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The terms ‘systems’ and ‘synthetic biology’ are often used
together, with most scientists striding between the two fields
rather than adhering to a single side. Often too, scientists want
to understand a system to inform the design of gene circuits
that could endow it with new functions. However, this does not
need to be the progression of research, as synthetic constructs
can help improve our understanding of a system. Here, we
review synthetic biology tool kits with the potential to overcome
pleiotropic effects, compensatory mechanisms, and
redundancy in plants. Combined with -omics techniques, these
tools could reveal novel insights on plant growth and
development, an aim that has gained renewed urgency given
the impact of climate change on crop productivity.
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Introduction

Plant science has experienced a surge of big data, with
techniques like laser capture microdissection, Translating
Ribosome Affinity Purification Sequencing (TRAP-Seq),
Fluorescence-Activated Cell Sorting (FACS), and time-
lapse fluorescence microscopy [1-4] providing extraordi-
nary tissue/cell-specific information. Yet, our ability to
manipulate genes with similar precision and throughput
lacks behind, with most functional studies still relying on
knockout mutants and systemic overexpression using the
constitutive Cauliflower Mosaic Virus (CaMV) 35S pro-
moter. These perturbations in single genes seldom pro-
duce visible phenotypic differences, as comprehensive
genetic studies and large-scale genomics projects have
shown [5,6]. High similarity in coding sequences among
plant gene families often results in complete or

Check for

conditional functional redundancy, leading to substantial
phenotypic plasticity buffering. Moreover, in cases where
single gene perturbations do produce a visible phenotype,
pleiotropic and compensatory effects oftentimes obscure
the molecular mechanisms responsible for changes in
transcript or protein levels.

Advancing plant systems biology will require precise
perturbations that can overcome gene redundancy, pleio-
tropism, and compensatory mechanisms in -omics stud-
ies. Such an approach could be as effective as experiments
that used cell-specific perturbations to validate predic-
tions from single-cell transcriptomic analyses, which have
revealed novel roles for known factors in leaves and lateral
roots [2,7]. However, such approach requires versatile
genetic constructs for precise spatiotemporal control of
gene function. Here, we review recent tool kits for vector
assembly and transcriptional and post-translational regu-
lation of gene products that could be combined with
-omics studies, focusing on those applicable to a multi-
tude of genes.

Vector assembly kits

A crucial challenge in plant biology research is the exten-
sive time necessary for transformation and crosses. Thus,
single-step delivery of whole gene circuits or multiple
transgenes is ideal, and numerous approaches have been
developed to facilitate the task [8,9].

One of the most recently developed tools is loop assem-
bly, a technique for recursive fabrication of large genetic
circuits that can theoretically generate plasmids with
unlimited transcription units and length [10°°]. Loop
assembly uses two Type IIS restriction enzymes and
corresponding standardized vector sets (Odd and Even
receiver plasmids). Assemblies are performed through
iterated ‘loops.” Two sets of four plasmid vectors are
provided, which allow alternating assembly cycles. The
iterative process of combining genetic modules, four at a
time, can be continued infinitely by alternating between
odd and even Loop vectors [11].

Standardized parts

Several libraries of natural or synthetic genetic parts are
available for plants. It is important for these parts to be
orthogonal and quantitatively characterized [12]. This
means the parts should display minimal interaction
between each other and endogenous components and
have defined input-output relations.

Heterologous and synthetic transcriptional regulators are
more likely to be orthogonal than plant derived ones.
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2 Systems biology

T'ranscriptional activator-like effectors from bacteria like
Xanthomonas [13] and zinc-finger chimeras [14] were some
of the earliest genetic parts used in plants. However, their
engineering was laborious. More recently, catalytically
inactive Cas9 (dCas9) has been shown to successfully
activate and repress transcription of target genes without
appreciable off-target effects [15].

The main limitation in the generation of predictable gene
circuits is still the time necessary to test and model the
outputs of genetic parts in stably transformed plants.
Schaumberg e7 a/. showed that quantitative characteriza-
tion in Arabidopsis protoplasts can serve as a good proxy
for in planta performance by testing 128 pairwise combi-
nations of synthetic promoters and repressors [16°]. The
system used luciferase as output and Hill functions for
modeling. Variability due to random transgene insertion,
common in Agrobacterium-mediated transformation, was a
challenge.

One option to surmount this variability is to use a ratio-
metric luciferase system [17]. Another option would be to
create lines with predetermined genomic landing sites
like those in Drosophila melanogaster [18]. The bacterio-
phage $C31 DNA site-specific integrase could be used to
generate mapped genomic locations for the insertion of
transgenes with subtle differences, facilitating compari-
son. The ¢C31 integration system has already been
demonstrated to work as a memory switch in Nicotiana
benthamiana [19]. Another tool plant biologists could
borrow from fly geneticists are balancer chromosomes,
which are chromosomes containing multiple inverted
regions capable of suppressing crossovers during meiosis
that would help the visual tracking of chromosomes
carrying transgenes during crosses [20].

Temporal control of gene expression and
protein localization with inducible systems
Chemical inducers can be used to initiate the transcrip-
tion of transgenes at defined developmental stages. Since
the creation of the tetracycline-inducible gene expression
system [21], numerous chemically inducible systems for
plants have followed. The glucocorticoid-inducible sys-
tem is a primary example, which uses a chimeric tran-
scription factor (GVG) consisting of the GAL4 binding
domain from yeast, the VP16 activation domain from
herpes, and the glucocorticoid receptor (GR) from rats
[22]. This system has been shown to be tightly regulated
and rapidly induced in tobacco, Arabidopsis, rice, pine,
and citrus plants [22-26].

Although the glucocorticoid-inducible system has been
demonstrated effective, its orthogonality has been ques-
tioned. Activation of the system can cause developmental
growth defects and interfere with endogenous gene
expression [27,28]. Zuo et al. addressed these limitations
with the construction of the estrogen-inducible XVE

system, which uses a chimeric transcriptional factor con-
sisting of the LLexA binding domain from bacteria, VP16,
and the human estrogen receptor (ER) [29]. Another
alternative is the recently reported dexamethasone-
inducible pOp6/LLhGR system, which uses the Escherichia
coli lac repressor lacl™!7 | the GAL4 transcription-activa-

tion-domain-II, and the rat GR ligand binding domain
[30].

Post-translationally, the rapamycin-inducible KnockSide-
ways in Plants (KSP) system can be used to control
protein localization. This system relies on the heterodi-
merization of the FKBP domain of HsFKBP12 and the
FKBP12 rapamycin-binding domain of mTOR. The sys-
tem was shown efficient at directing bait proteins to the
plasma membrane, mitochondria, microtubules, and
nucleus in N. benthamiana [31].

Spatial control of gene expression with tissue/
cell-specific promoters

In the last decade, numerous tissue/cell-specific promo-
ters have been isolated from diverse plant species (e.g.
Arabidopsis, tice, tomato, soybean) [32-35]. These pro-
moters have typically been employed for TRAP-Seq and
developmental studies but are being increasingly used for
precise and controlled manipulation of genes with mini-
mum adverse effects. These promoters provide substan-
tial advantage over constitutive ones like CaMV35S,
which can cause pleiotropic effects and reduce plant
growth. Two examples are worth noting.

Decaestecker e al. developed a technique called
CRISPR-TSKO, which enables the creation of somatic
mutations in desired cell types, tissues, and organs
(Figure 1a). To achieve this, researchers used tissue-
specific, somatic promoters to drive Cas9 expression
and demonstrated root cap-specific, stomata-specific,
and lateral root-specific gene knockouts in Arabidopsis
[36°].

Wang ¢z a/l. improved on this idea by integrating CRISPR/
Cas9, the XVE system, and root-cell-type-specific pro-
moters, enabling temporal in addition to spatial control of
gene editing (Figure 1b). This allowed the team to trigger
somatic gene knockout in Arabidopsis root meristem with
estradiol [37°°].

Engineering of synthetic promoters for precise control of
transgene expression in a spatiotemporal manner has
been another important advance in plant science. Readers
interested in a detailed discussion of their rational design
are referred to Cai ef a/. [38], and for a list of all recent
plant synthetic promoters to Ali and Kim [39].

CRISPR/dCas9 for multigene regulation
The activation and repression of gene expression using
dCas9 in plants has become a common and powerful
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Spatiotemporal control of gene expression. (a) Tissue/cell-specific
promoters can enable spatially controlled expression of Cas9.
Different colors represent promoters expressed in different plant cell/
tissue types. (b) Inducible Cas9 expression in plants confers temporal
control and can be merged with cell-specific promoters to provide
both spatial and temporally manipulated genes. Different colored
peaks represent the ability of expressing genes at the desired time
using inducer molecules, and at the desired cells using cell-type-
specific promoters.

approach for genetic and epigenetic regulation. In addi-
tion to its use for single-gene regulation, CRISPR/dCas9
platforms offer unparalleled multiplex ability by using
multiple sgRNAs simultaneously. There exist several
tools for multiplexed activation in plants (dCas9-TV,
dCas9-SunTag, dCasEV2.1) [40-42]. Recently, Pan
et al. developed CRISPR-Act3.0 for highly efficient multi-
plexed gene activation and performed simultaneous acti-
vation of many enzyme-encoding genes in rice as well as
multigene activation in Arabidopsis [43°°]. A critical chal-
lenge of using dCas9 for gene regulation is the need for
correct protospacer adjacent motifs (PAMs) sequence
proximal to the promoter. When using SpCas9, it could
be challenging to find good target sites with NGG PAMs,
given that promoters in plants are often AT-rich. To
overcome this limitation, Pan ¢z a/. successfully adapted
the use of dCasl12b, a protein that recognizes VI'TV
PAMs for multigene activation with CRISPR-Act3.0. In
addition, they used the near-PAM-less SpCas9 variant,

SpRY, and demonstrated that dSpRY-Act3.0 is a highly
promising tool for multigene regulation [43°°].

CRISPR/dCas9 has also been used for transcriptional
repression. However, to our knowledge, repression in
plants has not been done commonly in a multigene
manner [44], unlike the case in bacteria, yeast, and human
cells [44-46]. The one study that performed simultaneous
multigene repression in plants by Lowder e# a/. used a
synthetic pco-dCas9-3X(SRDX) transcriptional repressor
to reduce transcript levels of two microRNAs in Arabi-
dopsis [47].

Light control of gene expression

Optogenetics uses light and genetically encoded photo-
switches to alter gene expression reversibly, thus offering
an alternative in situations where promoters with the
desired tissue/cell-specific activities are unavailable or
in cells with poor uptake of chemical inducers. The
technique traditionally uses photoactivatable channels
and light sensory parts from bacteria, algae, and plants.
However, because most of these proteins respond to the
same wavelengths of light that control plant growth and
development, their use can result in undesired side
effects. The recently developed Plant Usable Light-
Switch Elements (PULSE) system overcomes this limi-
tation and illustrates an elegant strategy for implementing
optogenetics in plants [48°°].

PULSE is comprises two engincered proteins and a
synthetic promoter (Pope) (Figure 2a). In this system,
a transcriptional repressor (Bogr) prevents gene expression
under blue light (~450 nm), while an activator (Rp,)
induces expression under red light (~660 nm). Transgene
expression can be tuned by controlling the intensity of
monochromatic red light [48°°].

PULSE?’s effectiveness was demonstrated with transient
expression in N. benthamiana leaves and transgenic
Arabidopsis. Gene expression was prevented in daylight
(250-800 nm) by the Bog¢ repressor and inactive in dark,
allowing plants to grow under normal photoperiod. Trans-
fer to monochromatic red light induced expression of
luciferase in Arabidopsis, reaching maximum levels after
~12 hours; while return to white light decreased lumi-
nescence, showing the reversibility of the system.
Whether PULSE inadvertently affects endogenous sig-
naling due to several of its components originating from
plants remains to be explored.

Nanobodies and inducible systems for post-
translational control

Nanobodies are small, single-domain antibodies isolated
from camelids that can be transgenically expressed to
bind endogenous proteins or small molecules. Research-
ers demonstrated the use of nanobody for selective pro-
tein degradation, which can be completed faster (within
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Optogenetic control of protein degradation. (a) In the PULSE system, a transcriptional repressor (Bog) derived from the bacterial light-regulated
DNA-binding protein EL222 and a plant EAR repression domain prevents gene expression under blue light (~450 nm), while an activator (Rop)
from a plant phytochrome B (PhyB) and a phytochrome-interacting factor 6 (PIF6) induces expression under red light (~660 nm). The synthetic
promoter (Popto) is composed of repeated binding domains for EL222 and PIF6 upstream of a human cytomegalovirus minimal promoter and can
be used to drive expression of anti-GFP nanobodies. (b) Anti-GFP nanobody and E3 Ubiquitin Ligase chimeras can be used to selectively target

and degrade GFP-tagged proteins.

minutes to few hours) than transcriptional or RNAi-
mediated downregulation. The technique fuses a nano-
body with an F-box domain, resulting in a chimera that
can polyubiquitinate the proteins recognized by the nano-
body and thus target it for protcasome degradation
(Figure 2b). This prevents compensation effects that
could otherwise complicate the interpretation of pheno-
typic changes. Moreover, when combined with somatic
tissue-specific or inducible promoters in multicellular
organisms, restricted protein degradation can circumvent

Table 1

the lethality or sterility associated with knockouts of the
target gene.

An anti-GFP nanobody allows selective degradation of
functional GFP-tagged proteins. Furthermore, the pro-
cess can be monitored in real-time by the loss of fluores-
cence. The use of this approach in multicellular organ-
isms was first demonstrated in D. melanogaster. The
method, named deGradFP, was shown to titrate target
proteins in less than three hours and phenocopy loss-of-

Summary of plant tools and their availability

Tool kit Availability References
Loop assembly Addgene [10°°,11]
uLoop assembly Addgene [10°%,11]
Dual luciferase ratiometric reporter system Addgene [17]
$C31 integration system Addgene [19]
XVE inducible transcription factor Addgene [29,63]
pPOp6/LhGR gene expression system Nottingham Arabidopsis Stock Centre (NASC) [30]
Rapamycin-inducible KnockSideways in Plants (KSP) VIB-UGent Center for Plant Systems Biology [31]
CRISPR-TSKO Addgene [36]
Inducible CRISPR/Cas9 system Addgene [37°7]
dCas9-TV Upon request to authors [42]
dCas9-SunTag Addgene [40]
dSpRY-Act3.0 Addgene [43°7]
pco-dCas9-3X(SRDX) Addgene [47]
PULSE system Addgene [48°7]
Anti-GFP nanobody-based degradation system Upon request to authors [50,51°]
Anti-GFP nanobody-based delocalization Upon request to authors [52]
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function mutations in homozygous mutant backgrounds
[49].

Similar systems successfully depleted GFP-tagged and
YFP-tagged nuclear protein in tobacco due to cross-reac-
tivity of the nanobody [50,51°]. Anti-GFP nanobody has
also been used in Arabidopsis root epidermal and cortex
cells to delocalize plasma membrane-associated protein
complexes [52] and combined with PULSE for localiza-
tion studies [48°°]. Newer nanobodies against other fluo-
rescent proteins and peptides offer opportunities for
multiplexing, albeit they still need to be tested in plants
[53-55].

Discussion

"This review highlighted synthetic biology tool kits that in
conjunction with -omics could improve the systems-level
understanding of plant development and physiology
(‘Table 1). Common features of these kits include their
orthogonality, compatibility with genes with diverse func-
tions, and capacity to affect multiple genes simulta-
neously with spatiotemporal precision. Other tools that
are efficient in plants but missed one or more of these
features, like those based on ethanol induction, synthetic
plant hormone-responsive transcription factors, heat-
shock promoters, and light-gated ion channels [56-59],
were not discussed.

We cataloged these tool kits for two reasons. First, we
wanted to help readers identify tools that could work
together, such as using loop assembly and pco-dCas9-3X
(SRDX) multiplexed repression to screen for genetic
interactions. Another idea would be combining nanobo-
dies, the XVE system, and existing collections of phase-
specific reporters to study cell-cycle regulation [60].

The second and more important reason was to encourage
the design of easier to interpret -omics studies. Compar-
ing the transcriptional and proteomic profiles of wild type
plants with knockout mutants or constitutive overexpres-
sion lines often reveals hundreds of differentially
expressed candidates. However, it is seldom clear which
candidates interact directly with the perturbed gene or
whether effects are cell autonomous, no matter how
sophisticated the subsequent bioinformatics analysis is.
Now, with the proliferation of single-cell analyses, it is our
opinion that a better picture of the gene regulatory
network underlying a particular phenotype can be
obtained from tissue/cell-specific and inducible
perturbations.

While -omics studies can be easily conducted in non-
model plant species, the traditional transformation meth-
ods based on Agrobacteria and tissue culture are not. Thus,
application of the tools described in this review to crops
where current transformation efficiency are poor will
require novel methods, such as the one developed by

Demirer ef al. that uses nanoparticles to allow efficient
gene expression and silencing in many ecudicots and
monocots [61°%,62].
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