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Abstract

We consider the problem of learning the un-
derlying structure of a general discrete pair-
wise Markov network. Existing approaches
that rely on empirical risk minimization may
perform poorly in settings with noisy or
scarce data. To overcome these limitations,
we propose a computationally efficient and
robust learning method for this problem with
near-optimal sample complexities. Our ap-
proach builds upon distributionally robust
optimization (DRO) and maximum condi-
tional log-likelihood. The proposed DRO es-
timator minimizes the worst-case risk over
an ambiguity set of adversarial distribu-
tions within bounded transport cost or f-
divergence of the empirical data distribution.
We show that the primal minimax learning
problem can be efficiently solved by leverag-
ing sufficient statistics and greedy maximiza-
tion in the ostensibly intractable dual formu-
lation. Based on DRO’s approximation to
Lipschitz and variance regularization, we de-
rive near-optimal sample complexities match-
ing existing results. Extensive empirical evi-
dence with different corruption models cor-
roborates the effectiveness of the proposed
methods.

1 INTRODUCTION

Undirected graphical models, also known as Markov
random fields (MRFs) or Markov networks, are an
influential framework for modeling structured high-
dimensional probability distributions. The underly-
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ing graphical structure specifying the distribution en-
codes conditional independencies among a set of ran-
dom variables and provides valuable information about
their correlations. One of the core problems in graph-
ical models is structure learning, whose goal is to re-
cover the dependency graph with high confidence given
i.i.d. samples drawn from the distribution. A flurry
of work focuses on developing efficient algorithms for
structure learning of discrete pairwise and higher-order
MRFs (Vuffray et al., 2016; Klivans and Meka, 2017;
Hamilton et al., 2017; Wu et al., 2019; Vuffray et al.,
2020). These methods have almost exclusively made
the assumption that the samples are not contami-
nated. In practice, however, noisy data is prevalent
due to sensor failure, decentralized collection, or even
adversarial perturbation (Nikolakakis et al., 2019a).

Existing algorithms based on neighborhood selection
typically optimize a convex objective for each node to
find its adjacent nodes. This essentially becomes a
standard empirical risk minimization (ERM) problem
in statistical learning. Regularization is usually added
to the vanilla ERM objective to combat overfitting
and outlier data, which has been shown to be an im-
plicit way of restricting the hypothesis space (Bartlett
and Mendelson, 2002). Adopting different norms leads
to different regularization effects. For instance, the
ℓ1 norm imposes a strong prior assumption of spar-
sity and results in a non-smooth problem, while the
ℓ2 norm may not be effective in feature selection or
high-dimensional settings (Ng, 2004). In addition, the
regularizer is instinctively added without sound prob-
abilistic interpretation in most cases.

To alleviate the above issues, we put forward a dis-
tributionally robust optimization (DRO) approach for
solving a node-wise maximum log-likelihood problem
for structure learning of pairwise MRFs over a general
alphabet. The presence of data corruption and limited
sample sizes are of particular interest for our approach.
In contrast to regularized ERM that suppresses hy-
pothesis complexity, the DRO method makes no re-
striction on parameters to be optimized. To account
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for uncertainty about the true distribution due to noisy
finite samples, it explicitly constructs an ambiguity set
of distributions consistent with the true distribution
pertaining to certain a priori properties. The optimal
decision rule is then found by minimizing the worst-
case expected cost over the ambiguity set so that it
has the best performance evaluated by all adversar-
ial distributions in the set. If the true distribution is
included in the uncertainty set, it has implicitly opti-
mized the estimator on it. The worst-case risk thus
serves as an upper confidence bound on the true ex-
pected loss. An exponential number of outcomes in the
discrete probability space of MRFs makes the näıve
dual formulation based on the Wasserstein distance
NP-hard thus intractable. By exploiting the greedy
property of finding the worst-case risk, we reformu-
late the primal DRO problems based on the Wasser-
stein distance and Kullback–Leibler (KL) divergence
into efficiently solvable convex optimization problems.
Furthermore, the DRO approach has better probabilis-
tic elucidation than standard regularization. We show
that it encompasses both the ℓ2,1-constrained and ℓ2,1-
regularized logistic regression as special cases. It is
inherently robust due to explicitly modeling distribu-
tional uncertainty. Based on Lipschitz and variance
regularization, we derive near-optimal sample com-
plexities with an additional linear term with ambigu-
ity radius as its coefficient. Extensive experiments in
different settings including three contamination mod-
els are conducted to validate our method against the
state-of-the-art baseline (Wu et al., 2019), which is
hardly done in related work.

Contribution. Our contributions can be summarized
as follows. (1) We propose the first computationally ef-
ficient and robust structure learning approach for dis-
crete pairwise MRFs and prove that it subsumes ex-
isting methods as special cases. (2) We provide near-
optimal sample complexities that induce robustness
at little cost. (3) We conduct extensive experiments
on synthetic data, comparing our methods against the
state-of-the-art baseline.

1.1 Related Work

The MRF structure learning task plays an essential
role in applications in a number of areas such as statis-
tical mechanics (Chayes et al., 1984), computer vision
(Szeliski et al., 2006), sociology (Eagle et al., 2009)
and neuroscience (Schneidman et al., 2006).

There has been a rich body of work on structure learn-
ing of Ising models as well as non-binary higher-order
MRFs. The study of this problem was initiated by the
seminal work of Chow and Liu (1968) on the maximum
likelihood estimator of a tree-structured MRF. Early
attempts include hypothesis testing (Spirtes et al.,

2000), exhaustive neighborhood search (Bresler et al.,
2013) and regularized pseudo-likelihood (Ravikumar
et al., 2010; Jalali et al., 2011). Bresler (2015) put for-
ward a simple greedy algorithm that learns the struc-
ture of any sparse bounded-degree Ising models, which
was improved to near-optimal sample complexity (Vuf-
fray et al., 2016; Lokhov et al., 2018) and generalized to
arbitrary MRFs (Hamilton et al., 2017; Vuffray et al.,
2020). A multiplicative weight update approach called
Sparsitron, achieving near-optimal run-time and near-
optimal sample efficiency, was introduced by Klivans
and Meka (2017). Wu et al. (2019) revisited the clas-
sical regularized likelihood method (Ravikumar et al.,
2010) and made a slight improvement over the sample
complexity of Sparsitron with respect to dependence
on model width.

The Ising model structure learning problem under the
missing data setting was raised as an open problem
by Chen (2010). Preliminary unidentifiability results
on robust learning of Ising models were derived by
Lindgren et al. (2019). Provably robust binary Ising
model structure learning algorithms were developed
for independent failure corruption (Goel et al., 2019),
tree-structured Ising model (Nikolakakis et al., 2019a;
Katiyar et al., 2020), Huber’s contamination model
(Prasad et al., 2020) and total variation contamination
(Diakonikolas et al., 2021). Robust structure learn-
ing methods for non-binary MRFs were studied in
Nikolakakis et al. (2019b) and Katiyar et al. (2021)
by assuming a tree-shaped underlying graph. To the
best of our knowledge, there has been no robust struc-
ture learning algorithms for non-binary MRFs without
structural constraints on the true graph.

DRO approaches have been adopted to address many
statistical learning problems such as multivariate con-
vex regression (Blanchet et al., 2019), submodular
maximization (Staib et al., 2019) and more (Abadeh
et al., 2015; Nguyen et al., 2018; Si et al., 2020; Esfa-
hani and Kuhn, 2018; Farnia and Tse, 2016; Lee and
Raginsky, 2018; Nguyen et al., 2020a,b).

2 PRELIMINARIES

2.1 Notations

Throughout this manuscript, we denote by [n] the set
{1, 2, . . . , n} for n ∈ Z+. For a vector x ∈ Rn, we use
xi for its i-th coordinate, and let x−i ∈ Rn−1 represent
(xj : j ̸= i), xS ∈ R|S| represent (xi : i ∈ S), and
xi=c represent [x1, . . . , xi−1, c, xi+1, . . . , xn]

⊺ for some
c ∈ R. We follow the column vector convention and
write x⊺ ∈ R1×n as a row vector which is the transpose
of the column vector x ∈ Rn×1. The ℓp-norm of a
vector is indicated by ∥·∥p := (

∑
i |xi|p)1/p with | · |
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being the modulus. For a matrix A ∈ Rn×m, we use
Ai(,)j , Ai(,)∗ and A∗(,)j to denote its (i, j)-th entry, i-
th row and j-th column respectively, where comma is
sometimes omitted. The ℓp,q norm of A is computed
as ∥A∥p,q := ∥(∥Ai∗∥p : i ∈ [n])∥q. For two matrices
A,B ∈ Rn×m, the inner product of them is designated
by ⟨A,B⟩ ≜ Tr[A⊺B], while the Hadamard product is
written as A⊙B for element-wise multiplication. By a
slight abuse of notation, we use |A| or #A to indicate
the cardinality of a set A. We denote by T(x) ∈ Rn

a vector with non-decreasing components as a result
of sorting (xi : i ∈ [n]). We represent a vector with
all ones (zeroes) as 1 (0). Given a distribution P on
a set Ξ, we denote by Pm the m-fold product of P on
the Cartesian product Ξm. We use EP to represent the
expectation under P. The i-th standard basis vector

is written as v(i) with v
(i)
i = 1 and v

(i)
j = 0 for j ̸= i.

Denote V := {v(i) : i ∈ [k]} as the set of basis vectors
in Rk and V (n×k) ⊂ {0, 1}n×k as the set of all n × k
matrices whose rows are k-dimensional standard basis
vectors. The least d-Lipschitz constant of a function
f : Ξ → R is written as lipd(f) with a metric d.

2.2 Learning Pairwise Markov Networks over
General Alphabet

To begin with, we consider the definition of a general
discrete pairwise MRF.

Definition 1. Let k be the alphabet size. Let W =
{W (ij) ∈ Rk×k : i ̸= j ∈ [n]} be a collection of sym-
metric weight matrices and Θ = {θ(i) ∈ Rk : i ∈ [n]}
be a collection of external field vectors. Let G = (V, E)
be an undirected graph with nodes V = [n] and edges
E = {{i, j} ⊆ V : W (ij) ̸= 0}. Then the n-variable
pairwise undirected graphical model with underlying
dependency graph G is a distribution D ≡ D(W,Θ)
over [k]n such that

P
Z∼D(W,Θ)

[Z = z] ∝ exp

( ∑
i<j∈[n]

W (ij)
zizj +

∑
i∈[n]

θ(i)zi

)
.

Define the width of the model as λ(D) :=

supi∈[n],a∈[k]

(∑
j ̸=i∈[n] supb∈[k] |W

(ij)
ab | + |θ(i)a |

)
and the minimum edge weight as η(D) :=

inf{i,j}∈E supa,b∈[k] |W
(ij)
ab |.

We make the following assumptions on D(W,Θ).

Assumption 1. W (ij) has centered rows and

columns:
∑

a∈[k] W
(ij)
ab =

∑
b∈[k] W

(ij)
ab = 0.

Assumption 2. The model width is upper bounded
by a positive constant λ: λ(D) ≤ λ. The minimum
edge weight is lower bounded by a positive constant η :
η(D) ≥ η.

According to Fact 8.2 in Klivans and Meka (2017), As-
sumption 1 is made without loss of generality because
centering (W,Θ) leads to (W ′,Θ′) with the same dis-
tribution: D(W,Θ) = D(W ′,Θ′). One of the useful
properties induced by Assumption 2 is that the node-
wise conditional distributions are bounded away from
0 and 1. Although η is usually assumed to be known,
in practice it can be determined based on the tail of
the learned weights distribution in the vicinity of zero.

We note the following fact that the conditional distri-
butions of a pairwise MRF can be written as a logistic
function σ(x) := (1+ e−x)−1 if the dependent variable
is restricted to a pair of values.

Fact 1. Let Z ∼ D(W,Θ) be a discrete pairwise
graphical model over [k]n. For any i ∈ [n] and α ̸=
β ∈ [k], we have

P[Zi = α|Zi ∈ {α, β}, Z−i = z−i]

= σ(
∑
j ̸=i

(W (ij)
αzj −W

(ij)
βzj

) + θ(i)α − θ
(i)
β ) ≜ σ(⟨W̄ , Z̄⟩),

where W̄ ∈ Rn×k is defined as W̄i∗ := [θ
(i)
α − θ

(i)
β ,0⊺],

and W̄j∗ := W
(ij)
α∗ − W

(ij)
β∗ for j ̸= i ∈ [n]. Z̄ :=

OneHot(zi=1) ∈ V (n×k) encodes zi=1 such that Z̄i∗ =
v(1)⊺ and Z̄j∗ = v(zj)⊺ for j ̸= i.

The definition of W̄ implies ∥W̄∥2,1 ≤ 2λ
√
k. Let

{z̄(1), . . . , z̄(m)} iid∼ D(W,Θ) be a set of m samples

and {z(1), . . . , z(m′)} be its subset with z
(j)
i ∈ {α, β}.

Define y(j) = 1 if z
(j)
i = α and y(j) = −1 if z

(j)
i = β. In

order to estimate the graph parameters W, it is thus
natural to solve an ℓ2,1-constrained logistic regression
problem by minimizing the negative conditional log-
likelihood for each i ∈ [n] and α ̸= β ∈ [k] as follows:

Ŵ (iαβ) ∈ arg inf
W∈Rn×k,

∥W∥2,1≤2λ
√
k

1

m′

m′∑
j=1

ℓ(y(j)⟨W,OneHot(z
(j)
i=1)⟩),

(1)
where ℓ(x) := ln (1 + e−x) ≜ − lnσ(x) represents the
logistic loss function. Centering Ŵ (iαβ) as

U
(iαβ)
i∗ := Ŵ

(iαβ)
i∗ +

1

k

∑
j ̸=i∈[n],a∈[k]

Ŵ
(iαβ)
ja 1⊺ (2)

U
(iαβ)
j∗ := Ŵ

(iαβ)
j∗ − 1

k

∑
a∈[k]

Ŵ
(iαβ)
ja 1⊺ ∀j ̸= i,

yields a minimizer of Eq. (1) due to ⟨Ŵ (iαβ), Z̄⟩ =
⟨U (iαβ), Z̄⟩.

Finally, we can estimate the weight matrices W (ij) via

Ŵ
(ij)
α∗ :=

1

k

∑
β∈[k]

U
(αβ)
j∗ ∀j ̸= i ∈ [n], α ∈ [k]. (3)
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The edge set of the estimated dependency graph can
be formed by thresholding (Ravikumar et al., 2010;
Wu et al., 2019):

Ê := {{i, j} : ∥Ŵ (ij)∥∞ ≥ η/2, i < j ∈ [n]}. (4)

2.3 Distributionally Robust Learning

In classical statistical learning, we are given a class
P(Ξ) of probability measures supported on a measur-
able instance space Ξ as well as a class F of measurable
functions f : Z → R+, sometimes considered as the
hypothesis space, where each f ∈ F assigns a scalar
cost value to each instance ξ ∈ Ξ. Given a distribution
P ∈ P(Ξ), the goal is to infer a hypothesis f∗ whose
risk is minimum or nearly optimal with high confi-
dence, which is equivalent to a stochastic optimization
problem:

inf
f∈F

∫
Ξ

f(ξ)P(dξ). (5)

In practical terms, only a finite set of in-sample data
{ξ(1), . . . , ξ(m)} drawn i.i.d. from the unknown P is
accessible. On account of this, regularized ERM is
usually adopted to find a hypothesis function f̂ that
faithfully minimizes an approximate expected risk:

f̂ ∈ arg inf
f∈F

∫
Ξ

f(ξ)P̂m(dξ) + λ′Ω(f),

where P̂m = 1
m

∑m
i=1 δξ(i) with δξ(i) being the Dirac

point measure at ξ(i), Ω(·) represents a function quan-
tifying hypothesis complexities and λ′ is a trade-off
coefficient to combat overfitting.

Distributionally robust optimization provides an al-
ternative perspective to ERM. Because of limited in-
formation about the true data-generating distribution,
the DRO framework explicitly models uncertainty by
constructing an ambiguity set that contains the un-
known distribution with high confidence, based on
a nominal distribution. DRO seeks to minimize the
worst-case expected risk instead of the empirical risk:

inf
f∈F

sup
Q∈A

∫
Ξ

f(ξ)Q(dξ), (6)

where A ⊆ P(Ξ) is an ambiguity set. Intuitively, an
appropriate ambiguity set is expected to yield an effi-
ciently solvable optimization problem, a near-optimal
and asymptotically consistent estimator.

The ambiguity set A is typically taken as a ball of ra-
dius ε centered at a nominal measure: Bε(P) := {Q ∈
P(Ξ) : div(Q,P) ≤ ε}, where div(·, ·) measures the dis-
crepancy between two distributions. We consider two
popular choices of div(·, ·), based on the Wasserstein
metric and relative entropy.

Definition 2. Assume that Ξ is a Polish space
equipped with a metric d : Ξ × Ξ → R+. Denote by
P(Ξ) the space of all Borel probability measures on
Ξ, and by Pp(Ξ) the space of all P ∈ P(Ξ) with fi-
nite p-th moments for p ≥ 1. Let M(Ξ2) be the set
of probability measures on the product space Ξ × Ξ.
The p-Wasserstein distance between two distributions
P,Q ∈ Pp(Ξ) is defined as

Wp(P,Q) := inf
Π∈M(Ξ2)

{[∫
Ξ2

dp(ξ, ξ′)Π(dξ,dξ′)
] 1

p

:

Π(dξ,Ξ) = P(dξ),Π(Ξ,dξ′) = Q(dξ′)

}
.

Wasserstein distances arise in the problem of optimal
transport and can be interpreted as the minimum cost
of moving the probability measure P to Q with unit
transport costs specified by d(ξ, ξ′).

Definition 3. Let Q ∈ P(Ξ) be absolutely continuous

with respect to P ∈ P(Ξ). Let dQ(ξ)
dP(ξ) be the Radon-

Nikodym derivative. The Kullback-Leibler divergence
from Q to P is defined as

DKL(Q ∥ P) ≜
∫
Ξ

ln
dQ(ξ)

dP(ξ)
dQ(ξ).

The relative entropy, or KL divergence, arises in infor-
mation theory and is a well-known asymmetric mea-
sure of discrepancy between distributions.

3 DISTRIBUTIONALLY ROBUST
STRUCTURE LEARNING

We propose to reconstruct the structure of a discrete
pairwise undirected graphical model with a distribu-
tionally robust learning framework, inspired by the
ℓ2,1-constrained logistic regression approach and the
DRO framework. In this section, we present our DRO
formulation and its dual formulations that give rise to
tractable convex programs. We additionally show con-
nections of our method to regularized ERM as well as
ℓ2,1-constrained logistic regression. We defer all proofs
to the supplementary material.

3.1 Learning Discrete Pairwise Markov
Networks with DRO

In the setting where the in-sample data is sparse or
noisy, directly applying the sparse logistic regression
approach usually results in a problematic dependency
graph with missing or spiky edges due to overfitting.
In consideration of uncertainty about the unknown
true distribution, based on the logistic objective, we
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propose to learn pairwise MRFs by minimizing the
worst-case risk taken over an ambiguity set centered
at the empirical probability measure:

Definition 4. Let Ξ = X ×Y = V ((n−1)×k)×{−1, 1}.
Given m samples {z̄(1), . . . , z̄(m)} iid∼ D(W,Θ), the
goal of learning discrete pairwise MRFs with distribu-
tionally robust logistic regression is to find the optimal
Ŵ (iαβ) for each i ∈ [n] and α ̸= β ∈ [k] via minimax
statistical learning, formally,

Ŵ (iαβ) ∈ arg inf
W∈Rn×k

sup
Q∈Bε(P̂m′ )

∫
Ξ

ℓ(y⟨W,X⟩)Q(d(x, y)),

(7)
where X := [x⊺

1...i−1,∗, v
(1)⊺, x⊺

i...n−1,∗]
⊺ inserts the first

standard basis vector into the i-th row of x. P̂m′ is
the empirical distribution for a set of transformed m′

samples {ξ(1), . . . , ξ(m′)} such that, for any ξ(j
′) =

(x(j′), y(j
′)) ∈ Ξ, j′ ∈ [m′] and its corresponding origi-

nal sample z̄j , j ∈ [m], we have z̄
(j)
i ∈ {α, β}, y(j′) = 1

if z̄
(j)
i = α and y(j

′) = −1 if z̄
(j)
i = β, with x(j′) =

OneHot(z̄
(j)
−i ).

Note that if ε is set to zero, Eq. (7) reduces to an un-
constrained version of Eq. (1). More importantly, the
DRO formulation in Eq. (7) is an infinite-dimensional
optimization problem, which is generally impossible to
solve directly.

3.2 Tractable Reformulations

We show that the DRO problem in Definition 4 can be
solved efficiently via its dual formulations. The follow-
ing theorem presents a tractable convex reformulation
for the primal problem in Eq. (7) if a Wasserstein ball
is adopted as the ambiguity set.

Theorem 1. Let W1(·, ·) be the type-1 Wasser-
stein distance with p = 1 and metric d(ξ, ξ′) ≜
d((x, y), (x′, y′)) := ∥x − x′∥1,1 + κ

2 |y − y′| for ξ, ξ′ ∈
Ξ, κ ∈ R+. Let BW1

ε (P̂m′) := {Q ∈ P1(Ξ) :

W1(P̂m′ ,Q) ≤ ε = ε0√
m′ } be the ambiguity set. Then

the primal problem in Eq. (7) is equivalent to

inf
W∈Rn×k,

γ≥0

γε+
1

m′

m′∑
j=1

sup
0≤r≤n−1∈Z,
g∈{−1,1}

[−1

2
γκ(1 + gy(j))

− 2rγ + ln (1 + e⟨gW,X(j)⟩+⟨T(δ)1...r,1⟩)], (8)

where X(j) := [x
(j)⊺
1...i−1,∗, v

(1)⊺, x
(j)⊺
i...n−1,∗]

⊺, δ :=

[supl∈[k](gW )jl : j ̸= i ∈ [n]]⊺ − (gW−i,∗ ⊙ x(j))1,
and T(x) is defined as a vector with non-decreasing
components as a result of sorting x, introduced in Sec-
tion 2.1.

We give a proof sketch here. After decomposing the
Wasserstein constraint based on the label domain, the

Lagrangian dual problem of Eq. (7) includes an in-
ner maximization over a set of kΘ(n) discrete val-
ues: supg∈{−1,1},x∈V ((n−1)×k) ln (1 + eg⟨W,X⟩)−γ∥x(j)−
x∥1− 1

2γκ(1+gy(j)). This cannot be further simplified
via the Fenchel conjugate trick in Esfahani and Kuhn
(2018) due to the non-convexity of our distribution
support V ((n−1)×k). Instead, by noting the monotonic-

ity of e⟨gW,X(j)⟩+⟨T(δ)1...r,1⟩ by fixing ∥x(j) − x∥1 = 2r
satisfied by some x’s, we obtain the above convex
objective (8) with a sum of m′ point-wise maximum
functions of Θ(n) convex functions of the primal vari-
able W and the dual variable γ. The sorting opera-
tion required to evaluate T(·) can be accomplished in
Θ(n log n) for sub-derivative evaluation.

One of the benefits brought by the Wasserstein DRO
formulation is that it subsumes the ℓ2,1-constrained
(Wu et al., 2019) as well as regularized logistic re-
gression approaches (Ravikumar et al., 2010) as spe-
cial cases, as shown by the following theorem, which
implies that minimizing the classic objectives is not
enough to ensure distributional robustness:

Theorem 2. If κ = ∞, ∥W∥2,1 ≤ 2λ
√
k and γ ≥

(n + 2)λ
√
k, the convex program in (8) subsumes the

standard ℓ2,1-constrained logistic regression approach
in (1) as a special case. If κ = ∞ and γ ≥ n+2

2 ∥W∥2,1,
it subsumes the ℓ2,1-regularized logistic regression ap-
proach as a special case.

Intuitively, when κ = ∞, flipping y(j) causes infinite
transport cost. In this case, it is assumed that the
realization of each y(j) given x(j) is deterministic. In-
stead of taking into account the ambiguity only in the
covariate measure Q(dx), the Wasserstein DRO struc-
ture learning formulation grants flexibility to the joint
measure Q(dξ). Modeling joint measure uncertainty is
non-trivial here because all the random variables are
involved in the node-alphabet-wise distributionally ro-
bust logistic regression problem in Eq. (7).

If KL divergence is adopted to construct the ambiguity
set, a tractable convex program can be derived as a
corollary from Theorem 4 in Hu and Hong (2013):

Corollary 1. Let BKL
ε (P̂m′) := {Q ∈ P(Ξ) :

DKL(Q, P̂m′) ≤ ε = ε0
m′ } be a KL divergence ball. The

primal problem in Eq. (7) with Bε(P̂m′) = BKL
ε (P̂m′)

is equivalent to

inf
W∈Rn×k,

γ≥0

γ ln [
1

m′

m′∑
j=1

(1 + e−y(j)⟨W,X(j)⟩)
1
γ ] + γε. (9)

In contrast to the convex program with inner max-
imization in Eq. (8), the direct minimization prob-
lem in Eq. (9) based on KL divergence balls can be
solved more efficiently. This class of problems have
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been shown to recover adversarial reweighting (Li and
Dunson, 2020) and variance regularization (Duchi and
Namkoong, 2019).

4 THEORETICAL GUARANTEES

In this section, we study statistical properties of the
proposed estimators. More specifically, we derive gen-
eralization bounds, excess true risk bounds and sample
complexities of our methods.

It is non-trivial to quantify the number of samples
needed to recover the dependency graph with high
probability in a structure learning problem. An ini-
tial attempt we made is to leverage a 0-concentration
bound under 1-Wasserstein distance in the form of
Pm[W1(P, P̂m) ≥ ε] ≤ f(d, n, k,m, ε) to get a uni-
form upper confidence bound on the generalization
error. It turns out that even the most advanced
mean-concentration bounds O(m− 1

n ) (Lei et al., 2020;
Weed et al., 2019) with essentially optimal dependence
on data dimensionality n lead to a sample complex-
ity O(C

nk
2 ) with exponential dependence on n. The

cause of the issue might be that convergence of P̂m

to P is much slower than convergence of W1(P̂m,P) to
its mean EPm

W1(P̂m,P) in high dimensional settings
(p = 1 with large n). Hence the generalization bounds
obtained via measure concentration are too conserva-
tive to be useful in our case.

Instead, we consider the following lemma about a uni-
form generalization bound based on bounded Lipschitz
loss functions (Shalev-Shwartz and Ben-David, 2014)
and Rademacher complexities (Bartlett and Mendel-
son, 2002).

Lemma 1 (Lemma 11 in Wu et al. (2019)). Let D
be a distribution on X × Y, where X := {x ∈ Rn×k :
∥x∥2,∞ ≤ X2,∞} and Y := {−1, 1}. Let ℓ : R → R
be a loss function with Lipschitz constant Lℓ. De-
fine the expected loss as L(w) := EDℓ(y⟨w, x⟩) and
the empirical loss as L̂(w) := 1

m

∑m
i=1 ℓ(y

(i)⟨w, x(i)⟩),
where {x(i), y(i)}mi=1

iid∼ D. Define W := {w ∈ Rn×k :
∥w∥2,1 ≤ W2,1}. Then with probability at least 1 − ρ
over the draw of m samples, we have that for all
w ∈ W, 0 < ρ ≤ 1,

L(w)− L̂(w) ≤ C

√
24 ln (n)

m
+ C

√
2 ln (2/ρ)

m
,

where C = LℓX2,∞W2,1.

In order to get a sample complexity bound, we derive
an excess true risk bound for transport-based DRO es-
timators, in terms of generalization errors, which may
be of independent interest.

Proposition 1. Assume that (Ξ, d) is a Banach space,
Pp(Ξ) is the space of Borel probability measures on Ξ

with finite p-th moment for p ≥ 1, P̂m ∈ Pp(Ξ) is the

empirical measure for some P ∈ Pp(Ξ), A = B
Wp
ε (P̂m)

is a type-p Wasserstein ball centered at P̂m with radius
ε, F is a space of closed convex functions f : Ξ →
R+ with lipd(f) < ∞. Let f̂ be a minimizer of the
DRO problem in Eq. (6) and f∗ be a minimizer of the
stochastic optimization problem in Eq. (5), we have∫

Ξ

f̂(ξ)P(dξ)−
∫
Ξ

f∗(ξ)P(dξ) ≤ εlipd(f
∗)

+ 2 sup
f∈F

|
∫
Ξ

f(ξ)P(dξ)−
∫
Ξ

f(ξ)P̂m(dξ)|.

Hereupon, following the proofs of Lemma 2 and Theo-
rem 2 in Wu et al. (2019), we derive a sample complex-
ity bound for our Wasserstein DRO structure learning

method by upper bounding ∥W (ij)
α∗ −W

(ij)
β∗ −U

(iαβ)
j∗ ∥1

based on the excess risk bound in Proposition 1.

Theorem 3. Given that: D(W,Θ) is an unknown
pairwise Markov network with n variables, alphabet
size k, dependency graph G; that Assumptions 1 and 2
hold; that ∥W∥2,1 ≤ 2λ

√
k in Eq. (7); that W (ij) ∈ W

is the true weight matrix; and that Ŵ (ij) is the es-
timated weight matrix from Eq. (8) with the Wasser-
stein ambiguity set and properly centered (Section 2.2),
then, for any ρ ∈ (0, 1], ω > 0, n ∈ Z+ and
i ̸= j ∈ [n], if the number of i.i.d. samples satis-

fies m = O(
λ2k4e14λ(ε20+ln nk

ρ )

ω4 ), with probability at least
1− ρ, the following bound holds:

∥W (ij) − Ŵ (ij)∥∞,∞ ≤ ω.

Let ω < η
2 and Ĝ be reconstructed via thresholding in

Eq. (4). Now if m = O(
λ2k4e14λ(ε20+ln nk

ρ )

η4 ), with prob-

ability 1− ρ, we have G = Ĝ.

The sample complexity is in terms of an ℓ∞,∞ er-
ror bound to ensure that every true edge is recov-
ered. It shows that theoretically the number of sam-
ples needed to recover the true graph is polynomial
in 1

ω , k, ε0, ln
nk
ρ , but exponential in model width λ.

Similarly, we derive a sample complexity for the KL
divergence-based DRO estimator via variance regular-
ization (Lam, 2019) instead of Lipschitz regularization
(Cranko et al., 2020).

Theorem 4. Given assumptions in Theorem 3, except
that Ŵ (ij) is the estimated weight matrix from Eq. (9)
with the KL ambiguity set. Let Ĝ be constructed via
thresholding in Eq. (4). Then, for any ρ ∈ (0, 1], η >
0, ε < 1, n ∈ Z+ and i ̸= j ∈ [n], if the number of

i.i.d. samples satisfies m = O(
λ2k4e14λ(ε0+ln nk

ρ )

η4 ), with
probability at least 1− ρ, the following bound holds:

∥W (ij) − Ŵ (ij)∥∞,∞ <
η

2
=⇒ G = Ĝ.
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The two sample complexity bounds differ by a fac-
tor of ε0 because the Wasserstein ball radius is cho-
sen in the square root order 1√

m′ while the KL ball

radius decays in a non-asymptotic 1
m′ -rate. In prac-

tice, ε20 ≪ ln nk
ρ for Wasserstein DRO whereas ε0 for

KL DRO is not too larger than ln nk
ρ . Compared to

the state-of-the-art result O(
λ2k4e14λ ln nk

ρ

η4 ) (Wu et al.,

2019), our complexities have an additional term that

scales as O(λ
2k4e14λ

η4 ), weighted by ε0 or ε20. The re-

sult in Wu et al. (2019) is slightly better than that
in Vuffray et al. (2020) in the pairwise setting, even
though the latter is applicable to higher-order models.
If the radius is set to zero, we recover the non-robust
near-optimal bound (Wu et al., 2019) but the learned
graphical structure will be vulnerable to perturbation.
On the contrary, a larger radius corresponds to more
robustness at the risk of underfitting. On that account,
with a similar number of samples, the proposed esti-
mators have the statistical property of distributional
robustness at almost no cost. In the noisy-data set-
ting, the benefit with a little extra sample complexity
is obvious since non-robust methods may fail1.

The radius ε0 should be judiciously chosen with expec-
tation that the ambiguity set encompasses true distri-
bution with high confidence while excluding patholog-
ical distributions (Gao and Kleywegt, 2016). There
are two approaches to choosing the radius. One of
them is to select the best value based on empirical
cross-validation errors. The other one is to determine
the radius defining an ambiguity set that encompasses
the true distribution with a given confidence (e.g.,
1 − ρ = 0.95) based on concentration bounds of the
corresponding measures. The latter approach is more
theoretically sound but likely yielding a pessimistic ra-
dius.

5 EXPERIMENTS

We conduct a simulated study of synthetic data2 per-
turbed by the following contamination models:

Noiseless Model. The common setting with no con-
tamination to samples drawn from D(W,Θ).

Huber’s Contamination Model. Let De be an ar-
bitrary probability measure on [k]n. Each sample is

1The derived sample complexities are with respect to
clean data since we do not assume any specific contami-
nation models. Our approach can be considered as regu-
larization with better probabilistic and robust interpreta-
tion. Given recoverability and noisy data, a contamination
model usually has to be assumed in order to obtain a sam-
ple complexity for this kind of noise.

2Our code and data generator are publicly available at
https://github.com/DanielLeee/drslmarkov.

drawn i.i.d. from (1 − ζ)D + ζDe. We adopt the uni-
form distribution U([k]n) for De.

Independent Failure Model. Each entry is inde-
pendently randomly corrupted during sampling. We
consider a special case in our experiments where each
component zi ∈ [k] of z ∼ D is randomly replaced with
a different value with probability ζ.

Figure 1: The adopted underlying graphs. Two nodes
are connected to the others in the diamond graph. The
grid graph has d2 nodes. Each edge weight matrix is
centered with random values ±θ.

We adopt a diamond and a grid underlying graph, il-
lustrated in Figure 1, where each edge has a centered
weight matrix of random values ±θ. Since we com-
pute the true distribution exactly, it is impossible to
generate samples for large graph without approximate
methods such as Gibbs sampling3. We form different
setups by varying graph size n ∈ {6, 9, 12}, alphabet
size k ∈ {2, 4, 6}, edge weight θ ∈ {0.1, 0.2, 0.3}, noise
rate ζ ∈ {0, 0.1, 0.2, 0.3, 0.5} and contamination mod-
els. In each setup, we record the probability of success
among 100 runs, in which success means the estimated
graph is identical to the true graph4. At the beginning
of each run, we draw m i.i.d. samples from D(W,Θ)
with exact distribution, where m ∈ [1000, 10000]. Af-
terwards, the samples are corrupted accordingly and
provided as input to each algorithm.

We compare our methods against sparse logistic re-
gression with parameters suggested by Wu et al.
(2019), where the number of mirror descent itera-
tions is 50000. We tune our model hyperparameters
ε0, κ ∈ [0.01, 100] using a logarithmic scale on random

3This due to the memory and precision limit of modern
computers. Gibbs sampling and other Markov chain Monte
Carlo (MCMC) algorithms require very long mixing time
for good samples. Quantum computers yield good-quality
real-world samples but are inaccessible for the authors at
the time of writing.

4This corresponds to a zero-one loss evaluating com-
plete matching. However, there are feasible soft evaluation
metrics including the Hamming distance, measuring the
fraction of correctly recovered edges, and a statistical dis-
tance between distributions.

https://github.com/DanielLeee/drslmarkov
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Figure 2: Plots of the probability of successfully estimating the structure versus the number of samples for
Wasserstein DRO structure learning (WDRSL), KL DRO (KLDRSL) and sparse logistic regression (SLR). Top,
from left to right: (a) diamond, 4 classes, noiseless, θ = 0.2, varying nodes; (b) diamond, 6 nodes, 4 classes,
noiseless, varying θ; (c) diamond, 6 nodes, noiseless, θ = 0.2, varying classes. Bottom, from left to right: (d) grid,
9 nodes, 4 classes, θ = 0.2, varying noise models with ζ = 0.2; (e) grid, 9 nodes, 4 classes, θ = 0.2, independent
failure model, varying probability of noise; (f) grid, 9 nodes, 4 classes, θ = 0.2, Huber’s contamination model,
varying noise level.

graphs of same size as the target graph. The cho-
sen hyperparameters can be found in Appendix B. We
adopt L-BFGS-B (Byrd et al., 1995) in SciPy (Virta-
nen et al., 2020) as the optimizer. Default values are
adopted for unmentioned parameters. We conduct all
experiments on a laptop with an Intel Core i7 2.7 GHz
processor.

The results for comparing probabilities of success are
shown in Figure 2. Generally speaking, the proposed
two DRO approaches outperform ℓ2,1-constrained lo-
gistic regression (SLR) across all the experimental set-
tings by a large margin whereas the Wasserstein DRO
approach (WDRSL) further outperforms the KL DRO
approach (KLDRSL) significantly. Our method has
better scalability according to the upper part of Fig-
ure 2, where we vary the number of nodes, the model
width and the number of classes on the diamond graph.
For example, in the top right plot, for 6 classes, given
about 3000 samples, WDRSL is already able to re-
cover the graph with probability 90% while SLR can-
not achieve that even with more samples. The ad-
vantage can also be observed in the upper center plot
when θ = 0.3 with only 1000 samples. The results

on noiseless data are thus consistent with our analysis
on the probabilistic interpretation of DRO as a more
general alternative to standard regularization. The re-
sults in the bottom left plot of Figure 2 imply that,
with a similar perturbation budget, the independent
failure model is more powerful at corrupting data in
the structure learning setting. As we vary the proba-
bility of contaminating each entry independently (bot-
tom center plot), it becomes significantly more difficult
to learn the underlying graph. For example, even our
DRO methods that are inherently robust can hardly
succeed when ζ = 0.3. That being said, we still expect
there to be a large margin of performance comparison
between our method and SLR as more samples are
accessed. Under Huber’s contamination model with
50% data being noisy, we are still able to exactly re-
construct the structure with about a 50% chance. It
is noteworthy that in some cases such as 10% inde-
pendent failure, SLR outperforms KLDRSL probably
because of the equivalence of KL DRO to adversarial
reweighting and domination of pathological distribu-
tions. Despite not being comparable to WDRSL in
terms of success rate, KLDRSL is the most efficient
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Figure 3: Comparisons of the execution time of one run. θ = 0.2 and noiseless model are adopted in all settings.
κ = 1, ε0 = 33 for KLDRSL and ε0 = 1.5 for WDRSL. From left to right: (a) grid, 9 nodes, 4 classes, varying
samples; (b) diamond, 4 classes, varying nodes; (c) diamond, 3 nodes, varying classes.

one according to Figure 3, whereas WDRSL provides
a trade-off between computational efficiency and struc-
ture learning ability.

6 DISCUSSION AND
CONCLUSION

In this work, we developed distributionally robust ap-
proaches based on two ambiguity sets for structure
learning of pairwise MRFs with general alphabet from
sample data. We provided tractable dual reformula-
tions for the primal problems and showed their con-
nections to regularization schemes. We derived near-
optimal sample complexities and demonstrated consis-
tent benefits over sparse logistic regression. We con-
ducted empirical study which is lacking in the litera-
ture since most of the related work are purely theoret-
ical.

The per-iteration costs Õ(nk + n log n) and Õ(nk) in
terms of n and k to optimize our objectives may not be
further improved. However, faster overall convergence
rates (e.g., better than Õ(n2k2)) are possible if we re-
place L-BFGS-B with advanced optimization methods
designed for DRO (Yu et al., 2021; Namkoong and
Duchi, 2016). Although robust to a set of adversarial
distributions, our estimators may not be superior to
robust estimators tailored to a certain contamination
model if they can be generalized to non-binary MRFs.
Despite absolute continuity, KL divergence usually al-
lows a DRO problem to have a simple dual problem
and good statistical guarantees, which was shown in
this work. It would be interesting to extend our ap-
proaches to learning continuous or higher-order MRFs.

Potential negative societal impacts of our work depend
on applications. For example, the structure of a pri-
vate network could be revealed if the underlying graph

satisfies certain assumptions. For voting network anal-
ysis, our method can help understand relation between
voters. However, without appropriate tuning, the re-
covered structure could mislead specific decisions. Its
robustness could also filter out outlier data that are
possibly representative of minority groups.
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Supplementary Material:
Distributionally Robust Structure Learning for Discrete Pairwise

Markov Networks

A OPTIMIZATION DETAILS

This section describes the sub-gradients of the DRO objective functions in the paper for readers who are interested
in implementation details. The algorithmic details are illustrated in Algorithm 1.

For the DRO dual problem based on the Wasserstein ambiguity set, we have the objective function

f(W,γ) := γε+
1

m′

m′∑
j=1

sup
0≤r≤n−1,
g∈{−1,1}

−2rγ − 1

2
γκ(1 + gy(j)) + ln (1 + e⟨gW,X(j)⟩+⟨T(δ)1...r,1⟩).

Assume that the inner supremum is achieved at r(j∗) and g(j∗) for j ∈ [m′]. A sub-derivative is

1

m′

m′∑
j=1

σ(g(j∗)⟨W,X(j)⟩+ ⟨T(δ)1...r(j∗) ,1⟩)g(j∗)X(j) ∈ ∂

∂W
f

ε+
1

m′

m′∑
j=1

−2r(j∗) − 1

2
κ(1 + g(j∗)y(j)) ∈ ∂

∂γ
f,

where, for each g ∈ {−1, 1}, r(j∗) can be found in Θ(n log n) by replacing the rows of X(j) with the basis vector
for the row-wise maximum element in gW according to δ.

For the DRO dual problem based on the KL ambiguity set, we have the objective function:

f(W,γ) := γ ln
( 1

m′

m′∑
j=1

(1 + e−y(j)⟨W,X(j)⟩)
1
γ
)
+ γε,

one of whose sub-derivatives is∑m′

j=1 e
ℓW (ξ(j))/γ · σ(−y(j)⟨W,X(j)⟩) · (−y(j)X(j))∑m′

j=1 e
ℓW (ξ(j))/γ

∈ ∂

∂W
f

ln (
1

m′

m′∑
j=1

eℓW (ξ(j))/γ)−
∑m′

j=1 e
ℓW (ξ(j))/γ · ℓW (ξ(j))

γ
∑m′

j=1 e
ℓW (ξ(j))/γ

+ ε ∈ ∂

∂γ
f,

where ℓW (ξ) := ℓ(y⟨W, [x⊺
1...i−1,∗, v

(1)⊺, x⊺
i...n−1,∗]

⊺⟩).

We can use any optimization algorithm able to leverage sub-gradients to solve these two problems.

B EXPERIMENTAL DETAILS

For reproducibility, the optimal hyperparameters, specifically the ambiguity radius values ε, chosen by grid search
on a random graph of the same size as the target graph, are shown in Table 1.

C TECHNICAL PROOFS IN SECTION 3

Theorem 1. Let W1(·, ·) be the type-1 Wasserstein distance with p = 1 and metric d(ξ, ξ′) ≜ d((x, y), (x′, y′)) :=

∥x − x′∥1,1 + κ
2 |y − y′| for ξ, ξ′ ∈ Ξ, κ ∈ R+. Let BW1

ε (P̂m′) := {Q ∈ P1(Ξ) : W1(P̂m′ ,Q) ≤ ε = ε0√
m′ } be the
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Algorithm 1 Structure Learning of Discrete Pairwise Graphical Models

Input: Alphabet size k; number of variables n; sample data {z̄(1), . . . , z̄(m)}; model width λ; minimum edge
weight η
Output: Recovered edge set Ê
for all (i, α, β) ∈ [n]× [k]× [k] do
Form a subset {z(1), . . . , z(m′)} with zji ∈ {α, β}∀j ∈ [m′]

Compute Ŵ (iαβ) by Eq. (1) or Eq. (8)
Centering Ŵ (iαβ) by Eq. (2)
Estimate the weight matrices W (ij) by Eq. (3)
Estimate the edge set Ê by Eq. (4)

end for

ambiguity set. Then the primal problem in Eq. (7) is equivalent to

inf
W∈Rn×k,

γ≥0

γε+
1

m′

m′∑
j=1

sup
0≤r≤n−1∈Z,
g∈{−1,1}

−2rγ − 1

2
γκ(1 + gy(j)) + ln (1 + e⟨gW,X(j)⟩+⟨T(δ)1...r,1⟩),

where X(j) := [x
(j)⊺
1...i−1,∗, v

(1)⊺, x
(j)⊺
i...n−1,∗]

⊺, δ := [supl∈[k](gW )jl : j ̸= i ∈ [n]]⊺ − (gW−i,∗ ⊙ x(j))1, and T(x) is
defined as a vector with non-decreasing components as a result of sorting x, introduced in Section 2.1.

Proof. Recall that Ξ = V ((n−1)×k) × {−1, 1} where V ((n−1)×k) is the set of matrices with rows of basis vectors.
To avoid clutter of notations, we define ℓW (ξ) := ℓ(y⟨W, [x⊺

1...i−1,∗, v
(1)⊺, x⊺

i...n−1,∗]
⊺⟩). Similar to Abadeh et al.

(2015), we rewrite the worst-case risk in Equation (7) as

sup
Q∈Bε(P̂m′ )

∫
Ξ

ℓW (ξ′)Q(dξ′) =


sup

Π∈M(Ξ2)

∫
Ξ

ℓW (ξ′)Π(Ξ,dξ′)

s.t.

∫
Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ε

Π(dξ,Ξ) = P̂m′(dξ).

Plugging Π(dξ,dξ′) = 1
m′

∑m′

j=1 δξ(j)(dξ)Q(j)(dξ′) into the above expression yields

sup
Q(j)

1

m′

m′∑
j=1

∫
Ξ

ℓW (ξ′)Q(j)(dξ′)

s.t.
1

m′

m′∑
j=1

∫
Ξ

d(ξ(j), ξ′)Q(j)(dξ′) ≤ ε∫
Ξ

Q(j)(dξ′) = 1,∀j ∈ [m′].

(10)

By defining Q(j)
±1(dx) := Q(j)(d(x,±1)), we are able to decompose Q(j)(dξ) based on the value of y as

Q(j)(dξ) = Q(j)
−1(dx) +Q(j)

+1(dx),

which can simplify (10) to

sup
Q(j)

±1

1

m′

m′∑
j=1

∫
V ((n−1)×k)

ℓW ((x′,−1))Q(j)
−1(dx

′) + ℓW ((x′,+1))Q(j)
+1(dx

′)

s.t.
1

m′

m′∑
j=1

∫
V ((n−1)×k)

d(ξ(j), (x′,−1))Q(j)
−1(dx

′) + d(ξ(j), (x′,+1))Q(j)
+1(dx

′) ≤ ε∫
V ((n−1)×k)

Q(j)
−1(dx

′) +Q(j)
+1(dx

′) = 1,∀j ∈ [m′].
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Table 1: Optimal radii of ambiguity sets in all settings of our experiments.

METHOD GRAPH n k θ ζ NOISE MODEL ε∗0

KLDRSL Diamond 6 4 0.2 0.2 Noiseless 20
WDRSL Diamond 6 4 0.2 0.2 Noiseless 1.2
KLDRSL Diamond 9 4 0.2 0.2 Noiseless 26
WDRSL Diamond 9 4 0.2 0.2 Noiseless 1.2
KLDRSL Diamond 12 4 0.2 0.2 Noiseless 28
WDRSL Diamond 12 4 0.2 0.2 Noiseless 1.5
KLDRSL Diamond 6 4 0.1 0.2 Noiseless 18
WDRSL Diamond 6 4 0.1 0.2 Noiseless 1.2
KLDRSL Diamond 6 4 0.3 0.2 Noiseless 26
WDRSL Diamond 6 4 0.3 0.2 Noiseless 1.2
KLDRSL Diamond 6 2 0.2 0.2 Noiseless 1
WDRSL Diamond 6 2 0.2 0.2 Noiseless 0.1
KLDRSL Diamond 6 6 0.2 0.2 Noiseless 55
WDRSL Diamond 6 6 0.2 0.2 Noiseless 2.0
KLDRSL Grid 9 4 0.2 0.2 Noiseless 33
WDRSL Grid 9 4 0.2 0.2 Noiseless 1.5
KLDRSL Grid 9 4 0.2 0.2 Huber 17
WDRSL Grid 9 4 0.2 0.2 Huber 1.1
KLDRSL Grid 9 4 0.2 0.3 Huber 12
WDRSL Grid 9 4 0.2 0.3 Huber 0.9
KLDRSL Grid 9 4 0.2 0.5 Huber 1
WDRSL Grid 9 4 0.2 0.5 Huber 0.3
KLDRSL Grid 9 4 0.2 0.1 Independent 14
WDRSL Grid 9 4 0.2 0.1 Independent 1.0
KLDRSL Grid 9 4 0.2 0.2 Independent 3
WDRSL Grid 9 4 0.2 0.2 Independent 0.5
KLDRSL Grid 9 4 0.2 0.3 Independent 0.02
WDRSL Grid 9 4 0.2 0.3 Independent 0.04

By substituting the metric definition into the above expressions, we rewrite them as



sup
Q(j)

±1

1

m′

m′∑
j=1

∫
V ((n−1)×k)

ℓW ((x′,−1))Q(j)
−1(dx

′) + ℓW ((x′,+1))Q(j)
+1(dx

′)

s.t.
1

m′

∫
V ((n−1)×k)

κ
∑

j:y(j)=−1

Q(j)
+1(dx

′) + κ
∑

j:y(j)=+1

Q(j)
−1(dx

′)

+

m′∑
j=1

∥x(j) − x′∥1(Q(j)
−1(dx

′) +Q(j)
+1(dx

′)) ≤ ε∫
V ((n−1)×k)

Q(j)
−1(dx

′) +Q(j)
+1(dx

′) = 1,∀j ∈ [m′].
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Its Lagrange dual problem is as follows:

inf
γ,s(j)

γε+
1

m′

m′∑
j=1

s(j)

s.t. sup
x′∈V ((n−1)×k)

ℓW ((x′,−1))− γ∥x(j) − x′∥1 −
1

2
γκ(1 + y(j)) ≤ s(j) ∀j ∈ [m′]

sup
x′∈V ((n−1)×k)

ℓW ((x′,+1))− γ∥x(j) − x′∥1 −
1

2
γκ(1− y(j)) ≤ s(j) ∀j ∈ [m′]

γ ≥ 0.

Strong duality holds according to Theorem 1 in Gao and Kleywegt (2016). By incorporating the outer minimiza-
tion of Equation (7), plugging in the expression of ℓW (·) and rearranging the terms in the above expressions, we
have

inf
W∈Rn×k,

γ≥0

γε+
1

m′

m′∑
j=1

sup
x∈V ((n−1)×k),

g∈{−1,1}

ln (1 + eg⟨W,X⟩)− γ∥x(j) − x∥1 −
1

2
γκ(1 + gy(j)),

where X = [x⊺
1...i−1,∗, v

(1)⊺, x⊺
i...n−1,∗]

⊺. The objective of the above convex program is the sum of m′ point-wise

maximum functions of 2kn−1 convex functions. We now consider the following function of x:

h(x) = ln (1 + eg⟨W,X⟩)− γ∥x(j) − x∥1 −
1

2
γκ(1 + gy(j)).

Let X(j) := [x
(j)⊺
1...i−1,∗, v

(1)⊺, x
(j)⊺
i...n−1,∗]

⊺ and δ := [supl∈[k](gW )jl : j ̸= i ∈ [n]]⊺ − (gW−i,∗ ⊙ x(j))1. As a result,

δ ∈ Rn−1 is a vector of differences between the maximum and the selected element according to x(j) for each row
of W−i,∗. Denote by B = (b1, . . . , bn−1) a permutation of [n− 1] satisfying δb1 ≥ δb2 ≥ · · · ≥ δbn−1

. It is thus not

hard to show that, for any integer 0 ≤ r ≤ n− 1, and x ∈ V ((n−1)×k) that satisfies ∥x(j) − x∥1 = 2r, we have

sup
x∈V ((n−1)×k),

∥x(j)−x∥1=2r

h(x) = ln (1 + e⟨gW,X(j)⟩+
∑r

u=1 δbu )− 2rγ − 1

2
γκ(1 + gy(j)),

where
∑r

u=1 δbu is simply the sum of the first r largest elements of δ. Note that if δbr ≤ 0 for some r ∈ [n− 1],
we always have

ln (1 + e⟨gW,X(j)⟩+
∑r

u=1 δbu )− 2rγ ≥ ln (1 + e⟨gW,X(j)⟩+
∑r′

u=1 δbu )− 2r′γ,∀r ≤ r′.

So only the positive elements in δ is of interest to finding the supremum. As a consequence, the objective of the
dual problem can be rewritten as the point-wise maximum over 2n convex functions as follows:

inf
W∈Rn×k,

γ≥0

γε+
1

m′

m′∑
j=1

sup
0≤r≤n−1,
g∈{−1,1}

−2rγ − 1

2
γκ(1 + gy(j)) + ln (1 + e⟨gW,X(j)⟩+

∑r
u=1 δbu ).

To characterize the sequence of the sorted indices in B more formally, we have defined T(x) as a vector of sorted
components of x in Section 2. In such matter, we can reformulate the above convex program as

inf
W∈Rn×k,

γ≥0

γε+
1

m′

m′∑
j=1

sup
0≤r≤n−1,
g∈{−1,1}

−2rγ − 1

2
γκ(1 + gy(j)) + ln (1 + e⟨gW,X(j)⟩+⟨T(δ)1...r,1⟩).

Theorem 2. If κ = ∞, ∥W∥2,1 ≤ 2λ
√
k and γ ≥ (n+2)λ

√
k, the convex program in (8) subsumes the standard

ℓ2,1-constrained logistic regression approach in (1) as a special case. If κ = ∞ and γ ≥ n+2
2 ∥W∥2,1, it subsumes

the ℓ2,1-regularized logistic regression approach as a special case.
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Proof. To begin with, we rewrite Eq. (8) based on the cases where g = y(j) and g = −y(j):

inf
W∈Rn×k,

γ≥0

γε+
1

m′

m′∑
j=1

sup
0≤r≤n−1

{−2rγ + ln (1 + e⟨−y(j)W,X(j)⟩+⟨T(δ)1...r,1⟩),

− 2rγ − γκ+ ln (1 + e⟨y
(j)W,X(j)⟩+⟨T(δ)1...r,1⟩)}.

Assume that γ > 0. Since κ = ∞, the second expression in the supremum makes the entire objective goes to
−∞, thus dominated by the first expression. Hence it can be simplified as

inf
W∈Rn×k,

γ>0

γε+
1

m′

m′∑
j=1

sup
0≤r≤n−1

−2rγ + ln (1 + e⟨−y(j)W,X(j)⟩+⟨T(δ)1...r,1⟩). (11)

If γ ≥ (n+ 2)λ
√
k > 0, ∥W∥2,1 ≤ 2λ

√
k and n, k ∈ Z+, then for any X ∈ V (n×k), we have

∥W∥∞ ≜ ∥W∥∞,∞ ≤ ∥W∥2,∞ ≤ ∥W∥2,1 ≤ 2λ
√
k ≤ 2γ/(n+ 2)

=⇒e∥W∥∞(n+2) ≤ e2γ

=⇒e2∥W∥∞(n+2) ≤ e2γ+∥W∥∞(n+2)

=⇒e2∥W∥∞(n+2) − (e2γ − 1)e∥W∥∞(n+2) − e2γ ≤ 0

=⇒e∥W∥∞(n+2) − e2γ−∥W∥∞(n+2) ≤ e2γ − 1

=⇒e∥W∥∞(n+2) − e2γ−∥W∥∞n ≤ e2γ − 1

=⇒e∥W∥∞(n+2) ≤ e2γ + e2γ−∥W∥∞n − 1

=⇒∥W∥∞ ≤ 1

2
[ln (e2γ + e2γ−∥W∥∞n − 1)− ∥W∥∞n]

≤ 1

2
[ln (e2γ + e2γ+⟨W,X⟩ − 1)− ⟨W,X⟩]

=⇒e⟨W,X⟩+2∥W∥∞ ≤ e2γ + e⟨W,X⟩+2γ − 1

=⇒1 + e⟨W,X⟩+2∥W∥∞

1 + e⟨W,X⟩ ≤ e2γ

=⇒ ln (1 + e⟨W,X⟩+2∥W∥∞)− ln (1 + e⟨W,X⟩) ≤ 2γ.

Therefore, the supremum in Eq. (11) is achieved only when r = 0. Finally, Eq. (11) can be rewritten as the
following convex program: 

inf
W

1

m′

m′∑
j=1

ln (1 + e−y(j)⟨W,X(j)⟩)

s.t. ∥W∥2,1 ≤ 2λ
√
k,

which coincides with the ℓ2,1-constrained logistic regression problem in Eq. (1).

On the other hand, if γ ≥ n+2
2 ∥W∥2,1, by following the above same process, the supremum in Eq. (11) is

achieved only when r = 0. Note that only the first term in Eq.(11) is related to γ. After minimizing over γ, we
can rewrite Eq.(11) as

inf
W∈Rn×k

(n+ 2)ε

2
∥W∥2,1 +

1

m′

m′∑
j=1

ln (1 + e−y(j)⟨W,X(j)⟩),

which is a standard ℓ2,1-regularized logistic regression problem with λ′ = (n+2)ε
2 .

Corollary 1. Let BKL
ε (P̂m′) := {Q ∈ P(Ξ) : DKL(Q, P̂m′) ≤ ε = ε0

m′ } be a KL divergence ball. The primal

problem in Eq. (7) with Bε(P̂m′) = BKL
ε (P̂m′) is equivalent to

inf
,γ≥0

γ ln
( 1

m′

m′∑
j=1

(1 + e−y(j)⟨W,X(j)⟩)
1
γ
)
+ γε.
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Proof. The problem we study satisfies Assumption 1 in Hu and Hong (2013) because ℓ(ξ) has finite support

on Ξ. Substituting P0 = P̂m′ and H(x, ξ) = ℓ(y⟨W,X⟩) into Theorem 4 in Hu and Hong (2013) leads to our
result.

D TECHNICAL PROOFS IN SECTION 4

Lemma 1 (Lemma 11 in Wu et al. (2019)). Let D be a distribution on X ×Y, where X := {x ∈ Rn×k : ∥x∥2,∞ ≤
X2,∞} and Y := {−1, 1}. Let ℓ : R → R be a loss function with Lipschitz constant Lℓ. Define the expected loss

as L(w) := EDℓ(y⟨w, x⟩) and the empirical loss as L̂(w) := 1
m

∑m
i=1 ℓ(y

(i)⟨w, x(i)⟩), where {x(i), y(i)}mi=1
iid∼ D.

Define W := {w ∈ Rn×k : ∥w∥2,1 ≤ W2,1}. Then with probability at least 1− ρ over the draw of m samples, we
have that for all w ∈ W, 0 < ρ ≤ 1,

L(w)− L̂(w) ≤ 2LℓX2,∞W2,1

√
6 ln (n)

m
+ LℓX2,∞W2,1

√
2 ln (2/ρ)

m
.

Proof. Please refer to Lemma 11 in Wu et al. (2019) for the proof.

Proposition 1. Assume that (Ξ, d) is a Banach space, Pp(Ξ) is the space of Borel probability measures on Ξ

with finite p-th moment for p ≥ 1, P̂m ∈ Pp(Ξ) is the empirical measure for some P ∈ Pp(Ξ), A = B
Wp
ε (P̂m)

is a type-p Wasserstein ball centered at P̂m with radius ε, F is a space of closed convex functions f : Ξ → R+

with lipd(f) < ∞. Let f̂ be a minimizer of the DRO problem in Eq. (6) and f∗ be a minimizer of the stochastic
optimization problem in Eq. (5), we have

∫
Ξ

f̂(ξ)P(dξ)−
∫
Ξ

f∗(ξ)P(dξ) ≤ εlipd(f
∗) + 2 sup

f∈F
|
∫
Ξ

f(ξ)P(dξ)−
∫
Ξ

f(ξ)P̂m(dξ)|.

Proof. To avoid clutter of notations, we define B(P) := B
Wp
ε (P).

According to Theorem 1 in Cranko et al. (2020), the following relation holds for any f ∈ F and a fixed P ∈ Pp(Ξ):

∫
Ξ

f(ξ)P(dξ) ≤ sup
Q∈B(P)

∫
Ξ

f(ξ)Q(dξ) ≤
∫
Ξ

f(ξ)P(dξ) + εlipd(f).

Note that we are given a worst-case risk minimizer f̂ defined as

f̂ ∈ arg inf
f∈F

sup
Q∈B(P̂m)

∫
Ξ

f(ξ)Q(dξ),

and a true risk minimizer f∗ defined as

f∗ ∈ arg inf
f∈F

∫
Ξ

f(ξ)P(dξ).
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As a result of uniform boundedness, we have

|
∫
Ξ

f̂(ξ)P(dξ)−
∫
Ξ

f∗(ξ)P(dξ)|

=

∫
Ξ

f̂(ξ)P(dξ)−
∫
Ξ

f∗(ξ)P(dξ)

=

∫
Ξ

f̂(ξ)P(dξ)− sup
Q∈B(P̂m)

∫
Ξ

f̂(ξ)Q(dξ) + sup
Q∈B(P̂m)

∫
Ξ

f̂(ξ)Q(dξ)

− sup
Q∈B(P̂m)

∫
Ξ

f∗(ξ)Q(dξ) + sup
Q∈B(P̂m)

∫
Ξ

f∗(ξ)Q(dξ)−
∫
Ξ

f∗(ξ)P(dξ)

≤
∫
Ξ

f̂(ξ)P(dξ)− sup
Q∈B(P̂m)

∫
Ξ

f̂(ξ)Q(dξ) + sup
Q∈B(P̂m)

∫
Ξ

f∗(ξ)Q(dξ)−
∫
Ξ

f∗(ξ)P(dξ)

≤
∫
Ξ

f̂(ξ)P(dξ)−
∫
Ξ

f̂(ξ)P̂m(dξ) +

∫
Ξ

f∗(ξ)P̂m(dξ) + εlipd(f
∗)−

∫
Ξ

f∗(ξ)P(dξ)

≤εlipd(f
∗) + 2 sup

f∈F
|
∫
Ξ

f(ξ)P(dξ)−
∫
Ξ

f(ξ)P̂m(dξ)|.

Theorem 3. Given that: D(W,Θ) is an unknown pairwise Markov network with n variables, alphabet size k,
dependency graph G; that Assumptions 1 and 2 hold; that ∥W∥2,1 ≤ 2λ

√
k in Eq. (7); that W (ij) ∈ W is the

true weight matrix; and that Ŵ (ij) is the estimated weight matrix from Eq. (8) with the Wasserstein ambiguity
set and properly centered (Section 2.2), then, for any ρ ∈ (0, 1], ω > 0, n ∈ Z+ and i ̸= j ∈ [n], if the number of

i.i.d. samples satisfies m = O(
λ2k4e14λ(ε20+ln nk

ρ )

ω4 ), with probability at least 1− ρ, the following bound holds:

∥W (ij) − Ŵ (ij)∥∞,∞ ≤ ω.

Let ω < η
2 and Ĝ be reconstructed via thresholding in Eq. (4). Now if m = O(

λ2k4e14λ(ε20+ln nk
ρ )

η4 ), with probability

1− ρ, we have G = Ĝ.

Proof. We use P to denote the true distribution and P̂m′ to represent the empirical distribution. Define ℓW (ξ) :=
ℓ(y⟨W, [x⊺

1...i−1,∗, v
(1)⊺, x⊺

i...n−1,∗]
⊺⟩).

We follow the proof of Theorem 2 in Wu et al. (2019) by starting with upper bounding the excess true risk.

By Assumption 2, we have ∥W̄∥2,1 ≤ 2λ
√
k for all i ∈ [n], α ̸= β ∈ [k], where W̄ is defined in Fact 1 based on

the true weight matrices W. By the assumptions stated in this theorem, Ŵ (iαβ) in Eq. (7) should also satisfy
∥Ŵ (iαβ)∥2,1 ≤ 2λ

√
k. The one-hot matrices Z̄ in Fact 1 and X in Eq. (7) satisfy ∥Z̄∥2,∞ ≤ 1, ∥X∥2,∞ ≤ 1 by

definition. The logistic loss function ℓ(·) has a Lipschitz constant of 1.

According to Lemma 1, for all W ∈ Rn×k that satisfy ∥W∥2,1 ≤ 2λ
√
k,

Pm′

{
EP[ℓW (ξ)]− EP̂m′ [ℓW (ξ)] ≤ 2λ

√
k(2

√
6 ln (n)

m′ +

√
2 ln (2/ρ)

m′ )

}
≥ 1− ρ. (12)

Define W (iαβ) ∈ Rn×k as W
(iαβ)
i∗ := [θ

(i)
α − θ

(i)
β ,0⊺], and W

(iαβ)
j∗ := W

(ij)
α∗ − W

(ij)
β∗ for j ̸= i ∈ [n]. Recall that

Ŵ (iαβ) is a minimizer of Eq. (7) with a Wasserstein ball:

Ŵ (iαβ) ∈ arg inf
W∈Rn×k

sup
Q∈B

W1
ε (P̂m′ )

EQ[ℓW (ξ)].

By Proposition 1,

EP[ℓŴ (iαβ)(ξ)]− EP[ℓW (iαβ)(ξ)] ≤ 2λ
√
kε+ 2 sup

W :∥W∥2,1≤2λ
√
k

|EP[ℓW (ξ)]− EP̂m′ [ℓW (ξ)]|,
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which can be combined with Eq. (12) and the definition ε = ε0/
√
m′, yielding

Pm′

{
EP[ℓŴ (iαβ)(ξ)]− EP[ℓW (iαβ)(ξ)] ≤ 2λ

√
k(

ε0√
m′

+ 4

√
6 ln (n)

m′ + 2

√
2 ln (2/ρ)

m′ )

}
≥1− ρ.

Therefore, there exists a global constant C > 0 such that if m′ =
Cλ2k(ε20+ln 2n

ρ )

4ω2 , with probability at least 1− ρ,

EP[ℓŴ (iαβ)(ξ)]− EP[ℓW (iαβ)(ξ)] ≤ 2ω.

Using Lemma 9 and Lemma 10 in Wu et al. (2019), if the number of samples satisfies m′ = O(
λ2k(ε20+ln n

ρ )

ω2 ), with
probability at least 1− ρ,

EP[σ(⟨W (iαβ), x⟩)− σ(⟨Ŵ (iαβ), x⟩)]2

≤EPDKL(σ(⟨W (iαβ), x⟩) ∥ σ(⟨Ŵ (iαβ), x⟩))/2

≤1

2
(EP[ℓŴ (iαβ)(ξ)]− EP[ℓW (iαβ)(ξ)])

≤ω.

Now fix some i ∈ [n], α ̸= β ∈ [k]. Denote by m(iαβ) the number of samples in which z̄ji ∈ {α, β}. Recall that

U (iαβ), the centered version of Ŵ (iαβ), satisfies ⟨Ŵ (iαβ), x⟩ = ⟨U (iαβ), x⟩. As a result, ifm(iαβ) = O(
λ2k(ε20+ln n

ρ )

ω2 ),
with probability at least 1− ρ,

EP[σ(⟨W (iαβ), x⟩)− σ(⟨U (iαβ), x⟩)]2 ≤ ω.

By Definition 3 in Wu et al. (2019), a distribution D is δ-unbiased if its conditional probability of a variable
given the others is bounded away from 0 by at least δ.

By Lemma 4 and Lemma 7 in Wu et al. (2019), we know that Z ∼ D is δ-unbiased with δ = e−2λ(D)/k, and so

is Z−i conditioned on Zi ∈ {α, β}. Applying Lemma 6 in Wu et al. (2019), if m(iαβ) = O(
λ2k3e12λ(ε20+ln n

ρ′ )

ω4 ) the
following inequality holds with probability at least 1− ρ′:

∥W (iαβ) − U (iαβ)∥∞,∞ ≤ ω

=⇒ |W (ij)
αb −W

(ij)
βb − U

(iαβ)
jb | ≤ ω,∀j ̸= i ∈ [n], b ∈ [k].

Since Z ∼ D is δ-unbiased, we have P[Zi ∈ {α, β}] ≥ 2δ. By the Chernoff bound, if the total number of samples
satisfies m = O( 1δ (m

(iαβ)+log( 1
ρ′′ )), with probability at least 1−ρ′′, we have m(iαβ) samples for the fixed i ∈ [n],

α ̸= β ∈ [k].

Now set ρ′ = ρ′′ = ρ
2nk2 and take a union bound over all α ̸= β ∈ [k], then with probability at least 1 − ρ

n and

m = O(
λ2k4e14λ(ε20+ln nk

ρ )

ω4 ), we have

|W (ij)
αb −W

(ij)
βb − U

(iαβ)
jb | ≤ ω,∀j ̸= i ∈ [n], b ∈ [k], α ̸= β ∈ [k].

Because W (ij) are centered, summing the above equalities for all β ∈ [k] leads to

|W (ij)
αb − 1

k

∑
β∈[k]

U
(iαβ)
jb | ≤ ω,∀j ̸= i ∈ [n], b, α ∈ [k]

=⇒ |W (ij)
αb − Ŵ

(ij)
αb | ≤ ω,∀j ̸= i ∈ [n], b, α ∈ [k]

=⇒ ∥W (ij) − Ŵ (ij)∥∞,∞ ≤ ω,∀j ̸= i ∈ [n],
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which holds with probability at least 1− ρ
n and m = O(

λ2k4e14λ(ε20+ln nk
ρ )

ω4 ), for fixed i ∈ [n].

We conclude by taking a union bound for all i ∈ [n], so that with probability at least 1 − ρ and m =

O(
λ2k4e14λ(ε20+ln nk

ρ )

ω4 ),

∥W (ij) − Ŵ (ij)∥∞,∞ ≤ ω,∀i, j ∈ [n], i ̸= j.

Theorem 4. Given assumptions in Theorem 3, except that Ŵ (ij) is the estimated weight matrix from Eq. (9)
with the KL ambiguity set. Let Ĝ be constructed via thresholding in Eq. (4). Then, for any ρ ∈ (0, 1], η > 0,

ε < 1, n ∈ Z+ and i ̸= j ∈ [n], if the number of i.i.d. samples satisfies m = O(
λ2k4e14λ(ε0+ln nk

ρ )

η4 ), with probability
at least 1− ρ, the following bound holds:

∥W (ij) − Ŵ (ij)∥∞,∞ <
η

2
=⇒ G = Ĝ.

Proof. According to Theorem 7 in Lam (2019), for any W ,

EP̂m [ℓW (ξ)]

≤ sup
Q∈BKL

ε (P̂m)

EQ[ℓW (ξ)]

≤EP̂m [ℓW (ξ)] +
√

2εVarP̂m
(ℓW (ξ)) + 2εC

1

m′

∑
i(ℓW (ξi)− ℓW (ξ))3∑
i(ℓW (ξi)− ℓW (ξ))2

≤EP̂m [ℓW (ξ)] +
√

2εVarP̂m
(ℓW (ξ)) + 2εC

1

m′

∑
i

|ℓW (ξi)− ℓW (ξ)|,

where ℓW = 1
m′

∑
i ℓW (ξi) and C > 0 is a constant independent of n.

Note that

VarP̂m
(ℓW (ξ)) ≤ sup

W,W,ξ,ξ′
|ℓW (ξ)− ℓW ′(ξ′)|2 ≤ (4λ

√
k)2,

yielding

sup
Q∈BKL

ε (P̂m)

EQ[ℓW (ξ)]

≤EP̂m [ℓW (ξ)] + 4λ
√
k(
√
2ε+ 2εC)

≤EP̂m [ℓW (ξ)] + 4λ
√
k(2

√
ε+ 2C

√
ε)

for ε < 1.

Therefore,

Pm′

{
EP[ℓŴ (iαβ)(ξ)]− EP[ℓW (iαβ)(ξ)] ≤ 2λ

√
k((4C + 4)

√
ε0
m′ + 4

√
6 ln (n)

m′ + 2

√
2 ln (2/ρ)

m′ )

}
≥1− ρ.

Following the same procedure in the proof of Theorem 3, we get the conclusion that with probability at least

1− ρ and m = O(
λ2k4e14λ(ε0+ln nk

ρ )

ω4 ),

∥W (ij) − Ŵ (ij)∥∞,∞ ≤ ω,∀i, j ∈ [n], i ̸= j.
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