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Abstract—Serverless computing is a promising paradigm for
delivering services to the Internet of Things (IoT) applications
at the edge of the network. Its event-triggered computation, as
well as fine-grained and agile resource scaling, is well-suited for
a resource-constrained edge computing environment. However,
general-purpose auto-scalers that are predominant in the cloud
settings perform poorly for serverless computing at the Edge.
This is mainly due to the difficulty in quickly determining the
optimal resource allocation under resource-budget constraints
and dynamic workloads. In this paper, we present an adaptive
auto-scaler, KneeScale, that dynamically adjusts the number
of replicas for serverless functions to reach a point at which
the relative cost to increase resource allocation is no longer
worth the corresponding performance benefit. We have designed
and implemented KneeScale as lightweight system software
that utilizes Kubernetes for resource management. Experimental
results with a function-as-a-service (FaaS) benchmark, Func-
tionBench, and an open-source serverless computing platform,
OpenFaaS, demonstrate the superior performance and resource
efficiency of KneeScale. It outperforms Kubernetes Horizontal
Pod AutoScaler (HPA) and OpenFaaS built-in scheduler in terms
of cumulative performance under a given resource budget by
up to 32% and 106% respectively. KneeScale achieves higher
cumulative throughput than both competing techniques, lower
latencies than OpenFaaS built-in scheduler, and similar latencies
compared to HPA for a variety of serverless functions.
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I. INTRODUCTION

Serverless computing is an application deployment archi-
tecture that completely hides server management from cloud
customers. Cloud functions, packaged as FaaS (Function as a
Service) offerings, represent the core of serverless computing.
It allows customers to focus on developing functions (small
code dedicated to specific tasks) that execute in a dedicated
short-lived function instance (e.g., a container). A function
instance is launched only when the function is invoked and is
shut down when it is idle for a certain period of time. With
its fine-grained resource scaling, event-triggered computation,
and ephemeral functions, serverless computing provides an
attractive execution model for a resource-constrained edge
computing environment.

Fig. 1 illustrates the workflow of running serverless func-
tions on edge nodes. IoT devices (e.g., wireless sensors,
drones, AR/VR devices, etc.) generate events that trigger the
execution of short-lived functions on edge nodes (e.g., router,
cellular base station, Raspberry Pi, etc.) for data processing

Fig. 1. Serverless Computing at the Edge

and analytics. Edge computing leverages computing resources
located at the network edge, close to users and end-devices,
to provide low-latency, location-aware and privacy-enhanced
services for Internet of Things (IoT) applications [1]–[3].
The adoption of the serverless paradigm for edge computing
has recently gained significant attention from both cloud
providers (e.g., Lambda@Edge1 and Fastly Compute@Edge2)
and academia [4]–[6]. However, there are some significant
resource management challenges that need to be addressed.

Existing serverless computing platforms rely on general-
purpose auto-scalers such as Horizontal Pod Autoscaling
(HPA)3 for resource management. These auto-scalers adjust
the number of function instances (aka replicas) based on
a user-specified resource utilization target. However, it is
indeed challenging for end-users to find the optimal resource
utilization target for diverse functions and such an approach
can perform poorly in a resource-constrained edge comput-
ing environment. Our case study in Section II using an
open-source Function as a Service platform, OpenFaaS4 and
FunctionBench [7] benchmark shows that HPA with various
resource utilization targets result in poor throughput and/or
high function latency under resource budget constraints. Due
to the limited resources available in edge nodes, there can be
resource-budget constraints for the services running on them,
including serverless computing services [8]. Determining opti-

1https://aws.amazon.com/lambda/edge/
2https://www.fastly.com/products/edge-compute/serverless
3https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
4https://www.openfaas.com
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mal resource allocation under resource-budget constraints is a
challenging problem especially when the workload is dynamic
and hard to predict [9], [10].

In this paper, we present an adaptive auto-scaler, KneeScale,
that efficiently scales serverless functions under resource
budget constraints in edge systems. KneeScale is designed
to dynamically adjust the number of function instances to
quickly reach a Knee point at which the relative cost to
increase resource allocation is no longer worth the corre-
sponding performance benefit. Our hypothesis is that running
serverless computing systems at such a knee operating point
can maximize the performance under a given resource budget.
KneeScale leverages the Kneedle [11] algorithm, a general
approach to detect performance knee point that is applicable
to a wide range of systems. Utilizing the Kneedle algorithm
for serverless computing systems at the edge is a non-trivial
task. This is because the Kneedle algorithm requires prior
performance data for a range of resource allocations. However,
data collected offline can be unreliable in the presence of previ-
ously unseen workloads (new functions, arrival rates, etc.) and
changing hardware configurations. On the other hand, a naive
online approach of sampling performance data for all possible
resource allocations can be prohibitively expensive. KneeScale
addresses these challenges through a search algorithm that we
developed for quick detection of performance knee points.

We have designed and implemented KneeScale as
lightweight system software that utilizes Kubernetes for re-
source management and Docker containers for running server-
less functions. Throughout the paper, we use the terms function
instance, replica, and container interchangeably. We evalu-
ated KneeScale using the OpenFaaS platform, deployed on a
testbed of four Virtual Machines (VMs) representing the Edge
nodes. Experimental results with a representative FaaS bench-
mark, FunctionBench [7], show that KneeScale significantly
outperforms existing auto-scalers including OpenFaaS built-
in scheduler and HPA in terms of cumulative performance
under a given resource budget. KneeScale achieves higher
cumulative throughput than both competing techniques, lower
latencies than OpenFaaS built-in scheduler, and similar laten-
cies compared to HPA for a variety of serverless functions
under static as well as dynamic workloads.

The remainder of the paper is organized as follows. Sec-
tion II discusses the background and motivation for run-
ning serverless computing systems at a knee operating point.
Section III elaborates the key design and implementation
details of KneeScale. Section IV details the testbed setup
and experimental results. In Section V, we present the related
work. Finally, conclusions are drawn in Section VI.

II. BACKGROUND AND MOTIVATION

A. Detecting Performance Knee Point

It is common to see computer systems reach a point at which
the relative cost to increase resource allocation is no longer
worth the corresponding performance benefit. These “knees”
typically represent the trade-off points between performance
and resource cost [11]. As a case study, we analyzed the

(a) Performance and the fitted spline (b) Normalized knee

Fig. 2. Knee point detection for float-operation at concurrency level 20

performance of float-operation function from the Function-
Bench [7] benchmark using the OpenFaaS platform that was
deployed on a testbed of four VMs. As shown in Eqn. 1,
we define a performance score as the ratio of throughput and
average function latency. Here, throughput is the number of
successful function invocations per second. Function latency
is the sum of multiple components including (1) initialization
time or cold start time spent in preparing a function instance
(warm functions skip initialization), (2) wait time spent inside
OpenFaaS before execution, and (3) execution time spent to
run the function. Higher throughput and lower latency lead
to higher performance score. We used an HTTP workload
generation tool, Hey5, to produce function invocations using
20 concurrent workers.

Performance Score =
Throughput

Average Function Latency
(1)

Tlmxi = ylmxi − S ·

n−1∑︁
i=1

(xi+1 − xi)

n− 1
(2)

Fig. 2(a) shows that initially the performance score increases
sharply as more replicas (function instances) are allocated
but after a certain point the gain in performance score keeps
getting smaller. The curve approximately follows Amdahl’s
law. With the given performance data for various resource
allocations, the knee point can be detected by utilizing Knee-
dle [11], a general knee detection algorithm. Kneedle defines
the knee point as the point of maximum curvature in a
continuous function. It uses six steps to find the knee point
of the curve. (1) Using replica count as x- and performance
score as y-values, Kneedle fits a smoothing spline to the data
points, as shown in Fig. 2(a). (2) It normalizes the data to keep
both x and y-values in the range [0, 1]. (3) It calculates the
set of differences between the x and y-values, i.e., the set of
points (xi, yi−xi), which is represented by the blue difference
curve in Fig. 2(b). The goal is to find out when the difference
curve changes from horizontal to sharply decreasing, since
this indicates the presence of a knee in the original data
set. (4) It finds the local maxima of the difference curve. If
there are more than one local maximum point, each of these
points are a candidate knee point in the original data curve.

5https://github.com/rakyll/hey/
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(a) Cumulative performance score (b) Cumulative throughput (c) Function latency distribution (d) Cumulative resource allocation

Fig. 3. Comparison between HPA and knee-based resource allocation for float-operation at concurrency level 20. A resource-budget constraint of 1000
replicas is imposed on the cumulative resource allocation. The experiment is run for 15 minutes and data is sampled at 30-second intervals.

(a) HPA vs. knee-based resource al-
location

(b) Performance score at each sam-
pling interval

Fig. 4. Impact of HPA and knee-based resource allocation on the performance
score of float-operation at concurrency level 20

(5) For each local maximum point (xlmxi
, ylmxi

), Kneedle
defines a threshold Tlmxi

based on Eqn. 2 that depends on
the weighted difference between the local maximum value
and a user-defined sensitivity parameter, S. Smaller values
for S detect knees quicker, while larger values are more
conservative. Throughout the paper, we set S = 1 for our
experiments since it provides a good tradeoff between Knee
detection time and accuracy in online settings [11]. (6) If
any value in the difference curve drops below the threshold
y = Tlmxi for the local maximum (xlmxi , ylmxi ) before the
next local maximum is reached, Kneedle declares a knee at
the x-value of the corresponding local maximum x = xlmx

.
As shown in Fig. 2(b), the normalized knee is found at x =
0.29 and is detected after observing the point x = 0.45. The
equivalent knee point in the original data set is at 34 replicas.

B. Inefficiency of Existing Auto-scalers

Existing cloud-based serverless computing platforms pre-
dominantly rely on general-purpose auto-scalers such as Ku-
bernetes Horizontal Pod Autoscaling (HPA) for resource man-
agement. Kubernetes implements HPA as a control loop that
periodically monitors the average resource utilization (usually
CPU utilization) of currently running function instances. With
the monitoring results, it then automatically scales the number
of replicas based on the ratio between the current resource

utilization and a user-defined target utilization value. Eqn. 3
shows how HPA calculates the desired number of replicas for
a given function.

desiredReplicas = ⌈currentReplicas ∗
currentMetricV alue

desiredMetricV alue
⌉ (3)

In this section, we demonstrate that HPA-based resource al-
location significantly underperforms compared to Knee point-
based resource allocation under resource-budget constraints.
We use Hey to invoke the float-operation function with 20
concurrent workers for a duration of 15 minutes. We assume a
resource-budget constraint of 1000 replicas on the cumulative
resource allocation for the given function. The cumulative
resource allocated to a function is the area under the curve
of instantaneous resources allocated over time. When the
cumulative sum of replicas allocated to the float-operation
function exceeds the budget, all relevant replicas are stopped
to free the allocated resources. To evaluate HPA performance,
we set the CPU utilization target to be 30%, 60%, and 90%
and denote these cases as HPA-30, HPA-60, and HPA-90
respectively. To evaluate knee-based resource allocation, we
set the replica count to 34, which is the knee point detected
by the Kneedle algorithm as shown in Fig. 2(a).

Fig. 3(a) shows that the cumulative performance scores of
HPA-30, HPA-60, and HPA-90 are significantly lower than
that of knee-based resource allocation. The cumulative perfor-
mance score is the sum of performance scores accumulated so
far at a given sampling interval. We observe that high CPU
utilization targets of 60% and 90% will lead to high function
latencies as shown in Fig. 3(c) and low function performance
as shown in Fig. 4(b). Fig. 3(d) shows how each approach
reaches the resource budget. A low CPU utilization target of
30% achieves lower latencies at the cost of excessive resource
allocation that can exhaust the resource budget quickly. The
knee-based approach finds a good balance between throughput,
function latency, and efficiency in resource allocation.

C. Challenges of On-the-fly Knee Detection

Detecting the performance knee point of serverless comput-
ing systems at the edge is a non-trivial task. Not only that each
function may have a different knee point, but the knee point
for the same function can also vary under different workload



Fig. 5. KneeScale architecture

conditions. Existing knee detection algorithms such as Kneedle
require prior performance data for resource allocations. How-
ever, data collected offline can be unreliable in the presence
of previously unseen workloads (new functions, arrival rates,
etc.) and changing hardware configurations. On the other hand,
a naive online approach of sampling performance data for all
possible resource allocations can be prohibitively expensive,
especially under resource-budget constraints.

III. KNEESCALE DESIGN

The key design goals of KneeScale are as follows:

1) Detect performance knee point for an ad-hoc function
on-the-fly without prior performance data.

2) Minimize the overheads of knee detection.
3) Adapt to dynamic workload conditions.

A. Architecture

As shown in Fig. 5, the KneeScale architecture comprises
two main components: Performance Monitor and Knee Scaler.
The Performance Monitor periodically measures serverless
function-related performance metrics from Prometheus6, and
Prometheus scrapes the metrics from OpenFaaS API Gateway.
It also keeps track of the invocation error rate and CPU
utilization of the function instances to decide when to trigger
resource scaling. The invocation error rate is the number
of failed function invocations per second. The Knee Scaler
component is responsible for on-the-fly knee detection and
resource scaling of the running functions. KneeScale can be
implemented on top of any Kubernetes based architecture such
as KubeEdge7, K3S8 etc. In this paper, KneeScale follows
the K3S architecture where all the modules are running on
the edge nodes. In contrast, KubeEdge architecture consists of
both cloud and edge modules. The entire KneeScale codebase
is written in Python and Bash with about 2,000 lines of code.

6https://prometheus.io/
7https://kubeedge.io/
8https://k3s.io/

TABLE I
MATHEMATICAL NOTATIONS USED IN ALGORITHM 1

Notation Description

bl The left boundary of the search space
br The right boundary of the search space
rnew The new replica count to be allocated
d Search direction
C Collection of explored replica counts

P
Collection of observed replica counts
and corresponding performance scores

clast The last observed resource allocation
k Detected Knee point
PerfScore Use Eqn. 1 to calculate performance score

1) Performance Monitor: The performance monitor col-
lects both the application-level performance metrics and re-
source utilization metrics at a sampling interval of 30 seconds.
In particular, it measures the invocation error rate, throughput,
and average function latency at the application level. In
addition, it keeps track of the CPU utilization of function
instances, and the cluster capacity per function. We define
cluster capacity as the maximum number of replicas (function
instances) that can be allocated to a function. As shown in
Eqn. 4, the cluster capacity rcluster of a function depends on
the resource requested (CPU, Memory) by a single function,
and the resource available in the cluster of Edge nodes.

rcluster = min(
CPUavail

CPU reqf
,
Memoryavail
Memory reqf

) (4)

2) Knee Scaler: The Knee Scaler component is invoked
conservatively when the invocation error rate is greater than
zero, indicating the need to scale-up, or when the rate of
decrease in the CPU utilization is higher than a threshold,
indicating the need to scale-down. It is designed to quickly
detect the performance Knee point of a function using an effi-
cient search algorithm (Algorithm 1). This algorithm explores
a few steps of resource allocations, while iteratively applying
the Kneedle algorithm after each data point until it converges
to the final Knee. In order to handle dynamic workloads
efficiently, the Knee Scaler reuses previously detected knee
values under similar workload conditions. It uses the kubectl
scale API in Kubernetes to allocate the required number of
replicas for a given function.

B. Finding Knee Using Binary Search

Algorithm 1 shows how KneeScale detects the knee point
on-the-fly without prior performance data. Table I describes
the notations used in the algorithm. The function FindKnee
takes two input parameters (bl, br), which denote the left and
the right boundary of the search space. The value of bl is
always set to the current replica count plus one. Whereas the
value of br depends on the current invocation error rate, current
replica count, and the cluster capacity rcluster given by Eqn. 4.
The criteria for determining br is discussed in the next section.
Since the Kneedle algorithm requires at least three data points
to find a knee point, we collect the performance data for
three resource allocations given by bl, br, and (bl + br)/2.

https://prometheus.io/
https://kubeedge.io/
https://k3s.io/


Algorithm 1: Finding knee using binary search
1: function FindKnee (bl, br) {
2: Initialization:
3: d← LEFT ;
4: C ← bl, br,

bl+br
2

;
5: P ← (c, PerfScore(c)), ∀c ∈ C ;
6: k ← Kneedle(P );
7:
8: while bl < br do
9: clast ← C[len(C)− 1];

10: if d == LEFT then
11: if k == None or k == clast then
12: rnew ← (clast + bl)/2;
13: else
14: d← RIGHT ;
15: bl ← clast ;
16: rnew ← (bl + br)/2 ;
17: end if
18: else
19: if k == None or k == clast then
20: rnew ← (clast + br)/2;
21: else
22: d← LEFT ;
23: br ← clast ;
24: rnew ← (bl + br)/2 ;
25: end if
26: end if
27: C.append(rnew) ;
28: P.append(rnew, P erfScore(rnew)) ;
29: k ← Kneedle(P );
30: end while
31: return knee;
}

TABLE II
MATHEMATICAL NOTATIONS USED IN ALGORITHM 2

Notation Description

tcurrent Throughput measured at current sampling interval
K Collection of observed throughput and knee values.
tclosest Throughput in K that is closest to tcurrent

e Invocation error rate
r Current replica count
rcluster Cluster capacity calculated by Eqn. 4
θthr Threshold for throughput change
θCPU Threshold for CPU utilization change
θerr Threshold for error rate
CPUprevious CPU utilization of previous sampling interval
CPUcurrent CPU utilization of current sampling interval

List C is initialized with these resource allocations and list
P is initialized with the corresponding performance scores,
given by Eqn. 1. We apply the Kneedle algorithm to detect
the initial knee point k on the collected data. We set the
initial search direction to the left.9 In each iteration, the search
direction remains unchanged if the most recent data point
clast is detected to be the knee (line 11, 19) or knee is not
found. Otherwise, we start exploring resource allocations in
the opposite direction after resetting bl to clast if the new

9The initial search direction does not affect the time complexity and
accuracy of the algorithm.

Algorithm 2: Handling dynamic workload
1: Initialization: diffmin ← +∞;
2:
3: function FindClosestThroughput(tcurrent,K) {
4: for t ∈ K do
5: if |tcurrent − t| < diffmin then
6: diffmin ← |tcurrent − t|;
7: tclosest ← t;
8: end if
9: end for

10: return tclosest;
}

11:
12: function ScaleUp(tcurrent, e, r) {
13: tclosest ← FindClosestThroughput(tcurrent,K);
14: if |tcurrent − tclosest| < θthr then
15: r ← K[tclosest];
16: else
17: if e < θerr then
18: k ← FindKnee(r + 1,min(r + rcluster

2
, rcluster));

19: else
20: k ← FindKnee(r + 1, rcluster);
21: end if
22: K.append(tcurrent, k);
23: r ← k;
24: end if
}

25:
26: function ScaleDown(tcurrent) {
27: tclosest ← FindClosestThroughput(tcurrent,K);
28: r ← K[tclosest];
}

29:
30: while tcurrent > 0 do
31: if e > 0 then
32: ScaleUp(tcurrent, e, r);
33: end if
34:
35: if CPUprevious−CPUcurrent

CPUprevious
> θCPU then

36: ScaleDown(tcurrent);
37: end if
38: end while

search direction is right (lines 13-15), and resetting br to clast
if the new search direction is left (lines 21-23). We sample the
next resource allocation at the middle point between bl and br.
The search stops when bl is greater than br.

C. Handling Dynamic Workload

Algorithm 2 shows how KneeScale handles dynamic work-
loads. Without assuming any offline data collection, KneeScale
keeps track of knee points detected for various workload
conditions in the live system. Table II describes the notations
used in this algorithm. In lines 31-33, the ScaleUp action
is conservatively triggered only if the invocation error rate is
greater than 0. The ScaleUp function, in lines 13-15, sets the
replica count to be equal to a previously detected knee value
corresponding to the closest throughput tclosest observed in the
past. This is done only if the difference between the current
throughput tcurrent and tclosest is smaller than a threshold
θthr. Otherwise, the search algorithm (Algorithm 1) is invoked



TABLE III
WORKLOAD BENCHMARK

Name Resource Demands Description Pod Requests Cluster Capacity

float-operation CPU, Memory floating point arithmetic operations 200m, 400MiB 114
matmul CPU, Memory two N-dimensional square matrix 300m, 1000MiB 76
gzip-compression Disk I/O file compression using gzip 300m, 1000MiB 76
image-processing CPU, Memory, Disk I/O, Network image transformation tasks 300m, 1000MiB 76
model-serving-rnn CPU, Memory, Disk I/O, Network words generation model using a RNN 300m, 1000MiB 76

(a) gzip-compression (b) matmul

(c) image-processing (d) model-serving-rnn

Fig. 6. Resource allocation under a stationary workload of 20 concurrent
clients. A resource-budget constraint of 1000 replicas is imposed on the
cumulative resource allocation.

to find the new knee point. In lines 17-18, FindKnee(bl, br)
function is invoked by extending the right boundary of the
search space, br, to the smaller of two values r + rcluster

2
and rcluster. This conservative extension of the search space
is done only when the invocation error rate is smaller than
θerr. Otherwise, br is extended all the way to the cluster
capacity, rcluster. In both cases, the left boundary of the
search space, bl, is set to r + 1. In lines 35-36, if the
average CPU utilization of the function instances decreases by
a rate greater than θCPU , the ScaleDown action is triggered.
Since majority of serverless functions are considered CPU
intensive [7], so we choose CPU utilization as the appropriate
metric to ScaleDown. The ScaleDown function sets the
replica count to be equal to the knee value corresponding
to the closest throughput, tclosest. In our implementation, the
threshold parameters θthr, and θerr were set to be 2 and 1
respectively. θCPU was set to be 5%. These values provided
a good tradeoff between performance and resource efficiency.

IV. EVALUATION

A. Experimental Testbed

We set up a prototype testbed running the KVM hypervisor
to host four Ubuntu (v16.04) Virtual Machines (VMs). Each
VM, representing an Edge node, was equipped with 8 CPU
cores and 16 GB RAM. We deployed the OpenFaaS platform
on these VMs, using the Docker container engine (v18.06.2-
ce) and Kubernetes (v1.20.4) container orchestration system.
The VMs were hosted on a bare-metal Intel Xeon E5-2630 v3
system equipped with 16 CPU cores, 252 GB RAM, 1.8 TB
HDD, and 1000Mb/s Ethernet.

B. Workload Benchmark

We used FunctionBench [7], a suite of practical function
workloads for FaaS platforms. As shown in Table III, we ran
our experiments with five representative functions from differ-
ent application scenarios. Float-operation and matmul repre-
sent CPU and memory bound workloads. Gzip-compression is
a disk I/O-intensive workload. The image-processing function,
performing image transformation tasks, represents a real-
world application. Model-serving-rnn represents a workload
associated with deep neural network (DNN) inference. Pod
requests specify the minimum resource that will be reserved
for the function instance to use. We used an HTTP workload
generation tool, Hey10, to produce function invocations.

C. Alternative Approaches

For performance comparison, we consider various alterna-
tive approaches for scaling serverless functions as follows:

OpenFaaS built-in scheduler: The default auto-
scaling mechanism in OpenFaaS is triggered when
the rate of successful invocations is greater than a
threshold of 5 invocations/sec for 10 seconds. We set
OpenFaaS built-in scheduler’s minimum container count,
com.openfaas.scale.min, to be 10 so that it could achieve
the best performance in our testbed. We observed that
with the default value of com.openfaas.scale.min=1, the
function throughput never exceeds 5 invocations/sec,
and auto-scaling is not triggered at all. Another important
parameter, com.openfaas.scale.max, was set to be equal to the
cluster capacity (rcluster) to facilitate fair comparison with
competing techniques.

HPA: HPA scales the number of replicas based on the ratio
between the current resource utilization and a user-defined

10https://github.com/rakyll/hey/

https://github.com/rakyll/hey/


(a) gzip-compression (b) matmul (c) image-processing (d) model-serving-rnn

Fig. 7. Average cumulative throughput under a stationary workload of 20 concurrent clients.

(a) gzip-compression (b) matmul (c) image-processing (d) model-serving-rnn

Fig. 8. Function latency distribution under a stationary workload of 20 concurrent clients.

Fig. 9. Max cumulative performance under a stationary workload.

target utilization value according to Eqn. 3. We set the CPU
utilization target to be 90% to represent a resource budget-
friendly policy. A high CPU utilization target means that the
resource scaling is done conservatively.

KneeScale - hill climbing: As an alternative to KneeScale’s
binary search algorithm, we implemented a hill climbing
algorithm. Initially, we allocate one replica to a given function
and incrementally increase the replica count until the cluster
capacity is reached. Finally, the Kneedle algorithm is applied
to detect the knee point. The number of replicas to be added
at each step is inversely proportional to the degree of slope,
θ, between the previous and the current sampling points. We
calculate θ as the inverse tangent of the ratio of change in
performance score and the change in replica counts between

the sampling points. Since the knee is more likely to appear
in the steep slope area, the increment in replica count is set
to a small value when θ is large.

KneeScale - random search: In this approach, the replica
count is randomly selected and the Kneedle algorithm is
applied at each exploration step. The search stops when the
knee values remain unchanged for three iterations.

D. Effectiveness of KneeScale

First, we evaluate KneeScale under a stationary workload of
20 concurrent clients and compare its performance with that of
alternative approaches. A resource-budget constraint of 1000
replicas was imposed on the cumulative resource allocation.
Each experiment was run for 15 minutes unless the cumulative
replica budget was exceeded, in which case, function instances
were killed to free the allocated resources.

KneeScale - binary search can find knee points accu-
rately and efficiently. Fig. 6 shows that KneeScale takes 10
sampling intervals to find the knee point for the various work-
loads. Whereas KneeScale - hill climbing takes the longest
time to find the Knee point due to its incremental search
process. KneeScale - random search does not find a reliable
knee point in most cases. OpenFaaS built-in scheduler shows
extreme behaviors for different workloads. In three out of four
workload cases, it rapidly scales the replica count and exceeds
the resource budget on cumulative resource allocation before
the experiment completes. Whereas in the case of model-
serving-rnn, it does not trigger any resource scaling since the
instantaneous throughput is less than 5 invocations/sec.



Fig. 10. Dynamic workload.

(a) gzip-compression (b) matmul

(c) image-processing (d) model-serving-rnn

Fig. 11. Resource allocation under the dynamic workload.

Fig. 7 shows that KneeScale - binary search achieves higher
cumulative throughput than competing approaches for each
workload. As shown in Fig. 8, it achieves similar latencies
compared with HPA and much lower latencies than OpenFaaS
built-in scheduler and KneeScale - random search. OpenFaaS
built-in scheduler performs very poorly in the case of model-
serving-rnn since its auto-scaling is never triggered.

KneeScale - binary search achieves the highest cumula-
tive performance score under resource budget. Fig. 9 shows
that KneeScale - binary outperforms HPA, OpenFaaS built-in
scheduler, KneeScale - hill climbing, and KneeScale - random
search by up to 12%, 93%, 35%, and 56% respectively. The
max cumulative performance is the cumulative performance
measured at the end of experiments. Results shown are an
average of three runs.

E. Performance under a Dynamic Workload

Fig. 10 shows the dynamic workload used in our evaluation.
We randomly selected two days’ workload pattern from the
Azure Functions Trace 2019 [12] and sampled every 20
minutes to get about 2 hours of dynamic workload. The

(a) gzip-compression (b) matmul

(c) image-processing (d) model-serving-rnn

Fig. 12. Cumulative replicas under dynamic workload. A resource-budget
constraint of 6000 replicas is imposed on the cumulative resource allocation.

workload data is normalized to have a maximum concurrency
level of 30. A resource-budget constraint of 6000 replicas was
imposed on the cumulative resource allocation. We compare
the performance of KneeScale - binary search with that of
OpenFaaS built-in scheduler, HPA with CPU utilization target
70% (HPA-70), and HPA with target 90% (HPA-90).

KneeScale can adapt quickly to workload changes.
Fig. 11 shows the instantaneous replica count allocated to
various functions under the dynamic workload. In the case
of model-serving-rnn function, the replica count stays at
the minimum value of 10 since the instantaneous through-
put is below the OpenFaaS built-in scheduler’s threshold of
5 invocations/sec. Fig. 12 illustrates how each approach
reaches the resource budget. In the cases of gzip-compression
and matmul functions, the OpenFaaS built-in scheduler ag-
gressively scales the replica count and quickly exceeds the
cumulative resource budget. And as expected, HPA-70 exceeds
the cumulative resource budget more quickly than HPA-90.

Fig. 13 shows that KneeScale provides excellent cumulative
throughput even under a dynamic workload. Fig. 14 shows
that KneeScale provides similar function latencies compared
with HPA-70 and HPA-90, and much lower latencies than
OpenFaaS built-in scheduler. As shown in Fig. 15, KneeScale
outperforms HPA-70, HPA-90, and OpenFaaS built-in sched-
uler in terms of cumulative performance score by up to 32%,
20%, and 106% respectively.

F. Cold Start Latency

Cold start latency is the time spent on preparing a function
instance. Its impact is most significant when a function is
scaled from zero. Fig. 16 shows each function’s first 200 invo-
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Fig. 13. Cumulative throughput under dynamic workload
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Fig. 14. Latency distribution under dynamic workload

Fig. 15. Max cumulative performance under a dynamic workload

cation latencies under the dynamic workload. We observe that
HPA and OpenFaaS built-in scheduler are heavily influenced
by cold start. On the other hand, KneeScale is less affected.
Since KneeScale quickly and aggressively scales the replica
count during the initial exploration of the search space, the
variance in the cold start latency associated with different
replicas amortizes its overall influence. We also observe that
the image-processing function experiences more severe cold-
start latency than other functions. This is because this function
has dependencies on more software libraries than others.

V. RELATED WORK

Automatic resource scaling of containers and microservices
has been studied in the context of traditional cloud computing
platforms. Bella et al. [13] implemented an adaptive auto-
scaler by combining Kubernetes vertical and horizontal auto-

scaler. Rattihalli et al. [14] introduced an auto-scaler that can
dynamically perform non-disruptive vertical scaling. Calheiros
et al. [15] dynamically allocate the required resource in
advance by feeding the latest observed loads’ feedback to
the autoregressive integrated moving average (ARIMA) model
for prediction. Bhattacharjee et al. [16] presented a dynamic
resource management framework for providing horizontal and
vertical autoscaling of containers based on time series to
forecast service workloads. Unlike these works, our paper
focuses on quickly determining optimal resource allocation
for serverless functions under resource-budget constraints of
edge computing environment. Furthermore, our approach does
not require extensive workload profiling and modeling.

HoseinyFarahabady et al. [17] utilized a model predictive
control (MPC) framework to predict the upcoming work-
load and guarantee the QoS requirements of FaaS platforms.
Shahrad et al. [12] used time series analysis to predict function
invocations, and pre-warm the function instances to signifi-
cantly reduce cold start latencies. SOCK [18] implemented
a three-layer caching system for shortening package install
and import time of serverless functions. SAND [19] reduced
serverless function startup time by utilizing lightweight sand-
boxing mechanism for functions within the same application.
FaaSNet [20] decentralized serverless container provisioning
process across host VMs that are organized in function-
based tree structures. Cicconetti et al. [21] extended serverless
computing and developed an architecture to offload stateless
tasks from user terminals to edge nodes. Cicconetti et al. [22]
devise a resource-efficient edge computing scheme such that
an intelligent IoT device user can well support its computation-
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Fig. 16. Invocation latencies including cold starts under a dynamic workload.

ally intensive task by proper task offloading across the local
device, nearby helper device, and the edge cloud in proximity.
These approaches are complementary to our work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an adaptive auto-scaler,
KneeScale, that efficiently scales serverless functions under
resource budget constraints in edge systems. We developed
a novel approach that dynamically adjusts the number of
function instances to quickly reach a Knee point at which
the relative cost to increase resource allocation is no longer
worth the corresponding performance benefit. We imple-
mented KneeScale on a Kubernetes-based OpenFaaS platform
and evaluated its effectiveness using a representative FaaS
benchmark, FunctionBench. Experimental results show that
KneeScale outperforms existing auto-scaling techniques under
resource budget constraints for both stationary and dynamic
workloads. In our future work, we will evaluate and further
enhance KneeScale for large scale and heterogeneous settings.
We will also study the impact of resource contention and
performance interference between serverless functions running
on a shared FaaS platform.
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