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Abstract
Efficient and accurate numerical approximation of the full Boltzmann equation has been a
longstanding challenging problem in kinetic theory. This ismainly due to the high dimension-
ality of the problem and the complicated collision operator. In this work, we propose a highly
efficient adaptive low rank method for the Boltzmann equation, concerning in particular the
steady state computation. This method employs the fast Fourier spectral method (for the
collision operator) and the dynamical low rank method to obtain computational efficiency.
An adaptive strategy is introduced to incorporate the boundary information and control the
computational rank in an appropriate way. Using a series of benchmark tests in 1D and 2D,
we demonstrate the efficiency and accuracy of the proposed method in comparison to the full
tensor grid approach.

Keywords Dynamical low rank method · Boltzmann equation · Steady state solution ·
Adaptive method · Fast Fourier spectral method · Normal shock wave

1 Introduction

Kinetic theory describes the non-equilibrium dynamics of gases or systems comprised of
a large number of particles. It provides rich information at the mesoscopic level when the
well-known fluid mechanical laws of Navier-Stokes and Fourier become inadequate. Various
applications of kinetic theory can be found in fields such as rarefied gas dynamics [4], plasma
physics [2], semiconductor modeling [24] and biological and social sciences [27].

In this work, we are interested in the efficient numerical approximation of the nonlinear
Boltzmann equation [3, 34], which is the central model in kinetic theory and reads as

∂t f + v · ∇x f = Q( f , f ), t > 0, x ∈ �x ⊂ R
d , v ∈ R

d , (1.1)
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where f = f (x, v, t) is the phase space distribution function of time t , position x, and
particle velocity v; Q is the Boltzmann collision operator, which is a quadratic integral
operator modeling the binary interactions between particles. It is convenient to introduce the
bilinear form of Q:

Q(g, f )(v) =
∫
Rd

∫
Sd−1

B(|v − v∗|, cosχ)[g(v′∗) f (v′) − g(v∗) f (v)] dσ dv∗, (1.2)

where the post-collisional velocities (v′, v′∗) are defined in terms of pre-collisional velocities
(v, v∗) through the conservation of momentum and energy during the collision:

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ, (1.3)

with σ being a vector over the unit sphere Sd−1. The collision kernel B is a non-negative
function depending on |v − v∗| and cosine of the deviation angle χ , i.e., the angle between
v− v∗ and v′ − v′∗. It should be noted that collisions happen only in the velocity space, thus
time and spatial dependence is omitted in (1.2). This property has important consequence in
design of efficient numerical methods as we shall see later. With the distribution function f ,
one can retrieve the macroscopic quantities via its moments:

∫
Rd

f (x, v, t)

⎡
⎣ 1

v
1
2 |v|2

⎤
⎦ dv =

⎡
⎣ ρ(x, t)

ρ(x, t)u(x, t)
1
2ρ(x, t)|u(t, x)|2 + d

2ρ(x, t)RT (x, t)

⎤
⎦ , (1.4)

where ρ(x, t), u(x, t), and T (x, t) are the density, bulk velocity, and temperature, R is the
Boltzmann constant.

Despite of the long history and wide application of the Boltzmann equation, numerically
solving the Boltzmann equation still faces great challenges nowadays. This is mainly due to
the high dimensionality of the equation and the complicated collision operator. The prevailing
method is the direct simulation Monte Carlo (DSMC) method [1, 28] because it can avoid
the curse of dimensionality. DSMCmethod models binary collisions stochastically but could
suffer from slow convergence in certain cases such as low speed or near continuum flows.
On the other hand, the deterministic method based on discretization of the equation on
representative grids has undergone significant development over the past decade. This is
partly due to the rapid growth of the computing power as well as the algorithmic advance in
approximation of the Boltzmann collision operator. Regarding the latter, the Fourier spectral
method [30, 31] stands out for its high accuracy and possibility of being further accelerated
by the fast Fourier transform (FFT). The readers can refer to [8, 17] for a review of such
methods. Relevant to the current work, we mention the fast algorithm proposed in [25] which
can efficiently evaluate the collision operator for certain collision kernel inO(MNd

v log Nv)

complexity, where Nv is the number of points in each velocity dimension andM is the number
of points over Sd−1. Even equipped with the fast solver for the collision operator, solving
the Boltzmann equation deterministically can still be very expensive. In the full tensor grid
approach, the overall complexity (per time step) would be O(Nd

x MNd
v log Nv), where Nx is

the number of discretization points used in each spatial dimension. This motivates us to seek
more efficient method to overcome the intrinsic high dimensionality of the problem.

Recently, a class of dynamical low rank method has been applied to solving kinetic equa-
tions including the Vlasov equation [12, 13], Boltzmann–BGK equation [9, 11] and radiation
transfer equation [10, 32]. The basic idea is to find a low-rank approximation of the unknown
function f by projecting the equation onto the tangent space of the low-rank solution man-
ifold. Upon a further operator splitting, the original Nd

x N
d
v dimensional problem can be
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reduced to a few Nd
x or Nd

v dimensional problems. We mention that this formulation can
only be done easily if the original equation has a tensor structure (x and v are separated in
some sense). For some collision operators, e.g., the BGK operator which is highly nonlinear
due to the f dependent Maxwellian function, extra effort is needed to make the method
efficient [11].

In this work, we apply the dynamical low rank method to the Boltzmann equation (1.1)
and investigate the performance of the method in a series of benchmark tests that concern
the steady state solutions. Our contribution can be summarized as follows: 1) The dynamical
low rank method is for the first time applied to the nonlinear Boltzmann equation (1.1). Even
though the collision operator Q( f , f ) is quite complicated, it is local in x hence is highly
suited in the low rank framework. Moreover, the previously developed fast Fourier spectral
method can be applied straightforwardly to accelerate the overall method. 2) We propose an
adaptive strategy to add and remove basis along the time evolution. In particular, the stage
of adding the basis is strongly motivated by our underlying problem. Most benchmark tests
for the Boltzmann equation involve steady state solutions (e.g., normal shock, Couette flow,
thermally driven cavity flow, etc. [18]) for which the boundary condition is highly non-trivial
and plays an important role. We show that to accurately simulate this type of problems, the
boundary information needs to be added to the solution on the fly.As a consequence, dropping
the basis becomes mandatory, otherwise the numerical rank will increase constantly. This is
in contrast to most of the previous dynamical low rank methods on kinetic equations, where
a fixed rank can often be used throughout the simulation. 3) Using asymptotic analysis and
heuristic arguments, we identify a class of problems – normal shock problem – whose steady
state solutions are indeed low rank in some regimes, and further confirm it in numerical
experiments. This provides some theoretical guarantee for the proposed low rank method to
be an efficient approach for solving the nonlinear Boltzmann equation. Finally we mention
some relevant work on rank adaptivity [5, 6, 16, 21, 33]. Compared to these work, our method
investigates in particular the boundary effect and how to incorporate that information to enrich
the solution expansion basis. Furthermore,we provide away to choose a dynamically changed
tolerance (rather than a prefixed tolerance) to drop the basis.

The rest of this paper is organized as follows. In Sect. 2, we describe the dynamical low
rank method for the Boltzmann equation, including the time, velocity and physical space
discretization as well as the treatment of the boundary condition. In Sect. 3, we introduce an
adaptive strategy to add and drop basis in the dynamical low rank method during the time
evolution. In Sect. 4, we analyze the normal shock problem and demonstrate the low rank
property of the solution in both the weak and strong shock wave regimes. Section 5 presents
numerical examples in 1D and 2D using the proposed adaptive dynamical low rank method.
Several benchmark tests for the nonlinear Boltzmann equation are considered: normal shock,
Fourier flow, lid driven cavity flow, and thermally driven cavity flow. The paper is concluded
in Sect. 6.

2 The Dynamical Low RankMethod for the Boltzmann Equation

In this section, we introduce the dynamical low rank method for the Boltzmann equation
(1.1). We first present the formulation in the continuous setup, where we highlight the special
structure of the collision operator in obtaining an efficient low rank approximation. We then
describe the discretization in the velocity space and physical space, and treatment of the
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typical boundary conditions of theBoltzmann equation. Finally,we add the timediscretization
to obtain a fully discrete low rank scheme.

The starting point of the method is to constrain the distribution function f (x, v, t) to a
low rank manifold M such that

f (x, v, t) =
r∑

i, j=1

Xi (x, t)Si j (t)Vj (v, t), (2.1)

where r is the representation rank and the basis functions {Xi }1≤i≤r ⊂ L2(�x) and
{Vj }1≤ j≤r ⊂ L2(�v) are orthonormal:

〈Xi , X j 〉x = δi j , 〈Vi , Vj 〉v = δi j , 1 ≤ i, j ≤ r , (2.2)

with 〈·, ·〉x and 〈·, ·〉v being the inner products on L2(�x) and L2(�v), respectively. Note
here we consider a finite velocity domain �v rather than the whole space R

d to avoid the
complication in the infinite domain. This is a reasonable assumption because the majority of
the numerical methods for kinetic equations need to first truncate the velocity domain and
then perform the discretization. It can often be done without much loss of accuracy since f
decays sufficiently fast as v goes to infinity.

We rewrite Eq. (1.1) as

∂t f = −v · ∇x f + Q( f , f ) := RHS. (2.3)

To ensure uniqueness of the dynamical factors Xi , Si j , and Vj through Eq. (2.3), we impose
the following gauge conditions by constraining the derivatives in the null space (for details,
see [19]):

〈∂t Xi , X j 〉x = 0, 〈∂t Vi , Vj 〉v = 0, 1 ≤ i, j ≤ r . (2.4)

We now project the right hand side of (2.3) onto the tangent space ofM:

∂t f = Pf (RHS), (2.5)

where the orthogonal projector Pf can be written as

Pf (RHS) =
r∑
j=1

〈Vj ,RHS〉vVj −
r∑

i, j=1

Xi 〈Xi Vj ,RHS〉x,vVj +
r∑

i=1

Xi 〈Xi ,RHS〉x.

(2.6)

To avoid the possible ill-conditioning of the matrix S = (Si j )1≤i, j≤r , one can perform a
simple operator splitting [22] to decompose (2.6) into solving three subflows consecutively:

∂t f =
r∑
j=1

〈Vj ,RHS〉vVj , (2.7)

∂t f = −
r∑

i, j=1

Xi 〈Xi Vj ,RHS〉x,vVj , (2.8)

∂t f =
r∑

i=1

Xi 〈Xi ,RHS〉x, (2.9)
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with initial condition:

f (x, v, 0) =
r∑

i, j=1

Xi (x, 0)Si j (0)Vj (v, 0). (2.10)

Using the orthogonality condition (2.2), we can further simplify each subflow and proceed
in the following three substeps:

• K -step: Define K j (x, t) = ∑r
i=1 Xi (x, t)Si j (t) then f (x, v, t) = ∑r

j=1 K j (x, t)
Vj (v, t). We can rewrite Eq. (2.7) as

∂t

⎛
⎝ r∑

j=1

K jVj

⎞
⎠ =

r∑
j=1

(
∂t K j Vj + K j∂t V j

) =
r∑
j=1

〈Vj ,RHS〉vVj . (2.11)

It is easy to see that ∂t K j = 〈
Vj ,RHS

〉
v together with ∂t V j = 0 solve (2.11). Since the

solution to the subflow is unique, we thus know {Vj }1≤ j≤r remains unchanged during
this substep. Furthermore, we have

∂t K j = 〈
Vj ,RHS

〉
v

= −
r∑

l=1

〈
vVj Vl

〉
v · ∇xKl +

r∑
m,n=1

〈
VjQ (Vm, Vn)

〉
v KmKn, j = 1, . . . , r ,

(2.12)

where the simplification of the last term relies crucially on the bilinearity of the collision
operator (1.2) as well as the fact that collisions act locally in the physical space.

• S-step: We can argue similarly to obtain that the subflow (2.8) is equivalent to

∂t Si j = −〈Xi Vj ,RHS〉x,v

=
r∑

k,l=1

〈vVj Vl〉v · 〈Xi∇xXk〉xSkl

−
r∑

k,l,m,n=1

〈Xi Xk Xl〉x〈VjQ(Vm, Vn)〉vSkm Sln, i, j = 1, . . . , r .

(2.13)

During this substep, both {Vj }1≤ j≤r and {Xi }1≤i≤r remain unchanged.
• L-step: Define Li (v, t) = ∑r

j=1 Si j (t)Vj (v, t) then f (x, v, t) = ∑r
i=1 Xi (x, t)Li (v, t).

By similar arguments, the subflow (2.9) is equivalent to

∂t Li = 〈Xi ,RHS〉x,

= −
r∑

l=1

v · 〈Xi∇xXl〉xLl +
r∑

m,n=1

Q(Lm, Ln)〈Xi Xm Xn〉x, i = 1, . . . , r .

(2.14)

During this substep, {Xi }1≤i≤r remains unchanged.

Therefore, we have obtained a set of low rank Eqs. (2.12)–(2.14) in the continuous setting.
The task remains is to apply the proper discretization to these equations in the velocity space,
physical space, and time, which we will detail in the following subsections.
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2.1 Velocity Space Discretization

Examining the Eqs. (2.12)–(2.14), we can see that all terms pertaining to the collision operator
have the form of Q(h1, h2), where h1 and h2 are some functions of v (e.g., Q(Vm, Vn) in
(2.12) and (2.13), andQ(Lm, Ln) in (2.14)). Luckily this isn’t much change from the original
collision operator in (1.1) and we can apply the well-developed fast Fourier spectral methods.
Thesemethods can be implemented as a discrete velocitymethod: one chooses an appropriate
velocity domain [−Lv, Lv]d and uniform grid points {vq}; the collision solver takes discrete
values {h1(vq)} and {h2(vq)} and outputs {Q(h1, h2)(vq)} on the same set of grid points.

Specifically, for 2D Maxwell molecules (d = 2 and B = const) and 3D hard spheres
(d = 3 and B = const|v − v∗|), we can use the algorithm proposed in [26] to evaluate
each termQ(h1, h2) with complexity O(MNd

v log Nv), where Nv is the number of points in
each dimension of the velocity space and M 
 Nd−1

v is the number of points used on the
sphere Sd−1; for general collision kernel B = B(|v − v∗|, cosχ), we can use the algorithm
proposed in [14] to evaluate each term Q(h1, h2) with complexity O(MNd+1

v log Nv). For
more details, the readers can refer to [14, 26]. Note that the above complexity is only for
one time evaluation of the collision operator. The overall complexity of the low rank method
(which depends on the rank r ) is given in Sect. 2.4.

2.2 Physical Space Discretization

There are various ways to discretize the Eqs. (2.12)–(2.14) in the physical space, for example,
one can apply the Fourier spectral method [12] or the high resolution finite difference scheme
[11] directly to these equations. Generally speaking, the conventional scheme used for the
original equation needs to be tailored when solving the equations resulted from the low rank
projection. The issue also becomes a bit tricky when the boundary condition is not periodic.

Herewe adopt a “first discretize, then project” strategy, which is simpler because it follows
directly from the scheme for the original equation. We mention that this idea is similar to the
so-called kinetic flux vector splitting (KFVS) scheme [7], a well-known method for solving
the compressible Euler equations derived from the kinetic equation. For simplicity, we focus
on the first order upwind scheme in this work. To extend it to high order, similar strategy for
the KFVS scheme [23] can be considered.

Weuse the one-dimensional case (d = 1) to illustrate the idea. Extension to highdimension
with rectangular grid is straightforward as implemented in our numerical examples. Assume
�x = [−Lx , Lx ]with uniformgrid points chosen as xp = −Lx+(p− 1

2 )�x , p = 1, . . . , Nx ,

�x = 2Lx
Nx

. Since the transport term in the Boltzmann equation (1.1) is linear, it is very easy
to apply the upwind scheme:

∂t f (x, v, t) = −v + |v|
2

f (x, v, t) − f (x − �x, v, t)

�x

−v − |v|
2

f (x + �x, v, t) − f (x, v, t)

�x
+ Q( f (x, v, t), f (x, v, t))

:= −v+D+ f (x, v, t) − v−D− f (x, v, t) + Q( f (x, v, t), f (x, v, t)),

(2.15)

where v± = v±|v|
2 , and D± are first order upwind operators.

For Eq. (2.15), we can apply the same projection process as we did previously to Eq. (2.3)
to obtain (i.e., the analogs of (2.12)–(2.14)):
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• K -step:

∂t K j (x, t) = −
r∑

l=1

〈v+Vj (v, t)Vl(v, t)〉vD+Kl(x, t)

−
r∑

l=1

〈v−Vj (v, t)Vl(v, t)〉vD−Kl(x, t)

+
r∑

m,n=1

〈Vj (v, t)Q(Vm(v, t), Vn(v, t))〉vKm(x, t)Kn(x, t).

(2.16)

• S-step:

∂t Si j (t) =
r∑

k,l=1

〈v+Vj (v, t)Vl(v, t)〉v〈Xi (x, t)D+Xk(x, t)〉x Skl

+
r∑

k,l=1

〈v−Vj (v, t)Vl(v, t)〉v〈Xi (x, t)D−Xk(x, t)〉x Skl

−
r∑

k,l,m,n=1

〈Xi (x, t)Xk(x, t)Xl(x, t)〉x 〈Vj (v, t)

Q(Vm(v, t), Vn(v, t))〉vSkm Sln .

(2.17)

• L-step:

∂t Li (v, t) = −
r∑

l=1

v+〈Xi (x, t)D+Xl(x, t)〉x Ll(v, t)

−
r∑

l=1

v−〈Xi (x, t)D−Xl(x, t)〉x Ll(v, t)

+
r∑

m,n=1

Q(Lm(v, t), Ln(v, t))〈Xi (x, t)Xm(x, t)Xn(x, t)〉x .

(2.18)

Remark 2.1 During the review process, weweremade aware of thework [20], which analyzes
the stability of the dynamical low rank method applied to a linear hyperbolic system using
the “first discretize, then project” strategy. It is shown that the method can lead to instabilities
(which however only become visible for certain ranks). In all of our numerical experiments,
we didn’t observe any instabilities. A detailed analysis for the kinetic problem is yet to be
performed.

2.3 Treatment of the Boundary Condition

In the low rank framework, boundary condition for f (x, v, t) needs to be transformed to the
boundary condition of {K j }1≤ j≤r . In fact, this transformation has a non-trivial impact on the
fully discrete scheme which we shall describe in the next subsection.
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For a boundary point x ∈ ∂�x with outward pointing normal n(x) and boundary velocity
uw(x, t), general boundary conditions for Boltzmann equation (1.1) are defined through the
inflow direction:

f (x, v, t) = fbdy(x, v, t), (v − uw(x, t)) · n(x) < 0, (2.19)

where fbdy is a prescribed function. The other half of f (x, v, t) is given from interior of the
domain (outflow). We thus define

f b(x, v, t) =
{

fbdy(x, v, t), (v − uw(x, t)) · n(x) < 0,

f (x, v, t), (v − uw(x, t)) · n(x) ≥ 0.
(2.20)

Accordingly, we can project the full boundary f b(x, v, t) to the space spanned by {Vj }1≤ j≤r

to obtain boundary values for {K j }1≤ j≤r :

K j (x, t) = 〈 f b(x, v, t), Vj (v, t)〉v
= 〈 fbdy(x, v, t)1(v−uw(x,t))·n(x)<0, Vj (v, t)〉v

+ 〈 f (x, v, t)1(v−uw(x,t))·n(x)≥0, Vj (v, t)〉v
= 〈 fbdy(x, v, t)1(v−uw(x,t))·n(x)<0, Vj (v, t)〉v

+
r∑

l=1

Kl(x, t)〈1(v−uw(x,t))·n(x)≥0Vl(v, t)Vj (v, t)〉v,

(2.21)

where the Kl term appearing on the right hand side of (2.21) can be approximated using
values inside the domain (extrapolation) since the term results from the outflow.

Two typical boundary conditions used when solving the Boltzmann equation (1.1) are the
following inflow boundary and Maxwell diffusive boundary. For inflow boundary, we take
uw(x, t) = 0 and

fbdy(x, v, t) = ρin(x, t)
(2πTin(x, t))d/2 exp

(
−|v − uin(x, t)|2

2RTin(x, t)

)
, v · n(x) < 0, (2.22)

where ρin , uin and Tin are the density, bulk velocity and temperature of the prescribed inflow.
For the Maxwell diffusive boundary, we take

fbdy(x, v, t) = ρw(x, t) exp
(

−|v − uw(x, t)|2
2RTw(x, t)

)
, (v − uw(x, t)) · n(x) < 0, (2.23)

where Tw is the wall temperature, and ρw is determined by conservation of mass through the
wall:

ρw(x, t) = −
∫
(v−uw(x,t))·n(x)≥0(v − uw(x, t)) · n(x) f (x, v, t) dv

∫
(v−uw(x,t))·n(x)<0(v − uw(x, t)) · n(x) exp

(
−|v−uw(x,t)|2

2RTw(x,t)

)
dv

. (2.24)

2.4 Time Discretization and the Fully Discrete Scheme

We now add the time discretization to (2.12)–(2.14) to obtain a fully discrete scheme. Since
most of the examples we are interested in this paper concern the stationary Boltzmann equa-
tion, the first order time discretization suffices. For high order method in time, the readers
can refer to [10] and references therein.
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Given the initial condition f (x, v, 0) = f 0(x, v), we first perform the singular value
decomposition f 0(x, v) = ∑r

i, j=1 X
0
i (x)S

0
i j V

0
j (v) to obtain (X0

i , S
0
i j , V

0
j ), where a fixed,

reasonable rank r is chosen and used in the following computation.
Suppose at time step tn , (Xn

i , S
n
i j , V

n
j ) are available. With the fully discretized scheme,

each element Xi ∈ R
Nd
x , Si j ∈ R and Vj ∈ R

Nd
v . The time step �t is chosen as �x

2Lv
. In order

to obtain (Xn+1
i , Sn+1

i j , V n+1
j ) at tn+1 = tn + �t , we proceed as follows:

1. K -step.

(a) Construct Kn
j = ∑r

i=1 X
n
i S

n
i j .

(b) Perform the forward Euler step in (2.12) to obtain Kn+1
j :

Kn+1
j = Kn

j − �t
r∑

l=1

〈
vV n

j V
n
l

〉
v

· ∇xK
n
l

+ �t
r∑

m,n=1

〈
V n
j Q

(
V n
m, V n

n

)〉
v
Kn
mK

n
n , j = 1, . . . , r .

(2.25)

(c) Compute the QR decomposition of Kn+1
j = ∑r

i=1 X
n+1
i S(1)

i j to obtain updated Xn+1
i

and S(1)
i j .

The overall arithmetic complexity of this step is O (
r3Nd

v + r3Nd
x + r2MNd

v log Nv
)

(suppose the algorithm in [26] is used for evaluating the collision operator).
2. S-step.

(a) Perform the forward Euler step in (2.13) to obtain S(2)
i j :

S(2)
i j = S(1)

i j + �t
r∑

l=1

〈vV n
j V

n
l 〉v · 〈Xn+1

i ∇xK
n+1
l 〉x

−�t
r∑

m,n=1

〈V n
j Q(V n

m, V n
n )〉v

r∑
l=1

(
r∑

k=1

(
〈Xn+1

i Xn+1
k Xn+1

l 〉xS(1)
km

)
S(1)
ln

)
,

i, j = 1, . . . , r .

(2.26)

Since some of the quantities have been computed in the K -step, they can be reused
in this step, for example, the termQ(V n

m, V n
n ). Note that we changed the second term

on the right hand side such that it uses ∇xK
n+1
j rather than ∇xX

n+1
j . This is crucial

because we have only available boundary condition expressed in terms of Kn+1
j as

seen in Sect. 2.3.

The overall arithmetic complexity of this step is O (
r3Nd

x + r4
)
.

3. L-step.

(a) Construct Ln
i = ∑r

j=1 S
(2)
i j V n

j and K̃ n+1
j = ∑r

i=1 X
n+1
i S(2)

i j .
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(b) Perform the forward Euler step in (2.14) to obtain Ln+1
i :

Ln+1
i = Ln

i − �t
r∑

l=1

v · 〈Xn+1
i ∇x K̃

n+1
l 〉xV n

l

+ �t
r∑

p,q=1

Q(V n
p , V n

q )

r∑
n=1

×
(

r∑
m=1

(
〈Xn+1

i Xn+1
m Xn+1

n 〉xS(2)
mp

)
S(2)
nq

)
, i = 1, . . . , r .

(2.27)

The term involving the collision operator is rearranged so that the previously com-
puted values canbe reused. For the same reason as in the S-step,∇x K̃

n+1
j is introduced

to avoid using ∇xX
n+1
l .

(c) Compute the QR decomposition of Ln+1
i = ∑r

j=1 S
n+1
i j V n+1

j to obtain updated

V n+1
j and Sn+1

i j .

The overall arithmetic complexity of this step is O (
r2Nd

x + r3Nd
v + r4

)
.

To simplify the notation, we treat x, v as the continuous variables in the above presentation.
The discretization in x and v can be added straightforwardly following the discussion in
Sects. 2.1 and 2.2. The inner products 〈 · 〉v, 〈 · 〉x are evaluated using the midpoint rule at
the discrete velocity and spatial grid points.

If r is small, the computational complexity of the above algorithm will be dominated by
the evaluation of the collision operatorO(r2MNd

v log Nv), which can bemuchmore efficient
than the full tensor method whose complexity is O(Nd

x MNd
v log Nv).

3 An Adaptive Dynamical Low RankMethod

The dynamical low rank method introduced in the last section uses a fixed rank r throughout
the entire time evolution. This turns out to be a bad strategy when solving the stationary
Boltzmann equation subject to inflow or Maxwell diffusive boundary conditions. The reason
is two-fold: 1) The boundary keeps sending new information to the interior of the domain
so that the basis Xi , Si j , Vj initialized according to the initial condition is not sufficient to
capture the solution at later time. Thus new basis needs to be injected to the solution over
time. 2) For many benchmark tests of the Boltzmann equation, the steady state solutions are
often low rank (see Sect. 4 for a partial justification). Therefore, keeping adding basis without
dropping anything would unnecessarily increase the computational cost. In this section, we
provide an adaptive strategy to add and delete basis during the time evolution of a dynamical
low rank method.

3.1 Adding Basis from the Boundary

Assume that at the boundary x ∈ ∂�x, f (x, v, t) is given by

f (x, v, t) = f b(x, v, t), (3.1)

where f b(x, v, t) is defined in (2.20).
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Since the function f b(x, v, t) does not necessarily belong to the space spanned by
{Vj }1≤ j≤r , using a fixed set of basis will result in information loss.

We can fix this problem by explicitly adding boundary conditions as basis into {Vj }1≤ j≤r .
For example, at the beginning of time step tn , suppose in the fully discrete scheme there
are Nbx spatial points on the boundary ∂�x, Nd

v velocity points over the velocity space �v
and Nd

x spatial points over the physical space �x. We can represent the function f b(x, v, tn)
using a matrix Fb ∈ R

Nbx×Nd
v (typically Nbx 
 Nd

v ). We then proceed as follows:

1. Compute the SVD of Fb to obtain Fb = Ub
bQT
b whereUb ∈ R

Nbx×Nbx , Qb ∈ R
Nd
v ×Nd

v

are orthonormal and 
b ∈ R
Nbx×Nd

v contains descending singular values.
2. Drop singular values in 
b that are smaller than some tolerance (e.g., 10−10). Suppose

there are rb singular values remaining, set Q̄b = Qb(:, 1 : rb) ∈ R
Nd
v ×rb .

3. Concatenate a random matrix Xh ∈ R
Nd
x ×rb to Xn , Q̄b to V n and extend Sn with zero

padding:

X̂ = [Xn, Xh] ∈ R
Nd
x ×(r+rb), Ŝ =

[
Sn

0

]
∈ R

(r+rb)×(r+rb),

V̂ = [V n, Q̄b] ∈ R
Nd
v ×(r+rb). (3.2)

4. Perform the QR decomposition of X̂ and V̂ to orthonormalize new basis as X̂ = Xq Sx
and V̂ = Vq Sv . Set Sq = Sx ŜSTv .

Then (Xq , Sq , Vq) are the new low-rank factors andweproceed as inSect. 2.4. If f b(x, v, t) =
f b(v, t) is spatially homogeneous, we can directly start at step 3 and concatenate Fb to V n .

Remark 3.1 In step 3 above, we explicitly add boundary basis into velocity basis such that
there is no information loss in representing the boundary condition. In order to keep size
consistent, we add random basis to spatial basis, and pad zeros to the middle matrix Sn . After
this step, f n remains unchanged due to the zero padding in Sn .

3.2 Dropping Basis Adaptively

To avoid the rank accumulation from the above procedure, we can decrease the rank r by
dropping some small singular values of matrix (Si j )1≤i, j≤r .

At the end of time step tn as described in Sect. 2.4, we proceed as follows to adjust the
rank:

1. Compute the SVD of Sn+1 = (Sn+1
i j )1≤i, j≤r to obtain Sn+1 = U
QT , where U , Q ∈

R
r×r are orthonormal and 
 ∈ R

r×r is diagonal with descending singular values.
2. Drop singular values in 
 that are less than some tolerance drop_tol. Suppose there

are r ′ singular values remaining, we set Ū = U (:, 1 : r ′), 
̄ = 
(1 : r ′, 1 : r ′) and
Q̄ = Q(:, 1 : r ′). Define S̄n+1 = 
̄.

3. Update the basis as [X̄n+1
1 , X̄n+1

2 , . . . , X̄n+1
r ′ ] = [Xn+1

1 , Xn+1
2 , . . . , Xn+1

r ]Ū and
[V̄ n+1

1 , V̄ n+1
2 , . . . , V̄ n+1

r ′ ] = [V n+1
1 , V n+1

2 , . . . , V n+1
r ]Q̄ where {X̄n+1

i }i=1,...,r ′ and

{V̄ n+1
i }i=1,...,r ′ are the updated spatial and velocity basis functions respectively.

drop_tol plays an important role in overall computational efficiency and accuracy. Large
drop_tol causes low accuracy for some high-rank solutions and small drop_tol suffers from
heavy computation by large computational rank.We dynamically choose drop_tol according
to the accuracy of the current solution. More details are given in Sect. 5.1.
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4 Normal Shock Problem and Low Rank Property of the Solution

Generally speaking, it is hard to predict or analyze the rank of the solution to the Boltzmann
equation due to its highly nonlinear structure. As such, the dynamical low rank method
introduced above is really like a black box solver since one cannot tell in advance the rank
of the solution until the actual simulation is run. If the rank turns out to be high, the method
becomes slow and might not be competitive to the full tensor method. Nevertheless, in this
section we identify a class of problems whose solutions are indeed low rank so that we have
confidence about the efficiency of the low rank method.

The normal shock problem [4] is a classical benchmark test in rarefied gas dynamics
and has been used to validate all kinds of numerical methods for the nonlinear Boltzmann
equation. Consider a plane shockwave perpendicular to a flow. The flow is in the x1 direction.
The gas is uniform at upstream infinity (x1 → −∞) and downstream infinity (x1 → +∞)
and the whole flow is stationary. We are interested in the shock profile developed in this setup
with various Mach numbers.

The governing equation is the following 1D stationary Boltzmann equation:

v1∂x1 f = Q( f , f ), (4.1)

with boundary condition

lim
x1→−∞ f (x1, v) = fL(v) = M(ρL ,uL , TL)(v)

= ρL

(2πRTL )d/2 exp

(
− (v1 − uL)2 + v22 + · · · + v2d

2RTL

)
,

lim
x1→+∞ f (x1, v) = fR(v) = M(ρR,uR, TR)(v)

= ρR

(2πRTR)d/2 exp

(
− (v1 − uR)2 + v22 + · · · + v2d

2RTR

)
,

(4.2)

where M(ρ,u, T ) is the Maxwellian distribution; (ρL ,uL , TL) and (ρR,uR, TR) are the
density, bulk velocity and temperature of the upstream and downstream flows; and R is the
gas constant.

The net flow of mass, momentum and energy into the shock must be equal to the ones out
of the shock:

∫
v1 fL(v)

⎡
⎣ 1

v1
v2

⎤
⎦ dv =

∫
v1 fR(v)

⎡
⎣ 1

v1
v2

⎤
⎦ dv. (4.3)

Rewriting Eq. (4.3) in terms of macroscopic quantities ρL,R , uL,R and TL,R , we have the
following Rankine-Hugoniot relations

ρLuL = ρRuR,

ρLu
2
L + ρL RTL = ρRu

2
R + ρR RTR,

ρLuL
(
u2L + (d + 2)RTL

) = ρRuR
(
u2R + (d + 2)RTR

)
.

(4.4)

Given the upstreamquantities (ρL , uL , TL) andusing the upstreamflowMachnumber defined
by

ML = uL

(γ RTL)
1
2

, γ = d + 2

d
, (4.5)
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we can solve Eq. (4.4) to obtain

ρR = ρL
(d + 1)M2

L

M2
L + d

, uR = uL
M2

L + d

(d + 1)M2
L

, TR = TL
((d + 2)M2

L − 1)(M2
L + d)

(d + 1)2M2
L

.

(4.6)

In the following, we consider two scenarios where one can obtain some low rank approx-
imation to the solutions of (4.1)–(4.2).

4.1 Weak ShockWave:ML = O(1)

When ML = 1, it is clear from (4.6) that there will be no jump hence no shock. When
ML = O(1) but bigger than 1, a weak shock will be developed. We assume

ML = 1 + ε, (4.7)

where ε is a small parameter. In fact, ε is on the same order of the mean free path [29]. We
then rescale x1 according to x̃1 = εx1. The Eq. (4.1) thus becomes

v1∂x̃1 f = 1

ε
Q( f , f ). (4.8)

On the other hand, we can see from (4.6) that the macroscopic quantities of upstream flow
and downstream flow are very close:

ρR

ρL
= 1 + d(M2

L − 1)

M2
L + d

= 1 + O(ε),

uR

uL
= 1 − d(M2

L − 1)

(d + 1)M2
L

= 1 + O(ε),

TR
TL

= 1 + (d + 1)(M4
L − 1) + (M2

L − 1)2

(d + 1)2M2
L

= 1 + O(ε).

(4.9)

Hence

fR
fL

= 1 + O(ε). (4.10)

Therefore, it is reasonable to assume

f (x̃1, v) = fL(v) + ε f1(x̃1, v) + O(ε2), (4.11)

where f1(x̃1, v) is yet to be determined.
The rest of the analysis is similar to the Hilbert expansion. Substituting (4.11) into (4.8)

and matching orders, we obtain at order O(ε):

Q( f1, fL) + Q( fL , f1) = v1∂x̃1 fL(v) ≡ 0. (4.12)

Using the linearized Boltzmann collision operator [3] defined by

LM( f ) := 1

M (Q(M,M f ) + Q(M f ,M)) , M is a Maxwellian, (4.13)

we can write (4.12) as

L fL

(
f1
fL

)
(x̃1, v) = 0. (4.14)
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Thekernel property of LM implies that f1
fL
must be a linear combination of collision invariants

1, v, |v|2 and we may write

f1(x̃1, v) = fL(v)
(
a(x̃1) + b(x̃1) · v + c(x̃1)|v|2

)
, (4.15)

where a, b and c are functions of x1 only. Together with (4.11), we have

f (x̃1, v) = fL(v)(1 + εa(x̃1) + εb(x̃1) · v + εc(x̃1)|v|2) + O(ε2). (4.16)

Therefore, up to order O(ε), the solution f (x̃1, v) is a low rank separated function in x̃1 and
v.

We mention that the derivation of O(ε) term does not require specific properties of the
collision kernel B. One can continue this process to derive O(ε2) term, which is a low rank
function as well and depends on the kernel B, see [29] for details.

4.2 Strong ShockWave:ML → ∞

When ML is very large, a strong shock wave will develop and one cannot hope for any
asymptotic expansion as in the previous subsection. Over the years, people have tried to
find various approximations to the solution in this regime and it turns out many heuristic
solutions match well with the experiments, yet are low rank [4, 15]. Here we present one such
approximation due to Mott-Smith, who obtained the first solution of Boltzmann’s equation
for the shock structure problem in 1951. More sophisticated approximations exist but they
more or less follow a similar idea as Mott-Smith.

The starting point is a bimodal distribution (and low rank) approximation of f as

f (x1, v) = a1(x1) fL(v) + a2(x1) fR(v). (4.17)

To satisfy the Rankine–Hugoniot equations, we must have a1(x1) + a2(x1) ≡ 1. We thus
write a(x1) = a1(x1) and a2(x1) = 1 − a(x1). In order to determine a(x1), one additional
condition is needed. The simplest way is to enforce the moment equation by multiplying Eq.
(4.1) by

∫ · v21 dv: ∫
v31∂x1 f dv =

∫
v21Q( f , f ) dv, (4.18)

which reduces to

a′(x1)
(
ρLuL(u2L + 3RTL) − ρRuR(u2R + 3RTR)

) = αa(x1)(1 − a(x1)), (4.19)

with

α =
∫

v21 (Q( fL , fR) + Q( fR, fL)) dv. (4.20)

Using (4.4), (4.19) can be further simplified to

(d − 1)ρLuL R(TL − TR)a′(x1) = −αa(x1)(1 − a(x1)). (4.21)

This equation easily integrates to

a(x1) = 1

exp(βx1) + 1
, β = α

(d − 1)ρLuL R(TL − TR)
. (4.22)

Therefore, we have found a closed form solution in the form of (4.17). Note that to evaluate
α, we need to make use of specific properties of the collision kernel B. Accordingly, we can
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see that the spatial change in ρ across the shockwave increases with increasingMach number
ML of the upstream:

ρ(x1)

ρL
=

1 + (d+1)M2
L

M2
L+d

exp(βx1)

1 + exp(βx1)
. (4.23)

5 Numerical Examples

In this section, we evaluate the accuracy and efficiency of the proposed dynamical low rank
method by several classical benchmark tests in rarefied gas dynamics, including normal shock
wave (1D), Fourier flow (1D), lid driven cavity flow (2D), and thermally driven cavity flow
(2D). All these examples concern the steady-state solution of the Boltzmann equation and we
use the first order method in both time and space as described in Sect. 2, and Fourier spectral
method for 2D Maxwell molecules [26] to evaluate the collision operator. The results are
compared with full tensor method using the same discretization.

5.1 Convergence Criterion

Unlike time dependent problems, we need a proper stopping criterion for solving the steady
state solutions.

For the full tensor method, we define the error as

errfull tensor = ‖ f n+1
full tensor − f nfull tensor‖L2

=
〈
f n+1
full tensor − f nfull tensor, f n+1

full tensor − f nfull tensor

〉 1
2

x,v
.

(5.1)

For the low rank method, we define the error similarly as

errlow rank = ‖ f n+1
low rank − f nlow rank‖L2 =

〈
f n+1
low rank − f nlow rank, f n+1

low rank − f nlow rank

〉 1
2

x,v
,

(5.2)

where f nlow rank = ∑r
i, j=1 X

n
i S

n
i j V

n
j . Rather than reconstructing f nlow rank, the above error

term can be broke into three pieces:

f n+1
low rank − f nlow rank =

r∑
i, j=1

Xn+1
i Sn+1

i j V n+1
j −

r∑
i, j=1

Xn
i S

n
i j V

n
j

=
r∑
j=1

(
Kn+1

j − Kn
j

)
V n
j

+
r∑

i, j=1

Xn+1
i

(
S(2)
i j − S(1)

i j

)
V n
j +

r∑
i=1

Xn+1
i

(
Ln+1
i − Ln

i

)

:=
r∑
j=1

�K jV
n
j +

r∑
i, j=1

Xn+1
i �Si j V

n
j +

r∑
i=1

Xn+1
i �Li

(5.3)
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where the notation follows Sect. 2.4. By orthogonality of {Xi }1≤i≤r and {Vj }1≤ j≤r , (5.2) can
be simplified as

err2low rank =
〈
f n+1
low rank − f nlow rank, f n+1

low rank − f nlow rank

〉
x,v

=
r∑
j=1

〈
�K j ,�K j

〉
x +

r∑
i, j=1

�S2i j +
r∑

i=1

〈�Li ,�Li 〉v + I + II + III,
(5.4)

where I, II and III are cross terms:

I = 2
r∑

i, j=1

〈
�K j , X

n+1
i

〉
x
�Si j .

II = 2
r∑

i, j=1

〈
�Li , V

n
j

〉
v
�Si j .

III = 2
r∑

i, j=1

〈
�K j , X

n+1
i

〉
x
·
〈
�Li , V

n
j

〉
v
.

(5.5)

We emphasize that it is crucial to evaluate errlow rank using (5.4)–(5.5), since the cost of
reconstructing f nlow rank is O(r2Nd

x N
d
v ) which is comparable to a full tensor method.

In general, we set a fixed convergence tolerance res_tol and terminate the time iteration
whenever errlow rank, errfull tensor ≤ res_tol for both the full tensor method and low rank
method.

For the adaptive low rank method discussed in Sect. 3, we have

|errlow rank − erradalow rank| ≤ ‖ f̄ n+1
low rank − f n+1

low rank‖L2 ≤ (r − r ′)
1
2 · drop_tol, (5.6)

where erradalow rank = ‖ f̄ n+1
low rank − f nlow rank‖L2 , f̄ n+1

low rank is the solution at the end of time step
tn after adding and removing basis. We dynamically set drop_tol = c ·erradalow rank and control
erradalow rank through

1

1 + c(r − r ′) 1
2

errlow rank ≤ erradalow rank ≤ 1

1 − c(r − r ′) 1
2

errlow rank. (5.7)

In the following tests, we set c = 0.2 and always use the adaptive dynamical low rankmethod
with convergence criterion erradalow rank ≤ res_tol.

5.2 Normal ShockWave

We first consider the normal shock problem (4.1)–(4.2) with several different Mach numbers
ML . We take R = 1, d = 2, hence γ = 2, ML = uL

(2TL )1/2
. In the following, the spatial

domain is chosen as x1 ∈ [−30, 30] with Nx = 1000; and the velocity domain is (v1, v2) ∈
[−Lv, Lv]2.

We choose the upstream and downstream condition as

(ρL , ρR) =
(
1,

3M2
L

M2
L + 2

)
, (uL , uR) =

(√
2ML ,

ρLuL
ρR

)
,

(TL , TR) =
(
1,

4M2
L − 1

3ρR

)
,
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Fig. 1 Normal shock wave (Mach 1.4). Left: error of the full grid method and the adaptive low rank method
for different convergence criterion res_tol. Right: computational time in seconds for both methods

and the initial condition as

ρ0(x1) = tanh(αx1) + 1

2(ρR − ρL)
+ ρL , T0(x1) = tanh(αx1) + 1

2(TR − TL)
+ TL ,

u0(x1) =
(
tanh(αx1) + 1

2(uR − uL)
+ uL , 0

)
,

with α = 0.5.
When showing the numerical results, we are mainly interested in the macroscopic quan-

tities: density ρ(x1), bulk velocity u(x1) (in first dimension) and temperature T (x1). Their
normalized values will be plotted, which are defined by

ρ̂(x1) = ρ(x1) − ρL

ρR − ρL
, û(x1) = u(x1) − uR

uL − uR
, T̂ (x1) = T (x1) − TL

TR − TL
.

5.2.1 Weak Shock Wave: Mach 1.4

In this subsection we consider Mach number to be ML = 1.4 and set Nv = 32, Lv = 13.11.
We set the reference solution fref as the solution from the full grid method with convergence
criterion res_tol = 4 × 10−10.

We check both the full grid method and adaptive low rankmethod by varying convergence
criterion res_tol. The error is defined as ‖ fref − fnum‖L2 where fnum is the solution from
either the full grid or low rank method. At the same time, we record the computational time
needed for both methods to reach the same convergence criterion.

From Fig. 1, we can see that the low rank method can achieve the same accuracy much
more efficiently compared to the full grid method. From Fig. 2, we can see that both methods
match well with the reference solution. The rank in the adaptive low rank method grows
slowly as time evolves and is stabilized to 16 before reaching the convergence criterion.

5.2.2 Strong Shock Wave: Mach 3.8 & Mach 6.5

In this subsection we consider the strong shock wave with two different Mach numbers
ML = 3.8 and ML = 6.5. We compare the full grid method and the adaptive low rank
method using the same convergence criterion res_tol = 4.6 × 10−7.
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Fig. 2 Normal shockwave (Mach 1.4). Left: rank evolution of the adaptive low rankmethod. Right: normalized
density, bulk velocity and temperature of the full gridmethod and the adaptive low rankmethod using res_tol =
3 × 10−7, in comparison to the reference solution

For the case ML = 3.8, we use Nv = 32 and Lv = 20.97. The full grid method needs
18540 seconds to converge; and the adaptive low rank method needs 7556 seconds to con-
verge. For the case ML = 6.5, we use Nv = 48 and Lv = 34.08. The full grid method
needs 44379 seconds to converge; and the adaptive low rank method needs 16157 seconds
to converge.

The results of both cases are reported in Fig. 3. The full grid method and the adaptive
low rank method match well. On the other hand, the rank in the adaptive low rank method
behaves similarly as in the weak shock wave: the numerical rank is a bit higher but still quite
low rank and stabilized before reaching the convergence criterion.

5.3 Fourier Flow

We next consider a Fourier heat transfer problem. The spatial domain is 1D: x1 ∈ [0, 2]
with Nx = 200; and the velocity domain is 2D: (v1, v2) ∈ [−Lv, Lv]2 with Lv = 7.86
and Nv = 32. The Maxwell diffusive boundary condition is assumed at x1 = 0 with wall
quantities uw = (0, 0), Tw = 1 and x1 = 2 with uw = (0, 0), Tw = 1.2. For the initial
condition, we use a spatially homogeneousMaxwellianwith ρ0 = 1, u0 = (0, 0) and T0 = 1.

The convergence criterion is set as res_tol = 2 × 10−7 for both the full grid method
and the adaptive low rank method. For the full grid method, we need 925 seconds to reach
convergence, while for the low rank method, we only need 509 seconds. The temperature
profile as shown in Fig. 4 matches well for both methods. Furthermore, we can see that the
numerical rank in the adaptive low rank method is stabilized to 11 in a very short time.

5.4 Lid Driven Cavity Flow

We now consider the 2D lid driven cavity flow problem. The spatial domain is rectangular
(x1, x2) ∈ [0, 0.5]2 with Nx = 100 in each dimension; and the velocity domain is (v1, v2) ∈
[−Lv, Lv]2 with Lv = 7.86 and Nv = 32. The Maxwell diffusive boundary condition is
assumed at all boundaries. The wall quantities at x2 = 0.5 are uw = (1, 0), Tw = 1, while at
all other boundaries we set uw = (0, 0), Tw = 1. For the initial condition, we use a spatially
homogeneous Maxwellian with ρ0 = 1, u0 = (1, 1) and T0 = 1.
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Fig. 3 Normal shock wave (Mach 3.8 &Mach 6.5). Top: rank evolution of the adaptive low rank method with
Mach 3.8 (Left) and Mach 6.5 (Right); Bottom: normalized density, bulk velocity and temperature of the full
grid method and the adaptive low rank method using res_tol = 4.6 × 10−7 with Mach 3.8 (Left) and Mach
6.5 (Right)
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Fig. 4 Fourier flow. Left: rank evolution in the adaptive low rank method; Right: temperature profile of the
full grid method and the adaptive low rank method using res_tol = 2 × 10−7
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Fig. 5 Lid driven cavity flow. Top: temperature profile of the full grid method (Left) and low rank method
(Right); Middle: x1-component velocity of the full grid method (Left) and low rank method (Right); Bottom:
x2-component velocity of the full grid method (Left) and low rank method (Right). Convergence criterion is
res_tol = 2 × 10−7 for both methods

The convergence criterion is set as res_tol = 2 × 10−7 for both the full grid method and
the adaptive low rank method. For the full grid method, we need 29043 seconds to reach
convergence, while for the low rank method, we only need 8323 seconds. We compare the
temperature and velocity profile in Fig. 5 and a good match is obtained.

From Fig. 6, we can see that the rank in the adaptive low rank method is increasing with
time and no stabilization is observed here, which implies this is an intrinsically high rank
problem. Nevertheless, the error decay in the adaptive low rank method behaves similarly
as in the full grid method (so our adaptive procedure does reasonable things in the actual
simulation).
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Fig. 6 Lid driven cavity flow. Left: rank evolution in the adaptive low rank method; Right: error decaying
behaviors of the full grid method (errfull tensor) and low rank method (erradalow rank)

Fig. 7 Thermally driven cavity
flow. Wall temperature profile at
x2 = 0 and x2 = 2

5.5 Thermally Driven Cavity Flow

We finally consider the 2D flow induced by thermal gradients. The spatial domain is rect-
angular (x1, x2) ∈ [0, 2]2 with Nx = 100 in each dimension; and the velocity domain is
(v1, v2) ∈ [−Lv, Lv]2 with Lv = 6.55 and Nv = 32. The Maxwell diffusive boundary
condition is assumed at all boundaries. We set the wall quantities at x2 = 0, x2 = 2 with
uw = (0, 0) and Tw follows a linear function ranging from 1 to 1.2 as in Fig. 7. At x1 = 0,
x1 = 2, the wall quantities are set with uw = (0, 0) and Tw = 1. For the initial condition,
we use a spatially homogeneous Maxwellian with ρ0 = 1, u0 = (0, 0) and T0 = 1.

The convergence criterion is set as res_tol = 2 × 10−7 for both the full grid method and
the adaptive low rank method. For the full grid method, we need 19011 seconds to reach
convergence criterion, while for the low rank method, we only need 7112 seconds. We plot
the temperature and velocity profile for both methods as in Fig. 8 where we can see a good
match.

Similarly as in the previous test, we track the rank evolution in the adaptive low rank
method and the error decay behavior of both methods in Fig. 9. For this problem, the rank
increases more rapidly, yet the low rank method can still produce reasonable solution more
efficiently compared to the full grid method.
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Fig. 8 Thermally driven cavity flow. Top: temperature profile of the full grid method (Left) and low rank
method (Right); Middle: x1-component velocity of the full grid method (Left) and low rank method (Right);
Bottom: x2-component velocity of the full grid method (Left) and low rank method (Right). Convergence
criterion is res_tol = 2 × 10−7 for both methods
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Fig. 9 Thermally driven cavity flow.Left: rank evolution in the adaptive low rankmethod;Right: error decaying
behaviors of the full grid method (errfull tensor) and low rank method (erradalow rank)

6 Conclusions

We have introduced an adaptive dynamical low rank method for the nonlinear Boltzmann
equation, concerning in particular the steady state computation. This method employs the
fast Fourier spectral method (for the collision operator) and the dynamical low rank method
to obtain computational efficiency. An adaptive strategy was introduced to incorporate the
boundary information and control the computational rank by monitoring the residual error.
A series of benchmark tests were performed to demonstrate the efficiency and accuracy of
the proposed method in comparison to the full tensor grid method.
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