A LIEB-ROBINSON BOUND FOR QUANTUM SPIN CHAINS WITH
STRONG ON-SITE IMPURITIES
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ABSTRACT. We consider a quantum spin chain with nearest neighbor interactions
and sparsely distributed on-site impurities. We prove commutator bounds for its
Heisenberg dynamics which incorporate the coupling strengths of the impurities. The
impurities are assumed to satisfy a minimum spacing, and each impurity has a non-
degenerate spectrum. Our results are proven in a broadly applicable setting, both
in finite volume and in thermodynamic limit. We apply our results to improve Lieb-
Robinson bounds for the Heisenberg spin chain with a random, sparse transverse field
drawn from a heavy-tailed distribution.

1. INTRODUCTION

Since the first demonstration of a finite group velocity for quantum spin systems in

[ |, Lieb-Robinson bounds have played an important role in proving fundamental
results in condensed matter theory and quantum information theory [ , ,
]. The question of whether they can be improved in systems with distin-

guishing features, such as disorder | , , , , |, anomalous
transport | ] or assumed rate of decay of interaction | , , ],
has received considerable attention in recent years. There is also interest in compar-
ing observed velocities in experiments with the estimates one can prove | ]. An

overview of proofs and applications of Lieb-Robinson bounds can be found in Section 3
of | ]

In this paper we focus on spin chains. Propagation estimates of Lieb-Robinson type
for classes of Hamiltonians are typically given in terms of a measure of the strength of
the interactions, usually by using a norm. One naturally obtains such estimates that
do not depend on the presence and magnitude of terms in the Hamiltonian supported
on single sites since, by themselves, such terms do not generate propagation through
the system. Here, we consider quantum spin chains with nearest neighbor interactions
for which we are given such a propagation estimate that does not depend on single-site
terms. We show that under certain conditions, taking into account single-site terms
can lead to a sharper estimate. This improvement is manifested by a reduction of the
pre-factor (amplitude of the propagation), and not in the Lieb-Robinson velocity. More
specifically, we can exploit large on-site terms (such a magnetic fields) supported on
a subset of sites for which we assume a minimum spacing between sites and a non-
degeneracy condition on the eigenvalues of these single-site terms. As a consequence of
our main result, Theorem 3.1, we show that with our set-up, for time ¢ and observables
A and B, there exists a constant C(A, B, t) such that

N
. 511 < (4571 (1)
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where N is the number of impurities which are well-separated from and between the
supports of A and B, and A > 0 is the minimum impurity strength. The precise
statement is found in Corollary 3.2. The quantity C'(A, B, t) can be determined explicitly
and is independent of the system size and, hence, the estimate in (1.1) also holds in the
thermodynamic limit (see Section 4.4). Our result is non-trivial and gives a better
bound for large A than the standard Lieb-Robinson bound, which is independent of A
(see, e.g., | ]). Our method does not allow us to derive an effect of the impurities
on the Lieb-Robinson velocity itself. We note, however, that an improved standard
Lieb-Robinson bound, a smaller velocity or faster spatial decay, would automatically
propagate through our bound and similarly improve it while preserving the factor A=,

In Section 4.5, we apply Theorem 3.1 to the Heisenberg model in the case when a
sparse transverse field is coupled to the nearest neighbor interaction with i.i.d. couplings
drawn from a heavy-tailed distribution. We show that with high probability, ||[A(t), B]||
is much smaller than one would expect from the standard estimates, c.f. the commutator
bound from Theorem 2.1.

2. PRELIMINARIES AND NOTATION

We consider the 1D lattice Z and associate a copy of CP, D > 2, to each lattice
site. We equip Z with the natural distance d(z,y) = |z — y| and define d(X,Y) =
infyexyey |v — y| and d(z,Y) = d({z},Y) for x € Z and X,Y C Z. For any finite
X C Z, we define

Ax = Q) Mp(C) (2.1)
zeX

where Mp(C) is the set of D x D matrices. When X C Y and |Y| < oo, we identify Ax
as a subalgebra of Ay by the map A — A ® 1y x, where 1y x is the unit of Ay x.
The algebra of local observables, the local algebra for short, is given by

Aloc: U -AXa

XCZ
| X <o

(2.2)

and we will refer to the operator norm completion of Aj,., denoted by A as the quasi-local
algebra.

A mapping n: {X CZ:|X| < o0} — A is an interaction if n(X) = n(X)* € Ax for
all X. n is a nearest neighbor interaction when n(X) # 0 only if X = {z,z + 1} for some
x € Z. For a nearest neighbor interaction 1 we use the notation 7, ,+1 = n({z,z + 1})

and |7 = sup,ez 172241/

Let ® : {X CZ:|X| < oo} — A be a nearest neighbor interaction with ||®|| < oo.

For L € N we define
L—1

Hp(®)=Hp = Z Qyppr1 (2.3)
r=—L

We are interested in on-site perturbations of the Hamiltonian Hy, which we will refer
to as impurities. To define these let () # F C Z and define the minimal spacing of F as

or =min{|lr —y|:x,y € F,x #y}. (2.4)
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Later on, we have to assume o r is sufficiently large. Now for each x € F,let V, =V} €
A{zy be an operator of the form

D
S 25)
j=1

where P](I) are the eigenprojectors of V,, and assume the eigenvalues fyj(»m) are distinct

at each site, i.e. for all x € F, %‘(x) #* 7](-33) for all i # j. We now consider perturbations
of the original Hamiltonian Hj, of the following form:

z€FN[—L,L]

where A, € R\ {0} for all w € F and X = (As) ,r 1,

coupling constants. We use the short-hand notation for the perturbation

Vi) = Y AV (2.7)
zeFN[—L,L]

| is the vector consisting of the

For L € N, denote Af, = A_p 1). We are interested in the Heisenberg evolution of an
observable A € Ay, which for a Hamiltonian H = H* € Ay, is defined by

TH(A) = et Ae=H (2.8)
where t € R. Lastly, we fix some notation we frequently use in the following. For
X C [-L, L], we define an enlarged version of X by X (n) = {x € [-L, L] : d(z, X) < n}.
For an observable A € A, we denote by S4 the support of A, which we take to be the
minimal length interval [z,y] such that A € A, .

Since @ is a nearest neighbor interaction, the dynamics generated by ® satisfy a Lieb-
Robinson bound. We parametrize the bound by a parameter p > 0 which is the rate of
spatial decay, and the strength ||®|| of the nearest neighbor interaction. The relevant
statement of this commutator bound, Theorem 2.1 below, is implied by Corollary 2.2 of

[ J

Theorem 2.1. Suppose ® is a nearest neighbor interaction with ||®|| < oo. For all
> 0, there exist Cy,v > 0 depending on p and ||®|| such that for any operator of the
form

L
Up= Y U, Uy € Agy, (2.9)
r=—1L

if A,B € Ar, then for allt € R:
|74, BY|| < CollA|l||BI|(e71 - 1)e#d(SaS8), (2.10)

We note that since our definition of support uses a single interval, the bound in (2.10)
does not depend on the support sizes of A and B.

Assuming Cy > 1 will simplify the form of the constants in Theorem 3.1 without loss

of generality. And the proof of Corollary 2.2 in | | shows that the constants Cj
and v in Theorem 2.1 can be taken as
10c

Co = K—“ and v = 8¢ K ,||®|| (2.11)

I
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where
e~ Hllz=zltly=zl=le=yD) (1 1 |z — y|)?

(14 |z— 2?1+ |z —y])?

1
g —HET__ - d g .
Cu g e e and K, = sup (2.12)

z€Z z.Y€L o7,

Assumption 2.2. In the following, we will always assume ® is a nearest meighbor
interaction with | ®|| < co. For any p > 0, we will take Co > 1 and v > 0 as defined in
(2.11).

3. MAIN RESULTS

The main result of this work is the following theorem.

Theorem 3.1. For any p > 0, if or > max {1/u, 2}, then there exists a constant C > 0
such that for all L € N and A, B € A, with maxS4 + 3 < minSg — 3,

Hp (X cN
7" (), Blll < 7 IAIIBI G (1) Fiv (d(Sa, S5)) (3.1)
[Licz AalTa
for allt € R and X = ()‘I)meZ’ where N = |Z| for Z = [max S4 + 3, min Sp — 3] N F,
(@) (x)
I, = S — 3.2
min v =y (3.2)
and
G(t) = vltl(1+ ot le M Fy(d) = (ud)ene. (3.3)
The constant C can be taken as
444035 D\?
0=l (3.4)
p(l —e ) 2

We prove Theorem 3.1 by modifying the estimate in (2.10) by an inductive argument.
In principle, we could assume that, under the assumptions of Theorem 2.1, (2.10) holds
for a monotone rapidly decreasing function f instead of e #¢, e.g. f(d) = e~#d1o8(d) a5
in [ |, and derive a similar result without significant changes to the proof.

The velocity term of a Lieb-Robinson bound generally diverges with the strength
of the interaction, so it is significant that large on-site terms can lead to a stronger
estimate in (2.10). However, our result does not show that a sparse field decreases the
Lieb-Robinson velocity. This is because our method introduces a prefactor polynomial
in t and the d to the commutator bound which, for large times, diverges with the number
of field sites. Proposition 4.5 shows that in the case N = 1, we can choose F} to have a
marginally better dependence on d(Sy4, Sg). We leave open the question of whether the
bound in (3.1) would hold if G (t) = e’l*l and Fy(d) = e=#.

Corollary 3.2, below, follows immediately from Theorem 3.1 and makes the statement
in (1.1) precise. Let 7, : A — A denote the translation operator which maps Aoy to
Afay-

Corollary 3.2. Let p > 0, o > max{l/u,2}. Suppose Vi = To(Vo) and Ay = A
for all x € F. Then for all A,B € A; with maxSs +3 < minSp — 3 and Z =
[max Sy + 3, min Sp — 3] N F, we obtain

o N
H[TfL(A)(A),B]H < <K:U'd(SAysB/\)(1 +vt’)> HAHHBH ev\tl e_ﬂd(SA,SB)' (3'5)
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where we have set N = |Z|. The constant K > 0 depends on u, D, ® and V.

4. PROOFS

When the context is unambiguous, we omit the L dependence from the notation, since
all estimates will be independent of L, and write Hy, = H.

4.1. Auxiliary results. For z € FN[—L + 2, L — 2] we define

r—2
H, = Z (I)yy+1+sz) e-1z + Pozy1)P ") + Z Dy yt1 (4.1)
yf_L ] 1 Yy= z+1

and set for X = ()‘x)zez

Ho(X) = H, + V(X). (4.2)
We will use the short-hand notations
Vo) =NV m=7"" and =70, (4.3)

yFx

Lemma 4.1. Let A, B € A, and v € FN|[—L+2, L—2] such that max Sy < z < min Sg.
Then

[7 (A), B] = 0. (4.4)

Proof. From the definition of fIx it follows that V, commutes with I:Ix and with V, as
well when y # . And so, since max Sy < x
F(A) = 7O Ve (4) = 7T ), (4:5)

We write H, = H! + H’ with H! supported on [—L,z], and H’, supported on [z, L]:

Z o y+1+ZP(‘r e—1,2P )

yf—L

- . (4.6)
= Zf)j(m)q)x,erle(x) + Z Dy yt1
J=1 y=x+1
Let j € {1,...,D}. By assumption, P ]1/1 ><1/JJ($)| where wj(-x) € CP is a unit

(@)

norm eigenvector to the simple eigenvalue v; of V Expanding ®,_ 1 « into a sum of

elementary tensors @, 1, = > <I>(k 1 ® CID(k) <I>x 1 € Agp—1y and <I> ) € Az, shows
that

(4.7)
= <Z<¢§-’” o)yl >q>’“1>®p<x>
k

Similarly, there exists éx_i,_l S A{x—i—l} such that Pj(x)@x,mHPj(x) = pj(f‘) ® ‘fz+1, which

proves that [Pj(m)@x_l,xPj(x), Pj(x)@m,xHPj(w}] =0 and in turn [H¢, HZ] = 0. Hence

|:ﬁ£ + Z A Vy, Hy + Z )‘yvy} =0 (4.8)

y<z y>x
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and since max Sy < x,

ag
7 (A) = 7';%[3”+Ey<9C AyVy (A) € A[,L’m]. (4.9)
As z < min Sp, this implies [7{7(A), B] = 0. O

Proposition 4.2. Let A,B € Ap, and suppose x € F N[—L + 2,L — 2] such that
maxSa+1 <z <minSg. Then for allt € R

, It
Bl e S (ool [Cas 2 eol) )

Az [T jke{l,...D}
3#k

where we have set for s € R
(s, t) = [V (R, 307 (4)), B]

i i i (4.11)
R = P (@, 14 + Pyor1) P

Proof. Without loss of generality, we assume ¢ > 0. Lemma 4.1 implies that [77(A), B] =
0. Hence Duhamel’s formula gives

[Tt(A)7B] = [Tt(A)7B] - [Atz(A%B]

i /0 ds [#([HR) — Ho(R), 7is(A)]), Bl. (412)
We write
HXY) - LN = > R (4.13)
¥ kE{Al,. ,D}

with Ry = P14 + ®poe1) P for jik € {1,.,D}, j # k. Since [, +
V4(X),Vs] = 0, we obtain for s € R

AT €T 7»5 (z) (z) Aac 730 X T
7 (ng)) Hx-i-Vx()\) AxVx(Rg )) 2 : Ae (v = )7{1 +V (A)(ng))_ (4.14)
J,k€{l,...,D}
J#k

This implies

/O ds (7 ([H (%) — Ho(X), 7_o(A)]), B] = / ds [ (H(X) — Ho(X), 757_o(A)]), B]

= / ds eZSA’ O fjk(s t)
],k:E{l7 D}
j#k
(4.15)
where we have set f1"(s,t) = [[Tffrv””(/\) (RJ(.?),%;”Tt_S(A)], BJ. For j,k € {1, ..., D} with
j # k integration by parts yields

H/ ds X+ =17) ViR (s, t)H

< 1
lA s — 2

<Hf]k(t )l + 11.725(0,0)] +/ ds|l— f"’“(s t)H) (4.16)

Next we show f2(t, t) = 0. Since V, commutes with H, + V,(X), we can rewrite

LR ON = |+ RO, 22 A, BY| = |17 (175> (RE), A)), Bl (4.17)
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N AxVa R(~T) _ zt/\ (v(z) (z))R(x) d
ow 725 (R;) =€ Y ik » and so

(7 (RS

7 (1725 (R), A)), B]| =

A)),Bl||=0 (4.18)

where the last equality follows from the assumption that Sq N[z — 1,2+ 1] = 0. O

We will need the explicit form of the derivative -2 o fx (s,t) in the proof of Theorem 3.1.
Lemma 4.3. Let A,B € Ap, o > 2 and x € FN|[-L+2,L —2]. Then for all
j,ke€{l,...,D} with j # k and s,t € R,

S0 =i [T, R () B

—i ) HTsﬁ”W”(A)(Rﬁ)%[ff(Rl(f)),?thS(A)]],B]. (4.19)
l,re{l,...,D}
l#r

Proof. We recall that fi¥(s,t) = [[T§I+V’”(A)(R(I)) 721_s(A)], B]. First, we compute

d g4V p@y _ i T (T o HetVa(R) (@)
ds ' (Rjk )= Z[Hx + Va(N), 75 (Rjk )] (4.20)

= il (1, R

where the last equality in (4.20) follows from [V (), Rﬁ)] = 0 since d(z, F \ {z}) > 2

and the support satisfies S z) C [z — 1,z + 1]. Secondly, recalling the definition of T,
n (4.3) and (4.13), we obtaln
d o v
T mi-s(A) = =17 ([H(N) = He(N), 7e-(A))])
=—i > R, (A (4.21)
lyre{l,...,D}
l#r
Then the lemma follows from (4.20) and (4.21) and the product rule applied to the
derivative of the s-dependent part of f3*(s,t). O

4.2. Case of a single impurity. In the following, we prove Theorem 3.1 in the case
when there is only one impurity in between the supports of A and B. To do so, we need
to estimate the terms on the right hand side of (4.10).

Lemma 4.4. Let A,B € A, and suppose o > 2. Let x € F such that maxSy + 3 <
x <minSp — 3. Then for all j,k € {1,...,D} with j # k and s,t € R

d . D
I 246,00 < G5 ) IANBL e = 3, Sp)oe e wtSase) (a2
C2e
=218——— 4.23
O 8#(176 o) (428)
Proof. As before, assume [|A]| = ||B]] = 1 and ¢ > 0. We use the expression for

the derivative obtained in Lemma 4.3. We consider the norm of the first term in the
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latter and further rewrite this term. The definitions of Rg.i) and H, imply Rgi) =

(z) _, (x)
e~ 507 %) /\sz(R(x)) and [Hm,V] = 0. Therefore,

Ay, RY) = 00" 0D Ve ([, RO (4.24)

from which we can rewrite, using [Iffx +V.(X),Vi] =0,

I Er VoD ([, R, 727 (A), BIll = || [[[Ha, R mems(A)], 77.(B)] || (4.25)

The assumption max S4 + 3 < z implies max S4 < min S 1 < max .S <

kS 2 (=)
[, RS [, RS

min Sp, and so we are in position to apply Corollary 5.3 with W = [I:I ,Rﬁ)}. This
implies

(4.25) < C'|[Ho, RSl d(x — 3, Sp)e#d5a58), (4.26)

where ¢’ = 72C2 l_el is chosen as in Corollary 5.3 since diam Sy = 4 in this case,

e kM
and since |t — s| + [s| = ¢t for 0 < s < t . Moreover H[Hx,Rﬁ]H 6]|®||? since

1RSIl < 2||®||. Taking this together with (4.25) and (4.26), and using from (2.11) and
(2.12) that v = 8e*K,||®|| and K, > 1, we obtain

(= V=O (1 H, R)), 2575 (A)], B]l| < 6C(|®||*e" d(x — 3, S ) 4(Sa:55)
oL

€ v —

< 720 s Bl (e K@l (= 3, Sp)e S5y o)
= 7208 (s — 3, Sp)e A
- 0 /.1/(1 _ e—'u,) % s OB .

For the norm of the second term in (4.19), we first fix the indices [ # r of the term Rl(f ),

; (@) _ ()
We use 7eVe (R§ k)) = "0 N )Rﬁ.) to rewrite

[ == (RD), 22 (RE)), 727 s(A)), BI| = || [, R, mes (A)]], 77 (B)]-

Ir Ir

(4.28)
Next we apply Jacobi’s identity for commutators,
[X,Y],Z] =-[[Y,Z],X] - [[Z,X],Y], X,Y,Ze€ AL, (4.29)
and obtain
IR (B mes (AN 72, (B)]|
<2 R MRE 7o (AL 72 (B)] ||+ 2 [ A B 1 s (A (4:30)

(

For the first norm in the above we use again Corollary 5.3 with W = le ) to estimate

2HRjk TR, 7os (A)], 72 (B)] || < 8C"||®|e" d(x — 2, Sp)e+4(5a:55) (4.31)
op

2 € vt _ —ud(S4,58)

< 72007#(1 ey |®||ve* ud(x — 2, Sp)e A:5B)

(4.32)

We note that we used (2.11) and (2.12) as we did in the inequalities in (4.27) to obtain
the last inequality in (4.31). For the second term on the r.h.s of (4.30) we use the a
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priori Lieb-Robinson from Theorem 2.1 with xy = ®, ¥, = Vx(X) and p > 0 chosen as
before. This results in the bound

2}|[R§'i)’%fs(3)]“H[Rl(:)’Tt*S(A)]H < 802 3u”q)||2eut6—ud(SA,SB) (4.33)
C

vt

(z —2,Sp)e rIS4S8)  (4.34)

Taking together the computations in (4.28) — (4.34), we obtain for all [ # r,
N+ O RE), B2 (). #5m-e ()], B

73Cge _
B Ml—ioe_u)HCI)Hve”tud(w — 2, Sp)e Hd(Sa5B) (4.35)
Summing over | # r and using (4.27) in (4.19), we obtain
d .. 218C2e% (D i )
I 12501 = 2 (D oo 3, Sipe 85, a3

independently of s, 7,k and ;.

O

Proposition 4.5. Let A, B € A, and o > 2. Suppose x € F and max Sy +3 < x <
min S — 3. Then, for allt € R,

I ), Bl < Aﬁ} (t)pmin {d(x — 3, Sp),d(x + 3, 5a)} e 5252)
(4.37)
where C' = 4?11026; H<I>||( ) and G1(t) = v|t|e"!.
Proof. Since ||[7, H) (A),BH] = ||[7'£It()\)(B),A]||, the roles of A and B in the proof are

symmetric and we may assume min {d(z + 3, 54),d(x — 3,Sp)} = d(x—3, Sp). Suppose
|A|| = ||B]| = 1. Jacobi’s identity (4.29) implies

17240, 0)l < 21 RS 7(A), Bl < 4|@Col| A B (e — yeraSass) (4.35)

where we used Theorem 2.1 and ||R || < 2||®|| in the last inequality. Applying (4.38)
and Lemma 4.4 to the right-hand Slde of the inequality (4.10) yields

- D
TH(/\) A),B]|| < 2( ) 4]|®]|Cp (e vlt| ef,ud(SA,SB)
' Ae| Tz

D
#0219l s — 3, Syt

2
< 4(41‘“’\@”( ) oltet a3, Sg)e s
L
(4.39)
which is the bound in (4.37). O

4.3. Multiple impurities. We recall the following real-valued functions from (3.3):
Fo(d) = (ud)"e ™4, G, (t) = v|t|(1 + vt])"tevltl. (4.40)
It is easy to see that F), is decreasing on [n/u,c0) and that G, < G,41 on [0, c0).
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Proof of Theorem 3.1. Let o > min{2,1/u} and Z = {xz1,...,zx} C F, ordered
according to 1 < --- < xy. We prove by induction on n € {1,..., N} the statement:

For all A,B € Ay, with maxS4 + 3 < 21 < x, < minSg — 3, and for all
times t € R
C’n

lim(A), Bl < =S
SRS

with F,, G,, defined above in (4.40).

IAI[ Bl Gn([t]) Fn(d(Sa, SB)) (4.41)

Then Theorem 3.1 is proven as the case when n = N. For n = 1, (4.41) follows directly
from Proposition 4.5.

Now suppose that (4.41) is correct forn—1 < N and all D, E € A, with maxSp+3 <
r1 and x,_1 < min Sg—3, and for all timest € R. Let A, B in Ay, such that max Ss+3 <
x1 and x,, < minSp — 3. Without loss of generality, we assume ||A|| = ||B|| = 1 and
t > 0. We apply Proposition 4.2 in the case when = = a:n to get

1
I[7e(A), BIl £ ~—7— 17250, )] + dS ||* sl ). (442)

i#k
As in bound (4.38) in the proof of Proposition 4.5, we estimate
1250, 01 < 20RE 1[(4), Bl
e
< n—1
H Hj:l ‘)‘SE]"F&?J'

where the last inequality follows from the induction hypothesis and HRg}? || <2[®|. We
proceed as in inequalities (4.25), (4.30) in the proof of Lemma 4.4 to bound

Gn-1(t)Fn(d(Sa, SB)) (4.43)

= fﬂ“(s B < [ Ha,, RG], Tt_s(A)]ﬁfZ(B)]H

+2ZHR§§” IR, 7o s (A)], 722 (B)]]
l#r

+2) |I[R; RGP, 72 (BYIIRE™, m—s(A)]Il.  (4.44)
l#r

Next we estimate the three terms on the right hand side of the above inequality individ-

ually. First we deal with [[fz, , R\"), 7i—s(A)], 772(B)]||. We set W = [H,,, R,
Since o > 1/, max S4+3 < x—1 and Sy C [z, — 2, z, + 2], we obtain min Sy — 1 >
maxS4q + (n —1)/p. And F,_ restricted to [(n — 1)/p,00) is a monotone decreas-
ing function. So we apply Lemma 5.2 to W using k = max {3,(n —1)/u}, g = Gp_1,
f = F,—1 and the commutator bound in (4.41) as the assumed commutator bound in

(5.4) to get

V.7 (AL 75 < (20007 ) C W IGoa (0 (S, 5w S5) (145

where h,, is defined as in (5.7) and C, = H"?% Furthermore, with these choices
j=1 I\= T
and the facts that pud(S4, Sw) > 1 and d(Sa, SW)+d1am(SW)+d(SW, Sp) =d(S4,SB),
3P 3P

hyu(Sa, Sw, Sp) < T(Nd(SAv Sp))re tHS455) Fo(d(Sa,5p)).  (4.46)
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And so, using the fact that ||[H,, Rﬁ")]ﬂ < 6/|®||?, we insert this in (4.45) to yield

(e, RG], 7s(A)], 772 (B
66“ Cn—l

p(l = e M) T2 A, T,

independently of 7,k € {1,.., D} with j # k.

(4.47)

<4320, |®]]2Gp1(t — s)e*P*IF,(d(S 4, SB))

Secondly, we bound ||[[R, (:C") Tt S(A)] 72(B)]|| . Choosing W = Rl(f”) and recalling
Spen) = [zn — 1 ap + 1] and Her H < 2||®||, we obtain along the very same lines as
Ir

above
RE, 7 (A)], 72 (B)])|

—S
66“ Cn—l
p(1 = e M) 2] A, T,

independently of j, k,l,r € {1,.., D}.

< 144 Cy |®(|Gr1(t — s)e’*I Fy (d(Sa, SB)) (4.48)

Thirdly, we estimate |[R';"), 72 (B)][|[[[R{"™), 7e—s(A)]||. To doso, weuse S, S
ik

= e =
[xn—1, zp+1], HR(x”)H HR%" | < 2||®|| and apply the induction hypothesis to H[Rl(f"),Tt_s(A)]H
and Theorem 2.1 to ||[R; x”) 7%7(B)]||. This results in

? T —=s

IRG™ 22 (B)INRE™, 7e-s(A)]]

n—1
< 4||®| COC—Gn_l(t — §) 1 (d(Sa, xn) — 1)) (V¥ — 1)erd@n+1.55)
H ’)\:1,‘] |ij
u cn— 1
< 4| ®|PCo —— G (t — $)e I F, (d(S 4, Sp)) (4.49)

independently of j,k,l,r € {1,..., D}.
Inserting the bounds (4.47), (4.48) and (4.49) into (4.44), yields

& n—1
I ) <2 (D) o I B, S G 51

J=1 ‘)‘ﬂcj |F96j
(4.50)

where we have used the fact that v = 8e#K,||®||. Further plugging this and (4.43) in
(4.42), we end up with

4440, cnt D\?
) B = S 10l e () Pt S
X (Gn_l(t)+v/0 dan_l(t—s)e”|S|.) (4.51)

Using the definition of G,,—1(¢t) and 0 <t — s < ¢, we see

n—1
Gno1(t) +v / t ds Gn_i1(t — s)e”* < vte’ ) (” j_ 1) (vt)! = Gy (t). (4.52)

0 ;
7=0
Inserting this in (4.51) proves (4.41). Finally, the statement (4.41) with n = N gives
Theorem 3.1. U
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4.4. Thermodynamic limit. We observe that the constants which have appeared so
far do not depend on L. This implies that the statements in Proposition 4.5 and Theorem

3.1 hold with 7H#:() replaced with the thermodynamic limit 7 : R — Aut(A) defined
by pointwise limit

7(A) = lim 73 (4). (4.53)

4.5. Disordered spin chain. We now apply our results to a specific example to show
that in 1D, the presence of a sparse disordered field can imply that for fixed t, with
high probability, the Lieb-Robinson bound from Theorem 2.1 is not sharp. Let u > 0
be fixed, and take F = oZ, where 0 = [max {1/u,2}|. Consider the Heisenberg spin
S = 1/2 chain with sparse transverse field and open boundary conditions on [—L, L] for
LeN

L-1 3
H(N)==J Y Y ool i+ > Mol (4.54)

n=—L j=1 z€FN[—L,L]

where 07, j = 1,...,3 are the standard Pauli matrices and J > 0. Let px > 0 be fixed.
Then Theorem 2.1 gives constants Cp and v such that

[T (4), B < Col|Al|| B|e?tler(Sa:58) (4.55)
for all A, B € Ay, and times t € R.

We want to improve this bound by making the couplings A, randomly chosen from
a heavy-tailed distribution. At each z, let A\, € [1,00) be drawn from the long-range
distribution given by the density mq(r) = %, r € [1,00) for some 0 < a < 1/2. Since
F is countably infinite and uniformly spaced, we can prove in this situation the following
large deviation bound: For any b € (a,1) and € > 0, there exists Ly € N and ¢ > 0 such
that for all L > Ly

]P)(| {37 e Fn [—L — 3,L+3] g > 5(2L+ 1)}| > (2L+ 1)17b) >1— e,cg—a(2L+1)1_a’

(4.56)
see e.g. | |. Equation (4.56) does not depend on the precise form of the density
mg but only on its tail.

Suppose A € A(_ry, B € Aqry. Setting e = C(1+v[t[)(2L + 1), Theorem 3.1 implies
the following bound.

-

Proposition 4.6. Let Hy,(\) be the Heisenberg spin chain with random transverse field
defined in ({.54). Then, for all A € A_ry, B € Aqpy,

H[TtHL(X)(A)7 B]H < HAH ”BHev\t|672uLef(2L+1)1_bln(2L+1) (457)

with probability 1 — e~ “CLD'™ 4 derived in (4.56).

When L is sufficiently large so that exp(—(2L+1)'"In(2L+1)) < Cp, the commutator
bound in (4.57) is strictly sharper than the bound from Theorem 2.1.
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5. APPENDIX: DOUBLE COMMUTATOR BOUND

In this appendix we prove the double commutator bound which we use in the proof of
Theorem 3.1. Our proof is a straightforward argument which we include for complete-
ness. Let @1 and ®y denote two interactions such that ®;(X) # 0 only for X C Z with
diam(X) = max{|z —y|: z,y € X} <1 and

1l = sup | @:({z, z + 1})]| < o0 (5.1)

for i = 1,2. We assume that [[®1]| = [|®2| = |[®[|, and we note that ®; and P, are

nearest neighbor interactions where arbitrary large on-site terms are added. Let Tt(l)

and Tt(2) be the Heisenberg dynamics on [—L, L] generated by ®; and ®, respectively.

Let p; : Agzy — C denote the normalized trace p,(A) = %tr(A), and for any finite
subset Z, let idyz denote the identity map on Az. Then for any finite set X C [—L, L]
we define Ex = idx ® ®ye[— LI\X Py which has the following approximation property.

Lemma 5.1. | , , Cor. 3.1] Suppose A € A, and suppose there exist
X C[-L,L] and € > 0 such that for all B € A_p 1)\ x,
I[A, Bl < e[| Al B]l. (5.2)

Then [|(id-r,) — Ex)(A)[| < [ A]l.

Lastly, we denote
E =E_r. (5.3)
for any r € (=L, L].

Lemma 5.2. Let A, B € A, such that max Sa < minSg. Suppose there exists k > 0
such that for all T € Ap, with min Sp > max Sa + k,

IV (A), TN < Cl AT lg(6) £(d(Sa, S7)) (5.4)

for some constant C, > 0 and g, f real-valued functions, where f is monotone decreasing.
Then, for all W € Ar, such that

max S4 + k < min Sy — 1 < max Sy < min Sp (5.5)
we have

eu IS
1w, 70 (A)], 72 (B))| < <24Co)0*||A||||B||||W||g<t>e (S, Sw, i)

1—e#
(5.6)
where
hu(Sa, Sw,Sp) = f(d(Sa, Sg)) + f(d(Sa, Sw) — 1)e HdSw.55)
I (5.7)
+ Z f(d(SAv SW) +m — 2)@7“(DW*m)
m=1

and Dy = d(Sw, Sp) + diam Sy + 1.

Proof. Denote id = id|_r, ;;. Without loss of generality, we suppose ||A|| = || B|| = 1 and
we denote b = min Sg. For any X C [-L,L] and P,R € Ax we obtain Ex(PQR) =
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PEx(Q)R for Q € Ar. Since by assumption W € ran(E;), we use the latter with
X =[-Lb), Q= Tt(l)(A) and P, R to be 1 and W alternatingly to get

Ey((W, 7V (A)]) = W, Ey (" (A))]. (5.8)

Hence

11Gid — Ep) (W, 7V (A)]), 72 (BY][| = I[IW, (id — Ep) (7" (4))], 7P (B)]|

m (5.9)
< 4| Wl[l(id — Ep) (" (A)]-
Next we bound |[[Ey([W, 7 (A)]), 72 (B)]||. We set w = min Sy — 1 and note
W, (A)] = W, (id - ) (7 (4))] (5.10)

which implies
IE (W, 7 (A)]), 7O (B)]]| = |[Bs (W, (id — By) (77 (A))]), 72 (B)]]
= [|[[W. Ey(id — E,,) (1. (A))], 7P (B)]]. (5.11)

Using Jacobi’s identity (4.29) we obtain
1IW, By (id — o) (r, (AN, 72 (B)]]| < [I[Es(id — Eu)(7 ) (4)), [72(B), W]]||

+ | W, [Eb(id — Eu) (7 (4)), 72 (B)]]|I.
(5.12)

We first treat the term T = ||[W, [Ey(id — Eu) (77 (A)), 72 (B)]]|l. By setting X =
{z :d(x,SB) < n}in Lemma 5.1, we decompose 72 (B) =Y_.° | B(s,n) such that each
B(s,n) € Ag,n) and

|B(s,n)| < (2Coe™)elsle=H. (5.13)
Substituting this into 7', yields

Dw
T<2AWIS S (A (A), B(s,n)l (5.14)

m=1 n>Dwy—m

where Dy, = d(Sw, Sp) + diam Sy + 1 and
B ) = (Bt = Buines ) 7 A) (5.15)
Hence (5.9), (5.11), (5.12) and (5.14) give
1w, 7Y (A)], Z @B < AWl d — By (7 (A))]]
+ 2[[By(id — Eu) () (AN |[[[7P (B), W])|

Dw
WIS Y AR (A), B(s,n)]ll. (5.16)

m=1n>Dw—m

Now assumption (5.4) with Lemma 5.1 implies
4| Wl[I(id — Bp) (7 (A))]| + 2|[Ep(id — Ey) (7 (AN [72(B), W]

<8CHC, | W]|g(t)e*! < £(d(Sa,SB)) + f(d(Sa, Sw) — 1)eﬂd<SW»SB>) (5.17)
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as well as

Dw
WIS ST 1AV (4), B(s,n)l

m=1n>Dy—m

16Cpe* Y
<($20 ) g P S S(d(Sa.Sw) +m =2 P (5
1—e+ =
Plugging (5.17) and (5.18) into (5.16), the assertion follows. O
Corollary 5.3. Let A,W,B € Ay, such that
max Sy4 < min Sy — 1 < max Sy < min Sg. (5.19)

Then for all s,t € R
W, 70 (4)), 72 (B)]|| <

(diam Sy +2)

s
yp o SN—
( O 1—en

) LA BJW (e Dd(min Sy — 1, Sp)e—r(Sa:55)
(5.20)

Proof. This follows as a special case of Lemma 5.2 using the commutator bound from
Theorem 2.1 and k£ = 0. In this case,
Dw
hu<SA7SW7SB) _ e*ﬂd(SAvSB) + e*ﬂ(d(SA,SW)‘Fd(Sw,SB)*l) + Z e*ﬂ(d(SA,SB)*l)
m=1
< 3d(min Sy — 1, SB)e“(diamSW+1)6_“d(SA7SB)
(5.21)

where we recall Dy = d(min Sy — 1, Sp). O
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