the regular FL. Such results are in line with Remark 3. Even for large
¢ (e.g., ¢ = 10 means that the magnitude of the additive noise is 10
times the magnitude of original model updates), the accuracy curve
suffers from slight fluctuations and still achieves the same value as the
regular FL does. As the value of ¢ increases, convergence slows slightly
due to the increased variance introduced into the global model. This is
consistent with our finding in Remark 1. We also plot the global model
accuracy w.r.t. p, shown in Fig. 6, where the FL model converges to the
same value, but faster with a smaller p.

Compared with our approach, DP has a different convergence trend,
in which convergence is notably slower and it takes more epochs to
reach an accuracy comparable to our approach. FL with our approach
converges at epoch 5, while DP starts to converge at epoch 10 and the
accuracy finally reaches a comparable accuracy at epoch 50 by e = 30.

The final accuracy of the FL model with our approach and DP is
presented in Table 1. It is suggested that the training accuracy only
drops around 1% as we increase ¢ from 5 to 15 in our approach. It is
also indicated that ¢ = 30 is a minimum privacy budget to enable the
DP to achieve a similar accuracy to that of ¢ = 15 in our approach,
as ¢ = 20 reported in the table results in reduced model accuracy. For
fairness, we compare under the setting, in which a comparable model
accuracy (96%) is achieved by our approach (¢ = 15) and DP (e = 30).
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Table 1
Accuracy of the FL model with our approach, FL with DP, and regular FL.

Regular  DP Our approach

e=15 e=20
Accuracy (%)  98.26 86.15 93.28 96.56 98.08 97.1 96.92

e=30 c=5 c=10 c=15

7.2. Dropout-resilience

In Section 5, we have shown that our approach can handle up to d
client dropouts by setting ¢ <, (K — d). Therefore, in this scenario, the
convergence performance is similar to that of the non-dropout scenario
where we have ¢ <, K. We also investigate the convergence perfor-
mance when there are additional client dropouts. In particular, each
client has a dropout probability from 0% (non-dropout) to 40%. And we
set ¢ = 15 in our approach and ¢ = 30 in DP. When dropout occurs, the
server will experience an increased variance of the aggregated noise,
which might impair the global model’s convergence and accuracy. As
shown in Fig. 7, as the dropout probability increases from 10% to 40%,
the global model convergence rate and the accuracy of our approach
remain similar to that of the non-dropout case. Our theoretical findings
in Remark 2 are consistent with these experimental results. Reducing a
limited number of participating clients does not affect the global model
accuracy, but only results in a slightly slower convergence. As for DP,
both the global model convergence rate and the accuracy are severely
impacted. Therefore, our approach handles up to d client dropouts by
setting ¢ <, (K — d), and the convergence performance of the global
model is stable even with additional client dropouts.
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Table 2

Membership inference attack accuracy and F, score for regular FL, FL with our
approach, and FL with DP with different ¢ and c.

Regular DP

Our approach

e=20 e=30 c=5 c=10 c=15

Attack accuracy (%) 87.36 79.9 80.12 80.48 80.03 79.82
Attack F, score 0.87 0.52 0.57 0.61 0.52 0.53
Table 3

Membership inference accuracy and F;-score of our approach with ¢ =20 and different
p.

Our approach

p=2 p=1 p=0 p=-1 p=-2
Main accuracy (%) 94.76 95.26 96.92 97.56 98.10
Attack accuracy (%) 79.12 79.75 79.82 78.84 79.72
Attack F;-score 0.49 0.50 0.53 0.52 0.53

7.3. Privacy

7.3.1. Defending against membership inference attack

We continue to use the setting of ¢ = 10,15 in our approach and
€ = 20,30 in DP. Fig. 8 shows the per-class attack accuracy and F;-score
of the membership inference attack against FL with our approach, FL
with DP, and regular FL. As expected, regular FL leaks a considerable
amount of information about the training dataset, resulting in an attack
success rate as high as 87% on average. Both DP and our approach
can reduce attack accuracy and the F, score against the membership
inference attack. There are no significant differences in attack accuracy.
Regarding the F;-score, authors in [33] set the baseline F,-score to 0.67
(dotted line in Fig. 8(b)), since there are equal numbers of members
and nonmembers in the attack test dataset. The F,-scores of all private
models are below the baseline. The F;-score for DP with ¢ = 30 presents
a higher pattern, whereas there is no significant difference among the
rest of privacy-preserving FL models.

Furthermore, Table 2 indicates that our approach with ¢ = 10, 15 is
as effective as DP with ¢ = 20. Referring back to Table 1, we see that the
accuracy of FL with e = 20 in DP is 3% less than FL with ¢ = 10,15 in
our approach. Therefore, given the same strength to defend against the
membership inference attack, FL with our approach achieves a higher
global model accuracy.

Furthermore, Table 3 provides the global model accuracy, attack
accuracy, and F, score for a fixed ¢ = 15 and different value of p. It is
suggested that increasing p results in slightly decreased accuracy of the
FL model, but greater privacy protection in terms of the F; score.
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Table 4
Time complexity of different p values in terms of multiples of that of DP.
Value of p 3 2 1 0 -1 -2 -3

Multiples of DP cost (m,) 1.0 1.0 1.1 2.0 6.3 43.9 333.3

7.3.2. Defending against label composition inference attack

To compare privacy protection in different local label composition
scenarios, we consider four local distribution settings, including an i.i.d.
(¢ = ) and three non-i.i.d. local distribution settings (« = 10,1,0.1).
Fig. 9 visualizes the label composition with different a.

The results of the label composition inference attack are presented
in Fig. 10, which shows a box plot of the #, distance between the
original label composition and the inferred label composition of FL with
our approach and DP. Our approach is more effective in defending the
distribution inference attack compared with DP as the local distribution
becomes more i.i.d (@ = o, 10), whereas our approach and DP achieve
comparable protection as local distributions become more dissimilar
(a=1,0.1).

7.3.3. Signal-to-noise ratio (SNR)

Finally, we present the SNR of FL with our approach and DP as
a function of the training epochs in Fig. 11. Similarly as in previous
experiments, the ¢ for DP and the ¢ in our approach are chosen such
that a similar global model accuracy is achieved. The results show that
the SNR of DP is high at the beginning of the training and decreases
as the convergence occurs, while our approach achieves a consistently
low SNR. Referring to [50], such a consistently low SNR also explains
our results in Section 7.1 that our approach has a minor impact on the
global model’s convergence and accuracy.

Furthermore, the results in [49] showed that the original data could
be more difficult to recover from a lower SNR. As shown in Fig. 11, FL
with DP has a higher chance of recovery in the early training stage, due
to their higher SNR values.

7.4. Efficiency

We analyze the efficiency based on both communication and com-
putational overhead. FL with our approach converges as fast as regular
FL and much faster than FL with DP. Especially, for the MNIST task,
both the FL with our approach and the regular FL converge at epoch
5, but FL with DP requires extra epochs to reach a similar global
model accuracy, indicating that extra communication is needed for
DP. Therefore, the communication overhead of our proposed scheme
is similar to that of the regular FL and much lower than that of the DP.

Furthermore, compared with the regular FL, the only additional
computational cost of our approach lies in random noise generation,
specifically direction-based filtering. Table 4 shows the time complexity
analysis of our proposed noise perturbation scheme w.r.t. p in terms
of the multiples (m,) of DP. In general, the time complexity of our
approach is inversely related to p. In DP, generating a noise vector
for a vector of model updates with n parameters costs O(n). Therefore,
the time complexity of our approach is m, x O(n). Since m, is much
less than » in practice, the time complexity of our proposed method is
still O(n). The real time spent on generating the noise vector for one
client’s local updates w.r.t. p is presented in Table 5. The time cost
shows an increasing pattern with a decreasing value of p. Even for a
small p (e.g., p = —3), the time spent generating the noise vector is
0.52 s, which is minor compared with the local training time, which is
3 seconds in our experiments. Thus, we claim that our approach does
not introduce additional communication and computational overhead.
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Table 5
Real time spent on noise vector generation w.r.t p.
DP Value of p
3 2 1 0 -1 -2 -3
Time (s) 0.015 0.018 0.018 0.019 0.021 0.034 0.143 0.520

7.5. Generalization to more complex datasets

To explore whether the above findings still hold for more complex
datasets and neural network architectures, we conduct several experi-
ments using ResNet 18 [52] on the CIFAR-10 [53] datasets. CIFAR-10
consists of 60,000 32 x 32 color images containing one of ten object
classes, with 6000 images per class. ResNet 18 is a convolutional

10

neural network that is 18 layers deep and contains around 11 million
parameters.

The data are distributed to 50 clients with a non-i.i.d. parameter
a = 10 and 10 clients are selected in each training round. We use SGD
with a learning rate of 0.1 and an epoch of 200. We compare FL with
the proposed method (¢ = 10) with non-private FL and FL with DP
(e = 100 and 6 = 107). We report the training accuracy, the attack
accuracy and F;-score of the membership inference attack, and the
accuracy of the label composition inference attack. These experiments
are representative in verifying the impact of our proposed method
on FL convergence and accuracy, and the privacy protection against
state-of-the-art privacy inference attacks.

The accuracy of the FL model is presented in Fig. 12. The FL with
the proposed method converges slightly slower than the non-private FL,
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on CIFAR-10, respectively.

Table 6
FL model accuracy, overall attack accuracy and F;-score, and mean ¢, distance on
CIFAR-10.

Non-private Ours ¢ = 10 DP ¢ =100
Model accuracy (%) 82.54 81.16 74.30
Attack accuracy (%) 76.77 63.06 62.36
Attack F,-score 0.871 0.527 0.526
Attack ¢, distance 0.023 0.101 0.099

but still converges to a similar accuracy of 80% around epoch 100. The
slower convergence rate is due to higher non-convexity in the ResNet
18 model, which is consistent with the convergence analysis of the non-
convex case (Remark 3). For FL with DP, even for a large ¢ of 100, the
FL model still suffers from accuracy loss and can only reach an accuracy
of 74%.

We continue to evaluate the effectiveness of privacy protection on
CIFAR-10. Table 6 summarizes the FL model accuracy and overall
attack accuracy and F,-score against the membership inference attack,
as well as the ¢, distance against the label composition inference
attack. More specifically, Fig. 13 provides the per-class attack accuracy
and F,-score. Fig. 14 presents the results for the label composition
inference attack, which shows a box plot of 7, distance of the true
label composition and the inferred ones. Compared to non-private FL,
both DP and our method can significantly lower the strength of two
attacks, since the accuracy of the attack, F, score, and the ¢, distance
are reduced by 17% percent, 0.3 and 0.078, respectively. There is no
significant difference between our method and DP in both per-class
attack accuracy and attack F;-score, as well as the attack #, norm.
However, the gain in privacy protection by DP comes at the cost of
8% model accuracy loss, while our method enjoys a lossless accuracy.

11
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8. Conclusion and future work

In this paper, we have proposed a novel adaptive perturbation-based
scheme that protects local privacy in FL but without sacrificing the
accuracy of the global model. The key difference between our approach
and differential privacy is that we considered both magnitude and
direction when generating random noise. In particular, we introduced
adaptive noise scaling and direction-based filtering methods to reduce
the negative impact of noise on the global model. We have provided
theoretical convergence analyses of our proposed scheme with both
non-convex and convex FL loss functions. Numerical experiments on
the MNIST and CIFAR-10 datasets have shown that our approach
can achieve a convergence performance comparable to that of the
regular FL. And our proposed noise perturbation scheme can achieve
comparable, or in many cases, stronger privacy protection than DP
in defending against state-of-the-art membership inference attack and
label composition inference attack.

Although FL combined with privacy-preserving methods has made
great progress in protecting data privacy, there is still a gap between
FL techniques and real IoT applications, where the key challenges in
IoT systems come from computational and power constraints. Due to
the heterogeneity of IoT devices, privacy budgets can differ between
devices or even between data samples on a single device. Future
research should focus on reducing computational and communication
overhead, preserving model accuracy, and enabling the ability to han-
dle mixed privacy constraints. In particular, two different branches
deserve further investigation. First, a noise tolerance bound could be
derived in the scenario where each client has their own privacy budget
using the generalized central limit theorem. Second, the privacy budget
could be taken into account when determining the optimal aggregation
interval and the number of participants to trade off training time and
communication overhead.
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Appendix A. Proof of Theorem 1

Proof. Recall that in the process of generating random noise, r/ is first
randomly chosen from W'(0, 1) and then scaled by C”A'”"” . Therefore,
the i -th element r,; follows a Gaussian dlstrlbutlon /\/ (0, o'f) with

« = %. For the sequence {r,;} for k € [K], if the Lindeberg’s
k

condition holds, then %Zf:l ry = N, % Z,’;l af). Thus, we must
verify that for any e > 0,

| X
Jim 2 SER - Ui 2 eVK) =0 A1)

k=1

where 1 is the indicator function. Note that r;; can be represented by
o, - x, where x denotes a standard Gaussian random variable. Then we
have the following.

K K
E[2 - 1{lryl* > Y eVK)]| < o2E| Z
k=1 =

And Eq. (A.2) goes to 0 when K is sufficiently large. []

X2 1{|x]? > (A.2)
Appendix B. Proof of Theorem 2

This proof is deeply inspired by the proof developed in [54], and
we roughly follow the same proof procedure.

Proof. The noise-perturbed global model parameter is updated as

Z

Assuming that w* is the optimal parameter, we have the following.

E[ ” »T+1

W' =T — A} + R (B.1)

w*”2]

12

K
=E[|l&" - w*|?] -2E[( Zwak,RU |+E ”Z Lyv TP +E[IRT)?]
k=1 k=1 ——
Bj
B B,
X n
+ 2E[(@" — w*, R)] 2B [(@" —w", 3~ 4] (B.2)
—_— k=1
By -

Next, we bound the terms on the RHS of (B.2). By Young’s inequality,
we have B; < B, + B3. By the Cauchy-Schwarz inequality, we have

-] 3 s a1 3 2xffaat ®3
= ,,212 ”7"1[«:[” ;VFk(wz’TjZ'T) 2] (B.4)
<t ié |V Rl ] < 62, (B.5)

By =E[|R"|*] < % i(a{)z, (B.6)

£

where m is the dimension of the model parameter and the inequal-
ity holds by Theorem 1 for a sufficiently large K. Again, by the
Cauchy-Schwarz inequality, we have

B, =2E[(&" - w*,R")| <E[Il&" — w*|*] + B;. (B.7)
X n
Bs =2E[(w* _wT,Z _kM,Z)]
=1 "
K n
<2;122 LE[(w* - ", VF (@] 7. &)
k=117=0
K -1
<Y kE[( " — @ V], e
k=1 7=0
G
K t-1 n
+2mY Y nk]E (w* =) ", V(7 &) (B.8)
k=117=0
G
K t-1 n K -1
¢ =ZZ7"1E[IIM7 -l er 3 AN
k=1t k=1 7=l
LS 2
¥y km[ﬂnzvmm o] + e
k=117=0
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L D@+ D G?

< g + 7°1G?, (B.9)
C, < 2;12 Z kIE[(w W, VF@] )] (B.10)
=17=0
K t-1
52 ~T, H\ Tzt * 12
<2n2 D —E[Fk(w )= F@ ) = Sl - w ]
=17=0
K t-1 4
<y Y —E[Fk(w )= F{ + Ff = F (") - Enw{f - w*|?]
k=117=0
K -1 K 11— ln
= * =TT\ _& a2
mf+2n22 —(Ff = B = n Y Y B [l = w'I ],
=17=0 k=1 7=0
(&}
(B.11)
where (e) and (f) are due to Assumptions 2 and 4, respectively.
Cy =l = @& | + 0" - w*|? + 2(w] T - ", " - w*)
- - - 1, . - -
<Ny =@ 112+ " —w* P = =@ = @ | = nll” - wt|?
= (1= mllwf - w*|* - (— - Dllwg* - a" 1%, (B.12)
Substituting C; into C,, we have
K t-1
C, =2qtT" + 21 2 Z —k(F* F (") = unt(1 = pE[[|@" - w*|1?]
k=1 7=0
t(t+ 1)t +1
+ u(l - n)nsz%. (B.13)
Substituting C; and C, into Bs, we have
_ . t(t + 12t + DHn*G?
By <= (1 = E(I" — wI] + (1 + 1 — g DX DTE
+ 74tG? +2mT
K t-1
+Y Y- —(Ff = F(@). (B.14)
k=117=0
Substituting B, — Bs into Eq. (B.2), we have
(€3]
E[ @™+ — w*[?] <@ - unt(1 —m)E[||@" — w*[13]
+ 29T + (1 + 207> G?
1t + 12t + DHn*G?
+ (1 +”(1 — W))()(T)n
K
gﬂﬂ T\2
+ = PNCH! (B.15)
k=1
where (g) follows from F} - Fk(u”;T 7) < 0. Rearranging Eq. (B.15) and

summing from 0 to T, we have proved Theorem 2. []

Appendix C. Proof of Theorem 3

Proof. We denote the global model parameter at aggregation 7' by
@™+ = @7 — Aw” + RT, where Aw” = n ¥, T LVF (0,7, &)
Due to the smoothness of Assumption 1 and taking the expectation of

F,.(@w"*1) over randomness at the T'th aggregation, we have

E(F@")] <F@") + (VF@"),E[R" — aw”]) + %E[MRT - Aw"|*]
(Cc.1)
<F@") + (VF@"),E[RT — Aw” + yVF@") — yVF@")])
+ ZEIIRT - w”|P) (C.2)

<F@") + (VF@"),ElnVF@") — 4w™])

Ay

13
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+ ZERT - awl?)
e ———
Ay
+ SEIRTIP 43IV F@DIP - all V@I, €3)
— —
A3
A} =(VF@"),E[yVF@") — 4w ]) (C.4)
\/_ K t-1
=(\nVF@"), 713[2 2 “(VE@") = VE@".E[)  (C5)
17=0
K -1 5
||VF<w DI + 2LE[I 2 > —(VFk(wT)— V(@ &I
=17=0
(C.6)
© 72 X il i
<TIVF@DHIP+ 2= ¥ ¥ B[l - @]
k=17=1
< ﬂ%Lz * Ti T
<SIVF@HIP + =~ ZZ —El| ZVFkC LeIr @
k=117=0
@t ran WPLAE+ DR+,
S S IVF@OI + ———F——G", (C.8)

where (b) follows from the Young inequality, and (c) is due to Assump-
tion 1 and E|| X, x;1I> < n X, Ellx;|1%, and (d) is due to Assumption 3.

Based on the relationship of the noise and the gradient and follow-
ing the Efron-Stein inequality, we have

_ L T T
Ay = SE[IRT = aw'|? ]<2K2 Z( a2, (C.9)
where m is the dimension of r;.
1 1 K -1
A3 = SE[IRTI?] < SPEll Z A ACANA (€.10)
=17=0
1 K n -1
2.2 k ~T,t
<5 ’;ﬂ ||§Fk<wk E9ON (C11)
1 K n -
< 5cznzrz - ZE[IIFMZT»@ Rl (€12)
k=1 =0
< ; ARG (€13)

Substituting A,, A,, and A5 into Eq. (C.8), we have

1+nt -2 PP Lt + )2t + 1)G2

T2
IVE@HI" + 7

E[F (@] <F@") + (

2K2 Z( Ot

Rearranging Eq. (C.14) and summing from 0 — 7', we have

~ 2GR (C.14)
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32 Dt + 1
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1
3 L2 TP <Ft) - Pt +
~ 2
W LT < 1
T2 2 222
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And we get
0y _ ook 372 2
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K
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