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A B S T R A C T

With the rapid development of the Internet of Things (IoT), federated learning (FL) has been widely used
to obtain insights from collected data while preserving data privacy. Differential privacy (DP) is an additive
noise scheme that has been widely studied as a privacy-preserving approach on FL. However, privacy protection
under DP usually comes at the cost of model accuracy for the underlying FL process. In this paper, we propose
a novel low-cost (for both communication and computational overhead) adaptive noise perturbation/masking
scheme to protect FL clients’ privacy without degrading the global model accuracy. In particular, we set
the magnitude of the additive noise to adaptively change with the magnitude of the local model updates.
Then, a direction-based filtering scheme is used to accelerate the convergence of the FL model. A maximum
tolerable noise bound for local clients is derived using the central limit theorem (CLT). The designed noise
maximizes privacy protection for clients while preserving the accuracy and convergence rate of the FL model
, as a result of the noise cancelling out and forming a more concentrated distribution after the aggregation
operation on the server. We theoretically prove that FL with the proposed noise perturbation scheme retains
the same accuracy and convergence rate ((1∕𝑇 ) for convex loss functions and (1∕

√

𝑇 ) for non-convex loss
functions) as that of non-private FL with SGD. We also evaluate the performance of the proposed scheme in
terms of convergence behavior, computational efficiency, and privacy protection against state-of-the-art privacy
inference attacks on real-world datasets. Experimental results show that FL with our proposed perturbation
scheme outperforms DP in the accuracy and convergence rate of the FL model in both client dropout and non-
client dropout scenarios. Compared with DP, our proposed scheme does not incur additional computational and
communication overhead. Our approach provides DP-comparable or better effectiveness in defending against
privacy attacks under the same global model accuracy.
. Introduction

The development of the Internet of Things (IoT) enables the connec-
ion of a wide range of devices to the Internet [1] to provide ubiquitous
ensing and computation capabilities. The data collected by these de-
ices can be used to train machine learning models. Although the data
n one device may be insufficient to obtain a satisfactory model, the
ata on other devices can be benefited via network communication.
ederated learning (FL) [2,3] allows a machine learning algorithm to
earn from data stored on a wide range of physically separated devices.
echnically, FL is a distributed learning system, which allows multiple

ocal clients to collaboratively train a high-accuracy global model by
aking advantage of a wide range of data without sharing their local
ollected data. FL has found its applications in most emerging services
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and systems, e.g., in mobile applications such as next-word and emoji
prediction on smartphones [4–6], environmental monitoring [7], smart
healthcare [8,9], and smart city [10].

Although clients do not directly reveal their private data, shared
model updates can unintentionally leak sensitive information about the
data on which they were trained [11]. As pointed out by previous
studies, using FL scheme alone is insufficient in protecting the clients’
local data privacy. For example, from the FL model, an adversary
can infer whether a given data sample was presented in the training
data or not [12,13], recover a representative data sample used in the
training [14], or infer property information about the client’s local
training data [15].
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Ideally, FL with a privacy-preserving mechanism on IoT devices,
such as smartphones, smart watches, and cameras, should take into ac-
count the following constraints: (1) computational capacity is limited,
so computationally expensive encryption algorithms are unaffordable;
(2) devices have limited power supply and network connectivity; (3)
clients are flexible to join or leave training, so dropouts are common.

Several studies have focused on how to preserve privacy in FL.
But none of them can fully address the aforementioned constraints.
In particular, the main approaches are secure multiparty computa-
tion (MPC) and differential privacy (DP). A branch in MPC is based
on homomorphic encryption. Paillier cryptosystem is an additive ho-
momorphic encryption algorithm [16–18], which naturally matches
the aggregation operation in FL. But the main drawback is its high
computational complexity. Another approach uses secret sharing [18],
which is relatively computationally efficient and can also handle client
dropout. However, the requirement of information exchange between
each pair of clients makes this approach impractical in moderate to
large-scale IoT systems. DP is a promising solution that injects random
noise into the data or model updates, providing a statistical privacy
guarantee for individual records and privacy protection against infer-
ence attacks. However, privacy protection comes at the cost of model
accuracy. Additionally, one challenge in training with DP is choosing
an appropriate clipping bound. An inappropriate clipping bound can
degrade model accuracy or even prevent a model from converging due
to the bias introduced by the clipping operation [19].

In this work, we propose a novel low cost (for both communi-
cation and computational overhead) adaptive noise-perturbation
privacy-preserving scheme, which does not sacrifice FL model
accuracy for privacy, while enjoying a DP-comparable or in some
cases better privacy protection. More specifically, our scheme pro-
tects local privacy by adding random noise to each local model update
(i.e., perturbing local model update by adding random noise). These
random noises are deliberately designed so that individually they can
provide sufficient protection for the privacy of each local model. But
when combined at the FL server, the aggregation of these noises will
present a cancel-out effect by the central limit theorem (CLT), so that
the aggregated noises at the server are more condensed and help to
preserve the global model accuracy. In real FL applications, the number
of clients is much larger than 30, which is considered sufficient for CLT
to hold. In addition, unlike random noise in the DP scheme, our noise
masking scheme takes both magnitude and direction into consideration
when adding noise to local model updates to retain high global model
accuracy and expedite global model convergence. Specifically, we in-
troduce an adaptive noise scaling method that sets the magnitude of the
random noise proportional to the magnitude of the local model updates,
i.e., the magnitude of noise changes with that of local model updates
at the same rate, which ensures sufficient privacy protection while
preventing the introduction of excessive noise, especially when the FL
model is close to convergence. To maintain the same convergence rate
and accuracy as in regular FL, the noise scale is chosen on the basis
of the number of participating clients, so that the magnitude of the
aggregation of noise does not exceed the magnitude of local model
updates. Moreover, we monitor the angular distance, calculated from
cosine similarity, between the true local model updates and the noise-
perturbed local model updates. Noise with a large angular distance will
be filtered out, making it easier for the global model to converge. With
deliberately chosen noise magnitude and angular distance, the FL with
the proposed noise scheme achieves the same convergence performance
as the regular FL and similar or better privacy protection compared to
state-of-the-art DP frameworks [20,21].

To the best of our knowledge, we are the first to take both magni-
tude and direction into consideration aiming at protecting FL clients’
privacy while preserving the FL model accuracy. Our contribution in
2

his paper is threefold:
• For a strongly convex loss function, we prove that a noise-
perturbed FL is guaranteed to converge to the same value as the
regular FL (i.e., there is no accuracy loss) as long as the magnitude
of the added noise is proportional to the magnitude of the local
model update. Given the number of clients participating in the
perturbed FL, we also derive the maximum tolerable variance of
the added noise at individual clients that guarantees that the mag-
nitude of the aggregated noise at the FL server does not exceed the
magnitude of the aggregation of all local model updates (i.e., the
direction of descent is still preserved), so that the perturbed FL
maintains the same convergence rate (1∕𝑇 ) as that of SGD on
convex loss functions. These theoretical findings enable us to
develop the proposed adaptive noise perturbation scheme that
maximizes privacy protection for clients while maintaining the
same accuracy as that of regular FL. We also provide a statistical
method to select the angular distance threshold based on the
dimension of the model updates to accelerate the convergence
of the perturbed FL.

• For the non-convex loss function scenario, we derive the worst-
case convergence bound for FL under the proposed noise per-
turbation scheme. This bound shows that the noise-perturbed
learning process converges at a rate of (1∕

√

𝑇 ), the same as that
of an SGD on non-convex functions. With the proposed angular
distance filtering scheme, our proof indicates that the actual
convergence is faster than the derived worst-case convergence
bound.

• Extensive experiments are conducted on MNIST and CIFAR-10
datasets to validate our theoretical convergence analyses and
evaluate the time and computational efficiency, as well as the
effectiveness of the proposed scheme in defending against state-
of-the-art privacy inference attacks. The numerical results show
that the proposed scheme outperforms DP in convergence rate
and accuracy in both dropout and non-dropout scenarios, which
are consistent with our theoretical convergence analyses. The
proposed scheme does not incur extra computational and com-
munication overhead compared with DP. Our proposed noise
perturbation scheme provides comparable or, in many cases,
stronger privacy protection than DP, under the same global model
accuracy.

The rest of this paper is organized as follows. Section 2 briefly
reviews the FL and related work. Section 3 presents our threat model
and security goals. Section 4 describes our proposed additive noise
scheme. Theoretical convergence analyses are provided in Section 5.
The settings and results of the experiments are presented in Section 6
and Section 7, respectively. We conclude our work and recommend
future research directions in Section 8. And detailed proofs of our key
findings are given in the Appendix.

Throughout this paper, we use the following notation:

• ‖ ⋅ ‖ denotes the 𝓁2 norm.
• <𝜖 denotes slightly greater than. 𝑎 <𝜖 𝑏 means 𝑏 = 𝑎 + 𝜖, where
𝜖 ∈ N+.

• 𝐷 denotes the global data and is distributed to 𝑁 clients, where
𝐷 = ∪𝑁

𝑛=1𝐷𝑛, and 𝐷𝑛 denotes the data on the 𝑛th client. A subset
of 𝐾 clients (𝐾 < 𝑁) is selected to participate in a round of FL
training.

• 𝐹𝑘(⋅) and 𝐹 (⋅) denote the loss function on the client 𝑘 and the
global loss function, respectively.

• ∇𝐹𝑘(⋅) and ∇𝐹 (⋅) denote the gradients of the local loss function
and the global loss function, respectively.

• 𝑤𝑇 ,𝜏
𝑘 denotes the local model weight of client 𝑘 in 𝜏-th local step in

𝑇 th global aggregation, and 𝑤𝑇 denotes the global model weight
in 𝑇 th global aggregation.

• 𝑤̃𝑇
𝑘 and 𝑤̃𝑇 denote the noise-perturbed local model weight and

the noise-perturbed global model weight at 𝑇 th aggregation,
respectively.

• 𝑟𝑇𝑘 denotes the additive noise in the client 𝑘 in the 𝑇 th global
aggregation.
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Fig. 1. An illustration of the FL process.
2. Preliminary and related work

2.1. Federated learning

The global data 𝐷 = ∪𝑁
𝑛=1𝐷𝑛 are distributed to 𝑁 clients and

each client maintains its local data 𝐷𝑛. Each time, 𝐾 (𝐾 ≤ 𝑁) of
𝑁 clients are selected to participate in the training. Specifically, each
client maintains a local model trained from the local training dataset.
A central server maintains a global model by aggregating local model
updates from participating clients in each round. The objective of FL
training is to minimize the loss:

𝐹 (𝑤) =
𝐾
∑

𝑘=1
𝐹𝑘(𝑤), (1)

by optimizing over the model parameter 𝑤, where 𝐹𝑘(𝑤) is the loss
function on the local data of the 𝑘th client:

𝐹𝑘(𝑤) = 1
|𝐷𝑘|

∑

(𝑥,𝑦)∈𝐷𝑘

𝐿(𝑤; (𝑥, 𝑦)), 𝑘 ∈ [𝐾], (2)

where 𝐿 is the empirical loss function. Here, we describe FedAvg,
which is probably the most widely used FL algorithm. FedAvg itera-
tively performs the following three steps (illustrated in Fig. 1):

2.1.1. Global model synchronization
In the 𝑇 th global aggregation, the central server randomly selects 𝐾

from 𝑁 clients and broadcasts the latest global model 𝑤𝑇 to selected
clients: 𝑤𝑇 ,0

𝑘 ← 𝑤𝑇 .

2.1.2. Local model training
Each client 𝑘 updates its own local model 𝑤𝑘 by running an SGD on

the local dataset 𝐷𝑘 for 𝑡 steps. The 𝜏-th step on the client 𝑘 follows :

𝑤𝑇 ,𝜏+1
𝑘 ← 𝑤𝑇 ,𝜏

𝑘 − 𝜂∇𝐹𝑘(𝑤
𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 ), (3)

where 𝜉𝑇 ,𝜏𝑘 is a mini-batch of samples randomly chosen from the local
dataset 𝐷𝑘, and 𝜂 is the local learning rate.

2.1.3. Global model update
After performing local training for 𝑡 steps, the client transmits the

model updates 𝛥𝑤𝑇
𝑘 = 𝑤𝑇+𝑡

𝑘 −𝑤𝑇 back to the central server. The central
server then updates the global model by performing a weighted average
on the local model updates sent from 𝐾 clients :

𝑤𝑇+1 ← 𝑤𝑇 +
𝐾
∑ 𝑛𝑘 𝛥𝑤𝑇

𝑘 , (4)
3

𝑘=1 𝑛
where 𝑛𝑘 = |𝐷𝑘| is the number of training data on the client 𝑘 and
𝑛 =

∑𝐾
𝑘=1 𝑛𝑘 is the total number of training data used on the selected

clients.

2.2. Privacy-preserving FL

Existing work in privacy-preserving FL can be classified into two
categories: secure multiparty computation and differential privacy.

Secure multiparty computation (MPC). Existing work utilizes homomor-
phic encryption [17,17,22,23] and secret sharing [16,18,24,25] to
preserve privacy in FL. With additive homomorphic encryption, for
example, the Paillier cryptosystem, the server can perform gradient
aggregation without decrypting them. Before training starts, the HE
key pair is distributed to each client through a secure channel. In
each training iteration, each client calculates the local model update,
encrypts it with the public key, and uploads the ciphertext to the server.
The server aggregates the encrypted gradients from all clients and
sends the results back to the clients. Each client decrypts the received
ciphertext using the private key to obtain global model updates due
to additive homomorphism. But such algorithms are computationally
expensive. FL systems with homomorphic encryption suffer from ex-
tremely high computational overhead and can hardly be applied on IoT
devices. Scholars in [26] used secret sharing for secure aggregation in
FL, allowing 𝐾 parties to obtain the output of a function based on their
𝐾 inputs while preventing any leakage of inputs other than the outputs.
In [18], a noninteractive secure aggregation protocol was proposed
based on secret sharing and key agreement, but a trusted authority
was required. And the researchers in [16] proposed a double masking
scheme that supports verification. The weakness of secret sharing lies
in the communication cost. Each client needs to send a secret share to
the majority of participating clients to guarantee the robustness of the
model, or each pair of clients needs to communicate and agree on some
random masks. Neither of them is applicable to IoT systems, in which
devices hardly have direct communications.

Despite the high computational and communication overhead, such
MPC approaches do not eliminate FL information leakage. In FL with
homomorphic encryption, the server may collude with clients to de-
crypt local model updates from the ciphertext. As for secret sharing,
the adversary still has a chance to infer the input information from the

output of the function since the function usually does not change.
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Differential privacy (DP). Differential privacy [23,27] is a noise per-
turbation mechanism that provides a statistical privacy guarantee for
individual records. Existing work incorporates DP into FL from different
perspectives. Shokri et al. [28] were the first scholars to integrate
differential privacy into deep learning to protect training data pri-
vacy. NbAFL was proposed in [29] to protect uplink and downlink
communication. In [30], 2DP-FL was proposed to handle non-i.i.d.
distributions among clients and could adapt to different privacy needs.
Naseri et al. [31] evaluated the feasibility and effectiveness of local
and central differential privacy (LDP/CDP) in FL. In [32], a user-level
differential privacy (UDP) was proposed to allow adjustable privacy
protection for each FL participant. It has been empirically shown
in [12] that DP is effective in defending against membership infer-
ence attacks [26,33], reconstruction attacks [34], and model inversion
attacks [14], but is merely effective in defending against property
inference attacks [31].

Additionally, in DP, bounding the influence of a single client is
necessary for both privacy and the utility of the model. The choice of
the bounding threshold, i.e., the clipping bound, has decisive effects
on both privacy and model utility, due to the fact that the clipping
bound could introduce bias to model updates [19]. Existing work
quantifies the bias in 𝓁∞ [35] and 𝓁2 [36]. Nissim et al. [37] used a
calibrated noise according to smooth sensitivity, but requires additional
knowledge and communication of the original model updates. Adaptive
clipping bounds that utilize the statistics of model updates to track and
predict its change were proposed in [21,38], but such clipping bounds
do not immediately react to the change in model updates, which could
still result in excessive noise injection. Moreover, none of the existing
work investigated the impact of the direction of the additive random
noise on the convergence of the model.

2.3. Privacy attacks against FL

We mainly discuss two privacy attacks in FL: the membership
inference attack and the property inference attack.

Membership inference attack. Shokri et al. [39] demonstrated that an
dversary can infer whether or not a given data sample was presented
n the training data by the difference in the response of the model.
pecifically, a binary classifier, called a shadow model, is trained
or each output class using the same machine learning algorithm.
ach shadow model identifies the membership of data samples of the
orresponding class by outputting the probabilities over the member-
hip and nonmembership classes. Studies in [40–43] demonstrated
he leakage of membership in various areas. Studies in [13,26,33,44]
nalyzed membership inference from the perspectives of generative
odels, transferability, the relationship with overfitting, and defenses,

espectively.

roperty inference attack. The property inference attack was first pro-
osed by Ateniese et al. [45] against Hidden Markov Models and
upport Vector Machine classifiers. Ganju et al. in [46] designed a prop-
rty inference attack on fully connected networks. The adversary trains
eta-classifier to classify target classifier depending on whether or not

it has the property. In [47,48], a training label composition inference
attack was proposed. The adversary could infer the composition of the
training label of a client’s private data by finding a label composition
such that the synthesized model updates are close to the true model
update as much as possible.

3. Problem setup

3.1. Threat model

We consider a potential threat of privacy inference attack dur-
ing the learning process. Specifically, an adversary could infer in-
4

formation about clients’ private data through the model information
exchange between clients and the server. Our proposed method is
designed to withstand two potential adversaries: the central server and
eavesdroppers.

• Honest-but-curious server. We assume that the central server
is honest-but-curious, meaning that the server follows the FL
protocol, but may try to infer some private information from the
client’s model updates.

• Eavesdroppers. We also consider the potential attack, in which
an eavesdropper monitors the communication link between clients
and the server. We assume that the attacker has no access to
client’s training data, but can eavesdrop model updates from the
communication between clients and the server and infer private
information about clients.

3.2. Design goals

We aim to design a noise perturbation scheme that achieves the
following goals:

• Utility. The scheme should not sacrifice the accuracy of the global
model. In particular, the FL with the noise perturbation should be
able to learn a global model that is as accurate as the regular FL.

• Dropout-resilience. The method should handle client dropout
due to communication or power failure. When a dropout occurs,
the server should still be able to get a reliable aggregation of
local model updates from the remaining clients. A limited number
of client dropouts should not affect the accuracy of the final FL
model.

• Privacy. The FL with the scheme should be able to mitigate
the inference of private information from the communication of
model updates between clients and the server.

• Efficiency. The FL with the scheme should not require additional
training rounds to achieve a similar accuracy to the regular FL.
Additionally, the method should not incur additional compu-
tational and communication overhead, since clients are small
devices that suffer from limited computational resources and
network connectivity in IoT systems.

4. Our approach

4.1. Overview

In light of the drawbacks of DP discussed in Section 2.2, we intro-
duce an adaptive noise scaling method and a direction-based filtering
method in the additive noise perturbation scheme. In each iteration, our
approach follows the three general steps of FL discussed in Section 2.1.
Our approach is similar to FL with the DP scheme in [8,30]. The
difference lies in the second step. Instead of sending the original model
updates, clients send the noise-perturbed local model updates to the
central server, where the noise is generated randomly and locally (see
Fig. 2). Our approach is different from the DP scheme in generating
random noise. Specifically, a clipping bound is required in DP to limit
the influence of a single client. The choice of the clipping bound could
have a decisive impact on the utility and privacy of the model. A low
clipping bound could destroy the direction of the gradients, weakening
its strength in descent of the global model, whereas a high clipping
bound might introduce too much noise to the FL system, resulting
in an accuracy degradation of the global model. Ideally, the clipping
bound should be able to track the change of the norm of the model
updates. But practically the behavior of the norms of model updates
varies and is hard to predict. A popular method is to use the median
of the norms of the unclipped local model updates over the course
of training. However, the norm of model updates decreases along the
training, whereas the clipping bound may not react as fast as the norm

changes. This may introduce excessive noise to the global model, and
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Fig. 2. Geometric illustration of our proposed additive noise perturbation scheme.
this excessive noise could be the cause of the accuracy loss in the global
model.

Furthermore, the direction of the gradients plays a significant role
in both privacy and model utility aspects and is not considered in the
DP scheme. On the one hand, there is plenty of privacy in the direction
of the gradients. As indicated in [48], the presence of a given label class
can be inferred by analyzing the signs of gradients. Therefore, the noise
vector must be well chosen to hide the direction of the gradients. On the
other hand, large-scale noise could impair the accuracy or even destroy
the convergence of the global model. Two noise vectors with the same
magnitude could lead to opposite effects. To be specific, the one in
the descent direction could be beneficial to the model convergence,
while the other in the ascent direction could destroy the global model
convergence.

Our approach is able to achieve a better convergence performance
than DP due to the following three features:

• As will be shown in Section 5, setting the magnitude of additive
noise to be proportional to the magnitude of local model updates
ensures that the additive noise vanishes with local model updates
when the FL model convergence occurs, preventing the FL model
accuracy degradation.

• The scaling factor 𝑐 chosen based on the number of participating
clients ensures that the FL model enjoys the same convergence
performance as a result of the cancelling out presented in the
aggregation of noise on the server by the CLT. 𝑐 can also be chosen
to enable the ability to handle dropout clients.

• The proposed direction-based filtering scheme filters out noise
vectors in bad directions, accelerating the convergence of the FL
model.

4.2. Our additive noise scheme

Algorithm 1 details the steps in our proposed noise perturbation
scheme, which consists of two key components: the adaptive noise
scaling step and the direction-based noise filtering step.

4.2.1. Adaptive noise scaling
We introduce the steps to generate the proposed noise perturbation

𝑟𝑘, and how to determine the value of 𝑐 in both dropout and non-
dropout scenarios. After the client completes the local training, the
noise 𝑟𝑘 is randomly generated from  (0, 𝐼). 𝛥𝑤𝑘 is denoted as local
model updates. Then 𝑟𝑘 is scaled by 𝑐‖𝛥𝑤𝑘‖

‖𝑟𝑘‖
. The impact of 𝑐 on model

convergence will be theoretically analyzed and numerically evaluated
in Sections 5 and 7, respectively.

Determine the value of 𝑐 in a non-dropout scenario. As in-
dicated in Theorems 2 and 3 (provided later in Section 5), setting
the magnitude of additive noise in accordance with the magnitude of
local model updates ensures the noise vanishes with the local updates
5

Algorithm 1 Our CTL based FL privacy-preserving scheme
Input: 𝐾 clients with local training datasets 𝐷𝑘, 𝑘 ∈ [𝐾]; client learning

rate 𝜂; number of local iterations 𝑡; number of aggregations 𝑇 ;
angular distance threshold 𝜃𝑡ℎ𝑟𝑒𝑠.

Output: Global model 𝑤̃𝑇 .
1: Initialization global model weight to 𝑤0.
2: for 𝑇 = 0 ∶ 𝑇𝑚𝑎𝑥 do
3: The server synchronizes the latest global model to clients, 𝑤𝑇 ,0

𝑘 ←
𝑤̃𝑇 .

4: for 𝑘 = 1 ∶ 𝐾 do
5: for 𝜏 = 0 ∶ 𝑡 − 1 do
6: The client updates the local weight by 𝑤𝑇 ,𝜏+1

𝑘 ← 𝑤𝑇 ,𝜏
𝑘 −

𝜂∇𝐹𝑘(𝑤
𝑇 ,𝜏
𝑘 )

7: end for
8: while 𝜃 < 𝜃𝑡ℎ𝑟𝑒𝑠 do
9: Generate new random noise 𝑟𝑇𝑘 from  (0, 𝐼), and scale them

by max(1,
𝑐‖𝛥𝑤𝑇

𝑘 ‖

‖𝑟𝑇𝑘 ‖
), where 𝛥𝑤𝑇

𝑘 =
∑𝑡−1

𝜏=0 𝜂∇𝐹𝑘(𝑤
𝑇 ,𝜏
𝑘 ) and 𝑐 is a

scaler.
10: Calculate the angular distance 𝜃 from the cosine similarity

cos(𝛥𝑤𝑇 ,𝜏
𝑘 , 𝛥𝑤𝑇 ,𝜏

𝑘 + 𝑟𝑇𝑘 ).
11: end while
12: Add the noise to the local model update, 𝛥𝑤̃𝑇 ,𝜏

𝑘 ← 𝛥𝑤𝑇 ,𝜏
𝑘 + 𝑟𝑇𝑘 .

13: end for
14: The server aggregates the local model updates from clients,

𝛥𝑤̃𝑇+1 =
∑𝐾

𝑘=1
𝑛𝑘
𝑛 𝛥𝑤̃𝑇

𝑘 , and update the global model 𝑤̃𝑇+1 ←

𝑤𝑇 + 𝛥𝑤̃𝑇+1.
15: end for

when convergence occurs, avoiding accuracy degradation of the global
model. Furthermore, as indicated in Theorem 1 (provided later in
Section 5), the standard deviation of the aggregated noise on the server
is inversely proportional to the number of participating clients 𝐾,
indicating that the effect of the scaling factor 𝑐 will be counteracted
by 𝐾 when aggregated on the server. For convex optimization algo-
rithms (e.g., gradient descent and proximal quasi-Newton), in which
the loss function descends in every iteration, the magnitude of additive
noise aggregation must not exceed the magnitude of model update
aggregation, that is, ‖

∑𝐾
𝑘=1 𝑟𝑘‖ ≤ ‖

∑𝐾
𝑘=1 𝛥𝑤𝑘‖. Therefore, in a non-

dropout scenario, 𝐾 is a conservative upper bound for 𝑐, i.e., 𝑐 ≤ 𝐾.
For optimization algorithms without monotonic requirement, e.g. SGD,
the global model still converges as long as the descent of the global
loss function is frequently achieved, indicating that 𝑐 could be slightly
greater than 𝐾 (𝑐 = 𝐾 + 𝜖, where 𝜖 ∈ N+), which is denoted by 𝑐 <𝜖 𝐾.

Determine the value of 𝑐 in a dropout scenario. In a scenario
with 𝑑 client dropouts, the central server is expected to be able to
get a reliable aggregation from the remaining 𝐾 − 𝑑 clients. FL with
our approach can tolerate at most 𝑑 client dropouts by setting 𝑐 <
𝜖
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Fig. 3. The distribution of aggregated noise with different dropout probabilities.

(𝐾 − 𝑑), as previously indicated. Note that 𝑐 controls the privacy
protection strength on clients. Setting a large 𝑑 results in a reduced
𝑐, which also reduces the strength of privacy protection for clients.
When there are more than 𝑑 client dropouts, the distribution of the
noise aggregation becomes wider and there will be more noises falling
in the tails of the distribution, which could cause the loss function to
decrease less frequently (shown in Fig. 3). In particular, when there is
an extra dropout of clients, the standard deviation of noise aggregation
increases slightly and becomes 𝐾

𝐾−1 times the standard deviation of
noise aggregation of 𝐾 clients. Therefore, for a sufficiently large 𝐾, the
impact of a small number of additional client dropouts is limited. There
is still a great chance that the server can get a reliable aggregation from
the remaining clients.

4.2.2. Direction-based noise filtering
Considering the noise scale alone is insufficient. To limit the nega-

tive impact on the accuracy of the FL model, we use cosine similarity to
measure the angular distance between the true local model updates and
the noise-perturbed local model updates. The client only adds a noise
vector whose angular distance is less than the user-defined threshold
𝜃𝑡ℎ𝑟𝑒𝑠. A smaller 𝜃𝑡ℎ𝑟𝑒𝑠 leads to a higher chance of global convergence,
while a larger 𝜃𝑡ℎ𝑟𝑒𝑠 provides better privacy protection.

Note that realistically the dimension of a neural network’s parame-
ter vector is usually extremely high. As illustrated in Fig. 4, the angular
distance between two arbitrary vectors is Gaussian distributed and
becomes more concentrated as the dimension increases. Especially in an
extremely high-dimensional space, such as the space of model updates,
any two random vectors are orthogonal. Due to this observation, for
a fixed 𝜃𝑡ℎ𝑟𝑒𝑠, it could be extremely computationally expensive or even
impossible to find a satisfying noise vector in such a high-dimensional
space. An intuitive way is to partition the model updates into smaller
vectors and apply random noise individually. For convenience, we
partition model updates by layers, and noises are generated and added
to each layer separately. However, this could raise another problem
that setting an absolute value of 𝜃 for all layers could be inappropriate.
To align 𝜃𝑡ℎ𝑟𝑒𝑠 in each layer, we use the three-sigma rule of thumb,
setting 𝜃𝑡ℎ𝑟𝑒𝑠 = 𝜃̄ + 𝜌𝜎𝜃 , where 𝜃̄ and 𝜎𝜃 are the mean and standard
deviation of 𝜃, respectively, and 𝜌 is the multiple of 𝜎𝜃 . 𝜃̄ and 𝜎𝜃 are only
related to the dimension of vectors and can be pre-calculated, so this
operation does not increase the computational cost. More importantly,
this transforms the choice of an absolute value of 𝜃𝑡ℎ𝑟𝑒𝑠 into a relative
value 𝜌, in which 𝜃𝑡ℎ𝑟𝑒𝑠 is self-adjusted by the dimension of each layer.

The use of a larger 𝑐 should combine with a small 𝜌 to accelerate
FL convergence. However, a smaller 𝜌 increases the similarity between
noise-perturbed model updates and original model updates, resulting
in less privacy. Also, it could take more time to find a satisfying noise
vector for a smaller 𝜌. Therefore, 𝜌 should be chosen combining privacy
requirements according to applications, as well as the choice of 𝑐. The
numerical results of choosing different settings for 𝜌 will be presented
in Section 7.
6

Fig. 4. Histogram of the angular distance (in degree) between two arbitrary vectors
in 2, 10 and 100 dimensional spaces, respectively (based on 10,000 samples).

5. Theoretical analysis of our approach

In this section, we study the convergence performance of the pro-
posed perturbation scheme for both convex and non-convex loss func-
tions. The proofs show that FL with our proposed perturbation scheme
can achieve the same global model convergence rate and accuracy as
that of a regular FL in the convex case, and the same convergence rate
as that of a regular FL in the non-convex case.

5.1. Assumptions

Denote the optimal value for 𝐹 (⋅) by 𝐹 ∗, and the optimal value for
𝐹𝑘(⋅) by 𝐹 ∗

𝑘 . Define 𝛤 as a measurement of non-i.i.d.-ness across clients:
𝛤

𝛥
=

∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝐹 ∗

𝑘 − 𝐹 ∗, where 𝛤 ≥ 0 indicates how non-i.i.d. across the
client’s data. Note that given a large enough number of data samples
on clients, we have 𝛤 → 0 for i.i.d. data distributions.

Four common assumptions are considered to facilitate the theoreti-
cal analyses of our proposed noise perturbation scheme.

Assumption 1. The loss functions 𝐹𝑘(⋅) for 𝑘 ∈ [𝐾] are all L-smooth;
that is, ∀𝑣,𝑤 ∈ R𝑑 ,

𝐹𝑘(𝑣) − 𝐹𝑘(𝑤) ≤ ⟨𝑣 −𝑤,∇𝐹𝑘(𝑤)⟩ + 𝐿
2
‖𝑣 −𝑤‖

2,∀𝑘 ∈ [𝐾]. (5)

Assumption 2. The loss functions 𝐹𝑘(⋅) for 𝑘 ∈ [𝐾] are all 𝜇-strongly
convex; that is, ∀𝑣,𝑤 ∈ R𝑑 ,

𝐹𝑘(𝑣) − 𝐹𝑘(𝑤) ≥ ⟨𝑣 −𝑤,∇𝐹𝑘(𝑤)⟩ +
𝜇
2
‖𝑣 −𝑤‖

2,∀𝑘 ∈ [𝐾]. (6)

Assumption 3. The expectation of the squared 𝓁2 norm of the
stochastic gradients is bounded; that is,

E𝜉

[

‖∇𝐹𝑘(𝑤
𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 )‖2

]

≤ 𝐺2, ∀𝜏 ∈ [𝑡], |∀𝑘 ∈ [𝐾]. (7)

Assumption 4. For the mini-batch 𝜉𝑇 ,𝜏𝑘 , we have the following.

E𝜉 [∇𝐹𝑘(𝑤
𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 )] = ∇𝐹𝑘(𝑤

𝑇 ,𝜏
𝑘 ), (8)

where E𝜉 denotes the expectation against the randomness of the stochas-
tic gradient.

5.2. Convergence analysis

We present the following theorems to show the theoretical conver-
gence analyses of FedAvg with our proposed noise perturbation scheme.
For simplicity of convergence analysis, we assume that there is no
transmission error between the clients and the central server.

For ease of presentation, we denote the noise aggregated on the
central server by 𝑅 =

∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑟𝑘, and 𝜎𝑘 denotes the standard deviation

of the local additive noise in each element of 𝑟𝑘. We have 𝜎𝑘 ∝ 𝑐 and
𝜎𝑘 ∝ 𝛥𝑤𝑘. For simplicity, we also assume that each client has the same
amount of data, e.g. 𝑛𝑘 ≈ 1 .
𝑛 𝐾
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Theorem 1. For a sufficiently large 𝐾, each element in 𝑅 follows the
Gaussian distribution  (0,

∑𝐾
𝑘=1

(𝜎𝑘)2

𝐾2 ).

Proof. See Appendix A.

Remark 1. Theorem 1 reveals important properties about the number
of participants 𝐾 and the variance of noise aggregation. (1) The aggre-
gation of additive noise can be characterized by a Gaussian distribution.
(2) For sufficiently large 𝐾, that is, 𝐾 ≥ 30, the contribution of noise
on a single client to the variance of aggregation of noise is arbitrarily
small. (3) A larger noise scale on the client will result in a greater
variance in the aggregation of noise on the server.

The Strongly Convex Case. We analyze the convergence property
of our proposed noise perturbation scheme under strong convexity.

Theorem 2. For a smooth and strongly convex objective function 𝐹𝑘,
FedAvg satisfies

E
[

‖𝑤̃𝑇+1 −𝑤∗
‖

2] ≤ 𝐴𝑇E
[

‖𝑤̃0 −𝑤∗
‖

2] +
𝑇−1
∑

𝑖=0
𝐴𝑖𝐵 (9a)

𝐴 =2 − 𝜇𝜂𝑡 + 𝜇𝜂2𝑡 (9b)

=2𝜂𝑡𝛤 + (1 + 2𝑡)𝑡𝜂2𝐺2(1 + 𝜇(1 − 𝜂)) +
𝑡(𝑡 + 1)(2𝑡 + 1)𝜂2𝐺2

6

+ 9𝑚2

𝐾2

𝐾
∑

𝑘=1
(𝜎𝑇𝑘 )

2. (9c)

Proof. See Appendix B.

Remark 2. Since 𝜎𝑇𝑘 ∝ 𝑐, we note that 𝐵 is an increasing function
of the noise scale 𝑐, while decreasing with the number of participants
𝐾. Furthermore, more non-i.i.d. local distributions between clients,
resulting in higher 𝛤 and 𝐺, will pose a negative impact on the
convergence bound.

Remark 3. The FL converges iff 𝐴 < 1, that is, 𝜂 ∈
[ 1−

√

1− 4
𝜇𝑡

2 ,
1+

√

1− 4
𝜇𝑡

2

]

.

Let 𝜂 = 1
√

𝑇
for sufficiently large 𝑇 and 𝜂 ∈

[ 1−
√

1− 4
𝜇𝑡

2 ,
1+

√

1− 4
𝜇𝑡

2

]

, the
FL with our proposed scheme converges at a rate of (1∕𝑇 ), which
matches a typical SGD on strongly convex loss functions. In 𝐵, the
noise-related term 9𝑚2

𝐾2
∑𝐾

𝑘=1(𝜎
𝑇
𝑘 )

2 decreases as the FL model converges,
since 𝜎𝑘 ∝ ‖𝛥𝑤𝑘‖. When convergence occurs, where lim𝑇→∞ ‖𝛥𝑤𝑇

𝑘 ‖ = 0,
we have lim𝑇→∞

9𝑚2

𝐾2
∑𝐾

𝑘=1(𝜎
𝑇
𝑘 )

2 = 0, which indicates that the proposed
cheme converges to the same value as the regular FL scheme under
trong convexity.

The Non-convex case. For more general cases, in which the objec-
ive function is not necessarily convex, convergence to global optima
s not guaranteed, so we will only require convergence to a point of
anishing gradients. We prove the following theorem.

heorem 3. For a smooth and non-convex objective function 𝐹𝑘, FedAvg
atisfies

min
∈[𝑇𝑚𝑎𝑥]

E‖∇𝐹 (𝑤̃𝑡)‖2 ≤2(𝐹 (𝑤0) − 𝐹 (𝑤̃∗))
(1 + 𝜂𝑡 − 2𝜂)𝑇

+
𝜂3𝐿2𝑡(𝑡 + 1)(2𝑡 + 1)𝐺2

6(1 + 𝜂𝑡 − 2𝜂)

+
𝑚2𝐿

∑𝐾
𝑘=1(𝜎

𝑇
𝑘 )

2

𝐾2(1 + 𝜂𝑡 − 2𝜂)
+

𝑐2𝜂2𝑡2𝐺2

1 − 𝜂𝑡 − 2𝜂
. (10)

Proof. See Appendix C.

Remark 4. Let 𝜂 = 1
√

𝑇
for a sufficiently large 𝑇 , Eq. (10) converges at a

rate of (1∕
√

𝑇 ), which matches an SGD on non-convex loss functions.
7

The noise-related term, 𝑚2𝐿
∑𝐾

𝑘=1(𝜎
𝑇
𝑘 )

2

𝐾2(1+𝜂𝑡−2𝜂) , decreases as the FL converges
due to 𝜎𝑘 ∝ ‖𝛥𝑤𝑘‖. Especially when convergence occurs, where
lim𝑇→∞ ‖𝛥𝑤𝑘‖ = 0, we have the noise-related term lim𝑇→∞

𝑚2𝐿
∑𝐾

𝑘=1(𝜎
𝑇
𝑘 )

2

𝐾2(1+𝜂𝑡−2𝜂)
= 0. Moreover, since 𝜎𝑘 ∝ 𝑐, increasing the number of participating
clients 𝐾 or decreasing 𝑐 will result in a faster convergence rate.

6. Experiment setup

6.1. Dataset

We evaluate our proposed methods on MNIST, a handwritten digit
recognition dataset. The dataset contains 60,000 training data samples
and 10,000 testing data samples. Each data sample is a square 28 × 28
pixel image of a single hand-written digit between 0 and 9.

6.2. Evaluation

We evaluate our proposed scheme from both model utility and pri-
vacy protection aspects. And we compare our approach with two base-
lines: (1) non-private FL, in which clients and servers follow standard
FL protocol and do not involve any privacy-preserving mechanisms; (2)
FL with local DP, in which clients add DP noise to protect the privacy of
their local data. As stated in Section 3.2, our goal is to protect clients’
local privacy against an honest-but-curious server and eavesdroppers,
thus we only consider adding perturbations on the client’s side. We
compare our proposed scheme with the (𝜖, 𝛿)-DP proposed in [21],
which is widely used as a noise pattern on the client’s side [29,30].
Specifically, we use a popular choice of 𝜎 =

√

2 log 1.25
𝛿 ∕𝜖 with a fixed

of 10−5. The clipping bound is set as the median of the norms of the
nclipped local model updates over the course of training.

We evaluate the effectiveness by experimenting with FL with our
pproach and DP against two state-of-the-art FL privacy inference at-
acks that we have introduced in Section 2.2: the membership inference
ttack and the label composition inference attack. The convergence
nd security performance of our proposed perturbation scheme are
valuated using the following four metrics.

1. Global model accuracy and convergence rate. We measure
the global model accuracy under different choices of parame-
ters 𝑐 and 𝜌 as a function of the training epoch, and compare
the convergence behavior in both dropout and non-dropout
scenarios.

2. Membership inference attack accuracy and 𝐹1-score. The
attack accuracy is defined as the percentage of data samples that
are correctly predicted to be presented in the training dataset.
And the 𝐹1 score combines precision and recall into a single
value, which is defined as

𝐹1-score =
2 × precision × recall

precision + recall
A lower accuracy or 𝐹1-score indicates a better protection of
privacy.

3. Accuracy of the label composition inference attack. The
accuracy is measured by the 𝓁2 difference between the true
label composition and the inferred label composition. A larger
difference indicates better privacy protection.

4. Signal-to-noise ratio (SNR). SNR is a popular metric to quantify
the relative amount of noise added to the data:

SNR = variance of actual data
variance of noise

A lower SNR indicates that there is a greater amount of noise
being introduced into the system, leading to better privacy pro-
tection. The recovery of the original data becomes erroneous
as the SNR drops below 1 [49]. It is also claimed in [50] that
privacy can be achieved without affecting learning performance

if a small SNR is consistently achieved.
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6.3. FL system settings

We implement FL and privacy inference attacks using the PyTorch
framework. We conduct our experiments on Google Colab Pro (CPU:
Intel(R) Xeon(R) CPU @ 2.20 GHz; RAM: 13 GB; GPU: Tesla P100-PCIE-
16 GB with CUDA 11.2).

The dataset is allocated to 100 clients. The model on each client
consists of two convolutional layers and two fully connected layers.
In each global training epoch, 𝐾 clients are randomly selected for the
ggregation of the FL model. We use the Dirichlet distribution [51] with
he hyper-parameter 𝛼 to generate different data distributions across
lients, in which a smaller 𝛼 denotes a higher non-i.i.d. level. We set
𝛼 = 1 in the experiments of convergence and membership inference
attack, and 𝛼 = 0.1, 1, 10,∞ in the experiments of label composition
inference attack.

For the convergence evaluation, we train the local model with a
mini-batch gradient descent with batch size 128, internal epoch 𝑡 =
5, and learning rate 𝜂 = 0.1. Ten shadow models and an auxiliary
dataset with 3,000 samples are used in the membership inference
attack. The training data composition inference attack is launched on
local model updates with full-batch gradient descent. To fairly compare
our approach with DP, we choose 𝜖 in DP such that the accuracy is
comparable with that of our approach.

7. Experimental results

Our approach achieves the security goals. Recall that we have
four security goals (discussed in Section 3.2): utility, resilience to
dropout, privacy and efficiency. Our results show that our approach
achieves the four goals.

7.1. Utility

The utility of the model is evaluated in the scenario where there is
no attack. We fix 𝜌 = 0 and choose the scaling factor of our approach
to be 𝑐 = 1, 3, 5, 10 and 𝜖 = 15, 20, 30 in DP and compute the model
accuracy as a function of global training epochs. We also include the
regular FL to serve as a baseline. As shown in Fig. 5, the trend and
final accuracy of our approach are similar to those of the regular FL.
For all chosen 𝑐, the global model converges to the same accuracy as
the regular FL. Such results are in line with Remark 3. Even for large
𝑐 (e.g., 𝑐 = 10 means that the magnitude of the additive noise is 10
imes the magnitude of original model updates), the accuracy curve
uffers from slight fluctuations and still achieves the same value as the
egular FL does. As the value of 𝑐 increases, convergence slows slightly
ue to the increased variance introduced into the global model. This is
onsistent with our finding in Remark 1. We also plot the global model
ccuracy w.r.t. 𝜌, shown in Fig. 6, where the FL model converges to the
ame value, but faster with a smaller 𝜌.

Compared with our approach, DP has a different convergence trend,
n which convergence is notably slower and it takes more epochs to
each an accuracy comparable to our approach. FL with our approach
onverges at epoch 5, while DP starts to converge at epoch 10 and the
ccuracy finally reaches a comparable accuracy at epoch 50 by 𝜖 = 30.

The final accuracy of the FL model with our approach and DP is
resented in Table 1. It is suggested that the training accuracy only
rops around 1% as we increase 𝑐 from 5 to 15 in our approach. It is
lso indicated that 𝜖 = 30 is a minimum privacy budget to enable the
P to achieve a similar accuracy to that of 𝑐 = 15 in our approach,
s 𝜖 = 20 reported in the table results in reduced model accuracy. For
airness, we compare under the setting, in which a comparable model
ccuracy (96%) is achieved by our approach (𝑐 = 15) and DP (𝜖 = 30).
8

Fig. 5. Comparison of the model accuracy among the non-private FL, FL with our
perturbation scheme, and FL with DP.

Fig. 6. The accuracy of the FL model with different 𝜌.

Table 1
Accuracy of the FL model with our approach, FL with DP, and regular FL.

Regular DP Our approach

𝜖 = 15 𝜖 = 20 𝜖 = 30 𝑐 = 5 𝑐 = 10 𝑐 = 15

Accuracy (%) 98.26 86.15 93.28 96.56 98.08 97.1 96.92

7.2. Dropout-resilience

In Section 5, we have shown that our approach can handle up to 𝑑
lient dropouts by setting 𝑐 <𝜖 (𝐾 − 𝑑). Therefore, in this scenario, the
onvergence performance is similar to that of the non-dropout scenario
here we have 𝑐 <𝜖 𝐾. We also investigate the convergence perfor-
ance when there are additional client dropouts. In particular, each

lient has a dropout probability from 0% (non-dropout) to 40%. And we
et 𝑐 = 15 in our approach and 𝜖 = 30 in DP. When dropout occurs, the

server will experience an increased variance of the aggregated noise,
which might impair the global model’s convergence and accuracy. As
shown in Fig. 7, as the dropout probability increases from 10% to 40%,
the global model convergence rate and the accuracy of our approach
remain similar to that of the non-dropout case. Our theoretical findings
in Remark 2 are consistent with these experimental results. Reducing a
limited number of participating clients does not affect the global model
accuracy, but only results in a slightly slower convergence. As for DP,
both the global model convergence rate and the accuracy are severely
impacted. Therefore, our approach handles up to 𝑑 client dropouts by
setting 𝑐 <𝜖 (𝐾 − 𝑑), and the convergence performance of the global

model is stable even with additional client dropouts.
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Fig. 7. The FL model accuracy w.r.t. dropout probability.

Table 2
Membership inference attack accuracy and 𝐹1 score for regular FL, FL with our
approach, and FL with DP with different 𝜖 and 𝑐.

Regular DP Our approach

𝜖 = 20 𝜖 = 30 𝑐 = 5 𝑐 = 10 𝑐 = 15

Attack accuracy (%) 87.36 79.9 80.12 80.48 80.03 79.82
Attack 𝐹1 score 0.87 0.52 0.57 0.61 0.52 0.53

Table 3
Membership inference accuracy and 𝐹1-score of our approach with 𝑐 = 20 and different
.

Our approach

𝜌 = 2 𝜌 = 1 𝜌 = 0 𝜌 = −1 𝜌 = −2

Main accuracy (%) 94.76 95.26 96.92 97.56 98.10
Attack accuracy (%) 79.12 79.75 79.82 78.84 79.72
Attack 𝐹1-score 0.49 0.50 0.53 0.52 0.53

7.3. Privacy

7.3.1. Defending against membership inference attack
We continue to use the setting of 𝑐 = 10, 15 in our approach and

= 20, 30 in DP. Fig. 8 shows the per-class attack accuracy and 𝐹1-score
f the membership inference attack against FL with our approach, FL
ith DP, and regular FL. As expected, regular FL leaks a considerable
mount of information about the training dataset, resulting in an attack
uccess rate as high as 87% on average. Both DP and our approach
an reduce attack accuracy and the 𝐹1 score against the membership
nference attack. There are no significant differences in attack accuracy.
egarding the 𝐹1-score, authors in [33] set the baseline 𝐹1-score to 0.67
dotted line in Fig. 8(b)), since there are equal numbers of members
nd nonmembers in the attack test dataset. The 𝐹1-scores of all private
odels are below the baseline. The 𝐹1-score for DP with 𝜖 = 30 presents
higher pattern, whereas there is no significant difference among the

est of privacy-preserving FL models.
Furthermore, Table 2 indicates that our approach with 𝑐 = 10, 15 is

as effective as DP with 𝜖 = 20. Referring back to Table 1, we see that the
accuracy of FL with 𝜖 = 20 in DP is 3% less than FL with 𝑐 = 10, 15 in
our approach. Therefore, given the same strength to defend against the
membership inference attack, FL with our approach achieves a higher
global model accuracy.

Furthermore, Table 3 provides the global model accuracy, attack
accuracy, and 𝐹1 score for a fixed 𝑐 = 15 and different value of 𝜌. It is
suggested that increasing 𝜌 results in slightly decreased accuracy of the
FL model, but greater privacy protection in terms of the 𝐹 score.
9

1

Table 4
Time complexity of different 𝜌 values in terms of multiples of that of DP.

Value of 𝜌 3 2 1 0 −1 −2 −3

Multiples of DP cost (𝑚𝜌) 1.0 1.0 1.1 2.0 6.3 43.9 333.3

7.3.2. Defending against label composition inference attack
To compare privacy protection in different local label composition

scenarios, we consider four local distribution settings, including an i.i.d.
(𝛼 = ∞) and three non-i.i.d. local distribution settings (𝛼 = 10, 1, 0.1).
ig. 9 visualizes the label composition with different 𝛼.

The results of the label composition inference attack are presented
n Fig. 10, which shows a box plot of the 𝓁2 distance between the
riginal label composition and the inferred label composition of FL with
ur approach and DP. Our approach is more effective in defending the
istribution inference attack compared with DP as the local distribution
ecomes more i.i.d (𝛼 = ∞, 10), whereas our approach and DP achieve
omparable protection as local distributions become more dissimilar
𝛼 = 1, 0.1).

.3.3. Signal-to-noise ratio (SNR)
Finally, we present the SNR of FL with our approach and DP as

function of the training epochs in Fig. 11. Similarly as in previous
xperiments, the 𝜖 for DP and the 𝑐 in our approach are chosen such
hat a similar global model accuracy is achieved. The results show that
he SNR of DP is high at the beginning of the training and decreases
s the convergence occurs, while our approach achieves a consistently
ow SNR. Referring to [50], such a consistently low SNR also explains
ur results in Section 7.1 that our approach has a minor impact on the
lobal model’s convergence and accuracy.

Furthermore, the results in [49] showed that the original data could
e more difficult to recover from a lower SNR. As shown in Fig. 11, FL
ith DP has a higher chance of recovery in the early training stage, due

o their higher SNR values.

.4. Efficiency

We analyze the efficiency based on both communication and com-
utational overhead. FL with our approach converges as fast as regular
L and much faster than FL with DP. Especially, for the MNIST task,
oth the FL with our approach and the regular FL converge at epoch
, but FL with DP requires extra epochs to reach a similar global
odel accuracy, indicating that extra communication is needed for
P. Therefore, the communication overhead of our proposed scheme

s similar to that of the regular FL and much lower than that of the DP.
Furthermore, compared with the regular FL, the only additional

omputational cost of our approach lies in random noise generation,
pecifically direction-based filtering. Table 4 shows the time complexity
nalysis of our proposed noise perturbation scheme w.r.t. 𝜌 in terms
f the multiples (𝑚𝜌) of DP. In general, the time complexity of our
pproach is inversely related to 𝜌. In DP, generating a noise vector
or a vector of model updates with 𝑛 parameters costs (𝑛). Therefore,
he time complexity of our approach is 𝑚𝜌 × (𝑛). Since 𝑚𝜌 is much
ess than 𝑛 in practice, the time complexity of our proposed method is
till (𝑛). The real time spent on generating the noise vector for one
lient’s local updates w.r.t. 𝜌 is presented in Table 5. The time cost
hows an increasing pattern with a decreasing value of 𝜌. Even for a
mall 𝜌 (e.g., 𝜌 = −3), the time spent generating the noise vector is
.52 s, which is minor compared with the local training time, which is
seconds in our experiments. Thus, we claim that our approach does

ot introduce additional communication and computational overhead.
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Fig. 8. Per-class accuracy and 𝐹1 score of the membership inference attack against FL with DP, FL with our perturbation scheme, and non-private FL.
Fig. 9. Local label composition w.r.t. 𝛼.
Fig. 10. Box plot of the 𝓁2 distance between the original label composition and the inferred label composition by our approach and DP.
Table 5
Real time spent on noise vector generation w.r.t 𝜌.

DP Value of 𝜌

3 2 1 0 −1 −2 −3

Time (s) 0.015 0.018 0.018 0.019 0.021 0.034 0.143 0.520

7.5. Generalization to more complex datasets

To explore whether the above findings still hold for more complex
datasets and neural network architectures, we conduct several experi-
ments using ResNet 18 [52] on the CIFAR-10 [53] datasets. CIFAR-10
consists of 60,000 32 × 32 color images containing one of ten object
classes, with 6000 images per class. ResNet 18 is a convolutional
10
neural network that is 18 layers deep and contains around 11 million
parameters.

The data are distributed to 50 clients with a non-i.i.d. parameter
𝛼 = 10 and 10 clients are selected in each training round. We use SGD
with a learning rate of 0.1 and an epoch of 200. We compare FL with
the proposed method (𝑐 = 10) with non-private FL and FL with DP
(𝜖 = 100 and 𝛿 = 10−5). We report the training accuracy, the attack
accuracy and 𝐹1-score of the membership inference attack, and the
accuracy of the label composition inference attack. These experiments
are representative in verifying the impact of our proposed method
on FL convergence and accuracy, and the privacy protection against
state-of-the-art privacy inference attacks.

The accuracy of the FL model is presented in Fig. 12. The FL with
the proposed method converges slightly slower than the non-private FL,
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Fig. 11. The SNR of our approach and the DP during the training course.

Fig. 12. Global model accuracy of non-private FL, FL with DP, FL with our method
on CIFAR-10, respectively.

Table 6
FL model accuracy, overall attack accuracy and 𝐹1-score, and mean 𝓁2 distance on
CIFAR-10.

Non-private Ours 𝑐 = 10 DP 𝜖 = 100

Model accuracy (%) 82.54 81.16 74.30
Attack accuracy (%) 76.77 63.06 62.36
Attack 𝐹1-score 0.871 0.527 0.526
Attack 𝓁2 distance 0.023 0.101 0.099

but still converges to a similar accuracy of 80% around epoch 100. The
slower convergence rate is due to higher non-convexity in the ResNet
18 model, which is consistent with the convergence analysis of the non-
convex case (Remark 3). For FL with DP, even for a large 𝜖 of 100, the
FL model still suffers from accuracy loss and can only reach an accuracy
of 74%.

We continue to evaluate the effectiveness of privacy protection on
CIFAR-10. Table 6 summarizes the FL model accuracy and overall
attack accuracy and 𝐹1-score against the membership inference attack,
as well as the 𝓁2 distance against the label composition inference
attack. More specifically, Fig. 13 provides the per-class attack accuracy
and 𝐹1-score. Fig. 14 presents the results for the label composition
inference attack, which shows a box plot of 𝓁2 distance of the true
label composition and the inferred ones. Compared to non-private FL,
both DP and our method can significantly lower the strength of two
attacks, since the accuracy of the attack, 𝐹1 score, and the 𝓁2 distance
are reduced by 17% percent, 0.3 and 0.078, respectively. There is no
significant difference between our method and DP in both per-class
attack accuracy and attack 𝐹1-score, as well as the attack 𝓁2 norm.
However, the gain in privacy protection by DP comes at the cost of
8% model accuracy loss, while our method enjoys a lossless accuracy.
11
8. Conclusion and future work

In this paper, we have proposed a novel adaptive perturbation-based
scheme that protects local privacy in FL but without sacrificing the
accuracy of the global model. The key difference between our approach
and differential privacy is that we considered both magnitude and
direction when generating random noise. In particular, we introduced
adaptive noise scaling and direction-based filtering methods to reduce
the negative impact of noise on the global model. We have provided
theoretical convergence analyses of our proposed scheme with both
non-convex and convex FL loss functions. Numerical experiments on
the MNIST and CIFAR-10 datasets have shown that our approach
can achieve a convergence performance comparable to that of the
regular FL. And our proposed noise perturbation scheme can achieve
comparable, or in many cases, stronger privacy protection than DP
in defending against state-of-the-art membership inference attack and
label composition inference attack.

Although FL combined with privacy-preserving methods has made
great progress in protecting data privacy, there is still a gap between
FL techniques and real IoT applications, where the key challenges in
IoT systems come from computational and power constraints. Due to
the heterogeneity of IoT devices, privacy budgets can differ between
devices or even between data samples on a single device. Future
research should focus on reducing computational and communication
overhead, preserving model accuracy, and enabling the ability to han-
dle mixed privacy constraints. In particular, two different branches
deserve further investigation. First, a noise tolerance bound could be
derived in the scenario where each client has their own privacy budget
using the generalized central limit theorem. Second, the privacy budget
could be taken into account when determining the optimal aggregation
interval and the number of participants to trade off training time and
communication overhead.
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𝜎
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Fig. 13. Per-class attack accuracy and 𝐹1-score of the membership inference attack against FL with DP, FL with our approach, and regular FL on CIFAR-10. The dotted lines are
baselines, where there is no privacy-preserving mechanism.
𝐵

𝐵

𝐶

Fig. 14. Box plot of 𝓁2 distance between the true and inferred label composition on
CIFAR-10 with non-i.i.d. 𝛼 = 10.

Appendix A. Proof of Theorem 1

Proof. Recall that in the process of generating random noise, 𝑟𝑘 is first
randomly chosen from  (0, 𝐼) and then scaled by 𝑐‖𝛥𝑤𝑘‖

‖𝑟𝑘‖
. Therefore,

the 𝑖 -th element 𝑟𝑘𝑖 follows a Gaussian distribution  (0, 𝜎2𝑘) with
𝑘 = 𝑐‖𝛥𝑤𝑘‖

‖𝑟𝑘‖
. For the sequence {𝑟𝑘𝑖} for 𝑘 ∈ [𝐾], if the Lindeberg’s

ondition holds, then 1
𝐾
∑𝐾

𝑘=1 𝑟𝑘𝑖 →  (0, 1
𝐾2

∑𝐾
𝑘=1 𝜎

2
𝑘). Thus, we must

verify that for any 𝜖 > 0,

lim
𝐾→+∞

1
𝐾

𝐾
∑

𝑘=1
E[𝑟2𝑘𝑖 ⋅ 𝟏{|𝑟𝑘𝑖|

2 ≥ 𝜖
√

𝐾}] = 0, (A.1)

where 𝟏 is the indicator function. Note that 𝑟𝑘𝑖 can be represented by
𝜎𝑘 ⋅ 𝑥, where 𝑥 denotes a standard Gaussian random variable. Then we
have the following.

E
[

𝑟2𝑘𝑖 ⋅ 𝟏{|𝑟𝑘𝑖|
2 ≥

𝐾
∑

𝑘=1
𝜖
√

𝐾}
]

≤ 𝜎2𝑘E
[

𝑥2 ⋅ 𝟏{|𝑥|2 ≥
𝐾
∑

𝑘=1
𝜖
√

𝐾}
]

. (A.2)

And Eq. (A.2) goes to 0 when 𝐾 is sufficiently large. □

Appendix B. Proof of Theorem 2

This proof is deeply inspired by the proof developed in [54], and
we roughly follow the same proof procedure.

Proof. The noise-perturbed global model parameter is updated as

𝑤̃𝑇+1 = 𝑤̃𝑇 −
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝛥𝑤̃𝑇

𝑘 + 𝑅𝑇 . (B.1)

Assuming that 𝑤∗ is the optimal parameter, we have the following.

E
[

‖𝑤̃𝑇+1 −𝑤∗
‖

2]
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=E
[

‖𝑤̃𝑇 −𝑤∗
‖

2]−2E
[

⟨

𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝛥𝑤̃𝑇

𝑘 , 𝑅
𝑇
⟩

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵1

+E
[

‖

𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝛥𝑤̃𝑇

𝑘 ‖
2]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵2

+E
[

‖𝑅𝑇
‖

2]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐵3

+ 2E
[

⟨𝑤̃𝑇 −𝑤∗, 𝑅𝑇
⟩

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵4

−2E
[

⟨𝑤̃𝑇 −𝑤∗,
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝛥𝑤̃𝑇

𝑘 ⟩
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵5

(B.2)

Next, we bound the terms on the RHS of (B.2). By Young’s inequality,
we have 𝐵1 ≤ 𝐵2 + 𝐵3. By the Cauchy–Schwarz inequality, we have

𝐵2 = E
[

‖

‖

‖

𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝛥𝑤̃𝑇

𝑘
‖

‖

‖

2
]

≤
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
E
[

‖

‖

‖
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𝑘
‖

‖

‖

2]
(B.3)

= 𝜂2
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
E
[

‖

‖

‖

𝑡−1
∑

𝜏=0
∇𝐹𝑘(𝑤

𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 )‖‖

‖

2
]

(B.4)

≤ 𝜂2𝑡
𝑡−1
∑

𝜏=0

𝐾
∑

𝑘=1

𝑛𝑘
𝑛
E
[

‖

‖

‖

∇𝐹𝑘(𝑤
𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 )‖‖

‖

2]
≤ 𝜂2𝑡2𝐺2, (B.5)

3 = E
[

‖𝑅𝑇
‖

2] ≤ 9𝑚2

𝐾2

𝐾
∑

𝑘=1
(𝜎𝑇𝑘 )

2, (B.6)

where 𝑚 is the dimension of the model parameter and the inequal-
ity holds by Theorem 1 for a sufficiently large 𝐾. Again, by the
Cauchy–Schwarz inequality, we have

𝐵4 = 2E
[

⟨𝑤̃𝑇 −𝑤∗, 𝑅𝑇
⟩

]

≤ E
[

‖𝑤̃𝑇 −𝑤∗
‖

2] + 𝐵3. (B.7)
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here (𝑒) and (𝑓 ) are due to Assumptions 2 and 4, respectively.
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2 + 2⟨𝑤̃𝑇 ,𝜏
𝑘 − 𝑤̃𝑇 , 𝑤̃𝑇 −𝑤∗

⟩

≤ ‖𝑤̃𝑇 ,𝜏
𝑘 − 𝑤̃𝑇

‖

2 + ‖𝑤̃𝑇 −𝑤∗
‖

2 − 1
𝜂
‖𝑤̃𝑇 ,𝜏

𝑘 − 𝑤̃𝑇
‖

2 − 𝜂‖𝑤̃𝑇 −𝑤∗
‖

2

= (1 − 𝜂)‖𝑤̃𝑇
𝑘 −𝑤∗

‖

2 − (1
𝜂
− 1)‖𝑤̃𝑇 ,𝜏

𝑘 − 𝑤̃𝑇
‖

2, (B.12)

Substituting 𝐶3 into 𝐶2, we have

𝐶2 =2𝜂𝑡𝛤 + 2𝜂
𝐾
∑

𝑘=1

𝑡−1
∑

𝜏=0

𝑛𝑘
𝑛
(𝐹 ∗

𝑘 − 𝐹𝑘(𝑤̃
𝑇 ,𝜏
𝑘 )) − 𝜇𝜂𝑡(1 − 𝜂)E

[

‖𝑤̃𝑇 −𝑤∗
‖

2]

+ 𝜇(1 − 𝜂)𝜂2𝐺2 𝑡(𝑡 + 1)(2𝑡 + 1)
6

. (B.13)

Substituting 𝐶1 and 𝐶2 into 𝐵5, we have

5 ≤ − 𝜇𝜂𝑡(1 − 𝜂)E
[

‖𝑤̃𝑇 −𝑤∗
‖

2
2
]

+ (1 + 𝜇(1 − 𝜂))
𝑡(𝑡 + 1)(2𝑡 + 1)𝜂2𝐺2

6
+ 𝜂2𝑡𝐺2 + 2𝜂𝑡𝛤

+ 2𝜂
𝐾
∑

𝑘=1

𝑡−1
∑

𝜏=0

𝑛𝑘
𝑛
(𝐹 ∗

𝑘 − 𝐹𝑘(𝑤̃
𝑇 ,𝜏
𝑘 )). (B.14)

Substituting 𝐵1 − 𝐵5 into Eq. (B.2), we have

E
[

‖𝑤̃𝑇+1 −𝑤∗
‖

2]
(𝑔)
≤ (2 − 𝜇𝜂𝑡(1 − 𝜂))E

[

‖𝑤̃𝑇 −𝑤∗
‖

2
2
]

+ 2𝜂𝑡𝛤 + (1 + 2𝑡)𝑡𝜂2𝐺2

+ (1 + 𝜇(1 − 𝜂))
𝑡(𝑡 + 1)(2𝑡 + 1)𝜂2𝐺2

6

+ 9𝑚2

𝐾2

𝐾
∑

𝑘=1
(𝜎𝑇𝑘 )

2, (B.15)

where (𝑔) follows from 𝐹 ∗
𝑘 − 𝐹𝑘(𝑤̃

𝑇 ,𝜏
𝑘 ) ≤ 0. Rearranging Eq. (B.15) and

umming from 0 to 𝑇 , we have proved Theorem 2. □

ppendix C. Proof of Theorem 3

roof. We denote the global model parameter at aggregation 𝑇 by
̃ 𝑇+1 = 𝑤̃𝑇 − 𝛥𝑤𝑇 + 𝑅𝑇 , where 𝛥𝑤𝑇 = 𝜂

∑𝐾
𝑘=1

∑𝑡−1
𝜏=0

𝑛𝑘
𝑛 ∇𝐹𝑘(𝑤̃

𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 ).

Due to the smoothness of Assumption 1 and taking the expectation of
𝐹𝑘(𝑤̃𝑇+1) over randomness at the 𝑇 th aggregation, we have

[𝐹 (𝑤̃𝑇+1)] ≤𝐹 (𝑤̃𝑇 ) + ⟨∇𝐹 (𝑤̃𝑇 ),E[𝑅𝑇 − 𝛥𝑤𝑇 ]⟩ + 𝐿
2
E[‖𝑅𝑇 − 𝛥𝑤𝑇

‖

2]

(C.1)
≤𝐹 (𝑤̃𝑇 ) + ⟨∇𝐹 (𝑤̃𝑇 ),E[𝑅𝑇 − 𝛥𝑤𝑇 + 𝜂∇𝐹 (𝑤̃𝑇 ) − 𝜂∇𝐹 (𝑤̃𝑇 )]⟩

+ 𝐿
2
E[‖𝑅𝑇 − 𝛥𝑤𝑇

‖

2] (C.2)

≤𝐹𝑘(𝑤̃𝑇 ) + ⟨∇𝐹 (𝑤̃𝑇 ),E[𝜂∇𝐹 (𝑤̃𝑇 ) − 𝛥𝑤𝑇 ]⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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𝐴1
+ 𝐿
2
E[‖𝑅𝑇 − 𝛥𝑤𝑇

‖

2]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴2

+ 1
2
E‖𝑅𝑇

‖

2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐴3

+1
2
‖∇𝐹 (𝑤̃𝑇 )‖2 − 𝜂‖∇𝐹 (𝑤̃𝑇 )‖2. (C.3)

1 =⟨∇𝐹 (𝑤̃𝑇 ),E
[

𝜂∇𝐹 (𝑤̃𝑇 ) − 𝛥𝑤𝑇 ]
⟩ (C.4)

=⟨
√

𝜂𝑡∇𝐹 (𝑤̃𝑇 ),

√

𝜂
√

𝑡
E[

𝐾
∑

𝑘=1

𝑡−1
∑

𝜏=0

𝑛𝑘
𝑛
(∇𝐹𝑘(𝑤̃𝑇 ) − ∇𝐹𝑘(𝑤̃

𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 ))]⟩ (C.5)

(𝑏)
≤ 𝜂𝑡

2
‖∇𝐹 (𝑤̃𝑇 )‖2 +

𝜂
2𝑡
E
[

‖

𝐾
∑

𝑘=1

𝑡−1
∑

𝜏=0

𝑛𝑘
𝑛
(∇𝐹𝑘(𝑤̃𝑇 ) − ∇𝐹𝑘(𝑤̃

𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 ))‖

]2

(C.6)

(𝑐)
≤ 𝜂𝑡

2
‖∇𝐹 (𝑤̃𝑇 )‖2 +

𝜂𝐿2

2

𝐾
∑

𝑘=1

𝑡−1
∑

𝜏=1

𝑛𝑘
𝑛
E
[

‖𝑤̃𝑇 ,𝜏
𝑘 − 𝑤̃𝑇

‖

2]

≤ 𝜂𝑡
2
‖∇𝐹 (𝑤̃𝑇 )‖2 +

𝜂3𝐿2

2

𝐾
∑

𝑘=1

𝑡−1
∑

𝜏=0

𝑛𝑘
𝑛
E‖

𝜏
∑

𝑖=0
∇𝐹𝑘(𝑤̃

𝑇 ,𝑖
𝑘 , 𝜉𝑇 ,𝑖𝑘 )‖2 (C.7)

(𝑑)
≤ 𝜂𝑡

2
‖∇𝐹 (𝑤̃𝑇 )‖2 +

𝜂3𝐿2𝑡(𝑡 + 1)(2𝑡 + 1)
12

𝐺2, (C.8)

where (𝑏) follows from the Young inequality, and (𝑐) is due to Assump-
ion 1 and E‖

∑𝑛
𝑖=1 𝑥𝑖‖

2 ≤ 𝑛
∑𝑛

𝑖=1 E‖𝑥𝑖‖
2, and (𝑑) is due to Assumption 3.

Based on the relationship of the noise and the gradient and follow-
ng the Efron-Stein inequality, we have

2 =
𝐿
2
E[‖𝑅𝑇 − 𝛥𝑤𝑇

‖

2]≤𝑚2𝐿
2𝐾2

𝐾
∑

𝑘=1
(𝜎𝑇𝑘 )

2, (C.9)

where 𝑚 is the dimension of 𝑟𝑘.

𝐴3 =
1
2
E
[

‖𝑅𝑇
‖

2] ≤ 1
2
𝑐2𝜂2E

[

‖

𝐾
∑

𝑘=1

𝑡−1
∑

𝜏=0

𝑛𝑘
𝑛
∇𝐹𝑘(𝑤̃

𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 )‖

]

(C.10)

≤ 1
2
𝑐2𝜂2

𝐾
∑

𝑘=1

𝑛𝑘
𝑛
E
[

‖

𝑡−1
∑

𝜏=0
𝐹𝑘(𝑤̃

𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 )‖

]

(C.11)

≤ 1
2
𝑐2𝜂2𝑡

𝐾
∑

𝑘=1

𝑛𝑘
𝑛

𝑡−1
∑

𝜏=0
E
[

‖𝐹𝑘(𝑤̃
𝑇 ,𝜏
𝑘 , 𝜉𝑇 ,𝜏𝑘 )‖

]

(C.12)

≤ 1
2
𝑐2𝜂2𝑡2𝐺2 (C.13)

Substituting 𝐴1, 𝐴2, and 𝐴3 into Eq. (C.8), we have

[𝐹 (𝑤̃𝑇+1)] ≤𝐹 (𝑤̃𝑇 ) + (
1 + 𝜂𝑡 − 2𝜂

2
)‖∇𝐹 (𝑤̃𝑇 )‖2 +

𝜂3𝐿2𝑡(𝑡 + 1)(2𝑡 + 1)
12

𝐺2

+ 𝑚2𝐿
2𝐾2

𝐾
∑

𝑘=1
(𝜎𝑇𝑘 )

2 + 1
2
𝑐2𝜂2𝑡2𝐺2. (C.14)

Rearranging Eq. (C.14) and summing from 0 − 𝑇 , we have

𝑚𝑎𝑥
∑

𝑇=1

1 + 𝜂𝑡 − 2𝜂
2

‖∇𝐹 (𝑤̃𝑇 )‖2 ≤𝐹 (𝑤0) − 𝐹 (𝑤̃𝑇 ) +
𝜂3𝐿2𝑡(𝑡 + 1)(2𝑡 + 1)

12
𝑇𝐺2

+ 𝑚2𝐿𝑇
2𝐾2

𝐾
∑

𝑘=1
(𝜎𝑇𝑘 )

2 + 1
2
𝑇 𝑐2𝜂2𝑡2𝐺2, (C.15)

nd we get

min
∈[𝑇𝑚𝑎𝑥]

E‖∇𝐹 (𝑤̃𝑇 )‖2 ≤2(𝐹 (𝑤0) − 𝐹 (𝑤̃∗))
(1 + 𝜂𝑡 − 2𝜂)𝑇

+
𝜂3𝐿2𝑡(𝑡 + 1)(2𝑡 + 1)𝐺2

6(1 + 𝜂𝑡 − 2𝜂)

+
𝑚2𝐿

∑𝐾
𝑘=1(𝜎

𝑇
𝑘 )

2

𝐾2(1 + 𝜂𝑡 − 2𝜂)
+

𝑐2𝜂2𝑡2𝐺2

1 + 𝜂𝑡 − 2𝜂
. □ (C.16)
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