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Abstract. We study the stability with respect to a broad class of perturbations of gapped ground
state phases of quantum spin systems defined by frustration-free Hamiltonians. The core result of
this work is a proof using the Bravyi-Hastings-Michalakis (BHM) strategy that under a condition of
Local Topological Quantum Order (LTQO), the bulk gap is stable under perturbations that decay
at long distances faster than a stretched exponential. Compared to previous work we expand the
class of frustration-free quantum spin models that can be handled to include models with more
general boundary conditions, and models with discrete symmetry breaking. Detailed estimates
allow us to formulate sufficient conditions for the validity of positive lower bounds for the gap that
are uniform in the system size and that are explicit to some degree. We provide a survey of the
BHM strategy following the approach of Michalakis and Zwolak, with alterations introduced to
accommodate more general than just periodic boundary conditions and more general lattices. We
express the fundamental condition known as LTQO by means of the notion of indistinguishability
radius, which we introduce. Using the uniform finite-volume results we then proceed to study the
thermodynamic limit. We first study the case of a unique limiting ground state and then also
consider models with spontaneous breaking of a discrete symmetry. In the latter case, LTQO
cannot hold for all local observables. However, for perturbations that preserve the symmetry, we
show stability of the gap and the structure of the broken symmetry phases. We prove that the GNS
Hamiltonian associated with each pure state has a non-zero spectral gap above the ground state.
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1. Introduction

1.1. Stability of the ground state gap. The main object of study in this paper is the gap above
the ground state of Hamiltonians of the form

H(s) = H + sV,

where H is a finite-range frustration free quantum spin Hamiltonian with a gap above its ground
state, and V is a perturbation described by an interaction Φ of which the decay at long distances
is upper bounded by a stretched exponential. The goal is to prove a lower bound for the ground
state gap for H(s) for sufficiently small s under a set of conditions on H and its ground states. The
existence of a positive lower bound for |s| < s0, for some s0 > 0, uniformly in the system size, is
referred to as stability of the ground state gap. Good introductions to the mathematics of quantum
spin systems can be found in [20,76,101].

A gap above the ground state in the spectrum of a quantum many-body Hamiltonian is a
signature property that has important implications for the physics of the system described by
that Hamiltonian. For example, it is well known (and proven) that it quite generally implies
exponential decay of correlations in the ground state [49, 79]. In one dimension, a non-vanishing
gap for the infinite system implies the split property [71], which in turn plays a crucial role in
definition of a topological index for symmetry protected topological phases [86–88]. More generally,
the presence of a spectral gap features as an assumption in the theories classifying topological
phases of matter [26, 27, 73, 75, 85, 90] and the derivation of the quantum Hall effect and similar
properties [5–7,50].

To prove existence of a gap and, in particular, to obtain a positive lower bound uniform in
the system size, is in general a hard problem. It was shown in [29, 31] that the question whether
an arbitrary translation-invariant, frustration-free, nearest-neighbor two-dimensional quantum spin
model has a gap above the ground state or not, is undecidable in the technical sense. That result,
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however, has only limited bearing on what we can learn mathematically for specific classes of
systems. There are a number of examples in the literature of such systems for which the question has
been settled [1,11,16,43,44,64–66,91,92]. For one-dimensional frustration-free systems arguments
to prove a gap have been extended even further [2, 23, 39, 59, 61, 62, 70, 77, 84, 98]. The stability
results of Bravyi, Hastings, and Michalakis significantly amplify the class of models for which one
can prove a spectral gap uniform in the system size [21,22,72]. In this work, we employ the Bravyi-
Hastings-Michalakis (BHM) strategy to expand the class of models for which a gap can be proved
even further.

Early results on the stability of the ground state gap have typically been framed as perturbation
theory for the ground states of quantum spin systems. These were usually focused on a specific
model or a limited class of models [19, 33, 34, 40, 54, 69, 105]. The growing interest in topologically
ordered ground states, however, raised the general stability as a crucial question for their possible
experimental observability and utilization as quantum memory. To address stability it is important
to look for an approach that allows for the widest possible class of perturbations. Mathematically,
the perturbations are described by an interaction involving arbitrary k-body terms and that belongs
to a suitable Banach space, the norm of which expresses interaction strength and the decay at long
distances.

The Toric Code model [55] was the first test case for proving this type of stability in the presence
of topological order. It has a unique frustration-free ground state on the infinite lattice Z2 [4], but
finite systems have multiple ground states and the ground state degeneracy is strongly dependent
on the boundary conditions. For clarity, we point out here that the Toric Code model on the infinite
lattice has other ground states that are not frustration-free and do not satisfy LTQO. These ground
states describe single anyons and can be classified in superselection sectors corresponding to the
anyon types present in the model, and the vacuum state given by the frustration-free ground
state [24].

The first proof of stability for the Toric Code model is by Bravyi, Hastings and Michalakis [21].
Klich addressed the same question in [58]. Bravyi and Hastings followed up with a streamlined
proof in [22]. Their proof applies to the class of frustration-free commuting Hamiltonians satisfying
a natural topological order condition. The term ‘commuting’ here refers to the fact that all terms
in the Hamiltonian commute, which holds for the general class of quantum double models defined
by Kitaev [55,56], and also for the Levin-Wen models [67].

To be able to cover more physically realistic models it was important to get rid of the restriction
to commuting Hamiltonians. This was achieved by Michalakis and Zwolak in [72]. In that work the
condition of Local Topological Quantum Order (LTQO) is introduced in essentially the same form
we will use it here. Other more restrictive notions of stability were investigated in [28, 45, 97, 99].
In the latter, the LTQO condition is either automatically satisfied or expressed in a different way
by the assumptions for the particular class of systems under consideration. In this work we will
focus on the BHM strategy and we refine the LTQO condition to obtain extensions of the stability
results in two directions, namely, (i) finite systems with other than periodic boundary conditions
and (ii) systems in which discrete symmetry breaking occurs.

A generalization we do not pursue in the this paper is the inclusion of models with unbounded
on-site Hamiltonians of the type considered in [41, 105] and unbounded interactions as in [37].
Fröhlich and Pizzo introduced a method that handles a class of unbounded one-dimensional lattice
Hamiltonians with ease as long as the unperturbed ground state is unique and given by a product
state. The latter restriction excludes non-trivial order, topological or otherwise, and, naturally,
any version of an LTQO condition is automatically satisfied. In [36], Del Vecchio, Fröhlich, Pizzo,
and Rossi prove analyticity of the ground state energy density for translation-invariant chains of
the same class.

There also has been recent interest in stability for fermionic lattice systems. We outlined a
BHM strategy for lattice fermions in [82], on which we plan to elaborate in a separate paper [80].
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Hastings sketched a related approach for perturbations of quasi-free fermion systems in [48], which
was elaborated upon by Koma in [60]. Another stability result for gapped quasi-free lattice fermion
systems was proved in [35]. The applicability of these results to topologically ordered systems with
gapless boundary modes remains unclear, and we will address this issue in [80].

We also mention that the stability question for irreversible dynamics with an exponentially
clustering invariant state has been addressed in [30].

Statements about the thermodynamic limit are highly relevant for the classification of gapped
ground state phases, including symmetry protected topologically order phases. For example, the
topological indices introduced in [86–88] are for infinite gapped systems. In this work we study
infinite systems as limits of sequences of finite systems. In this familiar approach, as an intermediate
step, one studies a sequence of finite systems for which estimates uniform in the system size can
be derived. This is described in more detail in the summary given in the next section. It is worth
noting that this does not cover all cases of interest since our ability to carry this out depends on
the existence of a uniformly positive gap for finite systems, which depends on knowing suitable
boundary conditions for which there are no gapless boundary states that may obscure the existence
of a bulk gap. Such boundary conditions are not known or even known to exist in all cases. They
may, in fact, not exist [102]. For this reason we will present a direct approach to the bulk gap in
the infinite system that bypasses this difficulty in a forthcoming paper [81].

1.2. The Bravyi-Hastings-Michalakis strategy and main results. In this section we will
sketch the general approach to proving stability of spectral gaps for quantum spin systems intro-
duced by Bravyi, Hastings, and Michalakis in [21], and streamlined and extended in [22, 72], to
which we will henceforth refer to as the BHM strategy. In this general overview, we do not spell
out the technical assumptions in detail, but focus instead on the overall structure of the main
arguments and the qualitative role of the basic assumptions. This will also allow us to point out
where the new contributions of this work are located in the overall scheme and we hope it will be
helpful to the reader. We believe that the BHM strategy combined with the results in this paper
and future enhancements will continue to extend its reach. Precise definitions, assumptions, and
statements of the results follow in later sections, see Section 1.3 for an outline.

The class of quantum spin models under consideration are defined on a lattice Γ, which we
assume is a metric space that satisfies a regularity (finite-dimensionality) condition expressed by
requiring that the cardinality of balls does not grow faster than a power of their radius. Often
one can take Γ = Zν with the lattice distance, as in done in the work of Bravyi, Hastings, and
Michalakis (BHM) [21,22,72]. The generalization to general regular Γ is mostly straightforward and
of significance only when we consider various boundary conditions and study the thermodynamic
limit. BHM only consider finite systems with periodic boundary conditions.

The Hamiltonians can be written in terms of two interactions, η and Φ, that map each finite
subset X ⊂ Γ to a self-adjoint observable, η(X) and Φ(X), that is supported in X. Formally,

(1.1) H(s) =
∑
X

η(X) + sΦ(X),

where s ∈ R is the perturbation parameter. The unperturbed model, H(0) defined by η alone, is
assumed to be finite-range, frustration-free, and with a gap in the spectrum above the ground state,
uniformly in the system size and subject to suitable boundary conditions. Stability, the property
we want to prove, means that there exists s0 > 0, such that for all s with |s| < s0, H(s) has a gap
above its ground state that is bounded below uniformly in the system-size. See Section 2.3 for a
detailed discussion.

Stability does not hold in general, of course. The BHM strategy assumes two essential conditions,
one on the unperturbed modelH(0), and one on the perturbation Φ. Due to the frustration-freeness,
the ground state space of the unperturbed model defined on a finite volume is given by the kernel of
the Hamiltonian. This kernel need not be one-dimensional and its dimension may grow unbounded
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as a function of system size. A stable gap above the ground state implies that the ground state
splitting by arbitrary perturbations is ‘non-essential’. In particular, the distinct ground states
should not be distinguished by any of the local perturbation terms since otherwise their energies
would split in first order of perturbation theory. A suitable indistinguishability assumption is
introduced by BHMwhich they refer to as topological order conditions. It is called Local Topological
Quantum Order (LTQO) in [72], which is the version we also use. To deal with more general
boundary conditions we found it useful to formulate it in terms of an indistinguishability radius
(see Definition 2.1).

The second condition needed to prove stability is that Φ is sufficiently short-range. Roughly
speaking, we require that the interaction strength decays at least as fast as a stretched exponential
at long distances. Mathematically, this can be expressed by introducing a suitable Banach space
of allowed interactions Φ. There is some freedom to choose η and Φ given H(s), and this freedom
is useful for some arguments. In particular, we will make use of the notion of anchored interaction,
for which an interaction term is zero if its support is not a finite ball. See Section 2.5 and Appendix
A for a detailed discussion of norms on interactions and a proof that certain useful choices for the
interactions have comparable norms. We note here that in [72] the main stability result is claimed to
hold for models on the lattice Zν , under perturbations that decay as a power law with an exponent
greater than ν+2. We have not been able to verify this claim and explained in [83, Section VI.E.1,
page 62] why it may be erroneous.

The essence of the BHM strategy is a combination of something novel with something classi-
cal. The classical element is to use relative boundedness of a perturbation with respect to the
unperturbed Hamiltonian to show that gaps in the spectrum remain open for small coupling con-
stants. In [21, 22] a relative norm bound is used. We use a relative form bound as in [72]. See
Section 3.2 for a discussion of gaps and relative form bounds. The new ingredient is the quasi-local
‘quasi-adiabatic’ evolution, which is an s-dependent unitary transformation U(s), introduced and
pioneered by Hastings [46,47,51]. We studied this evolution in detail in [12], where we called it the
spectral flow. It has since been used in many other interesting applications [5–10,13–15,25,50]. Its
two main features are that it is quasi-local and that it exactly transforms the ground state spaces of
H(s) into each other. Quasi-locality is expressed with a Lieb-Robinson bound, which holds for the
spectral flow in the same way as for physical dynamics generated by a short-range interaction [68].

The BHM strategy is to first apply the quasi-adiabatic evolution to H(s) and then prove a
relative bound for the transformed Hamiltonian, which of course has the same spectrum as H(s).

Concretely, one defines Φ̃(x, n, s), for each site x ∈ Γ, such that

(1.2) U∗(s)H(s)U(s) = H(0) +
∑
x,n≥1

Φ̃(x, n, s) +R(s) + E(s)1l,

in which R(s) is a remainder term that vanishes in the thermodynamic limit, E(s) is a good

approximation of the perturbed ground state energy, and Φ̃(x, n, s) has the following properties:

(i) Φ̃(x, n, s) is supported in the ball centered at x with radius n; (ii) ∥Φ̃(x, n, s)∥ decays at least

fast as as a stretched exponential; (iii) Φ̃(x, n, s) vanishes on the ground states of H(0). These
properties are proved in Sections 4 and 5, in which we use of the assumptions and the quasi-locality
properties of U(s). We refer to [83] for a detailed analysis of the latter.

As shown in Section 3.3 (Theorem 3.8) the properties of Φ̃, and some technical assumptions we
skip over here, imply that the perturbation it defines satisfies a relative form bound with respect
to H(0) of the form

(1.3)

⏐⏐⏐⏐⏐⏐
∑
x,n≥1

⟨ψ, Φ̃(x, n, s)ψ⟩

⏐⏐⏐⏐⏐⏐ ≤ |s|β⟨ψ,H(0)ψ⟩, ψ ∈ H,
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where β is a constant that depends on the unperturbed model, a suitable norm of the perturbing
interaction Φ, and on a choice of γ ∈ (0, γ0), where γ0 is the gap of the unperturbed system.
Specifically, β does not depend on the finite volume and s. As we explain in Section 3, this implies
stability of the gap in the spectrum above the ground state.

A topic not discussed in the work of Bravyi, Hastings, and Michalakis is the thermodynamic limit.
In preparation for studying the thermodynamic limit, we investigate sequences of finite systems for
which the estimates leading to the constant β in (1.3) and the vanishing of the remainder term R(s)
in (1.2) hold uniformly for a sequence of finite systems in Section 6. The thermodynamic limit is
then discussed in Section 7. We show that under assumptions for which the thermodynamic limit
of the dynamics exists, the ground states of the finite-volume systems converge to a unique pure
ground state of the infinite system and this state also satisfies LTQO for |s| < s0 (Theorem 7.2).
The lower bounds of the finite systems yields a lower bound for the gap in spectrum of the GNS
Hamiltonian above the ground state. This is shown in Theorem 7.4 and Corollary 7.5. The unitary
evolution U(s) leads to a strongly continuous co-cycle of automorphisms relating the ground states
at different values of s in the interval (−s0, s0). These are the automorphisms that implement the
notion of automorphic equivalence introduced in [12] and that appear in the definition of gapped
ground state phase [26, 27,83].

The gap of the GNS Hamiltonian is often referred to as the bulk gap. It is interesting to note that
the applicability of our results includes cases where the gap for finite systems with open boundary
conditions tends to 0 as the system size tends to infinity, while the gap with periodic boundary
conditions is bounded below uniformly. Standard examples are given by the chiral edge modes in
a quantum Hall system and the topologically protected gapless edge states of quantum spin Hall
systems [52]. The connection between a bulk gap and continuous (gapless) edge spectrum has
been rigorously established in the single-particle context in [17]. An experiment on a physical two-
dimensional topological insulator with a bulk gap with gapless edge modes is described in [93]. A
two-dimensional spin toy model with gapless boundary excitations that are eliminated by periodic
boundary conditions was analyzed in [11].

In [81] we extend the stability result for the bulk gap further by proving the stability of the
gap for the GNS Hamiltonian directly, regardless of the behavior of the spectrum with particular
boundary conditions on an edge.

The last question we address in this paper is the situation in the presence of discrete symmetries.
Spontaneous symmetry breaking in the ground states is a common phenomenon and it is compatible
with a non-vanishing gap above the ground states, as well as topological order (the Goldstone
theorem shows that continuous symmetry breaking, however, is not compatible with a gap [63]).
In Section 8 we discuss in some detail how the BHM strategy can be adapted to the situation with
discrete symmetry breaking of three types: (S1) local symmetries such as spin flip, discrete spin
rotation, time-reversal etc; (S2) breaking of lattice translations to a subgroup leading to periodic
ground states; (S3) other lattice symmetries such as reflections and lattice rotations. In each of
these cases we show that, if the unperturbed model has the symmetry and it is spontaneously
broken in the ground states, then the spectral gap and the symmetry breaking are stable under
perturbations that possess the symmetry. This is the content of Theorem 8.3. Examples of breaking
of each of the three types of discrete symmetry can be found in one-dimensional models with a
finite set if pure matrix product ground states. In Section 8.5 we show how the assumptions for
the general results are satisfied for this class of examples.

Next, we give a synopsis of the remaining sections and the two appendices of this paper, including
a concise summary of the main results.

1.3. Outline of main results and section summaries. We give a concise outline of the state-
ments of the main results and proof strategies.
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The first goal of this paper is to prove a quantitative, finite-volume spectral gap stability result
for Hamiltonians with the form

H(s) = H + sV.

As indicated above, we assume the unperturbed model H is defined by an interaction that is finite
range, uniformly bounded, frustration free, and has gapped ground states which satisfy an LTQO
condition. Additionally, we assume the interaction defining V has terms which decay at least as
fast as a stretched exponential. Briefly, in Sections 3-5 we prove spectral gap stability via the
BHM strategy. More precisely, in Sections 4 and 5 we perform a decomposition of a unitarily
equivalent Hamiltonian which enables the application of general perturbation theory results proven
in Section 3. In essence, these sections provide rigorous verification of the finite-volume Claim 3.6,
see also the comments which follow this claim. Next, in Section 6, we describe classes of models for
which this gap stability result is seen to be uniform along increasing and absorbing sequences of
finite volumes. For these models, there is a well-defined notion of the thermodynamic limit, and in
Section 7, we extend gap stability to the corresponding GNS Hamiltonian. Notably, to accomplish
this we first prove that LTQO is itself a stable property. Finally, in Section 8, we turn our attention
to models with discrete symmetry breaking and observe that the traditional notion of LTQO does
not hold. However, we show that if the unperturbed model satisfies a symmetry breaking LTQO
condition and if the perturbation respects the broken symmetry, then an analogue of the uniform
gap stability result holds and it extends to the GNS Hamiltonian as well.

We now turn to a more in-depth section summary.

Section 2: We introduce the main elements of the mathematical setting for quantum spin
systems, the notion of interaction, and the property of frustration-freeness in Section 2.2.
Given the ground state space of a system, we define the indistinguishability radius, which is
used to express Local Topological Quantum Order, and discuss some examples. We review
F -norms on spaces of interactions, Lieb-Robinson bounds, and basic quasi-local estimates.
In Section 2.3 we give a precise definition of stability of the spectral gap. Section 2.4 reviews
the Hastings generator and the spectral flow, which is the essential tool of the BHM strategy.
In Section 2.5 we discuss how general interactions can be rewritten in anchored form, which
is often convenient and we discuss how this affects their norms.

Section 3: In Section 3.2 we prove a general Level Repulsion Principle (Lemma 3.1), which
can also be seen as a variational principle for gaps. The proof of spectral gap stability uses
relative form bounds and we explain in some detail how this proceeds in the remainder
of Section 3.2. Section 3.3 gives a relative form bound for a special class of interactions
(Theorem 3.8). This requires a regularity assumption on the lattice and the notion of
separating partitions to deal with general (non-commuting) Hamiltonians (Definition 3.7).

Section 4: In Section 4, we begin to implement the basic BHM strategy. Rather than study
the spectrum of the perturbed Hamiltonian H(s) directly, we consider the transformed
Hamiltonian αs(H(s)) where αs(·) is the spectral flow automorphism. The main goal of
Section 4 is to begin a decomposition of αs(H(s)) into a form suitable for an application
of the general perturbation theory results proven in Section 3, namely Theorem 3.4. After
introductory preliminaries in Section 4.1, this main goal is accomplished by proving two
results: Proposition 4.2 in Section 4.2 and Theorem 4.8 in Section 4.3.1. As detailed in
Section 4.3.2, the bulk of the work in this section involves an appropriate choice of local
decompositions and a familiarity with quasi-locality estimates; the foundations of which we
considered in [83].

Section 5: In Section 5, we complete the decomposition procedure we began in Section 4.
It is here that the structure of the unperturbed ground state space, and in particular, our
assumptions on local topological quantum order play a crucial role. The main content is a
proof of Theorem 5.1 and Theorem 5.3. Theorem 5.1 establishes estimates on the remainder
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terms that arise from the decomposition of the transformed Hamiltonian, whereas Theo-
rem 5.3 demonstrates that the remaining anchored interaction terms satisfy the necessary
constraints so that the general form bound estimate, see Theorem 3.8 in Section 3.3, is
applicable.

Section 6: In Section 6, we set the stage for considerations of the thermodynamic limit. In
fact, we consider assumptions for models, defined on an increasing and absorbing sequence of
finite volumes, which are sufficiently uniform so that the stability estimates hold uniformly
in these finite volumes. We characterize uniformity of the models with Definition 6.5 which
we refer to as perturbation models. We characterize uniformity of the estimates for these
models by Assumption 6.7 which defines uniform perturbation models. The main results of
this section are Theorem 6.8 and Corollary 6.9 which both demonstrate forms of stability
for uniform perturbation models. In Section 6.3.1, we discuss some common cases where one
can verify that our model assumptions hold, and in Section 6.3.2, we discuss cases where
these stability arguments simplify, for example, in situations where the models of interest
have periodic boundary conditions.

Section 7: We consider spectral gap stability in the thermodynamic limit for uniform per-
turbation models for which limiting dynamics exists and the ground states are everywhere
indistinguishable (see Definition 7.1). We show in Theorem 7.2 and Corollary 7.3 that the
perturbed models are also everywhere indistinguishable, and that their ground states con-
verge to a unique, pure infinite volume ground state. We establish a criterion for which
finite volume ground state indistinguishability implies a spectral gap of the associated GNS
Hamiltonian in Theorem 7.4 and Corollary 7.5.

Section 8: We introduce two indistinguishability radii that can be used to prove stability
for several cases of discrete symmetry breaking. For uniform finite volume stability, it is
sufficient to consider the G-symmetric radius (see Definition 8.1). To recover the stability
of the GNS gap, one needs the stronger G-broken radius from Assumption 8.2. We discuss
in detail how to adjust the BHM strategy to prove stability for a model with a broken gauge
symmetry which is proved in Theorem 8.3, and explain how to modify this argument to
hold for cases of broken lattice symmetries in Section 8.4. We conclude with Section 8.5
where we provide a class of examples with symmetry broken MPS ground states for which
our methods apply.

AppendixA: In Appendix A, we provide some basic quasi-locality estimates with particular
emphasis on models defined by anchored interactions. More general results of this type are
described in detail in [83]. The main result is Theorem A.2, see also Corollary A.3, which
establishes a bound in F -norm on a quasi-locally transformed anchored interaction. Results
of this specific type enter the analysis of Section 4.

AppendixB: We prove a lower bound on the indistinguishability radius for models with a
unique infinite volume MPS ground state in Section B.1. We then consider models with N -
distinct MPS ground states, and show that the conditions from Assumption 8.2 for stability
in the case of symmetry breaking hold.

2. General framework and auxiliary results

2.1. Introduction. Our aim in this paper is to present the current status of stability results for
quantum spin systems in considerable generality. This is not to say that all results are stated
under the most general conditions available to date. Attempting to do that would produce and
unreadable text and require an excessive amount of definitions and notations. Our emphasis is on
general ideas that work for large classes of systems and we illustrate the application of these ideas
by presenting detailed arguments that cover the known results and, in fact, allow us to provide a
number of generalizations and new results that can be obtained using the same principles.
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In support of this goal, we describe in this section the more or less standard mathematical
framework for studying quantum spin systems and discuss the basic notions that feature in the
stability properties of the spectral gap above the ground state(s). Some definitions generalize what
has appeared in the literature so far and in some cases we found it useful to discuss relationships
between different ways basic properties may be expressed. This is a bit more material than is
strictly needed to read the rest of the paper, but we hope some readers will find it useful.

2.2. Quantum Spin Systems. In this work, we study quantum spin models defined on a fairly
general class of discrete metric spaces (the ‘lattice’) in terms of a broad class of interactions (which
define the dynamics), a setting we now describe. While the interactions defining both the initial
system and the perturbation are static, the method of choice to study the spectrum of these
Hamiltonians relies on auxiliary dynamics generated by a time-dependent generator (the Hastings
generator of the so-called spectral flow). Therefore, we consider both time-independent and time-
dependent interactions in our setup.

We consider quantum spin systems defined on a countable metric space (Γ, d) that is ν-regular,
meaning there is a non-negative integer ν and constant κ > 0 such that for any x ∈ Γ,

(2.1) |bx(n)| ≤ κnν ,

where bx(n) = {y ∈ Γ : d(x, y) ≤ n}. If Γ is a regular lattice, (2.1) holds with ν the lattice
dimension. At every site x ∈ Γ, we associate a finite-dimensional Hilbert space Hx = Cnx , and
denote by B(Hx) the algebra of all bounded linear operators. We use P0(Γ) to denote the set of
all finite subsets of Γ, and for each Λ ∈ P0(Γ) we define the state space and algebra of observables,
respectively, by

(2.2) HΛ =
⨂
x∈Λ

Hx, AΛ :=
⨂
x∈Λ

B(Hx) = B(HΛ).

Some results will in fact hold more generally for systems with infinite-dimensional state spaces and
we will point this out where applicable.

For any two finite subsets Λ0 ⊂ Λ, there is a natural embedding AΛ0 ↪→ AΛ via A ↦→ A⊗ 1lΛ\Λ0

for all A ∈ AΛ0 . With respect to this identification, the algebra of local observables is defined by
the inductive limit

(2.3) Aloc
Γ =

⋃
X∈P0(Γ)

AX ,

and the C∗-algebra of quasi-local observables, denoted AΓ, is given by the norm completion of Aloc
Γ .

A quantum spin model is defined in terms of an interaction Φ. In the time-independent case,
this is a map Φ : P0(Γ) → Aloc

Γ such that Φ(X)∗ = Φ(X) ∈ AX . The local Hamiltonian associated
to any Λ ∈ P0(Γ) is the sum of all interaction terms supported on Λ, i.e.

(2.4) HΛ =
∑
X⊆Λ

Φ(X).

An interaction Φ is uniformly bounded if

(2.5) sup
X∈P0(Γ)

∥Φ(X)∥ <∞,

and finite range if there exists R > 0 such that Φ(X) = 0 for any finite X with diam(X) > R. The
smallest such R for which this holds is called the range of the interaction. We will also consider
interactions Φ that are frustration-free and have local topological quantum order (LTQO). These are
both properties on the ground states associated with the finite volume Hamiltonians. We describe
these properties in detail as they will be key assumptions for the main results of this work.
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2.2.1. Frustration-free Interactions. A frustration-free interaction is one where the ground states
of any finite volume Hamiltonian HΛ simultaneously minimize the energy of all interaction terms
Φ(X), X ⊆ Λ. Said differently, up to shifting each interaction term, Φ(X), by its ground state
energy, we say that an interaction Φ : P0(Γ) → Aloc

Γ is frustration-free if the following two properties
hold:

i. Φ(X) ≥ 0 for all X ∈ P0(Γ).
ii. min spec(HΛ) = 0 for all Λ ∈ P0(Γ).

It follows immediately from the definition that the ground state space of HΛ is GΛ := ker(HΛ), and
that ψ ∈ GΛ if and only if Φ(X)ψ = 0 for all X ⊆ Λ, i.e.

(2.6) GΛ =
⋂
X⊆Λ

ker(Φ(X)).

Let PΛ denote the orthogonal projection onto GΛ for any Λ ∈ P0(Γ). By identifying HΛ0 ↦→
HΛ0 ⊗ 1lΛ\Λ0

∈ AΛ for Λ0 ⊆ Λ, the above equation implies that GΛ ⊆ GΛ0 . As a consequence, the
associated ground state projections satisfy

(2.7) PΛPΛ0 = PΛ0PΛ = PΛ.

This ground state projection property is a key feature of frustration-free interactions and will
frequently be used in our analysis.

2.2.2. Local Topological Quantum Order. A characteristic feature of topological order is the degen-
eracy of the ground state accompanied by the property that observables localized away from the
boundary of the volume do not (or barely) distinguish between different ground states. In the ab-
sence of a boundary (for example finite volumes considered with periodic boundary conditions, say
a torus) observables with support that is small with respect to the size of topologically non-trivial
closed paths in the volume similarly cannot distinguish between different ground states. It is this
feature that makes such systems candidates to serve as robust quantum memory: you can store
information by selecting a particular ground state without the danger that local perturbations will
erase that information. The robustness of this property requires that there is a gap in the spec-
trum above the ground state that does not vanish with increasing system size. In fact, the local
indistinguishability of the ground states itself implies that local perturbations to the Hamiltonian
will not affect the ground state energy, at least not up to high orders in perturbation theory.

This motivates the notion of local topological quantum order (LTQO), which describes this
property of local indistinguishability of the ground states in a quantitative way. LTQO is a central
condition for the stability results we present in this paper. The term LTQO was coined by Micha-
lakis and Zwolak in [72] but essentially the same property was first considered by Bravyi, Hastings,
and Michalakis in [21]. In these and other subsequent works, the authors only consider Hamiltoni-
ans with periodic boundary conditions and define their topological order condition specifically for
this situation. There are situations in which it is necessary or preferable to consider the ground
state problem for models with other boundary conditions. Therefore, in this paper we introduce a
more general LTQO condition built on the notion of an indistinguishability radius.

As before, for any finite volume Λ ∈ P0(Γ), we denote by PΛ the orthogonal projection onto the
ground state space of HΛ =

∑
X⊆ΛΦ(X), and denote by ωΛ : AΛ → C the ground state functional

(2.8) ωΛ(A) = Tr[PΛA]/Tr[PΛ].

We define the indistinguishability radius of a site x ∈ Λ in terms of balls with respect to Λ. To
differentiate these from the balls in Γ, we use the notation bΛx (n) = {y ∈ Λ : d(x, y) ≤ n}. Since
bΛx (n) = bx(n) ∩ Λ, we necessarily have |bΛx (n)| ≤ κnν for all Λ ∈ P0(Γ) and ν-regular Γ.
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Definition 2.1 (Indistinguishability radius). Let Ω : R → [0,∞) be a non-increasing function. The
indistinguishability radius of HΛ at x ∈ Λ, denoted rΩx (Λ), is the largest integer rΩx (Λ) ≤ diam(Λ)
such that for all integers 0 ≤ k ≤ n ≤ rΩx (Λ) and all observables A ∈ AbΛx (k)

,

(2.9) ∥PbΛx (n)
APbΛx (n)

− ωΛ(A)PbΛx (n)
∥ ≤ |bΛx (k)|∥A∥Ω(n− k).

Loosely speaking, a system is said to have the LTQO property if, for fixed x ∈ Γ, the indistin-
guishability radius rΩx (Λ) → ∞ as the system size increases and the distance of x to the boundary
of Λ diverges.

Several comments are in order. First, the set of indistinguishability radii is a property of the
ground state space of the model and they obviously depend on the choice of the function Ω. There
is no a priori obvious optimal choice. Both Ω and the radii, rΩx , that appear in crucial estimates
are derived from computing a good upper bound on the left hand side of (2.9) for the system under
consideration. Typically, one wants limn→∞Ω(n) = 0. The rate of this convergence is related to
the vanishing dependence of local expectations on boundary conditions, see (2.9). Therefore, as
a second comment, we note that the indistinguishability radius rΩx (Λ) depends not only on the
volume Λ but possibly also the choice of boundary conditions for the system. Finally, (2.9) shows
that given any A ∈ Abx(k) and k << n ≤ rΩx (Λ), the matrix PbΛx (n)

APbΛx (n)
is approximately a

multiple of PbΛx (n)
. This property, generally referred to as LTQO, does not require that the model

is defined by a frustration free interaction. In the case of frustration free models, however, we have
the following proposition, first proved in [72], which will be used when we apply LTQO further on.

Proposition 2.2. Let HΛ be a frustration-free Hamiltonian Ω : R → [0, ∞) be a non-increasing
function, and x ∈ Λ. Then, for any 0 < k ≤ n ≤ rΩx (Λ) and A ∈ AbΛx (k)

one has

(2.10)
⏐⏐⏐∥APbΛx (n)

∥ − ∥APΛ∥
⏐⏐⏐ ≤ ∥A∥

√
2|bΛx (k)|Ω(n− k).

Proof. Since |a− b|2 ≤ |a2 − b2| for any a, b ≥ 0, first note that⏐⏐⏐∥APbΛx (n)
∥ − ∥APΛ∥

⏐⏐⏐2 ≤
⏐⏐⏐∥APbΛx (n)

∥2 − ∥APΛ∥2
⏐⏐⏐

≤
⏐⏐⏐∥PbΛx (n)

A∗APbΛx (n)
∥ − ωΛ(A

∗A)
⏐⏐⏐+ |∥PΛA

∗APΛ∥ − ωΛ(A
∗A)| .(2.11)

The result follows from individually bounding the terms on the RHS of (2.11). For any k ≤ n ≤
rΩx (Λ), (2.9) holds, and we can estimate the first term of (2.11) as follows:⏐⏐⏐∥PbΛx (n)

A∗APbΛx (n)
∥ − ωΛ(A

∗A)
⏐⏐⏐ = ⏐⏐⏐∥PbΛx (n)

A∗APbΛx (n)
∥ − ωΛ(A

∗A)∥PbΛx (n)
∥
⏐⏐⏐

≤ ∥PbΛx (n)
A∗APbΛx (n)

− ωΛ(A
∗A)PbΛx (n)

∥

≤ |bΛx (k)|∥A∥2Ω(n− k).(2.12)

For the second term of (2.11), using the same argument as above we have

|∥PΛA
∗APΛ∥ − ωΛ(A

∗A)| ≤ ∥PΛA
∗APΛ − ωΛ(A

∗A)PΛ∥.

To simplify notation, let r = rΩx (Λ). It follows from the frustration-free property (2.7) that PΛ =
PΛPbΛx (r)

= PbΛx (r)
PΛ, and therefore

∥PΛA
∗APΛ − ω(A∗A)PΛ∥ ≤ ∥PbΛx (r)

A∗APbΛx (r)
− ω(A∗A)PbΛx (r)

∥
≤ |bx(k)|∥A∥2Ω(r − k),(2.13)

where we have again applied (2.9). Since Ω is non-increasing and n ≤ r, the bound in (2.10) readily
follows. □
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To illustrate the notion of indistinguishability radius we now give some examples of systems
where there is a natural choice for Ω and for which good estimates of the indistinguishability radii
can be given.

i. LTQO by itself does not imply non-trivial topological order. Clearly, a system with a unique
ground state that is not sensitive to boundary effects will have large indistinguishability
radii but there will be no topological order of any kind. For example, consider a model with
finite volume Hamiltonians HΛ that have a unique ground state given by a product vector⨂

x∈Λ ϕx, where ϕx is independent of Λ. Then, one can take Ω ≡ 0 and rΩx (Λ) = diam(Λ).
ii. Frustration-free spin chains with a unique translation-invariant matrix product ground state

(e.g., the AKLT chain [2]) give an interesting class of examples that includes interesting cases
of symmetry-protected topological order [26,89,100]. As is shown in Appendix B, Ω can be

taken to be of the form Ω(r) = Ce−r/ξ, where ξ can be taken to be the correlation length of
the MPS state. The indistinguishability radii depend on the boundary conditions as follows.
If Λ = [a, b] ⊂ Z is a finite interval with open boundary conditions, one can show

rΩx (Λ) ≥ min(|x− a|, |b− x|)− c,

for a suitable constant c, which depends on the model but not on Λ. For the model on a
ring of N sites, i.e., Λ = Z/(NZ), with periodic or twisted periodic boundary conditions,
we have, with the same Ω,

rΩx (Λ) ≥ ⌊N/2⌋.
iii. The Toric Code model, the simplest example of the quantum double models introduced by

Kitaev [55,57], was the system that inspired the original LTQO-type conditions introduced
in [21,22]. It can be defined on a square lattice (Γ = Z2), with qubits on each edge (Hx = C2

for all x in the edge lattice, which is also a square lattice). The interactions are four-body
terms associated with elementary squares (plaquettes) and stars (four edges meeting in a
site). These interaction terms mutually commute, a situation often describe as a commuting
Hamiltonian.

For this model, one can take Ω to be the step function of the form

Ω(r) =

{
2 if r ≤ 2

0 if r > 2

Again, precise estimates for the indistinguishability radii depend on the choice of boundary
conditions. For the model defined on a torus Λ = Z2/(N1Z×N2Z), one can show

rΩx (Λ) ≥ min(N1, N2)− 2.

In this case the indistinguishability radius, which does not depend on x, is essentially the
code distance, meaning, the number of bits one has to modify to make an unrecoverable
error. The case of general quantum double models was worked out in [32].

iv. Levin-Wen models [67] are another interesting class of two-dimensional models with com-
muting Hamiltonians (in the sense of the previous example). Their LTQO properties are
similar to those of the Toric Code model and have been analyzed in [94].

It is easy to see that if a model has two or more ground states that can be distinguished by
a local observable A, as is the case for the Ising model, the indistinguishability radius rΩx (Λ) will
be bounded or even vanish for any choice of Ω that tends to zero at infinity. In Section 8 we will
consider spectral gap stability for models with discrete symmetry breaking. There we show that
by using a symmetry restricted notion of the indistinguishability radius, which only requiries (2.9)
for observables that satisfy a symmetry condition, one can also prove stability of the spectral gap
in models with multiple (distinguishable) ground states.
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2.2.3. Decay of Interactions, Lieb-Robinson Bounds, and Quasi-locality. Lieb-Robinson bounds for
the Heisenberg dynamics of time (in)dependent interactions will play a key role in these stabil-
ity results. In this section, we briefly review this topic. We first introduce the framework for
time-independent interactions, and then discuss time-dependent interactions. We conclude with a
statement of Lieb-Robinson bounds and a brief summary of quasi-local maps.

Lieb-Robinson bounds provide an upper bound for the speed of propagation of dynamically
evolved observable through a quantum lattice system. This estimate is closely tied to the locality
of the interaction in question, which we quantify using so-called F -functions. Given a countable
metric space (Γ, d), an F-function F : [0,∞) → (0,∞) is a non-increasing function that satisfies
the following two properties:

(i) F is uniformly-integrable, i.e.

(2.14) ∥F∥ = sup
x∈Γ

∑
y∈Γ

F (d(x, y)) <∞.

(ii) F has a finite convolution coefficient,

(2.15) CF := sup
x, y∈Γ

∑
z∈Γ

F (d(x, z))F (d(z, y))

F (d(x, y))
<∞.

For a ν-regular metric space (Γ, d), any function of the form

(2.16) F (r) =
1

(1 + r)ζ
for ζ > ν + 1

is an F -function with CF ≤ 2ζ+1∥F∥. If Γ = Zν , one can take any ζ > ν. Given an F -function
F and any non-negative, non-decreasing, sub-additive function g : [0,∞) → [0,∞), i.e. g(r + s) ≤
g(r) + g(s), the function

(2.17) Fg(r) = e−g(r)F (r)

is also an F -function with ∥Fg∥ ≤ ∥F∥ and CFg ≤ CF . We refer to such functions as weighted
F -functions. The special case of

(2.18) F (r) =
e−arθ

(1 + r)ζ
, with a > 0, 0 < θ ≤ 1, and ζ > ν + 1

are a particularly useful class of F -functions that will be frequently referenced in this work.
We use F -functions to define decay classes of interactions in terms of F -norms. Given an F -

function F and an interaction Φ : P0(Γ) → Aloc
Γ , we say that Φ ∈ BF if its F -norm is finite,

i.e.

(2.19) ∥Φ∥F := sup
x, y∈Γ

1

F (d(x, y))

∑
X∈P0(Γ)
x, y∈X

∥Φ(X)∥ <∞.

For example, if Φ is a uniformly bounded, finite range interaction on a ν-regular metric space, one
can easily check ∥Φ∥F < ∞ for any exponentially decaying F -function F (r) = e−ar(1 + r)−ζ with
ζ > ν + 1 and a > 0.

From (2.19), it is useful to observe that for any x, y ∈ Γ,

(2.20)
∑

X∈P0(Γ)
x, y∈X

∥Φ(X)∥ ≤ ∥Φ∥FF (d(x, y)),

and in particular, ∥Φ(X)∥ ≤ ∥Φ∥FF (diam(X)) for any X ∈ P0(Γ) and Φ ∈ BF .
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In certain contexts, it becomes natural to consider the decay of an interaction term Φ(X) weighted
against the size of its support, |X|. In this situation, the m-th moment F -norm of the interaction
is relevant. Given an integer m ≥ 0 this is defined to be

(2.21) ∥Φ∥m,F = sup
x, y∈Γ

1

F (d(x, y))

∑
X∈P0(Γ)
x, y∈X

|X|m∥Φ(X)∥,

and we write Φ ∈ Bm
F when ∥Φ∥m,F <∞. With this notation, it is clear that ∥Φ∥0,F = ∥Φ∥F .

In our analysis, we also need to consider decay classes of continuous time-dependent interactions.
Given an interval I ⊆ R (possibly infinite), we consider time-dependent interactions Φ : P0(Γ)×I →
Aloc

Γ for which

(i) Φ(X, t)∗ = Φ(X, t) ∈ AX for each t ∈ I and X ∈ P0(Γ).
(ii) Φ(X, t) is continuous in t for all X ∈ P0(Γ).

We note that there is no ambiguity in the notion of continuity above (i.e. weak, strong, norm) since
dim(HX) < ∞ for every X ∈ P0(Γ). The local Hamiltonians for a time-dependent interaction are
defined analogously to the time-independent case, specifically

(2.22) HΛ(t) =
∑
X⊆Λ

Φ(X, t), for all Λ ∈ P0(Γ) and t ∈ I.

Furthermore, given an F -function F , we say that a time-dependent interaction Φ belongs to BF (I)
if

(2.23) ∥Φ∥F (t) := sup
x, y∈Γ

1

F (d(x, y))

∑
X∈P0(Γ)
x, y∈X

∥Φ(X, t)∥ <∞

and is locally bounded as a function of t. In this case, t → ∥Φ∥F (t) is measurable (as it is the
supremum of a countable family of measurable functions) and hence locally integrable. As in the
time-independent case, (2.23) implies that for all t ∈ I and x, y ∈ Γ,

(2.24)
∑

X∈P0(Γ)
x, y∈X

∥Φ(X, t)∥ ≤ ∥Φ∥F (t)F (d(x, y)).

The m-th moment F -norm, ∥Φ∥m,F (t), and decay class Bm
F (I) for a time-dependent interaction are

defined analogously, i.e. by substituting ∥Φ(X, t)∥ for ∥Φ(X)∥ in (2.21).
One can use the F -norm of an interaction to bound the speed of propagation of observables

evolved under the Heisenberg dynamics. Given a finite volume Λ ∈ P0(Γ) and any t, s ∈ I, the
Heisenberg dynamics τΛt,s : AΛ → AΛ associated with a time-dependent interaction Φ is given by

(2.25) τΛt,s(A) = UΛ(t, s)
∗AUΛ(t, s)

where UΛ(t, s) is the solution to

(2.26)
d

dt
UΛ(t, s) = −iHΛ(t)UΛ(t, s), UΛ(s, s) = 1l.

In the case of a time-independent interaction, the Heisenberg dynamics is defined analogously by
replacing HΛ(t) with HΛ in (2.26) above.

In the situation that Φ ∈ BF (I) for an F -function F on (Γ, d), one can prove the following
well-known quasi-locality estimate on τΛt,s. A proof of this result can be found, e.g. in [83].

Theorem 2.3 (Lieb-Robinson Bounds). Let Φ ∈ BF (I). Then for any Λ ∈ P0(Γ) and t, s ∈ I,
the Heisenberg dynamics τΛt,s satisfies the following bound: for any A ∈ AX and B ∈ AY with
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X ∩ Y = ∅ and X ∪ Y ⊆ Λ,

(2.27) ∥[τΛt,s(A), B]∥ ≤ 2∥A∥∥B∥
CF

(
e
2CF

∫ t+
t−

∥Φ∥F (r)dr − 1

)∑
x∈X

∑
y∈Y

F (d(x, y)).

where t− = min{t, s} and t+ = max{t, s}.

In the case that Φ is time-independent, Theorem 2.3 holds with |t−s|∥Φ∥F replacing the integral

on the RHS of (2.27). For a weighted F -function Fg(r) = e−g(r)F (r) and Φ ∈ BFg(I) such that
vΦ := 2CFg supt∈I ∥Φ∥Fg(t) <∞, one can use the uniform integrability of F to show

(2.28) ∥[τΛt,s(A), B]∥ ≤ 2∥A∥∥B∥
CFg

|X|∥F∥evΦ|t−s|−g(d(X,Y )),

which is decreasing in the distance between X and Y . Here, the quantity vΦ is known as the
Lieb-Robinson velocity, or, more appropriately, a bound on it. It is important to note that the
norm bounds in both (2.27) and (2.28) are independent of the volume Λ. The uniformity of these
bounds in the system size plays a key role in our analysis.

We will also consider other maps with Lieb-Robinson type estimates, which we refer to as quasi-
local maps. For any Λ ∈ P0(Γ), we say that a map KΛ : AΛ → AΛ is quasi-local if there is an
integer q ≥ 0, and non-increasing function G : [0,∞) → (0,∞), with limx→∞G(x) = 0, so that the
norm bound

(2.29) ∥[KΛ(A), B]∥ ≤ ∥A∥∥B∥|X|qG(d(X,Y )),

holds for any A ∈ AX and B ∈ AY with X, Y ⊂ Λ. As in the case of the Heisenberg dynamics, it is
often the case that there is a family of quasi-local maps {KΛ : Λ ∈ P0(Γ)} for which q and G can be
chosen uniform in Λ, a key property in applications. An example of such a map is the spectral flow
which we introduce in 2.4. For a detailed, general analysis of quasi-local maps, see [83, Section 5].

2.3. Stability of the Spectral Gap. The main focus of this work is spectral gap stability of a
quantum spin model under local perturbations, for which the spectrum of the local Hamiltonian is
the set of all eigenvalues for any fixed finite volume Λ ∈ P0(Γ). We will consider Hamiltonians that
depend differentiably on a parameter s, and as such the eigenvalues can be written as continuous
functions of the parameter. Without loss of generality, we assume the parameter range is s ∈ [0, 1].
Given such a differentiable family of Hamiltonians, HΛ(s), we consider a partition of the spectrum
of HΛ(s) into two disjoint sets ΣΛ

1 (s) and ΣΛ
2 (s) of the form

(2.30) ΣΛ
1 (s) = spec(HΛ(s)) ∩ I(s), ΣΛ

2 (s) = spec(HΛ(s)) \ ΣΛ
1 (s),

where I(s) ⊂ R is a closed interval with end points that depend smoothly on s.
As mentioned above, it is well known from perturbation theory (see [53, Section 2.1]) that the

eigenvalues of the Hermitian matrix HΛ(s) are given by a family of continuous functions {λΛi (·) |
i = 1, . . . ,dim(HΛ)} for which λΛ1 (s) ≤ λΛ2 (s) ≤ · · · , for all s ∈ [0, 1]. We are mainly interested the
behavior of the gap above the ground state in spec(HΛ(s)), which we define as follows. Choosing
the partition of the form (2.30) given by

(2.31)
ΣΛ
1 (s) =

{
λΛi (s) ∈ spec(HΛ(s)) : λ

Λ
i (0) = λΛ1 (0)

}
ΣΛ
2 (s) =

{
λΛi (s) ∈ spec(HΛ(s)) : λ

Λ
i (0) > λΛ1 (0)

}
,

we define the ground state gap, gap(HΛ(s)) by:

(2.32) gap(HΛ(s)) = dist(ΣΛ
1 (s), Σ

Λ
2 (s)),

where dist(X,Y ) = inf{|x−y| : x ∈ X, y ∈ Y } for any two non-empty sets X, Y ⊂ R. In the cases
of particular interest to us, HΛ(0) is a finite-volume Hamiltonian of a frustration free interaction,
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Figure 1. The spectral gap of HΛ(s) above the ground state energy (allowing for
eigenvalue splitting) is at least γ for all 0 ≤ s ≤ sΛγ .

which by definition has λ1(0) = inf specHΛ(0) = 0 and hence Σ1(0) = {0}. From the continuity of
the eigenvalues, it is clear that for any fixed Λ and 0 < γ < gap(HΛ),

(2.33) sΛγ := sup{s′ ∈ [0, 1] : gap(HΛ(s)) ≥ γ for all 0 ≤ s ≤ s′} > 0.

Our goal will be to obtain a useful lower bound for sΛγ . Without loss of generality we may assume

that sΛγ < 1 (as sΛγ = 1 is a useful lower bound). A visualization of sΛγ is given in Figure 2.3.
A sequence of finite volumes Λn ⊂ Γ is said to be absorbing (for Γ), denoted Λn → Γ, if for all

x ∈ Γ, there exists an n such that x ∈ Λm for all m ≥ n. We often also assume the sequence of
finite volumes is increasing, i.e., Λn ⊂ Λn+1 for all n, and denote by Λn ↑ Γ a sequence of increasing
and absorbing volumes.

We say that a frustration-free interaction is gapped, if there exists a sequence of finite volumes
Λn ↑ Γ such that

(2.34) γ0 = inf
n≥1

gap(HΛn) > 0.

In the situation that there is a sequence of uniformly gapped unperturbed Hamiltonians in the
sense of (2.34), we say that the spectral gap is stable if for any 0 < γ < γ0

(2.35) sγ := inf
n≥1

sΛn
γ > 0,

that is, if there is sγ > 0 such that infn gap(HΛn(s)) ≥ γ for all 0 ≤ s ≤ sγ .
We analyze the stability of the ground state gap in the presence of small, local perturbations.

Given two time-independent interactions η,Φ : P0(Γ) → Aloc
Γ , we consider local Hamiltonians of

the form

(2.36) HΛ(s) = HΛ + sVΛp ,

where

HΛ =
∑
X⊆Λ

η(X), VΛp =
∑
X⊆Λ

X∩Λp ̸=∅

Φ(X).

Here, η is the background (or initial) interaction, Φ is the perturbation, and Λp ⊆ Λ is the pertur-
bation region. Any subset of Λ may be chosen as the perturbation region. In our application, the
perturbation region will consist of all points x ∈ Λ with a sufficient indistinguishability radius. This
will be described in more detail in Section 5. The most traditional choice of perturbation region is
Λp = Λ, for which VΛ ∈ AΛ is a local Hamiltonian of the form defined in (2.4). In Section 6, we
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provide sufficient conditions on the unperturbed interaction η so that for any Φ ∈ BF with F as in
(2.18), there are two sequences of finite volumes Λp

n ⊆ Λn with Λp
n ↑ Γ so that (2.35) is satisfied.

2.4. The Spectral Flow. Much like the Heisenberg dynamics, see (2.25), the spectral flow is
a family of automorphisms of the observable algebra AΛ. Consider the family of Hamiltonians

{HΛ(s)}s∈[0,1] given by (2.36). For each 0 ≤ s ≤ 1 and all t ∈ R, denote by τ
(s)
t : AΛ → AΛ the

Heisenberg dynamics associated with HΛ(s), i.e.

(2.37) τ
(s)
t (A) := eitHΛ(s)Ae−itHΛ(s).

To define the spectral flow, we first introduce its generator. For any ξ > 0, define Dξ : [0, 1] → AΛ

by

(2.38) Dξ(s) =

∫
R
τ
(s)
t (VΛp)Wξ(t) dt for all 0 ≤ s ≤ 1,

where VΛp is the perturbation, see (2.36), and Wξ ∈ L1(R) is the real-valued weight function
defined e.g. in [83][Section VI.B]. The parameter ξ is akin to a correlation length in that it governs

the rate of decay of the function Wξ: Wξ(t) = ξ−1W1(ξt), and W1(t) vanishes as e−c|t|/(log |t|)2 ,
for large |t|, and some c > 0. The support of the Fourier transform of Wξ is contained in the
interval [−ξ, ξ], which is of crucial importance for the properties of the dynamics generated by
Dξ(s) discussed below. It is straight-forward to check that for any ξ > 0, Dξ is pointwise self-
adjoint (i.e. Dξ(s)∗ = Dξ(s) for all s ∈ [0, 1]) and continuous in s. As such, there is a unique family
of unitaries given by the solutions of

(2.39)
d

ds
U ξ(s) = −iDξ(s)U ξ(s) with U ξ(0) = 1l.

In terms of these unitaries, a family of automorphisms of AΛ is defined by setting

(2.40) αξ
s(A) = U ξ(s)∗AU ξ(s) for all A ∈ AΛ and 0 ≤ s ≤ 1 .

Given a choice of ξ, we refer to the family of automorphisms {αξ
s}s∈[0,1] as the spectral flow

automorphisms. This is due to the following property that these automorphisms satisfy: Let
spec(HΛ(s)) = ΣΛ

1 (s) ∪ ΣΛ
2 (s) be as in (2.31) and for all 0 ≤ s ≤ 1 denote by P (s) the spectral

projection associated to HΛ(s) onto ΣΛ
1 (s). Fix 0 < γ < gap(HΛ(0)). It is proven, e.g. in [83, The-

orem 6.3], that for any 0 < ξ ≤ γ the spectral flow automorphisms satisfy

(2.41) αξ
s(P (s)) = P (0) for all 0 ≤ s ≤ sΛγ .

As such, properties of the ground state projections of HΛ(0) extend to the spectral projection of
αs(HΛ(s)) associated with Σ1(s).

To ease notation, we will work with the fixed family of spectral flows determined by the choice
ξ = γ, and denote it simply by {αs}s∈[0,1]. An important point, to which we will return in
Section 4, is that if the family of Hamiltonians {HΛ(s)}s∈[0,1] given by (2.36) has sufficiently decay,
(e.g. Φ ∈ BF with F as in (2.18)), then these spectral flow automorphisms satisfy an explicit
quasi-locality estimate of the form (2.29). At the heart of the spectral stability argument are three
crucial properties of the spectral flow.

Claim 2.4 (Properties of the Spectral Flow). The spectral flow has the following properties:

i. The spectral flow is a family of automorphisms implemented by unitaries, see (2.39). As
such, spec(αs(H)) = spec(H) for any Hamiltonian H ∈ AΛ and so one may analyze αs(H)
to establish spectral gap estimates for H.

ii. The spectral flow maps the spectral projection corresponding to the perturbed system back to
the spectral projection corresponding to the unperturbed systems, see (2.41).

iii. Given sufficient decay of the perturbation Φ, the spectral flow αs from (2.40) is quasi-local.

The properties described in this claim, as well as others, were proven in detail in Section 6 of [83].
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2.5. Anchored Interactions.

2.5.1. Anchored Interactions. For combinatorial reasons, it becomes cumbersome to work with
interactions and perturbations as they are defined in Section 2.2. For this reason, we find it
convenient to work with anchored interactions, which allow one to rewrite the local Hamiltonians
HΛ in the form (2.43) below. We define the notion of anchored interaction here, and provide one
method for transforming an interaction into an anchored interaction and vice-versa. The vital
property of the anchoring procedure we introduce is that it preserves the decay properties of the
original interaction, assuming it decays sufficiently fast. The procedure we discuss also has the
convenient property that it preserves the local ground state spaces for balls. These properties
imply that we can formulate our results equivalently and without loss of generality either in terms
of the usual notion of interactions or using anchored interactions. Anchored interactions can be
time-dependent in complete analogy with the definitions and results for time-dependent interactions
defined on arbitrary finite subsets.

Definition 2.5. Given a countable metric space (Γ, d), an algebra of local observables Aloc
Γ , and

a subset Λ ⊆ Γ, we say that a mapping Φ : Λ × Z≥0 → Aloc
Λ is a anchored interaction on Λ if

Φ(x, n) = Φ(x, n)∗ ∈ AbΛx (n)
for all (x, n) ∈ Λ× Z≥0.

For fixed x ∈ Λ, we often use ∥Φ(x, n)∥, as a function of n, to express the decay of the interaction
strength with distance. In that situation it is natural to require the following property:

(2.42) Φ(x, n) ̸= 0 =⇒ there is a pair of sites y, z ∈ bΛx (n) with d(y, z) > n− 1.

We will show that for a given Hamiltonian we can always find an anchored interaction with this
property. Note that we only require diam(bΛx (n)) > n− 1 and not supp(Φ(x, n)) = bΛx (n). We say
the term Φ(x, n) is anchored at the site x, hence the terminology. Depending on Λ, it is possible
that bΛx (n) = bΛy (m) for two distinct sites x, y ∈ Λ. For an anchored interaction the anchoring site
can hold significance, and so we allow for the possibility that Φ(x, n) ̸= Φ(y,m). This is not possible
for an interaction as defined in Section 2.2 as this is a function of X ∈ P0(Γ). We impose the second
condition on an anchored interaction for two reasons. First, it justifies associating the ball bΛx (n)
to the interaction term Φ(x, n). Second, if Λ is finite, then Φ(x, n) = 0 for all n > diam(Λ) and so
Φ is nonzero for only a finite number of pairs (x, n) ∈ Λ× Z.

Given any finite volume Λ ⊆ Γ, and an interaction Φ : P0(Γ) → Aloc
Γ it is always possible rewrite

the local Hamiltonian HΛ, see (2.4), as

(2.43) HΛ =
∑
x∈Λ

∑
n≥0

ΦΛ(x, n)

where ΦΛ : Λ × Z≥0 → AΛ is an anchored interaction on Λ. In the next section we introduce one
procedure for transforming a general interaction Φ into an equivalent anchored interaction. This is
not the only procedure one could use. For the results on stability, one only needs that the resulting
anchored interaction satisfies an anchored F -norm similar to that in Proposition 2.8 below.

One may also consider time-dependent anchored interactions, which are defined as follows:

Definition 2.6. Given a countable metric space (Γ, d), an algebra of local observables Aloc
Γ , an

interval I ⊆ R (possibly infinite), and a subset Λ ⊆ Γ, we say that mapping Φ : Λ×Z≥0× I → Aloc
Λ

is a anchored interaction on Λ if the following three conditions hold:

i. Φ(x, n, t)∗ = Φ(x, n, t) ∈ AbΛx (n)
for all triplets (x, n, t).

ii. For all (x, n) ∈ Λ× Z≥0, the mapping t ↦→ Φ(x, n, t) is continuous.

For time-dependent anchored interactions, it may again be convenient to require (2.42), i.e. if

(2.44) Φ(x, n, t) ̸= 0 =⇒ d(y, z) > n− 1 for some y, z ∈ bΛx (n).
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2.5.2. An Anchoring Procedure. As our main interest is perturbed Hamiltonians of the form (2.36),
we define a anchoring process that will respect Hamiltonians defined in terms of a perturbation
region. Let Φ : P0(Γ) → Aloc

Γ be an interaction and fix (possibly infinite) volumes Λp ⊆ Λ ⊆ Γ. With

respect to these volumes, we define an anchored interaction on Λ, denoted ΦΛp : Λ × Z≥0 → Aloc
Λ

so that

ΦΛp(x, n) = 0 if x ∈ Λ \ Λp.

We further show that if Λ is finite, the local Hamiltonian HΛ,Λp defined by

(2.45) HΛ,Λp :=
∑
X⊆Λ

X∩Λp ̸=∅

Φ(X)

can be rewritten in terms of this anchored interaction as

(2.46) HΛ,Λp =
∑
x∈Λp

n≥0

ΦΛp(x, n).

Here, note that (2.45) is of the same form as the perturbation in (2.36). And, of course, (2.45)
agrees with (2.4) if Λp = Λ, an essential requirement.

We will also use anchored versions of the a priori (unperturbed) Hamiltonian which is given
by a finite-range, uniformly bounded, frustration-free interaction η. The anchoring procedure we
introduce benefits from preserving the finite-range and uniform boundedness conditions as well as
leaving the local ground state spaces invariant.

To define our anchoring procedure, let us first denote by S(Λp) the set of all finite volumes that
intersect the perturbation region, i.e.

S(Λp) = {X ∈ P0(Λ) : X ∩ Λp ̸= ∅}.

We further partition this set by S(Λp) =
⋃

n≥0 Sn(Λ
p) where, for all n ≥ 1,

(2.47) Sn(Λ
p) = {X ∈ S(Λp) : ∃x ∈ Λp s.t. X ⊂ bΛx (n) and ∀x ∈ Λp, X ̸⊂ bΛx (n− 1)}.

Setting S0 = {{x} | x ∈ Λp} for n = 0, it is clear that {Sn(Λ
p) | n ≥ 0} is a partition of S(Λp).

Therefore we define the radius of X by r(X) = n if X ∈ Sn(Λ
p), and the multiplicity of X as:

(2.48) m(X) = #
{
x ∈ Λp|X ⊂ bΛx (r(X))

}
.

Note that m(X) ≥ 1 for all X ∈ S(Λp), that m(X) is always finite even if Λp is infinite, and that
r(X)− 1 < diam(X) ≤ 2r(X). The radius and multiplicity, in general, depend on Λ and Λp. This,
however, will not play an important role in our analysis.

Then, for x ∈ Λp, we define ΦΛp(x, n) ∈ AbΛx (n)
by

(2.49) ΦΛp(x, n) =
∑

X∈Sn(Λp):

X⊂bΛx (n)

1

m(X)
Φ(X),

with the convention that ΦΛp(x, n) = 0 for empty sums. We set ΦΛp(x, n) = 0 for all x ∈ Λ\Λp. It is
straightforward to see that ΦΛp is an anchored interaction in the sense of Definition 2.5. Moreover,
(2.42) holds. In fact, when ΦΛp(x, n) ̸= 0, there is X ∈ Sn(Λ

p) with X ⊂ bΛx (n) and Φ(X) ̸= 0. For
this X ∈ Sn(Λ

p), one sees that there exists y, z ∈ X ⊂ bΛx (n) with d(y, z) > n− 1.
We now show that using this anchoring procedure, any finite-volume Hamiltonian HΛ,Λp of the

form given in (2.45) for Λp ⊆ Λ ∈ P0(Γ) can be rewritten as described in (2.46). Given the
definitions of S(Λp) and Sn(Λ

p), and (2.49), the Hamiltonian HΛ,Λp may be rewritten as

(2.50) HΛ,Λp =
∑

X∈S(Λp)

Φ(X) =
∑
n≥0

∑
X∈Sn(Λp)

Φ(X).
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Using the definition of m(X), we have

(2.51)
∑

X∈Sn(Λp)

Φ(X) =
∑

X∈Sn(Λp)

1

m(X)

∑
x∈Λp

X⊂bΛx (n)

Φ(X) =
∑
x∈Λp

ΦΛp(x, n),

Combining (2.50) and (2.51) we obtain the desired property (2.46).
Next, we analyze the effects of our anchoring procedure on the initial interaction and its as-

sociated local Hamiltonians, see (2.36) and the subsequent discussion. Consider a finite-range,
uniformly bounded, frustration-free interaction η and define the anchored interaction ηΛ as in
(2.49) for any (possibly infinite) Λ ⊂ Γ. Here, we note that in (2.49) one uses Λp = Λ as the
background interaction is defined extensively.

The range of η is defined as the smallest R ≥ 0 such that η(X) = 0 for all X with diam(X) > R.
For any anchored interaction ΦΛp , we define the maximal radius as the smallest integer RΛp ≥ 0
such that ΦΛp(x, n) = 0, for all x ∈ Λp and n > RΛp . Since ηΛ is obtained from η by the anchoring
procedure defined above, we have the following relationship: RΛ − 1 ≤ R ≤ 2RΛ. Moreover, the
anchored interaction preserves the uniform norm. Namely, letting ∥η∥ := supX∈P0(Γ) ∥η(X)∥ denote
the uniform bound on the original interaction, for any x ∈ Λ and 0 ≤ n ≤ RΛ,

∥ηΛ(x, n)∥ ≤ ∥η∥2|bx(n)| ≤ ∥η∥2κRν
Λ

where we apply ν-regularity to bound the number of terms in the summation from (2.49). As
a consequence of these properties, we may group the anchored terms into a single site-anchored
operator

(2.52) hx :=

RΛ∑
n=0

ηΛ(x, n) ∈ Abx(RΛ) with ∥h∥ := sup
x∈Λ

∥hx∥ <∞.

In the case that Λ is finite, the associated local Hamiltonian is equal to HΛ =
∑

x∈Λ hx, which is
nontrivially used in our analysis in Sections 4-6.

Given the importance of ground state projections in this work, one may wonder if our anchoring
procedure effects the ground state spaces of the local Hamiltonians. The natural definitions of the
local Hamiltonians HΛ0 , Λ0 ∈ P0(Λ), are as follows:

(2.53) Hη
Λ0

=
∑

X⊂Λ0

η(X), HηΛ
Λ0

=
∑

x∈Λ,n≥0
bΛx (n)⊂Λ0

ηΛ(x, n).

For the anchoring procedure introduced, we claim that

(2.54) kerHη
bΛy (m)

= kerHηΛ
bΛy (m)

for all y ∈ Λ,m ≥ 0. To establish this, it suffices to notice the following two properties, which are
easy to verify from the above definitions:

(i) if X ⊂ bΛy (m) and η(X) ̸= 0, then

HηΛ
bΛy (m)

≥
∑
n≤m

ηΛ(y, n) ≥ m(X)−1η(X),

(ii) HηΛ
bΛy (m)

≤ Hη
bΛy (m)

for all y ∈ Λ and m ≥ 0.

While the ground state equality in (2.54) is convenient, it is not strictly necessary for the argu-
ments in this work as we will always work with the ground state projections for the local Hamilto-
nians defined by the original (i.e. unanchored) interaction. In particular, the results of this work
still hold for any anchoring procedure as long as for any bΛy (m) ∈ P0(Λ),

ker(Hη
bΛy (m)

) ⊆ ker(HηΛ
bΛy (m)

).
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2.5.3. Decay Properties of Anchored Interactions. As we mentioned before, the purpose of working
with an anchored interaction is to simplify certain combinatorial arguments. If an anchored inter-
action is defined with respect to an interaction Φ : P0(Γ) → Aloc

Γ , e.g. as defined in (2.49), we will
want the anchored interaction to inherent properties possessed by Φ, including decay properties.
Therefore, we introduce an anchored version of the F -norm from (2.19), from which we will be able
to verify similar decay estimates.

Definition 2.7. Let (Γ, d) be a countable metric space, and ΦΛ : Λ× Z≥0 → Aloc
Γ be an anchored

interaction. For any integer m ≥ 0, we say that ΦΛ has a finite m-th moment anchored F -norm
with respect to an F -function F and write ΦΛ ∈ Bm

F if

(2.55) ∥ΦΛ∥m,F := sup
x,y∈Λ

1

F (d(x, y))

∑
n≥0, z∈Λ:
x,y∈bΛz (n)

|bΛz (n)|m∥ΦΛ(z, n)∥ <∞.

For m = 0, we simply say that ΦΛ has a finite anchored F -norm and denote this by ∥ΦΛ∥F .

We note that while we use the same notation, Bm
F , for the decay classes of interactions and

anchored interactions, the correct interpretation should be clear from context and so there should
be no confusion. In Proposition 2.8 below, we show that given an interaction Φ ∈ Bm

F and the
anchored interaction ΦΛp as in (2.49), then ΦΛp will have a finite m-th anchored F -norm as long
as F decays sufficiently fast.

Proposition 2.8. Let Γ be a ν-regular metric space, Φ ∈ Bm
F for an F -function F , and Λp ⊆ Λ ⊆ Γ.

Fix any integer m ≥ 0. Then, for any x, y ∈ Λ the anchored interaction defined in (2.49) satisfies

(2.56)
∑

n≥0, z∈Λp:
x,y∈bΛz (n)

|bΛz (n)|m∥ΦΛp(z, n)∥ ≤ 2νκm+2∥Φ∥F
∑

n≥⌈d(x,y)/2⌉

n(m+2)νF (n− 1).

It is important to note that while the anchored interaction depends on Λ and Λp, the bound on
the RHS of (2.56) is independent of both volumes. In the situation that there is an F -function F̃
for which ∑

n≥⌈r/2⌉

n(m+2)νF (n− 1) ≤ F̃ (r) for r ∈ [0,∞),

the above result shows that ∥ΦΛp∥m,F̃ <∞.

Proof. Fix x, y ∈ Λ. Then a simple bound using (2.49) and ν-regularity gives

(2.57)
∑
n≥0

∑
z∈Λp

x,y∈bΛz (n)

|bΛz (n)|m∥ΦΛp(z, n)∥ ≤ κm
∑
n≥0

nmν
∑
z∈Λp

x,y∈bΛz (n)

∑
X∈Sn(Λp)

X⊆bΛz (n)

1

m(X)
∥Φ(X)∥.

Note that since x, y ∈ bz(n),
d(x, y) ≤ d(x, z) + d(y, z) ≤ 2n

and so the sum over n can be optimized to n ≥ ⌈d(x, y)/2⌉.
Consider the (inner) double summation from the RHS of (2.57), for which the following change

of variables is valid:∑
z∈Λp

x,y∈bΛz (n)

∑
X∈Sn(Λp)

X⊆bΛz (n)

=
∑
z∈Λp

x,y∈bΛz (n)

∑
X∈Sn(Λp)

IndX⊆bΛz (n)
=

∑
X∈Sn(Λp)

∑
z∈Λp:

x,y∈bΛz (n)∧X⊆bΛz (n)

where Ind(·) is the indicator function. Notice that the constraints x, y ∈ bΛz (n) and X ⊆ bΛz (n)
immediately imply that

X ⊂ bΛx (2n) ∩ bΛy (2n).
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Combining these observations, we find

(2.58)
∑
z∈Λp

x,y∈bΛz (n)

∑
X∈Sn(Λp)

X⊆bΛz (n)

1

m(X)
∥Φ(X)∥ =

∑
X∈Sn(Λp):

X⊂bΛx (2n)∩bΛy (2n)

∑
z∈Λp:

x,y∈bΛz (n)∧X⊆bΛz (n)

1

m(X)
∥Φ(X)∥.

From the definition of m(X), see (2.48), we see that the inner sum above is bounded from about
by ∥Φ(X)∥, i.e. ∑

z∈Λp:

x,y∈bΛz (n)∧X⊆bΛz (n)

1

m(X)
∥Φ(X)∥ ≤ ∥Φ(X)∥.

Since diam(X) > n− 1 for any X ∈ Sn(Λp) and Φ ∈ BF one can further bound as follows:∑
X∈Sn(Λp)

X⊆bx(2n)∩by(2n)

∥Φ(X)∥ ≤
∑

w1, w2∈bx(2n)
n−1<d(w1,w2)≤n

∑
X⊆Λ

w1, w2∈X

∥Φ(X)∥

≤ ∥Φ∥F
∑

w1, w2∈bx(2n)
n−1<d(w1,w2)≤n

F (d(w1, w2))

≤ κ22ν∥Φ∥Fn2νF (n− 1).(2.59)

In the final estimate above, we have use ν-regularity and the fact that w2 ∈ bw1(n). The result
follows from inserting (2.59) and n ≥ ⌈d(x, y)/2⌉ into (2.57). □

We conclude by discussing how to define an interaction Φ : P0(Λ) → Aloc
Λ from an anchored

interaction ΦΛ : Λ × Z≥0 → Aloc
Λ , and show that a finite anchored F -norm ∥ΦΛ∥F is sufficient for

proving that Φ ∈ BF . This implies that the finite volume Hamiltonians associated with an anchored
interaction satisfy a Lieb-Robinson bound if it has a finite anchored F -norm.

To define Φ, for any X ∈ P0(Λ) we set

(2.60) Φ(X) =
∑

(x,n)∈Λ×Z≥0

bΛx (n)=X

ΦΛ(x, n),

with convention that empty sums are taken to be zero. For this interaction we have the following
result:

Proposition 2.9. Let ΦΛ : Λ × Z≥0 → Aloc
Λ be an anchored interaction for which ∥ΦΛ∥m,F < ∞

for an F -function F . Then Φ ∈ Bm
F where Φ : P0(Λ) → Aloc

Λ is the interaction defined in (2.60).
In particular, ∥Φ∥m,F ≤ ∥ΦΛ∥m,F .

Proof. Fix any x, y ∈ Λ. Recall that ΦΛ(x, n) ∈ AbΛx (n)
Since ΦΛ is an anchored interaction. Using

(2.60) and applying the triangle inequality, one finds∑
X⊆Λ:
x,y∈X

|X|m∥Φ(X)∥ ≤
∑
X⊆Λ:
x,y∈X

∑
(z,n)∈Λ×Z≥0:

bΛz (n)=X

|bΛz (n)|m∥ΦΛ(z, n)∥

=
∑

(z,n)∈Λ×Z≥0:

x,y∈bΛz (n)

|bΛz (n)|m∥ΦΛ(z, n)∥

≤ ∥ΦΛ∥m,FF (d(x, y)),(2.61)

which implies ∥Φ∥m,F ≤ ∥ΦΛ∥m,F as claimed. □
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There are two important insights one can draw from this result.
First, notice that if there is at most one nonzero term in the summation of (2.60), then the

anchored interaction is actually an interaction. In this case the first inequality of (2.61) is actually
an equality and so the anchored F -norm and interaction F -norm are the same. This justifies
using the same notation for both types of F -norms. We almost exclusively work with anchored
interactions and anchored F -norms. However, it will always be clear from context which type of
F -norm we are using.

Second, in the situation that Λ is finite, the local Hamiltonian defined by ΦΛ satisfies

HΛ :=
∑

(x,n)∈Λ×Z≥0

ΦΛ(x, n) =
∑
X⊆Λ

Φ(X)

where Φ is as defined in (2.60). If ∥ΦΛ∥F < ∞, then Proposition 2.9 implies that the Heisenberg
dynamics τΛt,s associated to HΛ satisfies the Lieb-Robinson bound from Theorem 2.3. Moreover, we
can use the anchored F -norm, ∥ΦΛ∥F , to bound the Lieb-Robinson velocity, specifically

(2.62) vΦ ≤ 2CF ∥ΦΛ∥F .

3. On Perturbation Theory for Frustration Free Hamiltonians

3.1. Introduction. The main goal of this work is to present an approach for proving persistence
of the ground state gap for frustration-free models under a broad class of extensive perturbations.
This approach, originally due to Bravyi, Hastings, and Michalakis (BHM) [21], has some elements
in common with other methods that have appeared in the literature, including the recent work
of Fröhlich and Pizzo [38, 41], but also older work by Albanese [3], Kennedy and Tasaki [54], and
Yarotsky [105]. Specifically, the aim in all these works is to prove a relative form bound in one way
or another. In this section we discuss the general implications of relative form bounds on spectral
gaps and also identify a situation for which a form bound can be proved in a straightforward
manner.

The strength of the BHM approach stems from applying a relative form bound after a unitary
transformation that brings the problem into a form where the results of this section can be applied.
The next several sections are devoted to the analysis necessary to establish this. At first sight,
the Lie-Schwinger block diagonalization approach of Fröhlich and Pizzo does something similar in
that it also rests on the construction of a suitable similarity transformation [41]. An important
difference, however, is that in the latter work the transformation itself is constructed perturbatively
by a power series for which one needs to prove a positive radius of convergence. This is not the case
with the approach here. The transformation we use is well-defined for the full parameter range for
which a non-vanishing ground state gap exists.

The method of Fröhlich and Pizzo has so far only been applied to initial Hamiltonians that
are on-site and have a unique product ground state. These are strong limitations but, due to
the availability of a convergent power series, it also has the advantage of yielding analyticity of
the ground state energy density as a function of the perturbation parameters within the radius of
convergence [36].

We now first prove some general results about relatively bounded perturbations and then look
specifically at quantum lattice systems.

3.2. General Perturbation Theory with Form Bounds. In this section, we determine spec-
tral gap estimates for perturbations of a gapped, self-adjoint operator, H on a (possibly infinite-
dimensional) Hilbert space in the situation that the perturbation is form bounded byH. The results
we present in this section hold for both bounded and unbounded operators, and so we present the
results in a general context. At the end of the section, we discuss how to apply the results to the
gapped quantum spin systems of interest.



24 B. NACHTERGAELE, R. SIMS, AND A. YOUNG

The first lemma can be regarded as a variational principle for spectral gaps. In the statement
we use the convention

(3.1) inf ∅ = +∞, sup ∅ = −∞.

Lemma 3.1 (Level Repulsion Principle). Let H be a complex Hilbert space and H a densely defined
self-adjoint operator on H with domain D. Let K be a closed linear subspace of H such that K∩D
is dense in K and K⊥ ∩ D is dense in K⊥. Define a, b ∈ R ∪ {±∞} as follows

(3.2) a = sup{⟨ψ,Hψ⟩ | ψ ∈ K ∩ D, ∥ψ∥ = 1}, b = inf{⟨ψ,Hψ⟩ | ψ ∈ K⊥ ∩ D, ∥ψ∥ = 1}.
Then, if a < b,

(3.3) (a, b) ∩ spec(H) = ∅.

Proof. For K = {0} or K = H, (3.3) is trivially satisfied given (3.1). The cases where either a = ∞
or b = −∞ are also trivial. Therefore, we may assume that both a and b are finite and a < b.

We show that H − λ1l has a bounded inverse for all λ ∈ (a, b). Replacing H by H ′ = H − λ1l in
(3.2) changes the constants a and b to a′ := a− λ < 0 and b′ := b− λ > 0, and hence showing that
0 ̸∈ specH ′. In other words, without loss of generality, we may assume that a < 0 and b > 0, and
then show that 0 ̸∈ spec(H) or, equivalently, that H has a bounded inverse.

We first consider the case that H is bounded, and hence D = H. Let P be the orthogonal
projection onto K and define Q = 1l − P . Denote by PHP : K → K and QHQ : K⊥ → K⊥

the bounded, self-adjoint restrictions of H to K and K⊥ respectively. The definitions of a and b
imply that PHP ≤ aP and QHQ ≥ bQ. Since a < 0 and b > 0, we find that PHP is negative
definite with a bounded inverse (PHP )−1 ∈ B(K), and QHQ is positive definite with a bounded
inverse (QHQ)−1 ∈ B(K⊥). Therefore, there are positive A ∈ B(K) and B ∈ B(K⊥) such that
(PHP )−1 = −A2 and (QHQ)−1 = B2.

Consider the representation of H as a block-operator acting on H = K ⊕K⊥. One finds that

(3.4) H =

[
PHP PHQ
QHP QHQ

]
=

[
A−1 0
0 B−1

] [
−1l X
X∗ 1l

] [
A−1 0
0 B−1

]
where we have used that A and B both have (bounded) inverses and denoted by X : K⊥ → K be
the operator X = A(PHQ)B. Let Y denote the middle matrix operator above, which is clearly
bounded and self-adjoint. One checks that

Y 2 =

[
1l +XX∗ 0

0 1l +X∗X

]
,

and thus Y 2 ≥ 1l. This shows that the interval (−1, 1) is contained in the resolvent set of Y . As
such, Y −1 is bounded with norm at most 1. In this case, we can invert (3.4) and obtain

(3.5) H−1 =

[
A 0
0 B

] [
−1l X
X∗ 1l

]−1 [
A 0
0 B

]
,

which is bounded as it is the product of bounded operators; in fact, ∥H−1∥ ≤ max(|a|−1, b−1). This
concludes the proof for the case of bounded H.

The general case of unbounded H can be handled by considering a sequence (Hn)n≥1 of bounded
self-adjoint operators converging to H in the strong resolvent sense. Let Pn, n ≥ 1, denote the
spectral projections of H corresponding to [−n, n], and define Hn = PnHPn. In this case, Hn

is bounded and Hn → H in the strong resolvent sense (see [18] and also [103, Satz 9.21]). The
constants an and bn defined by

(3.6) an = sup{⟨ψ,Hnψ⟩ | ψ ∈ K ∩ D, ∥ψ∥ = 1}, bn = inf{⟨ψ,Hnψ⟩ | ψ ∈ K⊥ ∩ D, ∥ψ∥ = 1}
satisfy a = limn an and b = limn bn. Applying the result for bounded operators, we conclude that
(an, bn) ∩ spec(Hn) = ∅ for all n ∈ N. By strong resolvent convergence, see e.g. [96, Theorem
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VIII.24 (a)], for each λ ∈ spec(H), there is λn ∈ spec(Hn) with λn → λ. This implies that
(a, b) ∩ spec(H) = ∅ as desired. □

Lemma 3.1 is optimal in the sense that it identifies a spectral gap exactly if K is the spectral
subspace of H associated with the spectrum below the gap. If K is not an invariant subspace of
H, then the quantity b− a, if positive, is a lower bound for the gap. In that case, the lemma shows
that the ‘off-diagonal’ terms PHQ+QHP can only push the two parts of spectrum further part.
This can be regarded as a generalization of the level repulsion observed for a pair of eigenvalues
of a diagonal Hermitian matrix when one considers the effect of non-vanishing off-diagonal matrix
elements.

Lemma 3.2 (Relatively Bounded Perturbations). Let H be a complex Hilbert space and H a densely
defined self-adjoint operator on H with domain D. Suppose V is a self-adjoint operator on H with
D ⊂ domV , and suppose there exist constants α ≥ 0 and β ∈ [0, 1), such that

(3.7) |⟨ψ, V ψ⟩| ≤ α∥ψ∥2 + β⟨ψ,Hψ⟩, for all ψ ∈ D.
Then,

(3.8) (1− β) inf spec(H)− α ≤ inf spec(H + V ) and sup spec(H + V ) ≤ (1 + β) sup spec(H) + α.

If, in addition, a < b ∈ R are such that (a, b) ∩ spec(H) = ∅, then
(3.9) ((1 + β)a+ α, (1− β)b− α) ∩ spec(H + V ) = ∅.

Proof. If β = 0, then ∥V ∥ ≤ α and the statements in the lemma follow from standard perturbation
theory for bounded perturbations [53]. Thus, we assume that β > 0. In this case, (3.7) implies
that H is bounded below by −αβ−1, and in particular, H + V is self-adjoint on D [95, Theorem
X.17]. The estimates in (3.8) follow directly from the relative boundedness expressed by (3.7) as

(3.10) (1− β) ⟨ψ,Hψ⟩ − α∥ψ∥2 ≤ ⟨ψ, (H + V )ψ⟩ ≤ (1 + β) ⟨ψ,Hψ⟩+ α∥ψ∥2

for all ψ ∈ D.
To prove (3.9), first consider the case of bounded H and V , and let P be the spectral projection

of H corresponding to the interval [−αβ−1, a]. Applying (3.10)

⟨ψ, (H + V )ψ⟩ ≤ (1 + β)⟨ψ,Hψ⟩+ α∥ψ∥2 ≤ [(1 + β)a+ α]∥ψ∥2, ψ ∈ PH(3.11)

⟨ψ, (H + V )ψ⟩ ≥ (1− β)⟨ψ,Hψ⟩ − α∥ψ∥2 ≥ [(1− β)b− α]∥ψ∥2, ψ ∈ (1l− P )H.(3.12)

As the conditions on the domain of H and the perturbation V in Lemma 3.1 are satisfied with
K = ranP , the spectral subspace of H corresponding to [−αβ−1, a], the gap from (3.9) now follows
by taking the sup and inf, respectively, of (3.11)-(3.12) and applying Lemma 3.1.

To treat the general case in which H and V may be unbounded, let Pn be the spectral projection
of H corresponding to the interval [−αβ−1, a + n], for all n ≥ 1. Then, Hn = PnHPn is bounded
on Hn = PnH, and (3.7) implies that Vn = PnV Pn is bounded too. Hn and Vn satisfy (3.7) with
the same constants α and β. We also have (a, b) ∩ spec(Hn) = ∅ if this condition holds for H.
Therefore, the argument in the previous paragraph shows that

(3.13) ((1 + β)a+ α, (1− β)b− α) ∩ spec(Hn + Vn) = ∅, for all n ≥ 1.

Since the sequence (Hn + Vn)n≥1 converges to H + V in the strong resolvent sense, an application
of [96, Theorem VIII.24 (a)] shows that

((1 + β)a+ α, (1− β)b− α) ∩ spec(H + V ) = ∅.
□

As can be seen from the previous proof, the estimate of the gap may be optimized by proving
form bounds separately on each of the spectral subspaces. This is the content of the following
corollary.
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Corollary 3.3. Let H be a complex Hilbert space and H a densely defined self-adjoint operator on
H with domain D such that (a, b) ∩ spec(H) = ∅. Suppose that V is a self-adjoint operator on H
with D ⊂ domV for which there are constants α′, α′′ ≥ 0 and β ∈ [0, 1) such that

| ⟨ψ, V ψ⟩ | ≤ α′∥ψ∥2 + β ⟨ψ,Hψ⟩ , ψ ∈ PH ∩D
| ⟨ψ, V ψ⟩ | ≤ α′′∥ψ∥2 + β ⟨ψ,Hψ⟩ , ψ ∈ (1l− P )H ∩D

where P is the spectral projection of H associated to (−∞, a]. Then,

(3.14) ((1 + β)a+ α′, (1− β)b− α′′) ∩ spec(H + V ) = ∅.

Proof. The proof follows just as the proof of Lemma 3.2 from replacing α with α′, resp. α′′, in
(3.11), resp. (3.12). □

We now turn to the situation of interest: the stability of the spectral gap of a Hamiltonian, H,
that is gapped above the ground state energy. In this case, we will consider perturbed Hamiltonians
of the form H(s) = H+V (s) where s ∈ R. We will always assume that V (s) : H → H is self-adjoint
with domH ⊆ domV (s) for all s. Generally, we will also assume that the perturbation is strongly
differentiable in s. However, this is not necessary for the next result and so we will not assume this
here.

Theorem 3.4. Let H ≥ 0 be a self adjoint operator on a dense domain D for which 0 ∈ spec(H)
and (0, γ)∩spec(H) = ∅ for some γ > 0, and denote by P the ground state projection of H. Suppose
that H(s), s ∈ R, is a family of perturbed Hamiltonians of the form

(3.15) H(s) = H + V (s) +A(s) + C(s)1l,

for which there are constants α, α′, α′′, β > 0 so that for all s ∈ R the following hold:

(i) C(s) ∈ R
(ii) A(s)∗ = A(s) ∈ B(H) with ∥A(s)∥ ≤ sα, ∥PA(s)P∥ ≤ sα′, and ∥(1l−P )A(s)(1l−P )∥ ≤ sα′′.
(iii) V (s)∗ = V (s) with D ⊆ domV (s) and | ⟨ψ, V (s)ψ⟩ | ≤ sβ ⟨ψ,Hψ⟩ for all ψ ∈ D.

Then, for all 0 ≤ s < β−1, spec(H(s)) = Σ1(s) ∪ Σ2(s) where

Σ1(s) ⊆ [C(s)− sα,C(s) + sα′], Σ2(s) ⊆ [C(s) + (1− sβ)γ − sα′′, ∞).

Note that the conditions imply A(0) = V (0) = 0. As such, the result is trivial for s = 0 as
H(0) is just a constant shift of H by C(0). In many applications, we will have that all quantities
A(s), V (s), and C(s) are continuous in s and, moreover, C(s) → 0 as s→ 0.

Proof. Suppose that H(s) has the form described above and fix 0 ≤ s < β−1. Without loss of
generality we may assume C(s) = 0. As (0, γ) ∩ spec(H) = ∅ and

⟨ψ, V (s) +A(s)ψ⟩ ≤ sβ ⟨ψ,Hψ⟩+ sα′∥ψ∥2, ψ ∈ PH ∩D(3.16)

⟨ψ, V (s) +A(s)ψ⟩ ≤ sβ ⟨ψ,Hψ⟩+ sα′′∥ψ∥2, ψ ∈ (1l− P )H ∩D(3.17)

Corollary 3.3 implies

(3.18) (sα′, (1− sβ)γ − sα′′) ∩ spec(H(s)) = ∅.
Trivially, (−n, 0) ∩ spec(H) = ∅ for all n ∈ N and for all ψ ∈ D

| ⟨ψ, V (s) +A(s)ψ⟩ | ≤ sβ ⟨ψ,Hψ⟩+ sα∥ψ∥2.
Applying Lemma 3.2 shows that

(3.19) (−∞,−sα) ∩ spec(H(s)) = ∅.
Combining (3.18) and (3.19), it immediately follows that spec(H(s)) = Σ1(s) ∪ Σ2(s) where

Σ1(s) = spec(H(s)) ∩ [C(s)− sα,C(s) + sα′]

Σ2(s) = spec(H(s)) ∩ [C(s) + (1− sβ)γ − sα′′, ∞).
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□

In the above result, we derive stability of the spectral gap above the ground state energy assuming
that the HamiltonianH(s) has a decomposition of the form (3.15) that satisfies conditions (i)-(iii) of
Theorem 3.4. In our application, the decomposition of this kind that we find depends extensively
on properties of the ground state projections. However, whenever such a decomposition exists,
Lemma 3.2 implies stability of all higher gaps (a, b)∩ spec(H), not just the ground state gap. This
is summarized in the following corollary.

Corollary 3.5 (Higher Order Gaps). Suppose that H(s), s ∈ R, has a decomposition of the form
(3.15) satisfying the assumptions of Theorem 3.4, and that (a, b) ∩ spec(H) = ∅ where 0 < a < b.
Then, for all 0 ≤ s < β−1,

(3.20) ((1 + sβ)a+ sα, (1− sβ)b− sα) ∩ spec(H(s)) = ∅.
where α is as in Theorem 3.4.

Proof. The proof of this result runs just as that of Theorem 3.4 with the alteration that P is the
spectral projection associated with (−∞, a]. By replacing both α′ and α′′ with α in (3.16)-(3.17),
one finds that (3.20) again follows from applying Lemma 3.2. □

In general, it is far from obvious when a Hamiltonian H(s) has a decomposition of the form

(3.15). In the time-honored quantum mechanics tradition, considering H̃(s) = U(s)∗H(s)U(s)
with a cleverly chosen unitary transformation U(s), can be very helpful. We will use the unitary
transformations given by the spectral flow, see (2.38)-(2.40). While the main focus of this paper
is spectral gap stability of quantum spin systems, the spectral flow automorphism is well defined
and its key property, i.e. (2.41), holds in a more general context, see [83]. As a consequence, the
approach presented in this paper can be applied to more general systems.

3.2.1. Using the Spectral Flow for Spectral Gap Stability. Recall that given a quantum spin system
on a ν-regular metric space (Γ, d) with quasi-local algebra AΓ, we consider a family of finite volume
Hamiltonians of the form

HΛ(s) = HΛ + sVΛp , s ∈ R
with Λp ⊆ Λ ∈ P0(Γ) as defined in (2.36). We denote by γΛ the spectral gap of HΛ above the
ground state energy (which we normalize to be zero), and define ΣΛ

1 (s) and ΣΛ
2 (s) as before, see

(2.31). For any 0 < γ < γΛ, the goal is to find a lower bound for

(3.21) sΛγ = sup{s′ ∈ [0, 1] : gap(HΛ(s)) = dist(ΣΛ
1 (s),Σ

Λ
2 (s)) ≥ γ for all 0 ≤ s ≤ s′}.

This will be achieved by applying Theorem 3.4 to the Hamiltonian H̃Λ(s) = αs(HΛ(s)) where αs :
AΛ → AΛ is the spectral flow, defined as in (2.38)-(2.40) with ξ = γ. The advantage of considering

H̃Λ(s) is that its spectral projection P̃ (s) associated to ΣΛ
1 (s) is constant for all 0 ≤ s ≤ sΛγ .

Specifically, if P (s) is the spectral projection of HΛ(s) associated with ΣΛ
1 (s), then by (2.41)

P̃ (s) = αs(P (s)) = P (0), for all 0 ≤ s ≤ sΛ(γ).

If the model defined by HΛ is frustration-free and the ground states satisfy an LTQO condition
(i.e. are sufficiently indistinguishable) as described in Section 5, then we can construct a decom-
position of the form (3.15) from Theorem 3.4 for any interaction Φ defining the perturbation VΛp

which has a finite F -norm for an F -function of sufficient decay. Specifically, we will construct the
following type of decomposition:

Claim 3.6 (Decomposition of the Equivalent Hamltonian). Under appropriate assumptions on the
ground states of HΛ, and with sufficient decay on Φ, one can write

(3.22) αs(HΛ(s)) = HΛ + VΛ(s) + ∆Λ(s) + EΛ(s) + CΛ(s)1l

with the following properties:
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(i) P (0)∆Λ(s)P (0) = ∆Λ(s), and there is a constant δΛ > 0 so that ∥∆Λ(s)∥ ≤ sδΛ.
(ii) There is a constant ϵΛ > 0 so that ∥EΛ(s)∥ ≤ sϵΛ.
(iii) There is a constant βΛ > 0 so that | ⟨ψ, VΛ(s)ψ⟩ | ≤ sβΛ ⟨ψ,HΛψ⟩ for all ψ ∈ HΛ.

The conditions above imply that VΛ(0) = ∆Λ(0) = EΛ(0) = 0. For our definition of CΛ(s) in
Section 5, see specifically (5.9), one can verify that CΛ(s) → 0 as s→ 0. In any case, Theorem 3.4
applies with A(s) = ∆Λ(s) + EΛ(s), α = α′ = (δΛ + ϵΛ) and α

′′ = ϵΛ, to give

ΣΛ
1 (s) ⊆ [C(s)− s(δΛ + ϵΛ), C(s) + s(δΛ + ϵΛ)], ΣΛ

2 (s) ⊆ [C(s) + (1− sβΛ)γΛ − sϵΛ,∞).

These inclusions imply

(3.23) gap(HΛ(s)) := dist(ΣΛ
1 (s),Σ

Λ
2 (s)) ≥ γΛ − s(βΛγΛ + δΛ + 2ϵΛ),

from which the following lower bound holds:

(3.24) sΛγ ≥ γΛ − γ

βΛγΛ + δΛ + 2ϵΛ
.

Using a similar estimate combined with Corollary 3.5, we can also obtain a lower bound on the
range of s for which higher order gaps remain open.

It is important to note that, in general, the constants βΛ, δΛ, and ϵΛ appearing in the lower
bound for sΛγ depend on the finite volume Λ. Our proof of stability of the spectral gap will require
an increasing and absorbing sequence of finite volumes Λn ↑ Γ such that

γ0 = inf
n≥1

gap(HΛn) = inf
n≥1

γΛn > 0.

In this case, we have defined stability of the spectral gap by the property that

inf
n≥1

sΛn
γ > 0 for all 0 < γ < γ0 .

This form of stability implies that the quantum spin model has a non-vanishing gap in the thermo-
dynamic limit whenever the perturbation parameter is sufficiently small (see Sections 6 and 7 for
details). For our proof of stability, we will also require that our increasing and absorbing sequence
of finite volumes can be associated with a suitable choice of perturbation regions Λp

n ↑ Γ, and that
given any ϵ, δ > 0, there is N ≥ 1 sufficienly large so that δΛn < δ and ϵΛn < ϵ for all n ≥ N .
Moreover, we must also show that supn βΛn ≤ β < ∞. This will be the task in the next couple of
sections. But first, we identify a condition on the perturbation for which a relative form bound is
straightforward to derive.

3.3. A class of form bounded interactions. In this section we consider a class of perturba-
tions of frustration-free models for which a relative form bound can be derived quite simply. The
unperturbed model is defined on HΛ =

⨂
x∈ΛHx, where Hx are arbitrary, not necessarily finite-

dimensional complex Hilbert spaces. The unperturbed Hamiltonian HΛ ≥ 0 is assumed to be
frustration-free but not necessarily bounded. As detailed below, the perturbation VΛ will be as-
sumed to be given in terms of a bounded anchored interaction. We will show that if the interaction
terms of the perturbation annihilate the ground states of HΛ, one can calculate a constant β > 0
such that

(3.25) | ⟨ψ, VΛψ⟩ | ≤ β ⟨ψ,HΛψ⟩ for all ψ ∈ dom(HΛ).

In this section we study a system defined on a finite set Λ equipped with a metric d. Often, and
in later sections, Λ will be a finite subset of a ν-regular metric space (Γ, d), and Γ is thought of as
infinite, but this does not play a role here.

To state the result we will use two families of subsets of Λ. The first are the balls, which are
labeled by x ∈ Λ and n ≥ 0:

bΛx (n) = {y ∈ Λ | d(x, y) ≤ n}.
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The second family is also labeled by x ∈ Λ and n ≥ 0, and we denote those sets by Λ(x, n). We
require bΛx (n) ⊂ Λ(x, n), for all x ∈ Λ and n ≥ 0. For example, the Λ(x, n) could be balls for
another metric. In some situations we may take Λ(x, n) = bΛx (n). The balls are used to describe
the decay of the perturbations and to define the indistinguishability radius needed for the LTQO
condition, see (2.9), while the gap of the local Hamiltonians HΛ(x,n) will feature prominently in the
relative form bound we derive. The indistinguishability radius and LTQO on the one hand and
the local ground state gaps on the other, in principle, are two unrelated aspects of the models we
study. Therefore, good choices for these two families of finite sets need not be the same. The balls
with respect to a natural choice of metric for expressing the indistinguishability radius, may not be
the most convenient shape of finite volumes for estimating the local gaps. Therefore, we maintain
the freedom to chose Λ(x, n) distinct from the balls bΛx (n).

There will be a further property we require of the sets Λ(x, n). We formulate it here for the case
where ℓ := diam(Λ) is finite, but the definition and discussion carries over to the infinite situation
without change. Let S = {Λ(x, n) ⊂ Λ | x ∈ Λ, 1 ≤ n ≤ ℓ}. In the following definition c and ζ are
positive constants.

Definition 3.7 (Family of Partitions of (c, ζ)-Polynomial Growth Separating S). T = {Tn | 1 ≤
n ≤ ℓ} is a family of partitions of (c, ζ)-polynomial growth separating S if for each n, Tn = {T i

n :
i ∈ In} is a partition of Λ with |In| ≤ cnζ and such that

(3.26) Λ(x, n) ∩ Λ(y, n) = ∅ for all x, y ∈ T i
n with x ̸= y.

The canonical choice of Λ(x, 0) := {x} and T0 = {Λ(x, 0) : x ∈ Λ} allows for these notions to
be extended to n = 0, but this will not play an important role in our arguments. Moreover, in
application, such partitions Tn may only be required for values n larger than some threshold R,
see, e.g. Theorem 3.8 below.

The collection of volumes S that can be separated by a family of partitions of polynomial growth
enters the proof of Theorem 3.8 through a combinatorial argument. It is because of this argument
that working with anchored interactions is convenient.

Example (Separating Partition on Zν). Consider Γ = Zν with, e.g., the ℓ∞-metric, and let Λ =
[−L,L]ν , L ≥ 1. Take S to be the collection of balls, i.e. Λ(x, n) = bΛx (n) for all relevant x and
n. We construct a family of partitions T = {Tn : 1 ≤ n ≤ 2L + 1} which is of (3ν , ν)-polynomial
growth and separates S. To define the n-th partition, first set In = [0, 2n + 1)ν . Clearly, this set
satisfies the polynomial condition as

|In| = (2n+ 1)ν ≤ (3n)ν .

We then define the n-th parition Tn = {T x
n : x ∈ In} of Λ by

T x
n = {z ∈ Λ : zi ≡ xi mod (2n+ 1), i = 1, . . . , ν}.

Fix x ∈ In. By construction, d(y, z) ≥ 2n + 1 for any two distinct sites y, z ∈ T x
n and so bΛy (n) ∩

bΛz (n) = ∅. Thus, Tn separates S as desired.

The local Hamiltonians HΛ0 , for any Λ0 ⊂ Λ, are defined in terms of a finite-range, frustration-
free interaction η : P0(Λ) → Aloc

Λ . As mentioned before, Λ is a fixed finite set here. Let PΛ0 be the
orthogonal projection onto the ground state space, ker(HΛ0), where

(3.27) HΛ0 =
∑

X⊂Λ0

η(X).

Recall that the frustration-free property guarantees that if Λ0 ⊂ Λ1, then

(3.28) PΛ0PΛ1 = PΛ1PΛ0 = PΛ1 .
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Let R ≥ 0 denote the range of the interaction η and assume R ≤ ℓ := diam(Λ). In general,
R should be thought of ‘small’ relative to ℓ = diam(Λ). Given a collection of finite volumes
S = {Λ(x, n)}, we define the local gaps, γ(n), 1 ≤ n ≤ ℓ, by

(3.29) γ(n) = inf
x∈Λ

gap(HΛ(x,n)).

In concrete situations of interest, we usually have HΛ(x,n) ̸= 0, for all x ∈ Λ and n ≥ R. To deal
with the situations where some HΛ(x,n) = 0, we define gap(0) = ∞.

Given S with a family of separating partitions of (c, ζ)-growth as defined in Definition 3.7,
Theorem 3.8 provides conditions on which a self-adjoint operator Φ ∈ AΛ written as

(3.30) VΛ =
∑
x∈Λ

ℓ∑
n=R

Φ(x, n), Φ(x, n)∗ = Φ(x, n) ∈ AbΛx (n)

can be form-bounded by HΛ with an explicit constant β, as in (3.25). Note that in (3.30) we
have grouped terms together so that the summation starts with n = R; compare, e.g., with more
general anchored interactions as in (2.43). We do this as there are many cases of interest for which
HbΛx (n)

= 0 (i.e. PbΛx (n)
= 1l) for n < R. Thus, given (3.31) below, we choose to use the range R as

the lower bound in (3.30). However, this is not strictly necessary as long as (3.31) holds.

Theorem 3.8. Let HΛ be a frustration-free Hamiltonian (not necessarily bounded), and S be a
collection of sub-volumes of Λ with positive local gaps γ(n) > 0 for n ≥ R. Assume there exists a
family of partitions, T = {Tn : R ≤ n ≤ ℓ}, of (c, ζ)-polynomial growth that separates S. Suppose
VΛ ∈ AΛ is as in (3.30) and satisfies

(3.31) Φ(x, n)PbΛx (n)
= PbΛx (n)

Φ(x, n) = 0, x ∈ Λ, R ≤ n ≤ ℓ.

Then, for all ψ ∈ domHΛ,

(3.32) |⟨ψ, VΛ ψ⟩| ≤ β ⟨ψ,HΛ ψ⟩

where, given G(n) = maxx∈Λ ∥Φ(x, n)∥:

(3.33) β = c
ℓ∑

n=R

nζG(n)

γ(n)
.

Note that in the case that γ > 0 is a local uniform gap for S, that

(3.34) β ≤ c

γ

ℓ∑
n=R

nζG(n).

The proof of Theorem 3.8 below, which follows the argument of [72, Proposition 2], uses the
collection of finite volumes S as well as the associated family of partitions of polynomial growth, T ,
separating S to define self-adjoint operators Qi

n and Φi
n as follows. For each n with R ≤ n ≤ ℓ, let

PΛ(x,n) be the orthogonal projection onto the ground state space of HΛ(x,n), and define QΛ(x,n) =

1l−PΛ(x,n). Denoting by Tn = {T i
n : i ∈ In} the n-th separating partition, for each i ∈ In we define

self-adjoint operators

(3.35) H i
n =

∑
x∈T i

n

HΛ(x,n), Qi
n =

∑
x∈T i

n

QΛ(x,n), V i
n =

∑
x∈T i

n

Φ(x, n).

Since the partition part T i
n has the separating property, i.e. Λ(x, n) ∩ Λ(y, n) = ∅ for all distinct

pairs x, y ∈ T i
n, we see that each of these operators is a sum of commuting terms, i.e. for all

x, y ∈ T i
n

(3.36) [HΛ(x,n), HΛ(y,n)] = 0, [QΛ(x,n), QΛ(y,n)] = 0, [Φ(x, n),Φ(y, n)] = 0.
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Moreover, since each HΛ(x,n) is non-negative, the separating property of T i
n also implies that H i

n ≤
HΛ. Therefore, since the local gaps necessarily satisfy γ(n)QΛ(x,n) ≤ HΛ(x,n), the following operator
inequalities hold:

(3.37) γ(n)
∑
i∈In

Qi
n ≤

∑
i∈In

H i
n ≤ |In|HΛ ≤ cnζHΛ.

The proof below uses these facts to determine the claimed form bound.

Proof of Theorem 3.8. As above, fix R ≤ n ≤ ℓ, and for each i ∈ In denote by Ci the collection of
configurations associated to the part T i

n ∈ Tn, i.e.

(3.38) Ci = {0, 1}T i
n =

{
(σx)x∈T i

n
: σx ∈ {0, 1}

}
.

For any σ = (σx) ∈ Ci, define the quantity

(3.39) S(σ) =
∏
x∈T i

n

[
σx(1l− PΛ(x,n)) + (1− σx)PΛ(x,n)

]
.

By the separating property, i.e. (3.26), it follows that [PΛ(x,n), PΛ(y,n)] = 0 for all x, y ∈ T i
n. As a

consequence, the set {S(σ) : σ ∈ Ci} forms a mutually orthogonal family of orthogonal projections
that sum to the identity, i.e.

(3.40) S(σ) = S(σ)∗, S(σ)S(σ′) = δσ, σ′S(σ). and
∑
σ∈Ci

S(σ) = 1l,

Let V i
n be as in (3.35). We first show that for any i ∈ In and each ψ ∈ HΛ,

(3.41) |⟨ψ, V i
nψ⟩| ≤ G(n)⟨ψ, Si

nψ⟩
where Si

n ∈ AΛ is defined by

(3.42) Si
n =

∑
σ∈Ci

|σ|S(σ) with |σ| =
∑
x∈T i

n

σx.

Since bΛx (n) ⊆ Λ(x, n), the frustration-free property (3.28) implies

PΛ(x,n) = PbΛx (n)
PΛ(x,n) = PΛ(x,n)PbΛx (n)

.

Considering (3.26) and (3.31), the above implies

(3.43) [Φ(x, n), PΛ(y,n)] = 0 for all x, y ∈ T i
n.

As a consequence, [V i
n, S(σ)] = 0 for all σ ∈ Ci, and so

(3.44) S(σ)V i
nS(σ

′) = δσ, σ′
∑
x∈T i

n:
σx=1

S(σ)Φ(x, n)S(σ)

for all σ, σ′ ∈ Ci where we have used both (3.40) and (3.31). The bound

(3.45) ∥S(σ)V i
nS(σ)∥ ≤ |σ|G(n)

readily follows. Given this and (3.40), the estimate

|⟨ψ, V i
nψ⟩| ≤

∑
σ,σ′∈Ci

|⟨ψ, S(σ)V i
nS(σ

′)ψ⟩|

≤
∑
σ∈Ci

∥S(σ)V i
nS(σ)∥⟨ψ, S(σ)ψ⟩

≤ G(n)⟨ψ, Si
nψ⟩(3.46)

holds for any ψ ∈ HΛ as claimed in (3.41).
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Now, let Qi
n be as in (3.35). We claim that for any i ∈ In and each ψ ∈ HΛ,

(3.47) ⟨ψ, Si
nψ⟩ = ⟨ψ,Qi

nψ⟩,

Since VΛ =
∑ℓ

n=R

∑
i∈In V

i
n, (3.41) and (3.47) would imply

(3.48) |⟨ψ, VΛψ⟩| ≤
ℓ∑

n=R

G(n)
∑
i∈In

⟨ψ, Si
nψ⟩ ≤

ℓ∑
n=R

G(n)
∑
i∈In

⟨ψ,Qi
nψ⟩,

and (3.32) would follow from (3.37). Thus, to complete the proof we need only verify (3.47).
To prove (3.47), first note that from the separating property of T i

n, and the fact that PΛ(x,n) is
the orthogonal projection onto the kernel of HΛ(x,n), one has

(3.49) [QΛ(x,n), PΛ(y,n)] = 0 ∀ x, y ∈ T i
n ⇒ [QΛ(x,n), S(σ)] = 0 ∀ σ ∈ Ci.

From this, we conclude that for all σ, σ′ ∈ Ci,

(3.50) S(σ)QΛ(x,n)S(σ
′) = δσ,σ′QΛ(x,n)S(σ) = δσ,σ′(1l− PΛ(x,n))S(σ) = δσ,σ′σxS(σ).

The following identities are then straightforward:

⟨ψ,Qi
nψ⟩ =

∑
x∈T i

n

∑
σ,σ′∈Ci

⟨ψ, S(σ)QΛ(x,n)S(σ
′)ψ⟩

=
∑
σ∈Ci

∑
x∈T i

n

σx⟨ψ, S(σ)ψ⟩

= ⟨ψ, Si
nψ⟩(3.51)

as claimed in (3.47). □

Note that the proof provides a form bound of VΛ by
∑

x∈Λ,n≥RQΛ(x,n), which in general is

stronger than (3.32).

4. Initial Steps and Quasi-Locality

4.1. Introduction. In this section, we start the analysis of the transformed quantum spin Hamil-
tonians as a first step toward the establishing the properties outlined in Claim 3.6. In general, we
will use the set-up and notations introduced in Section 2. Concretely, as in Section 2.3, we consider
local Hamiltonians of the form

(4.1) HΛ(s) = HΛ + sVΛp with 0 ≤ s ≤ 1.

Here and throughout this section Λ is a fixed finite subset of a ν-regular metric space (Γ, d). Balls
are defined with respect to Λ: bΛx (n) = {y ∈ Λ : d(x, y) ≤ n} for x ∈ Λ and n ≥ 0. We will refer
to HΛ(0) = HΛ as the initial Hamiltonian. The perturbation, VΛp , is defined with reference to a
perturbation region Λp ⊆ Λ. As discussed in Section 2.5, we will further assume that both HΛ and
VΛp have been written in anchored form, and in particular, we take

(4.2) HΛ =
∑
x∈Λ

hx and VΛp =
∑
x∈Λp

∑
n≥R

Φ(x, n).

We will assume that the initial Hamiltonian has an interaction radius bounded by some R ≥ 0,
meaning h∗x = hx ∈ AbΛx (R) for all x ∈ Λ. Later we will also assume that the initial Hamilton-
ian is generated by a frustration-free interaction, however, it is not needed for this section. For
convenience, we will always assume that inf specHΛ = 0. The perturbation VΛp is an anchored
interaction on Λ as in Definition 2.5: Φ(x, n)∗ = Φ(x, n) ∈ AbΛx (n)

. Note that, in general, by re-

defining Φ(x,R) we can assume without loss of generality that Φ(x, n) = 0 if n < R, as we have
above. The anchored forms of HΛ and VΛp may have been derived by the procedure described in
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Section 2.5.2, but this is not necessary for the analysis which follows. For notational convenience
we will write

(4.3) H(s) = H + sV

for this family of Hamiltonians satisfying the assumptions detailed above.
Our analysis investigates the ground state gap, gap(H(s)), as defined in (2.32). It is convenient

to set

(4.4) γΛ = gap(H(0)) = gap(H).

Then, for any 0 < γ < γΛ, recall the quantity sΛγ is as defined in (2.33):

(4.5) sΛγ = sup{s′ ∈ [0, 1] : gap(H(s)) ≥ γ for all 0 ≤ s ≤ s′}.

If sΛγ < 1, then gap(H(sΛγ )) = γ. In other words, adding sΛγ V to H reduces the gap from γΛ to γ.

The first step towards the results in Claim 3.6 is to define an anchored interaction Φ(1) such that
the Hamiltonian transformed by the spectral flow satisfies

(4.6) αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑
x∈Λ

Φ(1)
x (s) and Φ(1)

x (s) =
∑
n≥R

Φ(1)(x, n, s).

Moreover, the following two properties hold. First, with P (0) the spectral projection onto the
ground state space of H(0) = H, we have

(4.7) [Φ(1)
x (s), P (0)] = 0 for all x ∈ Λ and 0 ≤ s ≤ sΛγ .

Second, the anchored terms described in (4.6) satisfy the estimate

(4.8) ∥Φ(1)(x, n, s)∥ ≤ sG(1)(n) for all x ∈ Λ, n ≥ R, and 0 ≤ s ≤ 1.

Here G(1)(n) vanishes as n→ ∞ at a certain rate, specified by a decay class, a notion we define in
Definition 4.5. These two properties are proved in Proposition 4.2 and Theorem 4.8, respectively.

We will express the decay assumptions on the perturbation using a particular form of F -function
on (Γ, d). Let F0 : [0,∞) → (0,∞) be an F -function on (Γ, d). By ν-regularity, we can take F0 as
in (2.16), but it is not necessary to assume this explicit form here. In any case, we will call this
F0 the base F -function. As in Section 2.2.3, given any g : [0,∞) → [0,∞) which is non-decreasing
and sub-additive, the function F : [0,∞) → (0,∞) defined by

(4.9) F (r) = e−g(r)F0(r) for any r ≥ 0

is also an F -function on (Γ, d). We will further assume that the weight e−g decays at least as fast
as a stretched exponential, i.e. there is some a > 0 and 0 < θ ≤ 1 for which

(4.10) g(r) ≥ arθ for all r ≥ 0 .

For ease of later reference, we summarize the basic assumptions on the initial (unperturbed)
Hamiltonian H and the perturbation V , see (4.3), in the following.

Assumption 4.1 (Assumptions on H and V ). For a quantum spin system defined on a finite (Λ, d)
we impose the following conditions.

(i) H is described by a finite-range, frustration-free interaction in anchored form of maximal
radius R ≥ 0 as follows:

(4.11) H =
∑
x∈Λ

hx with h∗x = hx ∈ AbΛx (R).
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(ii) The perturbation is given in terms of Λp ⊂ Λ and Φ(x, n)∗ = Φ(x, n) ∈ AbΛx (n)
for R ≤ n ≤

diam(Λ), i.e.

(4.12) V =
∑
x∈Λp

∑
n≥R

Φ(x, n),

and there is a weighted F -function F as in (4.9) for g of the form (4.10), and a constant
∥Φ∥1,F such that

(4.13)
∑
x∈Λp

∑
n≥R:

y,z∈bΛx (n)

|bΛx (n)|∥Φ(x, n)∥ ≤ ∥Φ∥1,FF (d(y, z)) , for all y, z ∈ Λ,

and

(4.14) ∥Φ(x,m)∥ ≤ ∥Φ∥1,FF (max(0,m− 1)), m ≥ R.

We note that for an anchored interaction satisfying (2.42), for example the ones derived for a
general interaction as in Section 2.5.2, (4.14) follows from (4.13).

4.2. Application of the Spectral Flow. An essential tool for our analysis here is the spectral
flow discussed in Section 2.3. Consider a fixed value 0 < γ < γΛ. For each 0 ≤ s ≤ 1, we denote by
αs the spectral flow automorphism of AΛ as defined in (2.40). Here we have taken ξ = γ and we
suppress this in our notation. A crucial property is that for s ∈ [0, sΛγ ], that is when gap(H(s)) ≥ γ,
we have α(P (s)) = P (0), where P (s) is the spectral projection of H(s) corresponding to Σ1(s) as
defined in (2.31) with Σ1(0) = {0}.

For each fixed s ∈ [0, 1], we have the Heisenberg dynamics associated to (4.3):

(4.15) τ
(s)
t (A) = eitH(s)Ae−itH(s), for A ∈ AΛ and t ∈ R.

We also consider the family of linear maps {Fs}s∈[0,1] with Fs : AΛ → AΛ given by

(4.16) Fs(A) =

∫
R
τ
(s)
t (A)wγ(t) dt for all A ∈ AΛ and 0 ≤ s ≤ 1 .

Here wγ is the real-valued function in L1(R) defined in (6.32) of Section VI.B in [83], and we will
refer to {Fs}s∈[0,1] as the family of integral operators with weight function wγ . As in the case of
the spectral flow, we have suppressed the dependence of this family on the value of γ > 0 to ease
notation. One readily checks that:

(i) Since H(s) generates the Heisenberg dynamics τ
(s)
t ,

(4.17) Fs(H(s)) = H(s) for all 0 ≤ s ≤ 1.

(ii) With this particular choice of weight function wγ ,

(4.18) [Fs(A), P (s)] = 0 for all A ∈ AΛ and each 0 ≤ s ≤ sΛγ .

Equation (4.18) follows from the fact that the Fourier transform of wγ has support in [−γ, γ], which
immediately implies (1l− P (s))Fs(A)P (s) = 0. See, e.g., [47] or [83, Lemma 6.8 ].

Consider now the difference

(4.19) αs(H(s))−H = αs(Fs(H(s)))−F0(H) for all 0 ≤ s ≤ 1 ,

where we have used (4.17) to insert the corresponding integral operators which leave their generating
Hamiltonians invariant. Using H(s) = H + sV , this difference can be rewritten as

αs(H(s))−H = (αs − id)(Fs(H)) + (Fs −F0)(H) + sαs(Fs(V ))

= K1
s(H) +K2

s(H) +K3
s(V ),(4.20)
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where we introduced three families of linear maps {Ki
s}s∈[0,1], with Ki

s : AΛ → AΛ for each 0 ≤ s ≤ 1
and i = 1, 2, 3, given by

(4.21) K1
s = (αs − id) ◦ Fs, K2

s = Fs −F0, and K3
s = sαs ◦ Fs .

With an eye towards our goal of applying Theorem 3.4, we summarize (4.20) differently,

(4.22) αs(H(s)) = H + V (1)(s) for all 0 ≤ s ≤ 1,

where we have set V (1)(s) = K1
s(H) +K2

s(H) +K3
s(V ). By expanding as in (4.6) we further write

(4.23) V (1)(s) =
∑
x∈Λ

Φ(1)
x (s) with Φ(1)

x (s) = K1
s(hx) +K2

s(hx) + χΛp(x) ·
∑
n≥R

K3
s(Φ(x, n)).

Here χΛp is the characteristic function of the perturbation region Λp ⊆ Λ, see (4.2).

Proposition 4.2. With assumptions and notation as above, for all x ∈ Λ,

(4.24) [Φ(1)
x (s), P (0)] = 0 for all 0 ≤ s ≤ sΛγ ,

where P (0) is the spectral projection onto the ground state space of H(0) = H and sΛγ is as in (4.5).

Proof. Note that for each x ∈ Λ and any 0 ≤ s ≤ 1, one has

(4.25) K1
s(hx) +K2

s(hx) = (αs − id)(Fs(hx)) + (Fs −F0)(hx) = (αs ◦ Fs)(hx)−F0(hx) .

Thus for x and s as above,

(4.26) Φ(1)
x (s) = (αs ◦ Fs)(hx)−F0(hx) + sχΛp(x)

∑
n≥R

(αs ◦ Fs)(Φ(x, n)) .

We now use (4.18). In fact, the case of s = 0 implies that [F0(hx), P (0)] = 0. Moreover,

(4.27) [(αs ◦ Fs)(A), P (0)] = αs ([Fs(A), P (s)]) = 0 for all A ∈ AΛ whenever 0 ≤ s ≤ sΛγ ,

where we have also used (2.41). Given (4.26), we now conclude that [Φ
(1)
x (s), P (0)] = 0 for all x ∈ Λ

and 0 ≤ s ≤ sΛγ . This completes the proof. □

4.3. Application of Quasi-Locality and Local Decompositions. In this section, we review
the notions of quasi-locality and local decompositions. For the interested reader, more details on
this can be found in [83, Section IV].

A linear map K : AΛ → AΛ is said to satisfy a quasi-locality bound of order q ≥ 0 if there
is a non-increasing function G : [0,∞) → [0,∞) with limr→∞G(r) = 0 for which given any sets
X,Y ⊂ Λ and observables A ∈ AX and B ∈ AY , the bound

(4.28) ∥[K(A), B]∥ ≤ |X|q∥A∥∥B∥G(d(X,Y ))

holds. Any linear map K satisfying (4.28) will be referred to as quasi-local. As is well-known, Lieb-
Robinson bounds are useful in demonstrating quasi-locality of the Heisenberg dynamics associated
to sufficiently short-range interactions. For the analysis at hand, we will need explicit quasi-
locality bounds for other maps as well; for example, the spectral flow automorphism, as introduced
in Section 2.3, and various weighted integral operators, see e.g. (4.16). Before describing these
particular estimates, let us continue with some generalities.

One important fact about quasi-local maps is that they can be approximated by strictly local
maps with errors quantified in terms of their decay function, i.e. the function G in (4.28) above. To
make this precise, we recall the notion of localizing maps and local decompositions. For any X ⊆ Λ,
denote by Π̃Λ

X the normalized partial trace over HΛ\X , i.e. the unique linear map Π̃Λ
X : AΛ → AX

for which

(4.29) Π̃Λ
X(A⊗B) = Tr[B]A for all A ∈ AX and B ∈ AΛ\X ,
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where Tr[B] denotes the normalized trace of B as an operator on the finite dimensional HΛ\X . If

X = Λ, then the above map is understood to act as the identity, i.e. Π̃Λ
Λ(A) = A for all A ∈ AΛ.

We will denote by ΠΛ
X the map from AΛ to AΛ defined by A ↦→ Π̃Λ

X(A)⊗ 1lΛ\X . We refer to these

maps {ΠΛ
X}X⊂Λ as localizing, or strictly local, maps on AΛ. The choice of notation stems from a

more general discussion of localizing maps for quantum lattice systems, see [83, Section IV]. As we
are only considering quantum spin systems here, the normalized partial trace is a simple realization
of these more general maps.

Given these localizing maps, it is also convenient to introduce the corresponding local decompo-
sitions. Let x ∈ Λ, n ≥ 0, and for any m ≥ n define a map ∆Λ

x,n;m : AΛ → AΛ by setting

(4.30) ∆Λ
x,n;m =

{
ΠΛ

bΛx (n)
if m = n,

ΠΛ
bΛx (m)

−ΠΛ
bΛx (m−1)

if m > n.

Note that each ∆Λ
x,n;m has range contained in AbΛx (m), regarded as a sub-algebra of AΛ. Moreover,

one has that

(4.31)
M∑

m=n

∆Λ
x,n;m(A) = ΠΛ

bΛx (M)(A) for each M ≥ n and all A ∈ AΛ .

Since Λ is finite, for each x ∈ Λ, there is M sufficiently large so that bΛx (M) = Λ. In this case, for
any integer n, we have that

(4.32) A =
∑
m≥n

∆Λ
x,n;m(A) for all A ∈ AΛ

and the sum on the RHS above is finite.
A more general version of the following lemma is given in [83, Lemma 5.1]. It provides a simple

estimate for strictly local approximations of quasi-local maps.

Lemma 4.3. Let K : AΛ → AΛ be a quasi-local map satisfying (4.28). For any x ∈ Λ, n ≥ 0,
A ∈ AbΛx (n)

, and each m ≥ n, one has that

(4.33) ∥K(A)−ΠΛ
bΛx (m)(K(A))∥ ≤ 2|bΛx (n)|q∥A∥G(m− n)

and as a result

(4.34) ∥∆Λ
x,n;m(K(A))∥ ≤ 4|bΛx (n)|q∥A∥G(m− n− 1) for all m > n .

4.3.1. First Estimates. The goal of this section is to prove Theorem 4.8. We begin by stating a
crucial technical estimate that we will prove in Section 4.3.2.

Lemma 4.4. Under Assumption 4.1, the three families of maps {Ki
s}s∈[0,1], i = 1, 2, 3, as defined

in (4.21), satisfy the following locally bounded and quasi-local estimates:

(i) Locally bounded: There are numbers Bi ≥ 0 and pi ≥ 0 for which: given any X ⊂ Λ,

(4.35) ∥Ki
s(A)∥ ≤ s ·Bi|X|pi∥A∥ for any A ∈ AX ,

In fact, p1 = 2, p2 = 1, and p3 = 0.
(ii) Quasi-local: There are numbers qi ≥ 0 and non-increasing functions Gi : [0,∞) → [0,∞)

for which: given X,Y ⊂ Λ and observables A ∈ AX and B ∈ AY ,

(4.36) ∥[Ki
s(A), B]∥ ≤ s · |X|qi∥A∥∥B∥Gi(d(X,Y )) .

In fact, limr→∞Gi(r) = 0 and q1 = 2, q2 = 2, and q3 = 1.
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Lemma 4.4 demonstrates that the three families of maps introduced in (4.21) are locally bounded
and quasi-local with estimates that are uniform in s ∈ [0, 1]. As will be established in the next
section, our quasi-locality bounds yield explicit decay functions Gi, for i = 1, 2, 3. Rather than
compiling all the various estimates we obtain, we prefer to describe a class of decay functions which
captures, in principle, the worst case scenario in all these bounds. To this end, for any ξ > 0,
introduce a function fξ : [0,∞) → (0,∞) by setting

(4.37) fξ(r) =

{
e2

4 if 0 ≤ r ≤ ξ−1e2,
ξr

(ln(ξr))2
if r > ξ−1e2.

In what follows, we will frequently make reference to the following decay class:

Definition 4.5. Let η, ξ, and θ be positive numbers. We will say that a function G : [0,∞) →
(0,∞) is of decay class (η, ξ, θ) if for every 0 < η′ < η, there are positive numbers C1, C2, a, and

d, with C1 ≥ C2e
−η′fξ(ad

θ), for which the estimate

(4.38) G(r) ≤
{

C1 if 0 ≤ r ≤ d

C2e
−η′fξ(ar

θ) if r > d

holds for all r ≥ 0. Here, fξ is as in (4.37) above.

Remark 4.6. Our estimates will frequently use basic properties of these decay classes. First, note
that each of these decay classes is closed under addition and multiplication by non-negative scalars.
Next, if G is in a particular decay class, then for any p > 0 and c > 0, the functions

(4.39) G1(r) = (1 + r)pG(r) and moreover G2(r) =
∑

n≥⌊cr⌋

npG(n)

are both in the same decay class, as one easily checks.

Remark 4.7. The proof of Lemma 4.4 actually establishes that each of the functions Gi is of a
particular decay class. More precisely, let η > 0 be the number in (4.57) below. Take ξ = γ/2v to be
the ratio of γ, the fixed number (strictly less than γΛ) which is used in the definition of the spectral
flow, and 2v where v is an estimate on the Lieb-Robinson velocity for the dynamics corresponding
to the family of Hamiltonians H(s) under investigation, see (4.53) and (4.54). Finally, let θ be
as in (4.10). The proof of Lemma 4.4 demonstrates that each Gi is of decay class (η, γ

2v , θ). In
particular, if γ, v, and ∥Φ∥1,F satisfy volume-independent estimates, then these decay functions
may be chosen independent of the volume.

We can now state the main result of this section.

Theorem 4.8. Under Assumption 4.1, the transformed Hamiltonian, see (4.22), can be written as

(4.40) αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑
x∈Λ

∑
m≥R

Φ(1)(x,m, s)

for all 0 ≤ s ≤ 1. Here the terms above satisfy

(4.41) Φ(1)(x,m, s)∗ = Φ(1)(x,m, s) ∈ AbΛx (m) for all x ∈ Λ, m ≥ R, and 0 ≤ s ≤ 1,

and for x, m, and s as above, the bound

(4.42) ∥Φ(1)(x,m, s)∥ ≤ s ·G(1)(m)

holds for some function G(1) : [0,∞) → (0,∞) in the decay class (η, γ
2v , θ). Here, the parameters

in this triple are as in Remark 4.7.

Remark 4.9.
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(i) As will be clear from the proof below, a choice for the decay function G(1) can be made
explicit in terms of various, previously introduced decay functions. More importantly, when
γ, v, and ∥Φ∥1,F satisfy volume-independent estimates, G(1) may be chosen in a volume-
independent manner as well.

(ii) We note that, technically, no gap assumption is used in the proof of Theorem 4.8. In fact,
if the spectral flow used to transform the Hamiltonian, see (4.40), is defined with respect to

any ξ > 0, as in (2.40), then Theorem 4.8 still holds and the resulting decay function G(1)

is in the decay class (η, ξ
2v , θ).

Proof. Recall from Section 4.2, see (4.20)-(4.23), that for all 0 ≤ s ≤ 1

(4.43) αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑
x∈Λ

Φ(1)
x (s),

where

(4.44) Φ(1)
x (s) = K1

s(hx) +K2
s(hx) + χΛp(x) ·

∑
n≥R

K3
s(Φ(x, n)) .

For i = 1, 2, 3, the families of maps {Ki
s}s∈[0,1] are as in (4.21), and χΛp is the characteristic function

of Λp ⊆ Λ. From Lemma 4.4, each of the maps Ki
s is locally bounded and quasi-local. In this case,

the terms on the right-hand-side of (4.44) can be approximated by strictly local terms with error
estimates controlled using Lemma 4.3 as follows:

(4.45) Φ(1)
x (s) =

∑
m≥R

Φ(1)(x,m, s)

where we used the local decompositions from (4.30) to define

(4.46) Φ(1)(x,m, s) = ∆Λ
x,R;m(K1

s(hx)) + ∆Λ
x,R;m(K2

s(hx)) + χΛp(x) ·
m∑

n=R

∆Λ
x,n;m(K3

s(Φ(x, n))) .

We need only estimate these terms as in (4.42).
First, consider the case of m = R. One has that

∥Φ(1)(x,R, s)∥ ≤ ∥ΠΛ
bΛx (R)(K

1
s(hx))∥+ ∥ΠΛ

bΛx (R)(K
2
s(hx))∥+ ∥ΠΛ

bΛx (R)(K
3
s(Φ(x,R)))∥

≤ s∥hx∥
2∑

i=1

Bi|bΛx (R)|pi + s∥Φ(x,R)∥B3|bΛx (R)|p3(4.47)

where we have used the form of the local decompositions, see (4.30), and Lemma 4.4(i). Since Λ is
finite, each of maxx∈Λ ∥hx∥, maxx∈Λ ∥Φ(x,R)∥, and maxx∈Λ |bΛx (R)| are as well, and it is clear that
an estimate of the form (4.42) holds.

For m > R, we estimate as follows:

∥Φ(1)(x,m, s)∥ ≤ ∥∆Λ
x,R;m(K1

s(hx))∥+ ∥∆Λ
x,R;m(K2

s(hx))∥+
m∑

n=R

∥∆Λ
x,n;m(K3

s(Φ(x, n)))∥

≤ 4s

(
∥hx∥

2∑
i=1

|bΛx (R)|qiGi(m−R− 1) +

m−1∑
n=R

|bΛx (n)|q3∥Φ(x, n)∥G3(m− n− 1)

)
+sB3|bΛx (m)|p3∥Φ(x,m)∥(4.48)

where we have used Lemma 4.4(ii) as input for the bounds on the local decompositions proven in
Lemma 4.3.The first two terms on the right-hand-side of (4.48) clearly decay in m, and moreover,
the final term, which corresponds to n = m in (4.46) and arises from local bounds as in (4.47), may
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be further estimated using (4.14). We need only extract decay from the terms with R ≤ n ≤ m−1.
Since G3 is non-increasing and q3 = 1, we find that

(4.49)

⌊m/2⌋−1∑
n=R

|bΛx (n)|q3∥Φ(x, n)∥G3(m− n− 1) ≤ ∥Φ∥1,FF (R− 1)G3(m/2)

whereas

(4.50)

m−1∑
n=⌊m/2⌋

|bΛx (n)|q3∥Φ(x, n)∥G3(m− n− 1) ≤ G3(0)∥Φ∥1,FF (⌊m/2⌋ − 1)

both using (4.14) to control the interaction terms.
To summarize, we have shown that for m > R,

∥Φ(1)(x,m, s)∥ ≤ s

(
4max

x∈Λ
∥hx∥

) 2∑
i=1

|bx(R)|qiGi(m−R− 1)

+s∥Φ∥1,F [4F (R− 1)G3(m/2) + 4G3(0)F (⌊m/2⌋ − 1) +B3κ
p3mp3νF (m− 1)](4.51)

As indicated in Remark 4.7, each function Gi, for i = 1, 2, 3, is in the decay class (η, γ
2v , θ), and the

function F decays even faster. Using Remark 4.6, we conclude that the bound above is also in this
decay class, and this completes the proof. □

Remark 4.10. If the initial perturbation V is a anchored interaction, as in Definition 2.6, satisfying
(2.42) then by arguing as in Appendix A, it is clear that V (1)(s) is a s-dependent anchored inter-

action that satisfies (2.44). In fact, one easily checks that s ↦→ Φ(1)(x,m, s) is continuous for each
choice of (x,m), and this result also follows from the more general discussion found in [83, Section
IV.B.1].

We end this section with an estimate of the global terms Φ
(1)
x anchored at sites x outside the

original perturbation region Λp.

Lemma 4.11. Under Assumption 4.1, consider the transformed Hamiltonian αs(H(s)), as in
(4.22). Let N ≥ R and take (η, γ

2v , θ) as in Remark 4.7. Then there is a function G : [0,∞) →
(0,∞) of decay class (η, γ

2v , θ) for which the global term Φ
(1)
x (s) as in (4.23) satisfies

(4.52) ∥Φ(1)
x (s)∥ ≤ 2s∥hx∥ ·G(N)

for all x ∈ Λ with d(x,Λp) ≥ N and 0 ≤ s ≤ 1.

We prove this lemma at the end of the next section.

4.3.2. Technical details of the quasi-local estimates. In this section, we will prove the technical
estimates claimed in Lemma 4.4 as well as Lemma 4.11 which will be useful for arguments in
Section 5.

The estimates which form the core of Lemma 4.4 are proven using various bounds on the com-
position of quasi-local maps as established in [83, Section V.C]. As input, we must first quantify
quasi-local bounds on the Heisenberg dynamics, various integral operators, and the spectral flow.
We turn to this topic first.

Under Assumption 4.1, it is well-known that the Heisenberg dynamics associated to the Hamil-
tonians H(s), see (4.3), satisfies a quasi-locality bound. In fact, an application of Theorem 2.3,
here we first use Proposition 2.9, shows that for X,Y ⊂ Λ with X ∩ Y = ∅ and any A ∈ AX and
B ∈ AY , one has that

(4.53) ∥[τ (s)t (A), B]∥ ≤ 2∥F0∥
CF

|X|∥A∥∥B∥ev|t|−g(d(X,Y )) ,
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see e.g. (2.28). For the sake of uniform estimates, note that v is no larger than

(4.54) v ≤ 2CF

(
κRν

F (R)
·max
x∈Λ

∥hx∥+ ∥Φ∥1,F
)
.

To be clear, if H is obtained from a uniformly bounded interaction and (4.13) holds with Λp = Λ =
Γ, then this bound on v is uniform with respect to s ∈ [0, 1] and all finite volumes Λ ⊂ Γ.

Let us now turn to estimates for two families of integral operators. For each ξ > 0, define two

families of linear maps {Fξ
s }s∈[0,1] and {Gξ

s}s∈[0,1], with Fξ
s ,Gξ

s : AΛ → AΛ, given by

(4.55) Fξ
s (A) =

∫
R
τ
(s)
t (A)wξ(t) dt and Gξ

s(A) =

∫
R
τ
(s)
t (A)Wξ(t) dt

for all A ∈ AΛ and 0 ≤ s ≤ 1. As above, τ
(s)
t is the Heisenberg dynamics associated to H(s) and

here wξ,Wξ ∈ L1(R) are the real-valued weight functions defined in [83, Section VI.B]. Both of
these families of maps are bounded uniformly in s. In fact, one has that

(4.56) ∥Fξ
s (A)∥ ≤ ∥A∥ and ∥Gξ

s(A)∥ ≤ ∥Wξ∥1∥A∥ for all A ∈ AΛ and 0 ≤ s ≤ 1 ,

where we have used that wξ is L1-normalized.
An important consequence of the results proven in [83, Section VI], see specifically Lemma 6.5,

Lemma 6.10, and Lemma 6.11, is that the integral operators defined above in (4.55) satisfy quasi-
locality estimates that are uniform with respect to 0 ≤ s ≤ 1. The following lemma summarizes
the above-mentioned results proven in [83]. Before we state it, recall that in (4.37) we introduced
a sub-additive, non-decreasing function fξ : [0,∞) → (0,∞) for any ξ > 0. Moreover, let η > 0 be
the number defined by setting

(4.57) η

(
1 +

∞∑
n=2

1

n ln(n)2

)
= 1 .

One readily checks that η ∈ (2/7, 1).

Lemma 4.12. For each ξ > 0, let {Fξ
s }s∈[0,1] and {Gξ

s}s∈[0,1] denote the families of integral oper-
ators introduced in (4.55) above. If the corresponding Heisenberg dynamics satisfies (4.53), then
with η > 0 as in (4.57): given any 0 < ϵ < 1 and all X,Y ⊂ Λ the bound

(4.58) sup
0≤s≤1

∥[Kξ
s(A), B]∥ ≤ 2∥A∥∥B∥|X|Gϵ

K(d(X,Y ))

holds for all A ∈ AX , B ∈ AY , and K ∈ {F ,G}. There is a number d∗ϵ > 0 for which one may take

(4.59) Gϵ
F (d) =

{
1 if 0 ≤ d ≤ d∗ϵ

min
{
1, c
(
Cξ
v + 27

7 e
4fξϵ(g(d))

2
)
e−ηfξϵ (g(d))

}
otherwise,

and

(4.60) Gϵ
G(d) =

{
∥Wξ∥1 if 0 ≤ d ≤ d∗ϵ

min
{
∥Wξ∥1,

(
C
2v + 243

49ξη ce
4fξϵ(g(d))

3
)
e−ηfξϵ (g(d))

}
otherwise.

In fact, one may take d∗ϵ to be the smallest value of d for which

(4.61) max

[
9,

√
ηξϵ
ϵ

]
≤ ln(ξϵg(d)) where ξϵ =

(1− ϵ)ξ

v
.

Here v and g are as in (4.53) and we set C = 2∥F0∥
CF

. In addition, c is related to the L1-normalization

of wξ, see [83, Section VI.B].
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For this proof of stability, decay functions, such as those in (4.59) and (4.60) above, will frequently
enter. Rather than tracking the precise details of all of these bounds, we find it convenient use
the notion of decay class introduced in Definition 4.5 to characterize the worst case estimate these
bounds produce. With this in mind, we re-state a more pragmatic version of Lemma 4.12.

Lemma 4.13. Under Assumption 4.1, take 0 < γ < γΛ where γΛ denotes the initial spectral gap as
in (4.4). Denote by {Fs}s∈[0,1] and {Gs}s∈[0,1] the families of integral operators defined as in (4.55)
with ξ = γ in both cases. For each K ∈ {F ,G}, there is a function GK of decay class (η, γ

2v , θ) for
which given any X,Y ⊂ Λ,

(4.62) sup
0≤s≤1

∥[Ks(A), B]∥ ≤ 2∥A∥∥B∥|X|GK(d(X,Y ))

for all A ∈ AX and B ∈ AY .

Proof. This lemma is just a special case of Lemma 4.12 where we have taken ξ = γ. Although the
assumption that γ is related to the size of the initial spectral gap is not used in this estimate, this
is the specific value of ξ which will be used in all our applications, e.g. it is for this value that
Proposition 4.2 holds. Moreover, we have taken ϵ = 1/2 to be concrete, but this is not crucial.
Finally, the particular parameters of the decay class are: η > 2/7 is as in (4.57), v may be taken
as in (4.54), and θ is from the stretched exponential decay of the weight, see (4.10). □

Remark 4.14. As is clear from Lemma 4.12, the decay functions, denoted by GK in Lemma 4.13
above, depend only on γ and v. In particular, if γ and v are assumed to be volume independent,
then so too are these decay functions.

The final step before proving Lemma 4.4 is to recall the quasi-locality estimates for the spectral
flow established in [83, Section VI.E.2]. As before, take 0 < γ < γΛ and denote the generator of
the spectral flow by

(4.63) D(s) =

∫
R
τ
(s)
t (V )Wγ(t) dt = Gs(V ) for all 0 ≤ s ≤ 1.

Recalling (2.38) and (4.55), we have taken ξ = γ and suppressed the dependence of the maps D
and G on γ. Note that we have written the above generator D as the composition of a strictly
local interaction, i.e. V , with a quasi-local map, i.e. Gs. A proof of quasi-locality estimates for the
dynamics generated by such a quasi-locally transformed interaction is the content of [83, Section
V.D]. For the convenience of the reader, we briefly review these proofs, specifically in the context
of anchored interactions, in Appendix A below. The basic idea is that local decompositions, see
(4.30), can be used to re-write the generator D(s) as

(4.64) D(s) =
∑
x∈Λp

∑
m≥R

Ψ(x,m, s)

where for each x ∈ Λp, m ≥ R, and 0 ≤ s ≤ 1, we have set

(4.65) Ψ(x,m, s) =

m∑
n=R

∆Λ
x,n;m(Gs(Φ(x, n))) .

For the desired quasi-locality bounds, we will need estimates on the above interaction terms.
Here we use results proven in Appendix A. First, recall that the family of maps {Gs}s∈[0,1] satisfies
a uniform (in s) local bounded, see (4.56), as well as a uniform quasi-local estimate of order one, see
Lemma 4.13. Next, recall that V satisfies (4.13). Together, these estimates imply that Theorem A.2
holds pointwise in s, and moreover, since the corresponding decay functions GG and F are both in
the decay class (η, γ

2v , θ), we have further satisfied the assumptions of Corollary A.3. We conclude
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that for every 0 < µ < η, there is an F -function Fµ
Ψ on (Γ, d) for which

(4.66)
∑
x∈Λp

∑
m≥R:

y,z∈bx(m)

∥Ψ(x,m, s)∥ ≤ Fµ
Ψ(d(y, z))

and we stress this bound is uniform with respect to 0 ≤ s ≤ 1. Moreover, for any ζ > ν + 1 there

are positive numbers C1, C2, a, and d, with C1 ≥ C2e
−µfγ/2v(ad

θ), for which one may take Fµ
Ψ with

the form Fµ
Ψ = FΨ,0 · F dec

Ψ,µ where:

(4.67) FΨ,0(r) =
1

(1 + r)ζ
and F dec

Ψ,µ(r) =

{
C1 if 0 ≤ r ≤ d,

C2e
−µfγ/2v(ar

θ) if r > d.

Remark 4.15. With an eye towards future statements of uniformity, note that Theorem A.2 and
Corollary A.3 together demonstrate that the choice of decay functions Fµ

Ψ appearing in (4.66) above
can be made explicit in terms of the decay function F associated to V and the decay function GG
as introduced in Lemma 4.13. In cases where γ and v can be estimated uniformly in the finite
volume, in particular a volume-independent analogue of (4.13) is assumed, then the choices of
decay functions in (4.66) and (4.67) may be taken volume-independent as well.

As a consequence of (4.66), we obtain quasi-local estimates for the spectral flow from Lieb-
Robinson bounds. More precisely, as is discussed in Section 2.3, see (2.39) and (2.40), the map D(s)
is the generator of the spectral flow automorphism αs. In this case, an application of Theorem 2.3
(combined again with Proposition 2.9) shows that for any 0 < µ < η and any X,Y ⊂ Λ with
X ∩ Y = ∅, the quasi-local estimate

(4.68) ∥[αs(A), B]∥ ≤ 2∥A∥∥B∥
C

(
e2sC − 1

)∑
x∈X

∑
y∈Y

Fµ
Ψ(d(x, y))

holds for all A ∈ AX , B ∈ AY , and 0 ≤ s ≤ 1. Here, to ease notation, we have denoted by C = CFµ
Ψ

the convolution constant associated to the F -function Fµ
Ψ.

We can now present to proof of Lemma 4.4.

Proof of Lemma 4.4: We will treat each family of maps separately.
Estimates for {K1

s}s∈[0,1]: Recall that for each 0 ≤ s ≤ 1, the map K1
s : AΛ → AΛ is defined by

(4.69) K1
s(A) = [(αs − id) ◦ Fs](A) for all A ∈ AΛ .

For this family of maps, we will use [83, Lemma 5.10] to obtain both the local bound and the quasi-
local estimate. To apply Lemma 5.10, we need a priori estimates for the maps being composed.

Let us first consider Fs. A local bound of order zero for Fs was established in (4.56). Moreover,
the bound (4.62) in Lemma 4.13 demonstrates a quasi-locality estimate for Fs of order 1. In the
latter bound, Lemma 4.13 also establishes that the decay function GF is in the decay class (η, γ

2v , θ),
see Definition 4.5 for more details. As the notation suggests, we stress that both of these estimates
hold uniformly with respect to 0 ≤ s ≤ 1.

Let us now consider αs − id. Here it will be crucial that the pre-factors in the estimates for
αs− id are linear in s. To see this, we proceed as follows. Note that for each A ∈ AΛ and 0 ≤ s ≤ 1,
the equality

(4.70) (αs − id)(A) = αs(A)−A =

∫ s

0

d

dr
αr(A) dr = i

∫ s

0
αr([D(r), A]) dr,
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holds. For any 0 < µ < η and each A ∈ AX , the bound

∥(αs − id)(A)∥ ≤ 2∥A∥
∑
z∈Λp

∑
m≥R:

bΛz (m)∩X ̸=∅

∫ s

0
∥Ψ(z,m, r)∥ dr

≤ 2∥A∥
∑
x∈X

∑
w∈Λp

∫ s

0

∑
z∈Λp

∑
m≥R:

x,w∈bΛz (m)

∥Ψ(z,m, r)∥ dr

≤ 2s∥A∥∥Fµ
Ψ∥|X|(4.71)

follows from (4.64) and (4.66). In this case, the local bound claimed in (4.35) now follows from [83,
Lemma 5.10(i)]. Here we have used that the local bound for αs− id is of order one for all 0 ≤ s ≤ 1,
and moreover, each moment of the decay function GF is finite. One may take p1 = 2.

For the quasi-local estimate on αs − id, with a linear pre-factor in s, we argue as follows. It is
clear that for any X,Y ⊂ Λ, the bound

(4.72) ∥[(αs − id)(A), B]∥ ≤ 2∥(αs − id)(A)∥∥B∥

holds for all A ∈ AX and B ∈ AY . For any 0 < µ < η, we have the local bound (4.71) and
moreover, if X ∩ Y = ∅, then

(4.73) ∥[(αs − id)(A), B]∥ = ∥[αs(A), B]∥ ≤ 4se2C∥FΨ,0∥|X|∥A∥∥B∥F dec
Ψ,µ(d(X,Y ))

where for the final inequality above, we have used (4.68), the mean value theorem, and the factorized
form of the F -function Fµ

Ψ, see (4.67). In this case, the estimate claimed in (4.36) now follows
from [83, Lemma 5.10(ii)]. One may take q1 = 2. For sufficiently large r, the resulting decay
function G1 has the form

(4.74) G1(r) ∼ (r/2)νF dec
Ψ,µ(r/2) +

∞∑
n=⌊r/2⌋

(1 + n)νGF (n) .

Here ∼ indicates that we have ignored certain r-independent pre-factors. These include factors
from the local bounds on αs − id and Fs, factors from the quasi-local bounds on αs − id and Fs,
and factors of κ from the ν-regularity assumption. One can, however, make an explicit choice for
the resulting decay function using the statement of [83, Lemma 5.10]. In any case, we conclude
that G1 is of decay class (η, γ

2v , θ), see e.g. comments in Remark 4.6.

Estimates for {K2
s}s∈[0,1]: Recall that for each 0 ≤ s ≤ 1, the map K2

s : AΛ → AΛ is defined by

(4.75) K2
s(A) = Fs(A)−F0(A) for all A ∈ AΛ .

To estimate, we find it useful to observe that K2
s can be re-written as a composition. Recall that

the mapping δV : AΛ → AΛ defined by

(4.76) δV (A) = i[V,A] for all A ∈ AΛ

is called the derivation associated to V . In terms of this mapping, note that

K2
s(A) = Fs(A)−F0(A) =

∫
R

(
τ
(s)
t (A)− τ

(0)
t (A)

)
wγ(t) dt

=

∫
R

∫ t

0

d

dr
τ (s)r ◦ τ (0)t−r(A) dr wγ(t) dt

=

∫
R

∫ t

0
iτ (s)r

(
[H(s)−H(0), τ

(0)
t−r(A)]

)
dr wγ(t) dt

= s(Gs ◦ δV )(A).(4.77)
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In the last line above, we used that the distributional derivative of Wγ satisfies

(4.78)
d

dt
Wγ(t) = −wγ(t) + δ0(t)

as is discussed in [83, Section VI.B].
We are now in a position to apply [83, Lemma 5.8]. As before, we first collect the relevant a priori

bounds on the maps being composed. For Gs, (4.56) establishes a local bound of order zero, while
(4.62) in Lemma 4.13 provides a quasi-locality estimate of order one. Again, the corresponding
decay function GG is in the decay class (η, γ

2v , θ) and both of these estimates hold uniformly with
respect to 0 ≤ s ≤ 1.

The assumed norm bound on V , see (4.13), guarantees that the corresponding derivation δV is
locally bounded and quasi-local. More precisely, the local bound of order one

(4.79) ∥δV (A)∥ ≤ 2∥Φ∥1,F ∥F∥|X|∥A∥ for all A ∈ AX with X ⊂ Λ ,

holds, and whenever X,Y ⊂ Λ with X ∩ Y = ∅, one has that

(4.80) ∥[δV (A), B]∥ ≤ 4∥Φ∥1,F ∥F0∥|X|∥A∥∥B∥e−g(d(X,Y ))

for any A ∈ AX and B ∈ AY . More details on these calculations can be found in [83, Section V.B,
Example 5.4]. Note that the weight e−g decays at the stretched exponential rate governed by (4.10)
which is faster than the previously indicated decay classes.

Applying [83, Lemma 5.8 (i)], we find a local bound of the form (4.35) with p2 = 1. Using [83,
Lemma 5.8 (ii)], a quasi-locality bound of the form (4.36) holds with q2 = 2. The corresponding
decay function G2 is, for sufficiently large values of r, given by

(4.81) G2(r) ∼ (r/2)νGG(r/2) + e−g(r/2)

where we have again ignored certain pre-factors. Since GG is of decay class (η, γ
2v , θ), so too is G2.

Estimates for {K3
s}s∈[0,1]: Recall that for each 0 ≤ s ≤ 1, the map K3

s : AΛ → AΛ is defined by

(4.82) K3
s(A) = s(αs ◦ Fs)(A) for all A ∈ AΛ .

It is clear that, for each 0 ≤ s ≤ 1, both αs and Fs are of norm one. As such, a local bound of the
form (4.35) holds for K3

s , and one may take p3 = 0. Quasi-locality bounds of order one for αs and
Fs have already been discussed, see (4.68) and (4.62) respectively. An application of [83, Lemma
5.8 (ii)] demonstrates a quasi-locality estimate for K3

s . One may take q3 = 1 and a corresponding
decay function G3 is, for sufficiently large values of r, given by

(4.83) G3(r) ∼ (r/2)νF dec
Ψ,µ(r/2) +GF (r/2)

As before, we conclude that G3 is of decay class (η, γ
2v , θ). □

Finally, we include the proof of Lemma 4.11.

Proof of Lemma 4.11: Let N ≥ R and take x ∈ Λ with N ≤ d(x,Λp). By (4.23), we have that

(4.84) Φ(1)
x (s) = K1

s(hx) +K2
s(hx) for all 0 ≤ s ≤ 1 .

We will estimate the norm of the terms on the right-hand-side of (4.84) separately. Recall that

(4.85) K1
s(hx) = (αs − id)(Fs(hx)) .

Let us denote by A = ΠΛ
bΛx (⌊N/2⌋)(Fs(hx)). In this case, it is clear that

(4.86) ∥K1
s(hx)∥ ≤ ∥(αs − id)(A)∥+ ∥(αs − id)(Fs(hx)−A)∥ .

Arguing as in (4.70) - (4.71), we find that

(4.87) ∥(αs − id)(A)∥ ≤ 2∥hx∥
∑

y∈bΛx (⌊N/2⌋)

∑
w∈Λp

∫ s

0

∑
z∈Λp

∑
m≥R:

y,w∈bΛz (m)

∥Ψ(z,m, r)∥ dr
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Here we have used that ∥A∥ ≤ ∥hx∥. Given this, we conclude from (4.66) that

∥(αs − id)(A)∥ ≤ 2s∥hx∥
∑

y∈bx(⌊N/2⌋)

∑
w∈Λp

Fµ
Ψ(d(y, w))

≤ 2sκ∥hx∥∥FΨ,0∥(N/2)νF dec
Ψ,µ(N/2)(4.88)

where in the final bound we used that d(y, w) ≥ N/2 for each choice of y and w as above. In fact,

N ≤ d(x,Λp) ≤ d(x,w) ≤ d(x, y) + d(y, w) ≤ ⌊N/2⌋+ d(y, w)

This term has decay as claimed in (4.52).
Using the telescoping property of the local decompositions, see (4.31) and (4.32), one sees that

(4.89) Fs(hx)−A = (id−ΠΛ
bΛx (⌊N/2⌋))(Fs(hx)) =

∑
m≥⌊N/2⌋+1

∆Λ
x,R;m(Fs(hx)) .

The norm bound

∥(αs − id)(Fs(hx)−A)∥ ≤
∑

m≥⌊N/2⌋+1

∥(αs − id)(∆Λ
x,R;m(Fs(hx)))∥

≤ 2s∥Fµ
Ψ∥

∑
m≥⌊N/2⌋+1

|bΛx (m)|∥∆Λ
x,R;m(Fs(hx))∥

≤ 16s∥Fµ
Ψ∥∥hx∥|b

Λ
x (R)|

∑
m≥⌊N/2⌋+1

|bΛx (m)|GF (m−R− 1)(4.90)

follows from the local bound proven in (4.71) and an application of (4.34) from Lemma 4.3 which
applies given the result of Lemma 4.13. This term also has decay as claimed in (4.52).

Lastly, we note that using (4.77) and (4.56), the bound

(4.91) ∥K2
s(hx)∥ = s∥(Gs ◦ δV )(hx)∥ ≤ s∥Wγ∥1∥δV (hx)∥

is clear. Moreover, the estimate

∥δV (hx)∥ ≤
∑
z∈Λp

∑
n≥R:

bΛz (n)∩bΛx (R)̸=∅

∥[Φ(z, n), hx]∥

≤ 2∥hx∥
∑

y∈bΛx (R)

∑
w∈Λp

∑
z∈Λp

∑
n≥R:

w,y∈bΛz (n)

∥Φ(z, n)∥

≤ 2∥hx∥∥Φ∥1,F
∑

y∈bx(R)

∑
w∈Λp

F (d(y, w))

≤ 2∥hx∥∥Φ∥1,F ∥F0∥|bΛx (R)|e−g(N−R)(4.92)

follows from (4.13) and the form of the corresponding weighted F -function. Note also that

N ≤ d(x,Λp) ≤ d(x,w) ≤ d(x, y) + d(y, w) ≤ R+ d(y, w)

We have shown that

∥Φ(1)
x (s)∥ ≤ ∥K1

s(hx)∥+ ∥K2
s(hx)∥

≤ 2s∥hx∥

⎛⎝κ∥FΨ,0∥(N/2)νF dec
Ψ,µ(N/2) + 8∥Fµ

Ψ∥|b
Λ
x (R)|

∑
m≥⌊N/2⌋

|bΛx (m+ 1)|GF (m−R)

⎞⎠
+2s∥Wγ∥1∥hx∥∥Φ∥1,F ∥F0∥|bΛx (R)|e−g(N−R)(4.93)

Since all functions of N can be appropriately estimated, this completes the proof. □
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Λp(K)

Λ

Λp

Figure 2. The perturbation region Λp and effective perturbation region Λp(K).
Sites in Λ \ Λp(K) have a fixed distance from the perturbation region. Sites in
Λp(K) have indistinguishability radii with a fixed lower bound.

5. Local topological quantum order and conditions for relative boundedness

For the finite-volume family of Hamiltonians H(s) = H + sV ∈ AΛ, as in (4.3), we showed in
Theorem 4.8 that the unitarily equivalent family αs(H(s)) can be re-written as

(5.1) αs(H(s)) = H + V (1)(s) with V (1)(s) =
∑

x∈Λ,m≥R

Φ(1)(x,m, s) ,

with ∥Φ(1)(x,m, s)∥ ≤ sG(1)(m) for a function G(1) of decay class (η, γ
2v , θ). The goal of this section

is to complete the decomposition described in Section 3.2.1 and show that αs(H(s)) can be further
re-written as

(5.2) αs(H(s)) = H + V (2)(s) + ∆(s) + E(s) + C(s)1l

with terms satisfying the properties described in Claim 3.6, see Theorems 5.1 and 5.3 below. To
do this we need to assume an additional property of the ground states of the initial Hamiltonian
H. This property, which is referred to as local topological quantum order (LTQO), is expressed in
terms of the indistinguishability radius we introduced in Section 2.2.2.

The idea is that the ground states are indistinguishable by perturbations acting in a region
where ‘LTQO holds,’ which typically excludes the boundary of Λ. This is motivations the following
definition of the perturbation region, Λp ⊆ Λ. Fix a non-increasing function Ω : R → [0,∞) and
let rΩx be the corresponding indistinguishability radius associated to x ∈ Λ, see Definition 2.1. Let
K,L ≥ 0 with K ≥ R, the bound on the interaction radius of the initial Hamiltonian H, which we
furthermore assume to be frustration free. Then, define a perturbation region Λp = Λp(K,L) by
setting

(5.3) Λp = {x ∈ Λ : rΩy ≥ L+K for all y ∈ bΛx (K)}.

The estimates proven in this section will depend on K, L, and various decay functions. When
considering the thermodynamic limit, appropriate choices for L and K will, in particular, depend
on the rate at which these functions decay; more on this in Section 6. Let us further introduce

(5.4) Λp(K) = {x ∈ Λ : d(x,Λp) ≤ K}

which we refer to as the effective perturbation region. Given (5.3) and (5.4), all sites in this effective
perturbation region are guaranteed to have an indistinguishability radius of at least L+K:

(5.5) L+K ≤ rΩx for all x ∈ Λp(K) .
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We use this effective perturbation region to partition the global terms of V (1)(s), see (4.23), into
a main term and a remainder term as follows:

(5.6) V (1)(s) = V
(1)
eff (s) + E(s),

with

V
(1)
eff (s) =

∑
x∈Λp(K)

Φ(1)
x (s)(5.7)

E(s) =
∑

x∈Λ\Λp(K)

Φ(1)
x (s) .(5.8)

Let ω denote the ground state functional associated to the initial Hamiltonian H, see (2.8), and set

(5.9) C(s) = ω
(
V

(1)
eff (s)

)
to be the ground state expectation of V

(1)
eff (s). Given (5.7) and (5.9), an application of Theorem 4.8

shows that, in finite volume, C(s) → 0 as s→ 0. In any case, we can now write

(5.10) V (1)(s) = V (2)(s) + ∆(s) + E(s) + C(s)1l ,

where we have set

(5.11) V (2)(s) = (1l− PΛ)
(
V

(1)
eff (s)− C(s)1l

)
(1l− PΛ)

and

(5.12) ∆(s) = PΛ

(
V

(1)
eff (s)− C(s)1l

)
PΛ .

Note that (5.10) with V (2)(s) and ∆(s) as defined in (5.11) and (5.12), holds for all 0 ≤ s ≤ sΛγ by

Proposition 4.2. The off-diagonal terms vanish as all the global terms Φ
(1)
x (s) commute with the

ground state projection PΛ associated to H; note that in the notation of Section 4, H = H(0) and
PΛ = P (0). Thus, we have established the desired form of (5.2).

We now show that the terms in (5.2) satisfy the properties described in Claim 3.6. It is easiest to
estimate the remainder terms ∆(s) and E(s) and so we do this first. Before we do so, we introduce
the following quantity as it appears in a number of our estimates. Set

(5.13) C(K,L) = 2
∑

m≥K+1

G(1)(m) + κ

⎛⎝∑
m≥0

mνG(1)(m)

⎞⎠Ω(L)

where G(1) is the decay function obtained in the proof of Theorem 4.8, κ and ν are from (2.1),
and Ω is the non-increasing function used to define the indistinguishability radius. In applications,
this quantity will be small for large values of K and L. The following result makes explicit that
properties (i) and (ii) of Claim 3.6 hold for the decomposition (5.2) just obtained.

Theorem 5.1. Under Assumption 4.1, fix a non-increasing function Ω : R → [0,∞) and define
E(s) and ∆(s), as in (5.8) and (5.12) respectively, for all 0 ≤ s ≤ 1.

(i) For all s, one has that PΛ∆(s)PΛ = ∆(s) and ∥∆(s)∥ ≤ sδ where one may take

(5.14) δ = |Λp(K)|C(K,L)
and C(K,L) is as in (5.13) above.

(ii) For all s, ∥E(s)∥ ≤ sε where one may take

(5.15) ε = 2

⎛⎝ ∑
x∈Λ\Λp(K)

∥hx∥

⎞⎠G(K)
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and G is the decay function obtained in the proof of Lemma 4.11.

Proof. We first prove (ii). Using (5.8), it is clear that

(5.16) ∥E(s)∥ ≤
∑

x∈Λ\Λp(K)

∥Φ(1)
x (s)∥ ≤ 2s

⎛⎝ ∑
x∈Λ\Λp(K)

∥hx∥

⎞⎠G(K)

where the final inequality above follows from (5.4) and an application of Lemma 4.11.
Now, consider (i). The claim that PΛ∆(s)PΛ = ∆(s) for all 0 ≤ s ≤ 1 is immediate given (5.12).

To prove (5.14), it is convenient to introduce some additional notation. Recall (5.7) and (5.9).
Linearity guarantees that we may write

(5.17) V
(1)
eff (s)− C(s)1l =

∑
x∈Λp(K)

Φ(1)
x,ω(s) where Φ(1)

x,ω(s) = Φ(1)
x (s)− ω

(
Φ(1)
x (s)

)
1l .

Moreover, in terms of the decomposition established in the proof of Theorem 4.8, see specifically
(4.45), we may further write

(5.18) Φ(1)
x,ω(s) =

∑
m≥R

Φ(1)
x,ω,m(s) where Φ(1)

x,ω,m(s) = Φ(1)(x,m, s)− ω
(
Φ(1)(x,m, s)

)
1l .

Now, using (5.12) and (5.17), the triangle inequality yields

(5.19) ∥∆(s)∥ ≤
∑

x∈Λp(K)

∥PΛΦ
(1)
x,ω(s)PΛ∥ .

For each fixed x ∈ Λp(K), using (5.18), we may further estimate

∥PΛΦ
(1)
x,ω(s)PΛ∥ ≤

∑
m≥R

∥PΛΦ
(1)
x,ω,m(s)PΛ∥

=
K∑

m=R

∥PΛΦ
(1)
x,ω,m(s)PΛ∥+

∑
m>K

∥PΛΦ
(1)
x,ω,m(s)PΛ∥ .(5.20)

With the final term above, we use the bound (4.42) proven in Theorem 4.8, i.e.

(5.21)
∑
m>K

∥PΛΦ
(1)
x,ω,m(s)PΛ∥ ≤ 2

∑
m>K

∥Φ(1)(x,m, s)∥ ≤ 2s
∑
m>K

G(1)(m)

For the remaining term, we use the frustration-free property of the ground state, which implies
that for each x ∈ Λp(K), we have

(5.22) PΛ = PΛPbx(L+K) = Pbx(L+K)PΛ .

Using the bound (2.9) from Definition 2.1, as well as (5.5), we find that for x ∈ Λp(K) and
R ≤ m ≤ K,

∥PΛΦ
(1)
x,ω,m(s)PΛ∥ ≤ ∥Pbx(L+K)Φ

(1)(x,m, s)Pbx(L+K) − ω(Φ(1)(x,m, s))Pbx(L+K)∥

≤ |bΛx (m)|∥Φ(1)(x,m, s)∥Ω(L+K −m).(5.23)

Combining (5.20), (5.21), and (5.23), we obtain that for each x ∈ Λp(K)

(5.24) ∥PΛΦ
(1)
x,ω(s)PΛ∥ ≤ s

⎛⎝2
∑

m≥K+1

G(1)(m) + Ω(L)
∑
m≥R

|bΛx (m)|G(1)(m)

⎞⎠ ,

where we have again applied (4.42) from Theorem 4.8; now to the right-hand-side of (5.23). Recall-
ing (5.13), the bound claimed in (5.14) follows from (5.19), (5.24), and ν-regularity, i.e. (2.1). □
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The remainder of the section is devoted to proving property (iii) in Claim 3.6. To establish

this form bound, we will show that the term V (2)(s), see (5.11) above, can be written as an
s-dependent, anchored interaction which satisfies the assumptions of Theorem 3.8. That is the
content of Theorem 5.3 below. First, we prove the following lemma. For its statement, recall the
notation established in the proof of Theorem 5.1; namely (5.17) and (5.18)

Lemma 5.2. Under the assumptions of Lemma 4.4, fix a non-increasing function Ω : R → [0,∞).
Let x ∈ Λp(K). For all 0 ≤ s ≤ sΛγ and any m ≤ n ≤ rΩx , we have

m∑
k=R

Φ
(1)
x,ω,k(s)PbΛx (n)

 ≤ s

⎡⎣2 ∑
k≥m+1

G(1)(k) +

⎛⎝√
8κ
∑
k≥0

G(1)(k)

⎞⎠√mνΩ(n−m)

⎤⎦
+s

⎡⎣2 ∑
k≥K+1

G(1)(k) + κ

⎛⎝∑
k≥0

kνG(1)(k)

⎞⎠Ω(L)

⎤⎦ .(5.25)

As we did with the statement of Theorem 5.1, see specifically (5.13), it is convenient to label the
some of the terms above as they frequently appear below. For any 0 ≤ m ≤ n, set

(5.26) D(m,n) = 2
∑

k≥m+1

G(1)(k) +

⎛⎝√
8κ
∑
k≥0

G(1)(k)

⎞⎠√mνΩ(n−m) .

The quantity above behaves similarly to C(K,L) in the sense that D(m,n) should be small if m
and n−m are all sufficiently large.

Proof. Fix x ∈ Λp(K) and consider the observable Am =
∑m

k=R Φ
(1)
x,ω,k(s) ∈ AbΛx (m). Since m ≤ n ≤

rΩx , an application of Proposition 2.2 shows that

(5.27) ∥AmPbΛx (n)
∥ ≤ ∥AmPΛ∥+ ∥Am∥

√
2|bΛx (m)|Ω(n−m) .

Going back to (5.18), we have that

(5.28) Φ(1)
x,ω(s) =

∑
k≥R

Φ
(1)
x,ω,k(s) = Am +

∑
k≥m+1

Φ
(1)
x,ω,k(s)

and therefore,

(5.29) ∥AmPΛ∥ ≤
Φ(1)

x,ω(s)PΛ

+ 2
∑

k≥m+1

∥Φ(1)(x, k, s)∥.

Using Proposition 4.2, the first term above may be re-written as in the LHS of (5.24) and estimated
by sC(K,L). The bound claimed in (5.25) now follows from the naive bound

(5.30) ∥Am∥ ≤
m∑

k=R

∥Φ(1)
x,ω,k(s)∥ ≤ 2

m∑
k=R

∥Φ(1)(x, k, s)∥

and two applications of (4.42) from Theorem 4.8; once for the final term on the RHS of (5.29) and
once for final estimate in (5.30). □

Finally, to allow for some additional flexibility in the application of the estimates below, we
divide the terms in certain sums according to a function f with specified properties. This function
should be regarded as an additional free parameter in this set-up. To keep track of terms, we find
is convenient to introduce the quantity ℓx = ℓx(Λ) defined for each x ∈ Λ by setting

(5.31) ℓx = min{n ∈ Z≥0 : b
Λ
x (n) = Λ} .
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Theorem 5.3. Let f : [0,∞) → [0,∞) be any differentiable function with f(0) = 0 and 0 < f ′(t) <
1 for all t ≥ 0. Under Assumption 4.1, one can write

V (2)(s) =
∑

x∈Λp(K)

ℓx∑
n=R

Φ(2)(x, n, s)

with terms satisfying: for all x ∈ Λp(K), n ≥ R, and 0 ≤ s ≤ sΛγ , the following holds

(i) Φ(2)(x, n, s)∗ = Φ(2)(x, n, s) ∈ AbΛx (n)

(ii) PbΛx (n)
Φ(2)(x, n, s) = Φ(2)(x, n, s)PbΛx (n)

= 0

(iii) ∥Φ(2)(x, n, s)∥ ≤ 2sG(2)(n), where
(5.32)

G(2)(n) =

{
G(1)(f(n)) +D(⌈f(n)⌉ − 1, n− 1) + C(K,L) R ≤ n < L+K∑

k≥f(L+K)G
(1)(k) +D(⌈f(L+K)⌉ − 1, L+K − 1) + C(K,L) n ≥ L+K

and the quantities C(K,L) and D(m,n) are as in (5.13) and (5.26) respectively.

Proof of Theorem 5.3. Recall that V (2)(s) is as defined in (5.11). To obtain the terms Φ(2)(x, n, s),
satisfying the conditions of Theorem 5.3, we use the notation introduced in the proof of Theorem 5.1
to expand. By inserting (5.17), we have that

V (2)(s) =
∑

x∈Λp(K)

(1l− PΛ)Φ
(1)
x,ω(s)(1l− PΛ)

and moreover, with (5.18) we have that for each x ∈ Λp(K),

(5.33) (1l− PΛ)Φ
(1)
x,ω(s)(1l− PΛ) =

ℓx∑
m=R

(1l− PΛ)Φ
(1)
x,ω,m(s)(1l− PΛ).

In the argument below, it will be convenient to write Φ(2)(x, n, s) as the sum of two terms

Φ(2)(x, n, s) = Θ1(x, n, s) + Θ2(x, n, s)

each of which will separately satisfy the conditions of Theorem 5.3.
First, to any x ∈ Λp(K), set

(5.34) Θ1(x, ℓx, s) =
∑

m≥f(L+K)

(1l− PΛ)Φ
(1)
x,ω,m(s)(1l− PΛ) .

Since bΛx (ℓx) = Λ, such terms clearly satisfy conditions (i) and (ii) above. Moreover, an application
of Theorem 4.8 shows that

(5.35) ∥Θ1(x, ℓx, s)∥ ≤ 2
∑

m≥f(L+K)

∥Φ(1)(x,m, s)∥ ≤ 2s
∑

m≥f(L+K)

G(1)(m) .

Only those terms in (5.33) with R ≤ m < f(L + K) remain to be analyzed. For these, let us
introduce the following sequence of operators:

(5.36) Ej =

⎧⎨⎩
1l− PbΛx (R) j = R

PbΛx (j−1) − PbΛx (j)
R+ 1 ≤ j ≤ ℓx

PΛ j = ℓx + 1 .

One readily checks that each Ej is an orthogonal projection, and moreover,

(5.37) EjEk = δj,kEk with 1l =

ℓx+1∑
j=R

Ej .
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In words, this family of projections is mutually orthogonal and sums to the identity. It is also useful
to observe that partial sums telescope, i.e.

(5.38) 1l− PbΛx (n)
=

n∑
j=R

Ej for all R ≤ n ≤ ℓx .

Now, for R ≤ m < f(L+K), set mf = ⌊f−1(m)⌋. Using (5.38), a short calculation shows

(1l− PΛ)Φ
(1)
x,ω,m(s)(1l− PΛ) =

ℓx∑
j,k=R

EjΦ
(1)
x,ω,m(s)Ek(5.39)

= (1l− PbΛx (mf )
)Φ(1)

x,ω,m(s)(1l− PbΛx (mf )
) +

∑
f−1(m)<j≤ℓx

Aj,m,

where, for all j > f−1(m), we define

(5.40) Aj,m = EjΦ
(1)
x,ω,m(s)(1l− PbΛx (j−1)) + (1l− PbΛx (j)

)Φ(1)
x,ω,m(s)Ej .

From the expression (5.39), we will extract two types of terms: Θ1-terms and Θ2-terms. Let us
first continue defining the Θ1-terms. Note that for each integer m with R < m < f(L+K),

(m− 1)f < mf < L+K .

This follows from our assumptions on f and, e.g., an application of the mean-value theorem. As
such, each choice of mf corresponds to a unique integer m and so the term

(5.41) Θ1(x,mf , s) = (1l− PbΛx (mf )
)Φ(1)

x,ω,m(s)(1l− PbΛx (mf )
)

is well-defined. Note further that we are only considering values of mf < L + K ≤ rΩx ≤ ℓx,
and so there is no overlap with (5.34). For these terms in (5.41), conditions (i) and (ii) are clear.
In fact, since f(m) < m and hence m < f−1(m), we have that m ≤ ⌊f−1(m)⌋ = mf , and thus
Θ1(x,mf , s) ∈ AbΛx (mf )

. To obtain a norm bound, note that since mf ≤ f−1(m) and f is increasing,

we have f(mf ) ≤ m. In this case, again Theorem 4.8 shows that

(5.42) ∥Θ1(x,mf , s)∥ ≤ 2∥Φ(1)(x,m, s)∥ ≤ 2sG(1)(f(mf )).

Setting Θ1(x,m, s) = 0 for any integer values not considered above, we have shown that the Θ1-
terms satisfy the conditions of Theorem 5.3 with the norm estimate

(5.43) ∥Θ1(x, n, s)∥ ≤ 2s ·

{
G(1)(f(n)) R ≤ n < L+K∑

m≥f(L+K)G
(1)(m) n ≥ L+K

Going back to (5.33), let us summarize the progress: for each x ∈ Λp(K), we have written

(5.44) (1l− PΛ)Φ
(1)
x,ω(s)(1l− PΛ) =

ℓx∑
n=R

Θ1(x, n, s) +
∑

R≤m<f(L+K)

∑
f−1(m)<j≤ℓx

Aj,m.

We will re-organize the final sum above and label these as Θ2-terms.
For defining the Θ2-terms, it will be convenient to note that the operators Aj,m, see (5.40), satisfy

the following for each R+ 1 ≤ j ≤ ℓx:

(i) A∗
j,m = Aj,m ∈ AbΛx (j)

for all m with f−1(m) < j.

(ii) Aj,mPbΛx (j)
= 0 for all m with f−1(m) < j.

(iii) For any n with f−1(n) < j, Lemma 5.2 becomes relevant as

(5.45)


n∑

m=R

Aj,m

 ≤ 2


n∑

m=R

Φ(1)
x,ω,mEj

 ≤ 2


n∑

m=R

Φ(1)
x,ω,mPbΛx (j−1)

 .
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Here, the final inequality follows from using (2.7) to write Ej = PbΛx (j−1)Ej .

We now define the Θ2-terms. To do so, we interchange the double sum from (5.44) and isolate
those terms for which Lemma 5.2 applies. Namely, note that∑
R≤m<f(L+K)

∑
f−1(m)<j≤ℓx

Aj,m =
∑

R≤m<f(L+K)

∑
f−1(m)<j<L+K

Aj,m +
∑

R≤m<f(L+K)

∑
L+K≤j≤ℓx

Aj,m.

For the second collection of terms above, one has that

(5.46)
∑

R≤m<f(L+K)

∑
L+K≤j≤ℓx

Aj,m =
∑

L+K≤j≤ℓx

∑
R≤m<f(L+K)

Aj,m,

and so we set

(5.47) Θ2(x, j, s) =
∑

R≤m<f(L+K)

Aj,m for all L+K ≤ j ≤ ℓx .

Based on the observations above, it is clear that these terms satisfy conditions (i) and (ii). Moreover,

∥Θ2(x, j, s)∥ ≤ 2


⌈f(L+K)⌉−1∑

m=R

Φ(1)
x,ω,mPbΛx (j−1)

 ≤ 2


⌈f(L+K)⌉−1∑

k=R

Φ(1)
x,ω,mPbΛx (L+K−1)

 .(5.48)

Here, for the final inequality we have used PbΛx (j−1) = PbΛx (L+K−1)PbΛx (j−1). Applying Lemma 5.2,
for L+K ≤ j ≤ ℓx we obtain the following uniform estimate:

(5.49) ∥Θ2(x, j, s)∥ ≤ 2s [D(⌈f(L+K)⌉ − 1, L+K − 1) + C(K,L)]

where C(K,L) and D(m,n) are as defined in (5.13) and (5.26) respectively.
For the remaining terms, observe that∑

R≤m<f(L+K)

∑
f−1(m)<j<L+K

Aj,m =
∑

f−1(R)<j<L+K

∑
R≤m<f(j)

Aj,m

and thus if we set

(5.50) Θ2(x, j, s) =
∑

R≤m<f(j)

Aj,m for f−1(R) < j < L+K ,

then, as before, these terms satisfy conditions (i) and (ii), and

∥Θ2(x, j, s)∥ ≤ 2


⌈f(j)⌉−1∑
m=R

Φ(1)
x,ω,mPbΛx (j−1)

 ≤ 2s [D(⌈f(j)⌉ − 1, j − 1) + C(K,L)] .(5.51)

Once again, we define Θ2(x, j, s) = 0 for any values of j not considered above.

Finally, set Φ(2)(x, n, s) = Θ1(x, n, s) + Θ2(x, n, s). By construction, it is clear that these Φ(2)-
terms satisfy the conditions of Theorem 5.3, and moreover, combining the decay bounds from
(5.43), (5.49), and (5.51) we find that

∥Φ(2)(x, n, s)∥ ≤ 2sG(2)(n)

as desired. □

In summary, the results of Sections 3, 4, and 5 can be combined to state, for any γ ∈ (0, γΛ),
a lower bound for the range of the perturbation strength sΛγ so that the spectral gap above the
ground states(s) is at least γ, for the system defined on a finite-volume Λ; recall that a more detailed
statement is provided in Claim 3.6, in particular, see (3.24). It is not a priori obvious when this
lower bound is non-trivial. The next section is devoted to deriving conditions under which the
lower bound is uniformly positive along an increasing and absorbing sequence {Λn}n≥1 of finite
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volumes. We call such sequences uniform sequences. Then, in Section 7, we show that the GNS
Hamiltonian of the limiting infinite system has a spectral gap above its ground state energy.

6. Uniform Sequences and the Thermodynamic Limit

6.1. Introduction. So far, we have determined conditions under which we can estimate the spec-
tral gaps of a continuous family of quantum spin Hamiltonians on a fixed finite volume. Often we
are interested in a uniform lower bound for the spectral gap for a collection of finite volume families
of arbitrarily large size so that we can derive stability properties of the infinite systems. In this
section, we focus on formulating conditions on families of models labeled by finite sets Λ that imply
such uniform estimates. We leave the discussion of the thermodynamic limit itself to Section 7.
We focus on conditions that let us establish a uniform lower bound for the spectral gap above the
ground state along a sequence of finite systems of increasing size as this is also the foundation for
studying higher gaps, see e.g. Corollary 3.5. We will refer to such sequences as uniform sequences.

Each finite volume Hamiltonian is defined in terms of one or more interactions, such as the maps
η and Φ in Section 5. These interactions will for the most part not depend on n except for necessary
modifications generally designated as boundary conditions. Boundary conditions can be expressed
in a number of different ways and we discuss two common cases: 1) open boundary conditions, and
2) boundary conditions arising from modifying the metric on Λn. The typical situation we have in
mind for the second case is periodic or twisted periodic boundary conditions; for example, when a
finite rectangle in Z2 is embedded on a torus. More generally, it is often of interest to define the
model on a sequence of triangulations (or other discretizations) of a compact manifold.

In the latter case we assume one can extend the interaction to include ‘boundary’ terms in the
natural way. More precisely, these are the situations where there is no boundary and we will refer
to this case as geometric boundary conditions. There are other ways to define boundary conditions,
which may involve n-dependence of both the interaction and the metric. These can be handled by
small modifications of the discussion below.

6.2. Uniform sequences of finite systems. The goal of this section is to describe conditions on
a model which allow for the results obtained in Section 4 and Section 5 to hold uniformly along
a sequence of finite-volumes. Our discussion of uniformity covers both common cases of boundary
conditions discussed above.

Uniform Sequences of Finite Volumes: Most interesting quantum spin models are defined over
a metric space (Γ, d) for which Γ has infinite cardinality. To apply the results of Section 4 and
Section 5, we must first restrict the model to an appropriate choice of finite subsets. Let {Λn}n≥1

be an increasing and absorbing sequence of finite subsets of Γ. To allow for possible boundary
conditions, we will further regard each finite subset as a metric space on its own, i.e. for each
n ≥ 1, associate a metric space (Λn, dn) to Λn with a metric dn satisfying: for each x, y ∈ Γ,
there is n(x, y) ≥ 1 sufficiently large so that dn(x, y) = d(x, y) for all n ≥ n(x, y). By allowing n-
dependence of the metric, we are really including cases where Λn does not have a natural embedding
in Γ but, strictly speaking, it can always be considered as a subset.

Finally, we also assume that these metrics are uniformly ν-regular, i.e. there are positive numbers
κ and ν for which given n ≥ 1, m ≥ 1, and x ∈ Λn,

|bΛn
x (m)| ≤ κmν where bΛn

x (m) = {y ∈ Λn | dn(x, y) ≤ m}.

We will use diamn(X) to represent the diameter of a set X ⊆ Λn with respect to the metric dn. We
will refer to any sequence {Λn}n≥1 of finite subsets of Γ satisfying the conditions described above
as a uniform sequence of finite volumes.

Uniformity in the Initial Hamiltonian: We will assume that the initial, unperturbed Hamiltonian
can be associated with a finite-range, uniformly bounded, frustration free interaction η. To make
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this association precise, let {Λn}n≥1 be a uniform sequence of finite volumes. For each n ≥ 1, we
assume that there is a (non-negative) frustration free interaction ηn on Λn and write

(6.1) HΛn =
∑

X⊆Λn

ηn(X) .

We assume that the sequence {ηn}n≥1 approximates η in the sense that for each X ∈ P0(Γ), there
is n(X) ≥ 1 for which ηn(X) = η(X) for all n ≥ n(X). We further assume that the sequence
{ηn}n≥1 has a uniform finite range, in that there is a number R′ ≥ 0 for which ηn(X) = 0 whenever
diamn(X) > R′, and is uniformly bounded in the sense that

(6.2) sup
n≥1

∥ηn∥∞ <∞ where ∥ηn∥∞ = sup
X⊆Λn

∥ηn(X)∥ .

Lastly, we assume that there is a uniform gap above the ground state energy meaning that

(6.3) γ0 = inf
n≥1

gap(HΛn) > 0 .

We will refer to any sequence {HΛn}n≥1 of Hamiltonians generated by a uniform sequence of finite
volumes and a corresponding sequence of interactions {ηn}n≥1 satisfying the constraints above as
a uniformly gapped sequence of initial Hamiltonians.

Example. The situation dn = d ↾Λn and ηn = η for each n ≥ 1 corresponds to traditional open
boundary conditions. By modifying the metric on each finite volume Λn, models with periodic
boundary conditions can also be accommodated as above. In fact, this construction allows for
models with various boundary conditions such as when dn = d ↾Λn but η is modified along the
boundary, i.e. ηn = η + η∂Λn .

Remark 6.1. Given a uniformly gapped sequence of initial Hamiltonians {HΛn}n≥1, the anchoring
procedure described in Section 2.5.2 applies. In this case, for each n ≥ 1, one may write

(6.4) HΛn =
∑
x∈Λn

h(n)x

with h
(n)
x ≥ 0 and h

(n)
x ∈ A

bΛn
x (R)

for all x ∈ Λn. Here R ≥ 0 is the maximal radius associated with

this anchoring. This R is independent of n and satisfies R ≤ R′ + 1. Moreover, as discussed in
Section 2.5.2, one has that

(6.5) ∥h∥ = sup
n≥1

∥h(n)∥∞ <∞ where ∥h(n)∥∞ = sup
x∈Λn

∥h(n)x ∥ .

Remark 6.2. Let Ω : R → [0,∞) be a non-increasing function. Given a uniformly gapped
sequence of initial Hamiltonians {HΛn}n≥1 and two sequences of non-negative numbers {Kn}n≥1,
with Kn ≥ R, and {Ln}n≥1, one can define LTQO regions:

(6.6) Λp
n = {x ∈ Λn : rΩy (Λn) ≥ Kn + Ln for all y ∈ bΛn

x (Kn)} ,

compare with (5.3), on which our stability argument allows for perturbations. Note that here the
quantity rΩy (Λn) represents the indistinguishability radius of HΛn at y ∈ Λn, see Definition 2.1.
One analogously defines effective perturbation regions

(6.7) Λp
n(Kn) = {x ∈ Λn : dn(x,Λ

p
n) ≤ Kn} ,

compare with (5.4). We note that, for all n ≥ 1, both of these subsets of Λn are defined with
respect to the same fixed non-increasing function Ω. As we will see, the notion that a model (one
for which a choice of Ω has already been made) satisfies our stability bounds uniformly requires
an appropriate choice of the sequences {Kn}n≥1 and {Ln}n≥1. Such a choice, however, is not
independent of the perturbation; more on that soon.
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Uniformity in the Separating Partitions: In Section 3.3, see specifically Theorem 3.8, we made use
of separating partitions, and we here briefly remark on how this notion can also be made uniform.
Let {Λn}n≥1 be a uniform sequence of finite volumes. For each n ≥ 1, denote by ℓn = ⌈diamnΛn⌉.
Choose S(n) to be a collection of subsets of Λn satisfying

(6.8) S(n) = {Λn(x,m) | x ∈ Λn, R ≤ m ≤ ℓn} , with bΛn
x (m) ⊂ Λn(x,m).

For brevity, we say that any such sequence {S(n)}n≥1 is a sequence of subsets associated to {Λn}n≥1

which contains balls. Corresponding to such a sequence {S(n)}n≥1, we will require that there exists

a sequence {T (n)}n≥1 of families of separating partitions which satisfies a polynomial growth bound
independent of n. More precisely, we will assume that there are positive numbers c and ζ for which
given any n ≥ 1, there is a family T (n) of partitions of Λn which separates S(n) and is of (c, ζ)-

polynomial growth in the sense of Definition 3.7. This means, if we write T (n) = {T (n)
m | 1 ≤ m ≤

ℓn} and denote each partition of Λn by T (n)
m = {T (n)

m,i | i ∈ I(n)
m }, then

(i) Separation: Λn(x,m) ∩ Λn(y,m) = ∅ for any distinct pair x, y ∈ T
(n)
m,i .

(ii) Uniform polynomial growth: |I(n)
m | ≤ cmζ for all n,m.

In this case, we say that {T (n)}n≥1 is a sequence of families of partitions which separates {S(n)}n≥1

and satisfies a uniform polynomial growth bound.

Remark 6.3. Generally, the existence of such families of partitions with uniform polynomial growth
is not hard to establish. Typically, one knows the existence of such sets on Γ. In fact, if there is a
collection of finite volumes

(6.9) S = {Γ(x,m) ∈ P0(Γ) | x ∈ Γ, m ≥ R}, with bΓn
x (m) ⊂ Γn(x,m).

and a corresponding family T = {Tm | m ≥ R} of partitions Tm of Γ with Tm = {Tm,i | i ∈ Im}
satisfying:

(i) |Im| ≤ cmζ ;
(ii) for x ̸= y ∈ T i

m, Γ(x,m) ∩ Γ(y,m) = ∅,
then, along any uniform sequence {Λn}n≥1, an obvious choice for S(n) and T (n) is obtained through
intersection, namely

(6.10) Λn(x,m) = Γ(x,m) ∩ Λn and T (n)
m = {Tm,i ∩ Λn | i ∈ Im}.

Moreover, using ν-regularity, one can show that the set of balls Γ(x,m) = bx(m) always corresponds
to a family of partitions T which separates these balls and is of (κ, ν)-polynomial growth.

Remark 6.4. Let {Λn}n≥1 be a uniform sequence of finite volumes, {S(n)}n≥1 be any sequence of
subsets associated to {Λn}n≥1 which contains balls, and {HΛn}n≥1 be a uniformly gapped sequence
of initial Hamiltonians. For each n ≥ 1 and any R ≤ m ≤ ℓn, a local gap is defined by setting

(6.11) γn(m) = inf
{
gap(HΛn(x,m)) | Λn(x,m) ∈ S(n)

}
where the corresponding local Hamiltonians are given by

(6.12) HΛn(x,m) =
∑

X⊆Λn(x,m)

ηn(X).

Since Λn = Λn(x, ℓn) ∈ S(n) for any n ≥ 1 and x ∈ Λn, the infimum of these local gaps produces a
lower bound on γ0, as in (6.3).

Example. The freedom of choosing appropriate sub-volumes S(n) can be useful for optimizing the
lower bound on γ0. Consider the one-species PVBS model on Γ = Zν as analyzed, e.g., in [16]. This
is an example of a model where local gaps are sensitive to the boundary geometry. In fact, for a
particular choice of parameters, the spectral gap for the Hamiltonians associated with balls bΛn

x (m)
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closes as n→ ∞, but the corresponding gaps remain non-vanishing on volumes Λn(x,m) ⊃ bΛn
x (m)

with slightly slanted boundaries, see [16].

Uniformity in the Perturbations: Here we discuss a class of perturbations to which our stability
results will apply. Let F0 be an F -function on (Γ, d). This base F -function depends only on Γ, and
one may take it as in (2.16). Let θ ∈ (0, 1]. The class of perturbations we consider are determined

by a weighted F -function F (r) = e−g(r)F0(r) with a weight e−g for which there is some a > 0 such
that

(6.13) g(r) = arθ for all r ≥ 0 .

Let F denote such a weighted F -function and {Λn}n≥1 a uniform sequence of finite volumes. We
say that a sequence of interactions {Φn}n≥1, with each Φn an anchored interaction on Λn, decays
like F uniformly along {Λn}n≥1 if there is a non-negative number ∥Φ∥1,F for which

(6.14) ∥Φn(x,m)∥ ≤ ∥Φ∥1,FF (max(0,m− 1)) for all n ≥ 1, x ∈ Λn, and R ≤ m ≤ ℓn ,

and moreover, supn≥1 ∥Φn∥1,F ≤ ∥Φ∥1,F where

(6.15) ∥Φn∥1,F = sup
x,y∈Λn

1

F (dn(x, y))

∑
z∈Λn

∑
R≤m≤ℓn:

x,y∈bΛn
z (m)

|bΛn
z (m)|∥Φn(z,m)∥.

Here, to be consistent with the notation of Section 4 and Section 5, we organize the terms in
the anchored interactions to start with m = R, the maximal radius associated with the initial
Hamiltonians as discussed in Remark 6.1.

In the case of open boundary conditions, for any anchored interaction Φ ∈ B1
F (Γ) one may take

(6.16) ∥Φ∥1,F = sup
x,y∈Γ

1

F (d(x, y))

∑
z∈Γ

∑
m≥R:

x,y∈bz(m)

|bz(m)|∥Φ(z,m)∥ .

The previous discussions motivate the following definition of a class of perturbation models. For
these we can then formulate the uniformity assumptions in Assumption 6.7 below that are sufficient
to prove stability in Theorem 6.8.

Definition 6.5 (Perturbation Models). Consider a quantum spin system defined on a ν-regular
metric space (Γ, d). A perturbation model on (Γ, d) consists of the following:

(i) A uniform sequence of finite volumes {Λn}n≥1.

(ii) A sequence {S(n)}n≥1 of subsets of {Λn}n≥1 containing balls and a corresponding sequence

{T (n)}n≥1 of families of partitions which separates {S(n)}n≥1 and satisfies a uniform poly-
nomial growth bound.

(iii) A uniformly gapped sequence of frustration-free Hamiltonians {HΛn}n≥1.
(iv) A non-increasing function Ω : R → [0,∞) with limr→∞Ω(r) = 0 that defines the in-

distinguishability radii, rΩx (Λn), for each initial Hamiltonian HΛn , and two sequences of
non-negative numbers {Kn}n≥1 and {Ln}n≥1, which define the perturbation regions Λp

n as
in (6.6).

(v) A weighted F -function F on (Γ, d) with weight satisfying (6.13) for some θ ∈ (0, 1], and a
sequence of anchored interactions {Φn}n≥1 which decays like F uniformly along {Λn}n≥1.

For each perturbation model and any 0 ≤ s ≤ 1, a sequence of perturbed Hamiltonians is given by

(6.17) HΛn(s) = HΛn + sVΛp
n

where VΛp
n
=
∑
x∈Λp

n

∑
m≥R:

bx(m)⊆Λn

Φn(x,m) .
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Remark 6.6. Consider a perturbation model on (Γ, d) in the sense of Definition 6.5. For each
n ≥ 1, the results of Section 4 and Section 5 apply to the perturbed Hamiltonians HΛn(s) as in
(6.17) above. In fact, if ∥Φ∥1,F is the value estimating the corresponding sequence of perturbations
{Φn}n≥1, as in (6.14) and (6.15), then a bound on the Lieb-Robinson velocity associated to the
Heisenberg dynamics generated by HΛn(s) is

(6.18) v = 2CF

(
κRν

F (R)
∥h∥+ ∥Φ∥1,F

)
compare with (4.54). Here ∥h∥ is the uniform estimate on the initial Hamiltonians, see comments
in Remark 6.1, and we stress that this value of v is uniform in n ≥ 1 and 0 ≤ s ≤ 1. In fact,
regarding the sequence of initial Hamiltonians {HΛn}n≥1 and the weighted F -function F fixed,
this value of v is further uniform with respect to any sequence of perturbations {Φ′

n}n≥1 satisfying
∥Φ′∥1,F ≤ ∥Φ∥1,F .

In order for a perturbation model as defined above to have a stable spectral gap we will further
need to assume uniform boundedness of certain estimates. To turn this property into an assumption
for models, let us first recall some notation from Section 5.

Consider a perturbation model as in Definition 6.5. Take γ > 0 with γ < γ0, the uniform
ground state gap, see (6.3), of our sequence of initial Hamiltonians. One checks that, for each
n ≥ 1, the Hamiltonian HΛn and perturbation VΛp

n
, see e.g. Remark 6.6, satisfy the conditions of

Assumption 4.1. In this case, Theorem 5.1 applies, and the numbers

(6.19) δn = |Λp
n(Kn)|C(Kn, Ln)

compare with (5.14), and

(6.20) ϵn = 2

⎛⎝ ∑
x∈Λn\Λp

n(Kn)

∥hx∥

⎞⎠G(Kn)

compare with (5.15), are relevant for our stability analysis. The quantity C(Kn, Ln), which appears
in (6.19) above, is as defined in (5.13). This quantity is defined with respect to a decay function
which is obtained by applying Theorem 4.8 in the finite volume Λn. Given the uniformity imposed
by Definition 6.5, there is a single choice which works in all finite volumes, and we continue to
denote this particular decay function by G(1). To be clear, this function G(1) depends on the choice
of γ in that it depends on estimates for the spectral flow αΛn

s (·) which is defined for ξ = γ as

in Section 2.4. Moreover, G(1) also depends on the weighted F -function F , and the sequence of
perturbations {Φn}n≥1 through ∥Φ∥1,F . As previously observed, given F and a value of ∥Φ∥1,F , this
decay function G(1) holds uniformly for all sequences of anchored interactions {Φ′

n}n≥1 satisfying
∥Φ′∥1,F ≤ ∥Φ∥1,F . Arguing similarly, there is a single choice of decay function corresponding to the
proof of Lemma 4.11 which holds uniformly in the sense described above. We call this function G,
and it is the function which we use in (6.20).

For the same perturbation model, let us also fix, independent of n, a differentiable function
f : [0,∞) → [0,∞) with f(0) = 0 and 0 < f ′(t) < 1 for all t ≥ 0. Given this, one further checks

that Theorem 5.3 applies in each finite volume Λn and determines an anchored interaction V
(2)
n (s)

for all 0 ≤ s ≤ sΛn
γ . Recall that sΛn

γ > 0 is as in (2.33). Given the conclusions of Theorem 5.3, it

is clear that HΛn , S(n), and V
(2)
n (s) satisfy the conditions of Theorem 3.8 for each n ≥ 1 and all

0 ≤ s ≤ sΛn
γ . As a result, each V

(2)
n (s) is form bounded by HΛn with a pre-factor given by

(6.21) βn = 2c

ℓn∑
m=R

mζG
(2)
n (m)

γn(m)
.
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Recall that the family of partitions of Λn which separates S(n) is uniformly of (c, ζ)-polynomial

growth, and γn(m) is the local gap defined in (6.11). Moreover, G
(2)
n is the decay function obtained

in the application of Theorem 5.3; namely, setting Mn = Kn + Ln

(6.22) G(2)
n (m) =

{
G(1)(f(m)) +D(⌈f(m)⌉ − 1,m− 1) + C(Kn, Ln) R ≤ m < Mn∑

k≥f(Mn)
G(1)(k) +D(⌈f(Mn)⌉ − 1,Mn − 1) + C(Kn, Ln) m ≥Mn.

Assumption 6.7 (Uniform Perturbation Model). We say that a perturbation model, as in Defini-
tion 6.5, is a uniform perturbation model if:

(i) The quantities δn and ϵn from (6.19)-(6.20) are uniformly bounded from above, i.e.

(6.23) δ = sup
n≥1

δn <∞ and ϵ = sup
n≥1

ϵn <∞ .

(ii) There exists a function f as above for which βn from (6.21) satisfies

(6.24) β = sup
n≥1

βn <∞ .

We now state our main result on stability for perturbation models as in Definition 6.5. Recall
that stability of the spectral gap, as described at the end of Section 3.2.1, is the property that

(6.25) sγ = inf
n≥1

sΛn
γ > 0 for all 0 < γ < γ0 .

Theorem 6.8. Every uniform perturbation model has a stable spectral gap.

Proof. Consider any uniform perturbation model, i.e. a model as in Definition 6.5 that satisfies
Assumption 6.7, and let 0 < γ < γ0, where γ0 is uniform ground state gap from (6.3). Gathering
our results, we have shown that for any n ≥ 1 and all 0 ≤ s ≤ sΛn

γ the decomposition:

(6.26) αΛn
s (HΛn(s)) = HΛn + V (2)

n (s) + ∆n(s) + En(s) + Cn(s)1l

holds; we refer to the beginning of Section 5 for a review of the relevant notation. Moreover, we
have checked that the properties listed in Claim 3.6 are satisfied with the parameters (δΛ, ϵΛ, βΛ)
replaced by (δn, ϵn, βn). In fact, by estimating with the corresponding supremums, for these uniform
perturbation models, the same parameters may be replaced by (δ, ϵ, β). Similar to the discussion
after Claim 3.6, a finite volume application of Theorem 3.4 yields that for all 0 ≤ s < min{β−1, sΛn

γ },

(6.27) ΣΛn
1 (s) ⊆ [Cn(s)− s(δ+ ϵ), Cn(s)+ s(δ+ ϵ)] and ΣΛn

2 (s) ⊆ [Cn(s)+ (1− sβ)γ0− sϵ,∞).

Note that in each application of Theorem 3.4 above we use γ0 for γ in the statement of the theorem.
This demonstrates that

(6.28) diam(ΣΛn
1 (s)) ≤ 2s(δ + ϵ)

and moreover,

(6.29) gap(HΛn(s)) = dist
(
ΣΛn
1 (s),ΣΛn

2 (s)
)
≥ γ0 − s(γ0β + δ + 2ϵ) .

From (6.29), it is clear that gap(HΛn(s)) ≥ γ holds whenever s is small enough so that

(6.30) γ0 − s(γ0β + δ + 2ϵ) ≥ γ ⇐⇒ s ≤ γ0 − γ

γ0β + δ + 2ϵ
.

In this case,

(6.31) sγ = inf
n≥1

sΛn
γ ≥ γ0 − γ

γ0β + δ + 2ϵ
> 0,

and thus the model is stable. □
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For many applications, one is primarily interested in establishing stability for large finite volumes.
In such cases, it suffices to replace the supremums considered in Assumption 6.7 with limit superiors,
and the corresponding gap estimates likely improve.

Another common situation concerns uniform perturbation models for which the quantities δn
and ϵn, see (6.19) and (6.20), become vanishingly small, i.e.

(6.32) lim
n→∞

(δn + ϵn) = 0 .

In this situation, for any 0 ≤ s ≤ sγ , the diameter of the ground state splitting diam(ΣΛn
1 (s)), see

(6.28), tends to zero as n → ∞. It is for this case we will be able to show spectral gap stability
in the thermodynamic limit. This is the topic of Section 7, see specifically Corollary 7.5. For
convenience of later reference, we state this as a corollary.

Corollary 6.9. Consider a uniform perturbation model for which (6.32) holds. In this case, for
each 0 < γ < γ0, there is sγ > 0 for which we have γ′n(s) and ϵ

′
n(s) such that

(6.33) spec
(
HΛn(s)− EΛn(s)1l

)
⊆ [0, ϵ′n(s)] ∪ [γ′n(s) + ϵ′n(s),∞) for all 0 ≤ s ≤ sγ ,

where EΛn(s) = min spec (HΛn(s)) and

(6.34) lim inf
n→∞

γ′n(s) ≥ γ while lim
n→∞

ϵ′n(s) = 0 .

The previous results also provide estimates on the convergence rates for γ′n(s) and ϵ
′
n(s).

In many applications, various simplifications arise naturally. We here briefly describe these
general results in the context of a common family of systems. Consider models for which:

i. Γ ⊂ Zν , ν ≥ 1, with the standard lattice distance, or Γ is a Delone set in Rν (typical for
models of quasi-crystals), and Λ is a finite subset of Γ. All these are ν-regular metric spaces.

ii. The unperturbed Hamiltonians HΛ =
∑

x∈Λ hx is frustration-free and of interaction radius
R: hx ∈ Abx(R), ∥hx∥ ≤ 1, for all x ∈ Λ. For X ⊂ Λ, HX =

∑
x∈X hx has a ground state

gap of at least γ0 > 0.

iii. Given a function G(r) = Ce−arθ , with C, a, θ > 0, the LTQO property and sufficient
conditions on the perturbations can be stated as follows. Fix a perturbation region Λp ⊂ Λ
and considers a model of the form

HΛ(s) = HΛ + s
∑
x∈Λp

Φ(x, n)

with self-adjoint Φ(x, n) ∈ Abx(n) and ∥Φ(x, n)∥ ≤ ∥Φ∥G(n) for all x ∈ Γ, n ≥ R. The

LTQO condition is expressed in terms of the indistinguishability radius rGx (Λ). There are
constants K and L which, in many cases, can both be chosen as some small fractional power
of diam(Λ), for which the following property is satisfied: for all x ∈ Λ with d(x,Λp) ≤ K, we
have rGx (Λ) ≥ K+L. This setup covers many finite systems with open boundary conditions
(specific frustration-free boundary terms can be included in the definition of hx). It also
covers the case where Λ = Γ is given as an embedding of a finite subset of a lattice on
a closed manifold, such as a torus in the case of periodic boundary conditions. In this
situation one expects rGx (Λ) ∼ diam(Λ), for all x, and one can take Λp = Λ. For example
this is the case for the Quantum Double models considered in [21,22,72].

For models satisfying conditions i-iii above and any γ ∈ (0, γ0), our estimates imply the existence
of volume-independent, finite numbers Ci, i = 1, 2, 3, such that with

β =
C1∥Φ∥
γ0

, ϵ = C2|Λ|G(K1/2), δ = C3|Λ|G(L1/2)

the estimate

gap(HΛ(s)) ≥ γ0 − s(γ0β + δ + 2ϵ)
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holds for all s ∈ [0, sΛγ ) and therefore,

sΛγ ≥ γ0 − γ

βγ0 + δ + 2ϵ
.

For models whereK and L are allowed to be chosen as fractional powers of diam(Λ), these estimates
are non-trivial.

6.3. Applications. In Definition 6.5 and Assumption 6.7 we formulated general conditions under
which we proved stability of the spectral gap uniform in the volume. Most items in these conditions
are part of the standard setting and straightforward to verify: a suitable sequence of finite volumes, a
uniformly gapped sequence of initial Hamiltonians, and a class of perturbations that are sufficiently
short range. Following the philosophy of Bravyi-Hastings-Michalakis, we also introduced a decaying
function Ω to give a quantitive expression of the LTQO property through our definition of the
indistinguishability radius (2.9). Physically, this property expresses the local indistinguishability
of the different ground states of the finite-volume Hamiltonians. Verifying a sufficient quantitative
version of the LTQO condition is, however, less straightforward. In particular, it is clear from
the discussion preceding Assumption 6.7 that doing this involves a combination of a number of
characteristics of the models all at once. In this section, we discuss what this usually comes down
to in practice in both settings of boundary conditions expressed by boundary terms, and geometric
boundary conditions.

6.3.1. Verifying Assumptions. In this section, we briefly discuss Assumption 6.7 and identify certain
situations under which it clearly holds. Throughout, we assume Γ is infinite. First, observe that
if Assumption 6.7 (ii) holds, then the sequences {Kn}n≥1 and {Ln}n≥1 must satisfy Kn → ∞
and Ln → ∞. In fact, their sum, Kn + Ln, cannot be bounded because the function G

(2)
n , see

(6.22), is eventually equal to a non-zero constant whereas the truncated moment in (6.21) grows as

ℓn = ⌈diamn(Λn)⌉ → ∞. Therefore, from the structure of G
(2)
n , it is clear that both these sequences

must be unbounded. For this reason, Assumption 6.7 implies that any point x which is eventually
in all LTQO regions, i.e. x ∈

⋂∞
n=m Λp

n, for some m, must satisfy limn→∞ rΩx (Λn) = ∞.
One concludes that in the general formulation we have given, the approach is not particularly

well-suited when Γ has a boundary, as this is where LTQO can often fail. Note, however, that in
one dimension the method can be adapted to yield useful results [74]. A similar modification could
also handle other cases of systems with a finite boundary.

One can check that Assumption 6.7 (i) holds whenever

(6.35) sup
n≥1

ℓνn [C(Kn, Ln) +G(Kn)] <∞ .

In fact, since ν-regularity guarantees that |Λn| ≤ κℓνn, one has that

(6.36) δn ≤ κℓνnC(Kn, Ln) and ϵn ≤ 2κ∥h∥ℓνnG(Kn) .

Similarly, if

(6.37) lim sup
n→∞

ℓνn [C(Kn, Ln) +G(Kn)] = 0 ,

then (6.32) holds.
Under the additional assumption that the local gaps associated to the unperturbed Hamiltonians

decay no faster than a power law, we can formulate a similar statement about Assumption 6.7 (ii).
More precisely, recall that for each n ≥ 1 and all R ≤ m ≤ ℓn, we defined finite-volume, local gaps
γn(m) in (6.11). We will say that these local gaps decay no faster than a power law if there are
numbers C > 0 and k ≥ 0 for which, given any n ≥ 1,

(6.38) γn(m) ≥ C

mk
for all R ≤ m ≤ ℓn .
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The situation k = 0 corresponds to the case of uniformly bounded local gaps, and can be checked
in some applications. Given (6.38), one derives from (6.21) the bound

(6.39) βn ≤ 2c

C

ℓn∑
m=R

mζ+kG(2)
n (m)

From this we conclude that when the local gaps decay no faster than a power law, as in (6.38),
Assumption 6.7 (ii) is satisfied when
(6.40)

∞∑
m=R

mζ+k
(
G(1)(f(m)) +D(⌈f(m)⌉ − 1,m− 1)

)
<∞ and sup

n≥1
ℓζ+k+1
n G(2)

n (Kn + Ln) <∞ .

Since we only considered perturbation models satisfying Definition 6.5(v), the functions G and

G(1) which frequently enter above are both of decay class (η, γ
2v , θ), see Definition 4.5. In this case,

all moments of these functions are necessarily finite. As a result, verifying conditions (6.35) and
(6.40) above primarily entails checking that one has adequate decay of Ω, coupled with appropriate
growth of the sequences {Kn}n≥1 and {Ln}n≥1.

Finally, let us remark that if one assumes at least power law bounds for the decay of Ω and the
growth of {Kn}n≥1 and {Ln}n≥1, a sufficient condition for stability can be given in terms of an
inequality for the exponents. Specifically, suppose there are α1, α2 ∈ (0, 1) such that the sequences
{Kn}n≥1 and {Ln}n≥1 satisfy

(6.41) Kn ≥ ⌈ℓα1
n ⌉ and Ln ≥ ⌈ℓα2

n ⌉ for each n ≥ 1,

where ℓn = ⌈diamn(Λn)⌉. Then, Assumption 6.7 holds if Ω(r) is O(r−q) with q sufficiently large.
Assumption 6.7 (i) holds if q ≥ α−1

2 ν. Recalling (5.13), we find that (6.35) holds whenever

(6.42) ℓνnΩ(ℓ
α2
n ) <∞ .

Here we have used that both G and G(1) are in decay class (η, γ
2v , θ). Also one sees that (6.32) holds

if q > α−1
2 ν. Furthermore, it suffices to take f(x) = ax for some a ∈ (0, 1) and Assumption 6.7 (ii)

holds if

(6.43) q ≥ α−1 (2(1 + ζ + k) + αν)

where we have set α = min(α1, α2) and α = max(α1, α2). One checks that (6.43) implies Assump-
tion 6.7 (i), and so for any such value of q, Assumption 6.7 holds with (6.32). To see that (6.43) is
sufficient, note that (6.40) holds whenever both

(6.44)

∞∑
m=R

mζ+k+ν/2
√
Ω((1− a)m− 1) <∞

and

(6.45) sup
n≥1

ℓζ+k+1
n

(
Ω(ℓα2

n ) + (ℓ′n)
ν/2
√
Ω((1− a)ℓ′n − 1)

)
<∞

hold. Here we have set ℓ′n = ℓα1
n + ℓα2

n and used (5.26). These claims are readily checked.

6.3.2. The case of geometric boundary conditions. In [21, 22] and [72] only sequences of finite sys-
tems defined on boxes in Zν with periodic boundary conditions are considered. Periodic boundary
conditions are a special case of what we have called geometric boundary conditions induced by
embedding finite subsets of lattices in a compact manifold (without a boundary). Another example
are twisted embeddings on a torus, which is a natural setting to address Lieb-Schultz-Mattis type
questions [104]. All these situations are described by an increasing and absorbing sequence of finite
Λn ⊂ Γ that are equipped with a metric dn that pointwise converges to the metric d on Γ.
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The detailed estimates of Section 5 are more than is required to handle this situation and allow
us to identify specific classes of interactions for which we can prove simpler and more useful bounds.

We consider here a perturbation model as in Definition 6.5. For typical examples such as, e.g.
the Toric Code Model, there is a natural choice of decay function Ω for which the corresponding
indistinguishability radius rΩx (Λn), see (2.9), is proportional to the size of the smallest topologically
non-trivial closed path in Λn that contains x. In such case, the following assumption is typically
known, or readily checked.

Assumption 6.10. For a given perturbation model, there is an increasing sequence {rn}n≥1 of
positive numbers with

(6.46) rΩx (Λn) ≥ rn for all n ≥ 1 and x ∈ Λn.

Due to assumptions we will make later we will also require rn → ∞. Given Assumption 6.10,
our arguments simplify, and we here briefly describe these changes.

Consider a perturbation model such that Assumption 6.10 holds. In such a case, it is convenient
to take Kn = Ln = rn/2 in Definition 6.5. With this choice, both the perturbation region, see
(6.6), and the effective perturbation region, see (6.7), are extensive; in fact, Λp

n = Λp
n(rn/2) = Λn

for all n ≥ 1. As a result, the quantity ϵn, see (6.20), satisfies ϵn = 0. The analogue of a uniform
perturbation model, i.e. Assumption 6.7, in this case is as follows.

Assumption 6.11. We say that a perturbation model satisfying Assumption 6.10 is uniform if:

i. One has that δ = supn≥1 δn <∞.
ii. There is a non-negative function f with f(0) = 0 and 0 < f ′(t) < 1 for all t ≥ 0 such that

(6.47) β = sup
n≥1

βn <∞ where βn =

ℓn∑
m=R

mζ

γn(m)
G(2)

n (m) .

Arguing as before, the following is clear.

Theorem 6.12. Every perturbation model satisfying Assumption 6.11 has a stable spectral gap.

In fact, if such a model additionally satisfies limn→∞ δn = 0, then the analogue of Corollary 6.9
holds as well. Of course, one can replace the sup’s in Assumption 6.11 by lim sup’s to obtain
asymptotic (instead of uniform) statements.

7. Infinite Systems and Automorphic Equivalence of Gapped Phases

7.1. Introduction. In the previous sections we studied perturbations of systems defined on a finite
set Λ with one or more frustration-free ground states and a spectral gap. Theorem 6.8, Corollary
6.9, and Theorem 6.12 specify conditions under which we have a uniform positive lower bound for
the spectral gap of a family of perturbed Hamiltonians defined on a sequence of finite volumes
Λn ↑ Γ . We are now interested in applying these results to analyze the gap of the corresponding
infinite model.

The main goal of this section is to prove a lower bound for the spectral gap of the GNS Hamil-
tonians of the perturbed models in the thermodynamic limit. Such a bound would follow directly
from strong resolvent convergence of the finite-volume perturbed Hamiltonians represented as op-
erators acting on the GNS Hilbert space. Since the perturbations can spoil the frustration-free
property of the Hamiltonians, though, it is not clear one can expect strong resolvent convergence
in general. Therefore, in this section we develop a more direct approach to obtain bounds on the
spectral gap in the thermodynamic limit, see Theorem 7.4. In particular, we show that under
the assumption of uniform LTQO, see Assumption 6.10, there is a unique gapped ground state in
the thermodynamic limit. We will also show that the perturbed models for which the stability
result applies also have indistinguishable ground states. That is, LTQO is a stable property itself.
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The frustration-free ground states of the Toric Code model and, more generally, Kitaev’s quantum
double models, satisfy the conditions of this section. These models and their perturbations have a
translation invariant gapped pure ground state on Z2. As noted before, the Toric Code model has
other infinite-volume ground states that are not frustration-free and which do not satisfy LTQO.
The same holds for all of Kitaev’s Quantum Double models. They have a gap above their degenerate
ground states but this gap is not stable under small perturbations. This has been shown explicitly
for a class of perturbations of the Toric Code model in [78]. The one-dimensional AKLT model also
satisfies the conditions of this section, as do all one-dimensional models that are given by a parent
Hamiltonian of a translation invariant Matrix Product State (see, in particular, Theorem B.2).

7.2. Description of the infinite system. We consider uniform perturbation models on an infinite
set Γ, see Definition 6.5 and Assumption 6.7. As a consequence, the spectral gap of the associated
sequence of finite-volume perturbed Hamiltonians

(7.1) HΛn(s) = HΛn + sVΛp
n

with Λn ↑ Γ

is stable in the sense of Theorem 6.8, meaning that

sγ = inf
n≥1

sΛn
γ > 0 for all 0 < γ < γ0

where sΛn
γ is as in (2.33) and γ0 is the uniform lower-bound on the non-vanishing spectral gap

above the ground state energy of the initial Hamiltonians. For each n ≥ 1, sΛn
γ is a bounded

non-increasing function of γ and, hence, so is sγ . Therefore, the following limit exists:

(7.2) s0 := lim
γ→0

sγ .

By our definitions and assumptions, we can assume that s0 ∈ (0, 1], and for all s ∈ [0, s0) there
exists γ ∈ (0, γ0) such that s ∈ [0, sγ), meaning that gap(HΛn(s)) ≥ γ for all n. Said differently,
for all s ∈ [0, s0), infn gap(HΛn(s)) > 0.

So far, we have not required that a uniform perturbation model converges in any sense as n→ ∞.
We only imposed that for each n the perturbation satisfied conditions that allowed us to prove that
the gap above the ground state remains open uniformly in n. For a limiting perturbed infinite
system to exist, we now add the assumption that the perturbing interactions Φn as described in
Definition 6.5(v) converge locally in F -norm for the given F -function to an interaction Φ ∈ BF

on Γ. For static interactions which is the case we consider here, this notion of convergence simply
means that for all Λ ∈ P0(Γ),

(7.3) lim
n→∞

∥(Φ− Φn) ↾Λ ∥F → 0,

where Φ ↾Λ denotes the restriction of the interaction to Λ. This holds, for example, if the perturba-
tions are eventually constant: there exists Φ ∈ BF such that for all finite X there is an N so that
Φn(X) = Φ(X) for all n ≥ N .

It was shown in [83, Theorem 3.8] that (7.3) implies that the thermodynamic limit of the dynamics
corresponding to Φn exists and equals the dynamics generated by Φ. This implies that there exists
strongly continuous dynamics {τ st }t∈R and {αs}s∈R on AΓ, defined by

τ st (A) = lim
n→∞

τ s,Λn
t (A), αs(A) = lim

n→∞
αΛn
s (A), for all A ∈ Aloc

Γ .(7.4)

In the case of αs we left implicit the choice of the parameter ξ > 0, which is kept fixed in this limit.
The convergence is uniform on any compact range of t and s and, as a consequence, the limit is
strongly continuous in these parameters (see [83] for proofs of these statements). It follows that
{τ st }t∈R is generated by a closed derivation δs for which Aloc

Γ is a core [20]. Moreover, it is the limit
of the finite-volume generators:

(7.5) δs(A) = lim
n→∞

[HΛn(s), A], A ∈ Aloc
Γ .
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In order to express and study stability of the spectral gap in the thermodynamic limit, we will
consider the GNS representation of an infinite-volume ground state obtained as the thermodynamic
limit of finite-volume ground states. As we will show, the set up considered in this section implies
that such a limiting state is pure and unique. In the next section we will discuss some important
situations in which it is not unique.

Let τ := {τt = eitδ}t∈R be a strongly continuous dynamics on the C∗-algebraAΓ, with a generator
δ as in (7.5), and let (πω,Hω,Ωω) denote the GNS representation of a τ -invariant state ω. Then, by
standard arguments (see, e.g., [20] or [76]) the derivation is implemented by a self-adjoint operator,
Hω, with dense domain domHω ⊂ Hω for which

(7.6) πω(δ(A)) = [Hω, πω(A)], for all A ∈ Aloc
Γ .

One has that Aloc
Γ is a core for δ (as a densely defined closed operator) and π(Aloc

Γ )Ωω is a core for
Hω. The spectrum of Hω is then what we refer to as the spectrum of the infinite system. This is
sometimes referred to as the bulk spectrum. Our main goal is to establish a spectral gap above the
ground state of such a GNS Hamiltonian, Hω.

It is easy to see that ω is τ -invariant if and only if ω(δ(A)) = 0 for all A ∈ Aloc
Γ . We recall that

a state ω is called a ground state for δ if

(7.7) ω(A∗δ(A)) ≥ 0, for all A ∈ Aloc
Γ .

A simple argument shows that ω(δ(A)) = 0 for all A ∈ Aloc
Γ if and only if ω(A∗δ(A)) ∈ R for all

A ∈ Aloc
Γ . Hence, any ground state for δ is necessarily a τ -invariant state.

The GNS Hamiltonian for any ground state ω is non-negative and the cyclic vector Ωω satisfies
HωΩω = 0, i.e. min spec(Hω) = 0. As a consequence, if there is a γ > 0 for which

(7.8) ⟨πω(A)Ωω, Hω πω(A)Ωω⟩ = ω(A∗δ(A)) ≥ γω(A∗A) = γ∥πω(A)Ωω∥2

for all A ∈ Aloc
Γ such that ω(A) = 0, then the ground state of Hω is unique and, moreover,

gap(Hω) := sup{δ ≥ 0 : spec(Hω) ∩ (0, δ) = ∅} ≥ γ.

Thus, we say that ω is a unique gapped ground state if (7.8) is satisfied
We now return to the situation of interest: uniform perturbation models with perturbations that

converge locally in F -norm. In Section 7.3 we study the limiting infinite volume state for each
0 ≤ s < s0, and analyze the spectral gap of these states in Section 7.4

7.3. Stability of LTQO and the existence of a pure infinite volume state. Recall that the
regions Λp

n for a perturbation model are defined using the indistinguishability radius, see Defin-
tion 6.5(iv). Since the initial interactions are frustration-free, the indistinguishability radius implies
that the ground state space of each unperturbed Hamiltonian satisfies the following estimate: for
each n ≥ 1, x ∈ Λn, 0 ≤ k ≤ rΩx (Λn), and A ∈ A

bΛn
x (k)

,

(7.9) ∥PΛn(0)APΛn(0)− ω
(n)
0 (A)PΛn(0)∥ ≤ |bΛn

x (k)|∥A∥Ω(rΩx (Λn)− k)

where PΛn(0) is the ground state projection associated to HΛn and ω
(n)
0 is the corresponding ground

state functional, see (7.11) below. As discussed in Section 2.2.2 and demonstrated in Sections 5-6,
this LTQO property is crucial for stability of the gap. When studying the thermodynamic limit,
one is often interested in the perturbation regions becoming extensive, i.e. Γp = Γ where

Γp =
{
x ∈ Γ | ∃ m ≥ 1 s.t. x ∈

⋂
n≥mΛp

n

}
.

As discussed in Section 6.3.1, when Γ is infinite the conditions of a uniform perturbation model
guarantee that rΩx (Λn) → ∞ for any x ∈ Γp. This motivates us to consider uniform perturbation
models that are indistinguishable everywhere in the following sense:
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Definition 7.1. We say a perturbation model with decay function Ω as in Definition 6.5(iv) is
everywhere indistinguishable if for all x ∈ Γ,

(7.10) rΩx (Λn) → ∞ as n→ ∞.

From the definition of indistinguishability radius it follows immediately that for all x, y ∈ Λn,
rΩx (Λn) ≥ rΩy (Λn)− d(x, y) and, hence, |rΩx (Λn)− rΩy (Λn)| ≤ d(x, y). Therefore, (7.10) holds for all
x ∈ Γ if and only if it holds for some x ∈ Γ.

Clearly, any everywhere indistinguishable uniform perturbation model has an LTQO estimate as
in (7.9) which becomes vanishingly small in the thermodynamic limit for any x ∈ Γ. One of the
main goals of this section is to show that for all 0 ≤ s < s0 the perturbed model has a similarly
vanishing LTQO estimate and, moreover, the finite volume states

(7.11) ω(n)
s (A) =

TrPΛn(s)A

TrPΛn(s)
for A ∈ AΛn

converge to a pure infinite volume state ωs on AΓ. Here, we recall that PΛn(s) is the spectral

projection of HΛn(s) onto ΣΛn
1 (s) as defined in (2.31). We prove the stability of the LTQO estimate

and existence of the limiting infinite volume state in Theorem 7.2, and show that the state is pure
in Corollary 7.3.

The finite and infinite volume spectral flow automorphisms play a key role in the proof of
Theorem 7.2. As discussed, e.g., in Section 6.2, for any 0 < γ < γ0 there exists a function of decay
class (η, γ

2v , θ), which we denote here by Gγ
α, that can be used in the quasi-locality estimates for

the finite volume spectral flows α
(n)
s uniformly in n ≥ 1 and 0 ≤ s ≤ sγ . This decay function may

also be used in the quasi-locality estimates for the limiting spectral flow automorphisms αs for the
same range of s. We use such a function in the statement of Theorem 7.2.

Theorem 7.2. For an everywhere indistinguishable uniform perturbation model with a sequence
Φn that converges locally in F -norm in BF (see (7.3)), the pointwise limit

(7.12) ωs(A) = lim
n→∞

ω(n)
s (A), A ∈ Aloc

Γ

exists and defines a state on AΓ for every 0 ≤ s < s0. Moreover, for any 0 < γ < γ0 such that
s ≤ sγ and any local observable A ∈ Abx(k) with x ∈ Γ and k ≥ 0, one has that for any m ≥ 0 and
all n ≥ 1 sufficiently large

(7.13) ∥PΛn(s)APΛn(s)− ω(n)
s (A)PΛn(s)∥ ≤ |bx(k)|∥A∥

(
Ω(rΩx (Λn)− k −m) + 4Gγ

α(m)
)
.

We remark that (7.13) is an LTQO property for ω
(n)
s . In fact, our estimates will show

(7.14) |ω(n)
s (A)− ωs(A)| ≤ |bx(k)|∥A∥

(
2Ω(rΩx (Λn)− k −m) + 6Gγ

α(m)
)

where the quantities are as in (7.13). Therefore, one can replace ω
(n)
s with ωs in (7.13) and a similar

bound holds with an appropriate change to the estimates on the right-hand-side.

Proof. Fix s ∈ [0, s0) and let γ > 0 be such that s ≤ sγ , which is guaranteed to exist by (7.2). We

begin by considering the finite volume state ω
(n)
s . Denote by α

(n)
s the spectral flow automorphism

associated with HΛn(s) and ξ = γ as in (2.40). Since α
(n)
s (PΛn(s)) = PΛn(0), see (2.41), we can

rewrite the perturbed finite volume states in terms of the initial state via

(7.15) ω(n)
s = ω

(n)
0 ◦ α(n)

s .

The results of this theorem for values s > 0 follow from establishing the analogous properties for

ω
(n)
0 and the uniform quasi-locality of α

(n)
s . In particular, for sufficiently large n, quasi-locality is

used to approximate observables of the form α
(n)
s (A) by an n-independent local operator. We first

discuss this in more detail.
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Consider an observable A ∈ A
bΛn
x (k)

for n ≥ 1, x ∈ Λn and k ≥ 0. For each m ≥ 0, denote by

A
(n)
m (s) ∈ A

bΛn
x (k+m)

the strictly local approximation of α
(n)
s (A) given by

(7.16) A(n)
m (s) = ΠΛn

bΛn
x (k+m)

(α(n)
s (A))

where we use the localizing maps introduced in Section 4.3, see (4.29) and the subsequent discus-

sion. Recall that the spectral flow automorphisms α
(n)
s converge strongly to αs on AΓ. Using the

consistency relation ΠΛ
X(A) ⊗ 1lΛ′\Λ = ΠΛ′

X (A) for any A ∈ AΛ and X ⊂ Λ ⊂ Λ′, we find that for
n′ ≥ n sufficiently largeA(n)

m (s)−A(n′)
m (s)

 =
ΠΛn′

bx(k+m)

(
α(n)
s (A)− α(n′)

s (A)
) ≤

α(n)
s (A)− α(n′)

s (A)
 .(7.17)

Thus, strong continuity implies that {A(n)
m (s)}n≥1 is uniformly Cauchy and therefore converges, i.e.

(7.18) lim
n→∞

A(n)
m (s) = Am(s)

for some Am(s) ∈ Abx(k+m). As a consequence, for each A ∈ Abx(k) there is an N so that for all
n ≥ N ,

(7.19) ∥α(n)
s (A)−Am(s)∥ ≤ ∥α(n)

s (A)−A(n)
m (s)∥+ ∥A(n)

m (s)−Am(s)∥ ≤ 3|bΛn
x (k)|∥A∥Gγ

α(m).

Here, we have use (7.18), that s ≤ sγ , and applied Lemma 4.3. Said differently, given m ≥ 0,
the same local operator Am(s) ∈ Abx(k+m) can be used to approximate the transformed operator

α
(n)
s (A) for all n sufficiently large.
We now prove (7.12) for s = 0. Fix x ∈ Γ, k ≥ 0, and A ∈ Abx(k). Note bx(k) ⊂ Λn for

all n sufficiently large. Moreover, Definition 7.1 implies k ≤ min{rΩx (Λn), r
Ω
x (Λn′)} for n′ ≥ n

sufficiently large. In this case, using (7.9) and the frustration free property of the initial ground
state projectors, i.e. PΛn(0)PΛn′ (0) = PΛn′ (0), we find

|ω(n)
0 (A)− ω

(n′)
0 (A)| = ∥

(
ω
(n)
0 (A)− ω

(n′)
0 (A)

)
PΛn′ (0)∥

≤ ∥ω(n)
0 (A)PΛn′ (0)− PΛn′ (0)APΛn′ (0)∥

+∥PΛn′ (0)APΛn′ (0)− ω
(n′)
0 (A)PΛn′ (0)∥

≤ 2|bx(k)|∥A∥Ω(min{rΩx (Λn), r
Ω
x (Λn′)} − k).(7.20)

Here we have used that Ω is non-increasing. Since we assumed rΩx (Λn) → ∞, it follows that ω
(n)
0 (A)

converges for all A ∈ Aloc
Γ .

Now, consider 0 < s ≤ sγ for some 0 < γ < γ0. For each n ≥ 1, let α
(n)
s be the spec-

tral flow automorphism with ξ = γ. We use (7.15) and (7.19) to obtain similar estimates for
the perturbed models. Given the parameters above, for each choice of m ≥ 0 the quantity
l = min{rΩx (Λn), r

Ω
x (Λn′)} − k −m ≥ 0 for sufficiently large n ≤ n′. In this case, for A ∈ Abx(k) as

above, an application of (7.19) shows

|ω(n)
s (A)− ω(n′)

s (A)| = |ω(n)
0 (α(n)

s (A))− ω
(n′)
0 (α(n′)

s (A))|

≤ |ω(n)
0 (Am(s))− ω

(n′)
0 (Am(s))|+ 6|bx(k)|∥A∥Gγ

α(m) .(7.21)

Combining this with (7.20), we have

(7.22) |ω(n)
s (A)− ω(n′)

s (A)| ≤ |bx(k)|∥A∥(2Ω(l) + 6Gγ
α(m)),

from which it is clear that the limit in (7.12) exists.
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To prove (7.13), we argue similarly. Recall that PΛn(0) = α
(n)
s (PΛn(s)). Using that α

(n)
s is an

automorphism and (7.15) , we find that with l = rΩx (Λn)− k −m

∥PΛn(s)APΛn(s)− ω(n)
s (A)PΛn(s)∥ = ∥PΛn(0)α

(n)
s (A)PΛn(0)− ω

(n)
0 (α(n)

s (A))PΛn(0)∥

≤ ∥PΛn(0)A
(n)
m (s)PΛn(0)− ω

(n)
0 (A(n)

m (s))PΛn(0)∥
+ 2∥α(n)

s (A)−A(n)
m (s)∥

≤ |bx(k)|∥A∥(Ω(l) + 4Gγ
α(m)).(7.23)

For the last inequality, we have again used (7.9) and applied Lemma 4.3. □

We now turn to showing that the states ωs are pure for each 0 ≤ s < s0. In fact, we use LTQO to
show that these states are unique in the sense that any sequence of finite-volume states defined by
density matrices ρn contained in the range of the spectral projections PΛn(s) necessarily converge
to ωs.

Corollary 7.3. Consider an everywhere indistinguishable uniform perturbation model with a se-
quence Φn that converges locally in F -norm in BF (see (7.3)), and fix 0 ≤ s < s0. For any sequence
of density matrices ρn = PΛn(s)ρn ∈ AΛn the limit

(7.24) lim
n→∞

TrρnA = ωs(A)

holds for all A ∈ Aloc
Γ , and ωs is a pure state on AΓ for each 0 ≤ s < s0.

Proof. Note that if PΛn(s)ρn = ρn for all n ≥ 1, then

TrρnA = TrρnPΛn(s)APΛn(s) = ω(n)
s (A) + Trρn[PΛn(s)APΛn(s)− ω(n)

s (A)PΛn(s)],

and so the first claim follows from (7.12) and (7.13).
To see that ωs is pure, we use the thermodynamic limit of the spectral flow to relate it to ω0 via

(7.25) ωs(A) = ω0(αs(A)),

and prove that ω0 is pure.
Assume η is a state that is majorized by ω0, i.e. η(A

∗A) ≤ cω0(A
∗A) for some c ≥ 1. Since ω0

is the ground state of a frustration-free system, it follows that ω0(HΛn) = 0 for all n. Restricting η
to AΛn produces a state implemented by a density matrix ηn. By the majorizing assumption and
the frustration-free property, this matrix satisfies ηn = PΛn(0)ηn. Therefore, applying (7.24) with
s = 0, one finds the states defined by ηn necessarily converge to ω0. Hence η = ω0, and ω0 is a pure
state. Since αs is an automorphism, (7.25) implies that ωs is also pure. □

7.4. Spectral gap stability of the GNS Hamiltonian. We will now provide conditions under
which the state ωs, whose existence is guaranteed by Theorem 7.2, is a gapped ground state with
respect to the dynamics δs from (7.5). Since we will apply similar arguments to systems with
discrete symmetries in the next section, we first prove a more general result.

Theorem 7.4. Let Λn ↑ Γ and assume that Hn = H∗
n ∈ AΛn is a sequence of Hamiltonians for

which there is a derivation δ on AΓ with

(7.26) δ(A) = lim
n→∞

[Hn, A]

for all A ∈ Aloc
Γ . Set En = min spec(Hn) and suppose there are sequences of non-negative numbers

{γn}n≥1 and {ϵn}n≥1 so that:

(i) ϵn → 0 as n→ ∞,
(ii) lim supn γn > 0,
(iii) The spectral projection Pn of Hn − En1l onto [0, ϵn] satisfies

(7.27) (1l− Pn)(Hn − En1l) ≥ γn(1l− Pn) .
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Then, for any state ω on AΓ, if there exists a sequence Qn ∈ AΛn of nonzero orthogonal projections
Qn ≤ Pn such that

(7.28) lim
n→∞

∥PnAQn − ω(A)Qn∥ = 0 for all A ∈ Aloc
Γ ,

then ω is a unique gapped ground state for δ. In particular, for any A ∈ Aloc
Γ with ω(A) = 0,

(7.29) ω(A∗δ(A)) ≥
(
lim sup

n
γn

)
ω(A∗A).

Proof. Without loss of generality, we will assume that En = 0 for all n ≥ 1. We begin with two
observations. First, we claim that for all A ∈ Aloc

Γ ,

(7.30) lim
n→∞

TrρnA = ω(A)

for any sequence {ρn}n≥1 of density matrices with Qnρn = ρn ∈ AΛn for all n ≥ 1. Here we argue
as in Corollary 7.3. In fact, since Qn ≤ Pn, each of these density matrices satisfies ρn = ρnQn =
QnρnPn. In this case, for any A ∈ Aloc

Γ and n ≥ 1 sufficiently large,

TrρnA− ω(A) = Trρn[PnAQn − ω(A)Qn] .

By (7.28), the above tends to zero, and thus we have (7.30).
Next, we prove that ω is invariant under the dynamics eitδ by showing that ω(δ(A)) = 0 for all

A ∈ Aloc
Γ . To see this, note that

(7.31) ω(δ(A)) = lim
n→∞

Trρn[Hn, A] = 0 for all A ∈ Aloc
Γ .

Here the second equality above follows as ρn = ρnPn, ϵn → 0, and

(7.32) |Trρn[Hn, A]| = |Trρn[HnPn, A]| ≤ 2ϵn∥A∥

where for the inequality we used that Pn is the spectral projection of Hn onto [0, ϵn]. We approxi-
mate to see that the first equality in (7.31) is true. For any m ≤ n and each A ∈ Aloc

Γ ,

|ω(δ(A))− Trρn[Hn, A]| ≤ |ω(δ(A))− ω([Hm, A])|+ |ω([Hm, A])− Trρn[Hm, A]|(7.33)

+ |Trρn([Hm, A]− [Hn, A])|.

The existence of δ(A) guarantees that for n ≥ m ≥ 1 sufficiently large enough, both the first and
last term above can be made arbitrarily small. For any such m, the second term above can be
made small, using (7.30), and a possibly larger choice of n ≥ 1. This completes the proof of (7.31).

We now show that ω is a ground state for δ. Arguing as above, we find that for any A ∈ Aloc
Γ ,

(7.34) ω(A∗δ(A)) = lim
n→∞

TrρnA
∗[Hn, A]

and in addition, the estimate

(7.35) |TrρnA∗AHn| ≤ ϵn∥A∥2

holds. Since Hn ≥ 0, we also have that

(7.36) TrρnA
∗[Hn, A] + TrρnA

∗AHn = TrρnA
∗HnA ≥ 0.

The fact that ω is invariant under the dynamics implies ω(A∗δ(A)) ∈ R for all local A, and so for
any n ≥ 1,

ω(A∗δ(A)) ≥ ω(A∗δ(A))− TrρnA
∗HnA

≥ −|ω(A∗δ(A))− TrρnA
∗[Hn, A]| − |TrρnA∗AHn|.

where we used (7.36) for the final estimate above. From (7.34) and (7.35), we conclude that ω
satisfies (7.7) and hence is a ground state for δ.
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To argue that ω is a gapped ground state for δ, we establish (7.29). Note that since ω is a ground
state of δ, we conclude from (7.34) that

(7.37) ω(A∗δ(A)) = lim
n→∞

|TrρnA∗[Hn, A]|

for all A ∈ Aloc
Γ . Now, since (1l− Pn)ρn = 0, we may re-write

(7.38) TrρnA
∗[Hn, A] = TrρnA

∗Hn(1l− Pn)A+TrρnA
∗[HnPn, A].

The first term above is non-negative. In particular, an application of (7.27) shows that

TrρnA
∗Hn(1l− Pn)A ≥ γnTrρnA

∗(1l− Pn)A ≥ 0.

For the second term in (7.38), we find that

|TrρnA∗[HnPn, A]| ≤ ∥A∗[HnPn, A]∥ ≤ 2ϵn∥A∥2.
As a result, we have the following the lower bound

(7.39) |TrρnA∗[Hn, A]| ≥ γnTrρnA
∗(1l− Pn)A− 2ϵn∥A∥2.

Now, let A ∈ Aloc
Γ and suppose that ω(A) = 0. Observe that for such an observable, (7.28)

implies that

(7.40) TrρnA
∗PnA = TrρnA

∗[PnAQn − ω(A)Qn] → 0.

Since ϵn → 0 and Tr(ρnA
∗A) → ω(A∗A), we conclude from (7.39) that

(7.41) lim sup
n

|Tr(ρnA∗[Hn, A])| ≥ lim sup
n

γnTr(ρnA
∗A) =

(
lim sup

n
γn

)
ω(A∗A),

and this completes the proof. □

The previous theorem implies that the uniform lower bound obtained for uniform sequences of
finite systems in Section 6 carries over to the gap for the GNS HamiltonianHωs of the corresponding
thermodynamic limit. Since we are interested in infinite volume ground states, we require that
the splitting of the lower part of the spectrum ΣΛn

1 (s) tends to a single point in the sense that

diam(ΣΛn
1 (s)) → 0 as n → ∞. This is the case if (6.32) holds since diam(ΣΛn

1 (s)) ≤ 2s(δn + ϵn).
We finish this section with a precise statement of this fact for the perturbation models we have
been considering.

Corollary 7.5. Assume that (6.32) holds for a everywhere indistinguishable uniform perturbation
model for which the perturbations converge locally in F -norm. Then, for any 0 < γ < γ0 and each
0 ≤ s ≤ sγ, the GNS Hamiltonian associated with the pure state ωs from Theorem 7.2 has a simple
ground state eigenvalue 0 with a spectral gap above it bounded below by γ.

Proof. Consider such a perturbation model, and fix 0 ≤ s ≤ sγ for some positive γ < γ0. Since this
model satisfies Assumption 6.7 and Definition 7.1, the results of Theorem 7.2 and Corollary 7.3
hold. In particular, the state ωs on AΓ from Theorem 7.2 is pure. Since this model satisfies (6.32),
Corollary 6.9 also holds, and so there are non-negative sequences {ϵ′n(s)}n≥1 and {γ′n(s)}n≥1 for
which

(i) ϵ′n(s) → 0 as n→ ∞,
(ii) lim supn γ

′
n(s) ≥ γ,

(iii) For all n ≥ 1,

spec(HΛn(s)− En(s)1l) ⊂ [0, ϵ′n(s)] ∪ [ϵ′n(s) + γ′n(s),∞) .

This shows that the conditions of Theorem 7.4 hold where we take Qn = Pn = PΛn(s) and ob-
serve that (7.28) holds by (7.13), (7.12), and Assumption 7.1. Our claims about the gap for the
corresponding GNS Hamiltonian now follow from (7.29) and the comments following (7.8). □
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8. Symmetry Restricted Stability and the Thermodynamic limit of the ground
states with discrete symmetry breaking

8.1. Discrete symmetries. In many interesting systems, the interactions have symmetries. When
considering the thermodynamic limit we need to allow for the possibility that symmetries of the
model are spontaneously broken. In the case of a continuous symmetry, such as the spin rotations
about an axis, the Goldstone theorem [63] implies that, under quite general conditions, there is no
gap in the spectrum above the ground state in the thermodynamic limit. Therefore, in our context
of gapped ground states, only discrete symmetries need to be considered.

An important consequence of the results in this section is the stability of the gapped portion
of the ground state phase diagram of a variety of quantum lattice models, which includes many
special cases studied previously in the literature [3, 19,33,42,54,99,105].

We now proceed to setting up the class of models with discrete symmetry breaking for which
we prove stability of the symmetry breaking and the ground state gap. We find a compromise
between generality and an effort to state the assumptions succinctly and transparently. Instead of
attempting to describe the most general situation, we will focus on three types of discrete symmetry
breaking (described below) that cover a large number of models considered in the literature. We
start with unperturbed models defined on an increasing and absorbing sequence of finite volumes
Λn, n ≥ 1, that have a symmetry described by a finite set of automorphisms σg labeled by g ∈ G.
These automorphism act on AΛn and they are n-dependent in that sense.

Local topological quantum order expresses the indistinguishability of the ground states by local
observables, which is made precise by our notion of the indistinguishability radius. If a spontaneous
symmetry breaking occurs that can be detected by a local order parameter, then clearly one cannot
expect LTQO to hold for all local observables. However, if the perturbation respects the symmetry,
then stability can be again verified using a modified notion of LTQO. We introduce two indistin-
guishability radii that take into account the model symmetry: the G-symmetric indistinguishability
radius (see Definition 8.1) and the G-broken indistinguishability radius (see Assumption 8.2). We
show that the uniform finite-volume stability results from Section 6 hold when perturbing at sites
with a sufficiently large G-symmetric indistinguishability radius. In this case, though, it is not clear
if the uniform gap stability extends to the infinite system. To this end, we show that a sufficiently
large lower bound on the G-broken indistinguishability radius guarantees a non-vanishing spectral
gap for the GNS Hamiltonian.

Let us now describe three types of symmetry breaking to which our arguments apply. In short,
they are (i) a finite group of local gauge symmetries, (ii) partial breaking of translation invariance
to an infinite subgroup (periodic states), and (iii) finite lattice symmetries in translation invariant
systems (reflections and rotations). In each case stability for the uniform sequence of finite systems
follows from a ground state indistinguishability condition for a subalgebra of the local observables

generated by the symmetry, which we denote by Aloc,G
Γ . The superscript G refers to the symmetry

as it is represented in the system and not just the abstract symmetry group. In each case G labels
a finite set of automorphisms that commute with the infinite system’s initial dynamics as well as
the perturbed dynamics. When AΓ carries a representation of Zd by translations, we denote these
automorphisms by ρa, a ∈ Zd.

For each type of symmetry breaking, the automorphisms and algebra Aloc,G
Γ are as follows:

(S1) Local Gauge Symmetry: G is a finite group and for each x ∈ Γ there is a representation of G
by automorphisms σxg , g ∈ G, on A{x} for which σg =

⨂
x∈Γ σ

x
g denotes the corresponding

automorphism on AΓ. In this case, the gauge symmetry is broken in the ground states and

Aloc,G
Γ is the G-invariant elements of Aloc

Γ :

(8.1) Aloc,G
Γ = {A ∈ Aloc

Γ | σg(A) = A, ∀ g ∈ G}.
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(S2) Translation-Invariant: The infinite system has a d-dimensional translation invariance rep-
resented by automorphisms ρa, a ∈ Zd, and this symmetry is broken in the set of ground
states to the subgroup (N1Z) × · · · × (NdZ) for integers N1, . . . , Nd > 1. In this situation
we take G = ZN1 × · · · × ZNd

where we identify ZNi as a set with {0, . . . , Ni − 1} ⊂ Z. We
consider the subset of Aloc

Γ consisting of observables that reflect this symmetry (but are not
invariant):

(8.2) Aloc,G
Γ =

{∑
a∈G

ρa(A) | A ∈ Aloc
Γ

}
.

(S3) Finite Group of Lattice Symmetries: G is a finite group of symmetries of Γ acting on AΓ as
automorphisms σr, r ∈ G, and we assume that the system also has a translation symmetry,
acting by automorphisms {ρa | a ∈ Zd}, that remains unbroken in the ground states of the
initial dynamics. In this situation, define

(8.3) Aloc,G
Γ = {A ∈ Aloc

Γ | ∀ r ∈ G, ∃ ar ∈ Zd s.t. σr(A) = ρar(A)}.

Key for the analysis below will be how the automorphisms in each of these cases behave under
composition with the localizing operators ΠΛ

X from Section 4, see (4.29). For (S1), the action of σg
on AΛ is given by conjugating with UΛ(g) =

⨂
x∈Λ Ux(g) where Ux(g) is a unitary that implements

σxg . As a consequence, each σg commutes with the partial trace trΛ\X : AΛ → AX , and hence also
with the localizing operators:

(8.4) σg ◦ΠΛ
X = ΠΛ

X ◦ σg.

For both (S2) and (S3), we will assume periodic boundary conditions on Λ and therefore each of
the automorphisms ρa and σr has a well-defined restriction onto AΛ. In this case, one does not
have commutativity but rather a covariant relation:

(8.5) ρa ◦ΠΛ
X = ΠΛ

X+a ◦ ρa, σr ◦ΠΛ
X = ΠΛ

r(X) ◦ σr

for all a ∈ Zd and r ∈ G.
The differences between (8.4)-(8.5) as well as the various choices forAloc,G

Γ cause a small change in
the arguments for stability below. We provide the full argument for the case (S1) in Sections 8.2-8.3
and discuss the necessary alterations for cases (S2) and (S3) in Section 8.4.

8.2. Symmetry restricted indistinguishability and stability of the spectral gap. For the
case (S1), we consider the same set-up as in Section 7.3 with a few modifications due to the gauge
symmetry G. Once again there is a sequence (Λn, dn) of increasing and absorbing finite subsets of
(Γ, d) for which the unperturbed HamiltoniansHΛn are frustration-free, uniformly finite-range (with
range R), and uniformly bounded. Moreover, we assume that the interaction is gauge symmetric,
and so

HΛn =
∑

X⊆Λn

ηn(X)

where ηn(X) ∈ Aloc,G
Γ . As before, we assume a non-vanishing spectral gap:

γ0 = inf
n≥1

gap(HΛn) > 0.

The perturbations are given by interactions Φn which take values in Aloc,G
Γ and have a finite

F -norm as in Definition 6.5(v). To ensure that the conditions of Section 7.2 are satisfied, and in
particular (7.3), we assume both ηn and Φn eventually become constant for any finite X ⊂ Γ, i.e.
there are interactions η and Φ so that ηn(X) = η(X) and Φn(X) = Φ(X) for n sufficiently large.
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In particular, this implies that the perturbations converge locally in F -norm, and so Section 7 is
relevant. The perturbed Hamiltonians are then given by

(8.6) HΛn(s) = HΛn + s
∑

X⊆Λn

X∩Λp
n ̸=∅

Φn(X)

where the perturbation regions Λp
n are chosen similarly to (6.6) for an indistinguishability radius

that reflects the symmetry of the model. We will consider two possible candidates for this radius.
First, we consider

(8.7) Λp
n = {x ∈ Λn : rΩ,G

y (Λn) ≥ Kn + Ln for all y ∈ bΛn
x (Kn)}

whereKn, Ln are chosen appropriately and rΩ,G
y (Λn) is the G-symmetric indistinguishability radius:

Definition 8.1 (G-symmetric indistinguishability radius). Let Ω : R → [0,∞) be a non-increasing
function. The G-symmetric indistinguishability radius of HΛ at x ∈ Λ, is the largest integer

rΩ,G
x (Λ) ≤ diam(Λ) such that for all integers 0 ≤ k ≤ n ≤ rΩ,G

x (Λ) and all observables A ∈
AbΛx (k)

∩ Aloc,G
Γ ,

(8.8) ∥PbΛx (n)
APbΛx (n)

− ωΛ(A)PbΛx (n)
∥ ≤ |bΛx (k)|∥A∥Ω(n− k)

where ωΛ(A) = Tr(APΛ)/Tr(PΛ).

With perturbation regions defined using the G-symmetric indistinguishability radius, the main
difficulty in adapting the framework from the previous sections is showing the results from Section 5
still hold as we no longer assume indistinguishability for all observables. The key observation is that
in the proofs of Theorem 5.1 and Theorem 5.3, the indistinguishability condition is only applied
to the anchored observables Φ(1)(x,m, s) constructed in Section 4, see (4.46). Hence, these results
are also valid for a Hamiltonian HΛn(s) as in (8.6)-(8.7) as long as the corresponding operators

Φ
(1)
n (x,m, s) belong to Aloc,G

Γ .

We first note that since Aloc,G
Γ is an algebra, the anchoring procedure provided in Section 2.5.1

also produces terms that again belong to the algebra, and so one can assume an anchored form for

HΛn(s) comprised of terms belonging to Aloc,G
Γ . With the usual decay assumptions on the pertur-

bation, it is clear that the results of Section 4 still apply to HΛn(s). Considering the definitions

of the spectral flow, see (2.38)-(2.40), and the integral operator F (n)
s , see (4.16), the symmetry

assumptions on HΛn(s) guarantee that both of these quasi-local maps commute with the automor-

phisms σg, g ∈ G. Since Φ
(1)
n (x,m, s) is defined in terms of compositions of these quasi-local maps

and the localizing maps acting on the interaction terms (see (4.46)) for the gauge symmetry case

(S1) it follows from (8.4) that Φ
(1)
n (x,m, s) ∈ Aloc,G

Γ as desired. For the cases (S2) and (S3), (8.4)
does not hold and the argument needs to be modified. This is main difference between the different
symmetry cases, and is the topic of Section 8.4.

If the sequence HΛn(s) ∈ Aloc,G
Γ constructed as in (8.6)-(8.7) is a uniform perturbation model,

i.e. satisfies Assumption 6.7, then it is clear that the spectral gaps are stable in the sense of
Theorem 6.8. In particular, for each 0 < γ < γ0 there is an sγ > 0 so that the finite volume gaps
are uniformly bounded as follows:

inf
n

gap(HΛn(s)) ≥ γ, 0 ≤ s ≤ sγ .

If additionally δn, ϵn → 0, see (6.32), then Corollary 6.9 holds and one can consider the stability of
the ground state gap in the thermodynamic limit as in Section 7.

For the thermodynamic limit, we additionally assume that the model is everywhereG-indistinguishable
in the sense that

(8.9) rΩ,G
x (Λn) → ∞ as n→ ∞,
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for all x ∈ Γ. Under the assumption of (8.9) many of the results from Section 7 are obtained for

observables A ∈ Aloc,G
Γ with virtually no modification. Using the G-symmetric indistinguishability

radius, the two statements of Theorem 7.2 still hold for A ∈ Aloc,G
Γ as well as the convergence from

Corollary 7.3, i.e.

(8.10) ωs(A) = lim
n→∞

ω(n)
s (A) = lim

n→∞

TrPΛn(s)A

TrPΛn(s)
= lim

n→∞
TrρnA,

for A ∈ Aloc,G
Γ and all density matrices ρn = ρnPΛn(s) ∈ AΛn . The latter can be extended to a

unique G-symmetric state on AΓ by

(8.11) ωs(A) = ωs(AG), AG :=
1

|G|
∑
g∈G

σg(A).

One can consider the spectral gap for the GNS Hamiltonian associated with the state ωs. How-
ever, not all results from Section 7 hold when using G-symmetric indistinguishability radius. Spon-
taneous breaking of the G-symmetry means that ωs is not a pure state. While the main inequality

(7.29) from Theorem 7.4 holds for A ∈ Aloc,G
Γ , since this algebra is not dense in AΓ it is not

immediately clear what this implies for the spectral gap of the GNS Hamiltonian associated to
ωs. To address this, we impose more detailed assumptions suitable to cover the symmetry broken
situation.

8.3. Symmetry breaking and its stability. The goal of this section is to prove that in the case of
a G-broken LTQO condition, see Assumption 8.2 below, the simplex of infinite volume ground states
is preserved for sufficiently small s and, moreover, the GNS Hamiltonian associated with each pure
ground state has a nonzero spectral gap. We will assume a sequence of finite volume Hamiltonians
of the form (8.6) with respect to perturbation regions defined using the G-broken indistinguishability
radius rather than the G-symmetric indistinguishability radius (see (8.16) below). As we will show,
the latter radius is necessarily bounded from below by the former, and so the discussion from
the previous section still applies when using the G-broken indistinguishability radius to define the
perturbation regions.

Let Ss denote the set of all states onAΓ that can be obtained as weak limits of states onAΛn given
by density matrices ρn satisfying PΛn(s)ρn = ρn. Recall that the perturbations converge locally
in F -norm. In the situation that Theorem 6.8 holds, the family of infinite volume spectral flows
αs : AΓ → AΓ are a strongly continuous co-cycle of automorphisms, and moreover for 0 ≤ s ≤ sγ :

(8.12) Ss = {ω ◦ αs | ω ∈ S0},
see, e.g., [83, Theorem 7.4]. We assume that S0 is a simplex with the pure, (gauge) symmetry-
broken ground states as its extreme points. If we denote the set of pure states of Ss by Es, then
the relation (8.12) implies that Ss is also a simplex of the same dimension as

(8.13) Es = {ω ◦ αs | ω ∈ E0}.
Hence, the structure of the symmetry-broken ground states is preserved.

It is left to consider the spectral gap of the GNS Hamiltonians associated with ω ∈ E0. Assume
that E0 = {ω1, . . . , ωN} for mutually disjoint ωi, meaning that their GNS representations are
inequivalent. To prove a lower bound on the spectral gap of the GNS Hamiltonian associated with
each ωi

s := ωi ◦ αs, we assume the following G-broken local topological order condition on the
unperturbed Hamiltonians.

Assumption 8.2. We say that a model with local Hamiltonians HΛn satisfies local topological quan-
tum order with N G-broken phases (with decay function Ω) if G through composition with σg
acts transitively on E0, and there are N non-zero orthogonal projections P 1

bΛn
x (m)

, . . . , PN
bΛn
x (m)

onto

subspaces of kerH
bΛn
x (m)

such that the following properties hold:
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(i) There is a constant C such that for all m ≥ R

(8.14)

PbΛn
x (m)

−
N∑
i=1

P i
bΛn
x (m)

 ≤ CΩ(m);

(ii) There is a one-to-one correspondence between the projections P i
Λn

and the pure states ωi

via:

(8.15) ωi(A) = lim
n→∞

TrP i
Λn
A

TrP i
Λn

,

(iii) The G-broken indistinguishability radius diverges for each x ∈ Γ. That is, rΩ,E0
x (Λn) → ∞

where rΩ,E0
x (Λn) ≤ diamn(Λn) is the largest integer so that for all 0 ≤ k ≤ m ≤ rΩ,E0

x (Λn)
and for all local observables A ∈ A

bΛn
x (k)

(8.16)
P i

bΛn
x (m)

AP j

bΛn
x (m)

− δijω
i(A)P i

bΛn
x (m)

 ≤ |bΛn
x (k)|∥A∥Ω(m− k).

Before stating the main result, we show that transitivity of the group action implies that the G-
broken indistinguishability radius is a lower bound on the G-symmetric indistinguishability radius.
From the action of G on E0, it is clear that the state

(8.17) ω0(A) =
1

N

N∑
i=1

ωi(A), A ∈ AΓ

is G-symmetric. In general, ω(A) = ω(AG) for any symmetric state ω ∈ S0 where AG is as in
(8.11). Since such a state is a convex combinations of ωi ∈ E0, transitivity then guarantees that ω0

is the unique G-symmetric state as for all i = 1, . . . , N ,

(8.18) ωi(AG) =
1

|G|
∑
g∈G

ω1(σgig(A)) = ω1(AG)

where gi ∈ G is such that ωi = ω1 ◦ σgi . More generally, transitivity implies that for all i

(8.19) ω0(A) = ωi(A), A ∈ Aloc,G
Γ .

Here, we use (8.17), (8.18) and that ω0 is G-symmetric. This argument could be simplified using

the invariance of A ∈ Aloc,G
Γ under σg, g ∈ G. However, the more general justification above also

holds for the cases (S2) and (S3) considered in Section 8.4.
Now, given (8.19), Assumption 8.2 implies (8.8). Specifically, there is C ′ > 0 so that for any

0 ≤ k ≤ m ≤ rΩ,E0
x (Λn) and A ∈ A

bΛn
x (k)

∩ Aloc,G
Γ

(8.20) ∥P
bΛn
x (m)

AP
bΛn
x (m)

− ω0(A)PbΛn
x (m)

∥ ≤ C ′|bΛn
x (k)|∥A∥Ω(m− k).

Since ωΛn(A) = Tr(PΛnA)/Tr(PΛn) is a G-symmetric state on AΛn , the pointwise limit ωΛn → ω0

holds as ω0 is the unique G-symmetric state in S0. Therefore, (8.20) implies

rΩ,E0
x (Λn) ≤ rC

′Ω,G
x (Λn)

for n sufficiently large.
The main result of this section proves stability for a sequence of Hamiltonians HΛn(s) as in (8.6)

with perturbation regions defined using the G-broken indistinguishability radius:

(8.21) Λp
n = {x ∈ Λn : rΩ,E0

y (Λn) ≥ Kn + Ln for all y ∈ bΛn
x (Kn)}.

In particular, we require this sequence forms a uniform gauge symmetry-breaking perturbation model
by which we mean:

(i) Both the initial interaction and perturbation take values in the algebra Aloc,G
Γ .
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(ii) It is a uniform perturbation model as in Definition 6.5 and Assumption 6.7 with perturbation
regions as in (8.21).

Theorem 8.3. Assume that S0 is a simplex with pure, gauge symmetry broken extreme points, and
that HΛn(s), n ≥ 1 is a uniform gauge symmetry-breaking perturbation model for which (6.32) and
Assumption 8.2 hold. Fix 0 < γ < γ0. Then for any 0 ≤ s ≤ sγ the following properties hold:

(i) The orthogonal projections P i
Λn

(s) for which α
(n)
s (P i

Λn
(s)) = P i

Λn
satisfy:PΛn(s)−

N∑
i=1

P i
Λn

(s)

 ≤ CΩ(diamn(Λn));(8.22)

where C is as in (8.14). Moreover, defining ωi
s = ωi ◦ αs one has

ωi
s(A) = lim

n→∞

TrP i
Λn

(s)A

TrP i
Λn

(s)
(8.23)

and for all x, k,m, A ∈ Abx(k) and sufficiently large n:

(8.24)
P i

Λn
(s)AP j

Λn
(s)− δijω

i
s(A)P

i
Λn

(s)
 ≤ |bx(k)|∥A∥

(
Ω(rΩ,E0

x (Λn)− k −m) + 5Gα(m)
)
.

(ii) The set of limiting ground states Ss is an N -dimensional simplex satisfying (8.12) and the
GNS-Hamiltonian for each of its extreme points ωi

s ∈ Es has a positive spectral gap γs above a
unique ground state that satisfies

(8.25) γs ≥ lim sup
n

γ(HΛn(s)) ≥ γ.

Proof. For (i), (8.22) is immediate from (8.14) since α
(n)
s is norm preserving, and (8.23) follows

from (8.15) and the strong convergence α
(n)
s → αs. The LTQO property in (8.24) follows from

(8.16) and is proven using a similar argument as in Section 7, see specifically (7.23), and that for
sufficiently large n,

∥ωi(αs(A)− α(n)
s (A))∥ ≤ |bx(k)|∥A∥Gγ

α(m).

For (ii), note that the assumptions of Corollary 6.9 guarantee that Theorem 6.8 holds, and so
the phase structure is preserved as discussed above, see (8.12) and (8.13). Since the set of ground
states Ss is a simplex, its extreme points are disjoint states, i.e., their GNS representations are
inequivalent. This implies that the the GNS Hamiltonian Hωi

s
in each of these representations has

a non-degenerate ground state.
It remains to show that the finite-volume lower bounds for the spectral gap carry through in

the thermodynamic limit. This follows from an application of Theorem 7.4 with Pn = PΛn(s), and
Qn = P i

Λn
(s), i = 1, . . . , N . For this application we use Corollary 6.9 to verify (7.27), and (8.24)

to prove (7.28). For 0 ≤ s ≤ sγ , (7.29) implies that Hωi
s
has spectral gap above it bounded by

lim supn γ(HΛn(s)) ≥ γ. □

8.4. Modifications to handle the cases (S2) and (S3). In this section, we consider how to
modify the arguments in Sections 8.2-8.3 so that they apply to models with symmetry breaking
of the type (S2) or (S3). The main challenge here is to prove that the anchored interaction terms

constructed in Section 4 belong to the algebra Aloc,G
Γ so that the G-symmetric indistinguishability

condition can be used to establish the results from Section 5. In each case, we first outline the as-
sumptions on the lattice and interactions, and then move to discussing the necessary modifications.
We begin by considering the case (S3) as it is most similar to the gauge invariant case (S1).



76 B. NACHTERGAELE, R. SIMS, AND A. YOUNG

8.4.1. The case (S3). As outlined above, we consider that Γ is a lattice with two actions: one by
Zd via translations, and the other by a finite group of lattice symmetries G (such as reflections and
rotations). We require that the metric d on Γ respects these symmetries in the sense that for any
x, y ∈ Γ

(8.26) d(x, y) = d(r(x), r(y)) = d(x+ a, y + a)

for all r ∈ G and a ∈ Zd. This is typically satisfied, e.g., by the lattice graph distance. These
symmetries are realized on the local algebra Aloc

Γ through automorphisms σr and ρa whose action

on Aloc,G
Γ is compatible with the lattice symmetries in the following sense: if A ∈ Aloc,G

Γ and
supp(A) = X, then

(8.27) σr(A) = ρa(A) ⇐⇒ r(X) = X + a.

The analogous result holds in the case that we consider these automorphisms acting on a finite vol-
ume with periodic boundary conditions given that we identify points a, a′ ∈ Zd that are equivalent
under the periodicity.

For the finite volume systems, as always we assume an increasing and absorbing sequence of
finite volumes (Λn, dn) and associated finite volume Hamiltonians HΛn(s) ∈ AΛn as in (8.6) where
ηn is frustration-free, uniformly finite range, and uniformly bounded. In addition, we require that

both the initial interaction and perturbation are translation invariant and take values in Aloc,G
Γ .

Note that the assumption of translation invariance implies Λp
n = Λn. To model the group actions

on Λn and AΛn , we also impose periodic boundary conditions and assume that the finite volume
metrics dn also satisfy (8.26).

To prove that the observables constructed in Section 4 belong to Aloc,G
Γ , one only needs to show

that (for a finite volume Λ with periodic boundary conditions)

(8.28) ΠΛ
bΛx (m)(K(A)) ∈ AbΛx (m) ∩ Aloc,G

Γ

for all m ≥ k where A ∈ AbΛx (k)
∩ Aloc,G

Γ , and K : AΛ → AΛ is a quasi-local map that commutes
with the symmetry automorphism. Once this is established one can proceed in the same way as in
the gauge invariant case (S1).

The assumption on the metric (8.26) guarantees that for any X ⊆ Λ, (r(X))(m) = r(X(m)) and
(X + a)(m) = X(m) + a for all m > 0, r ∈ G and a ∈ Zd. As a result

(8.29) r(X) = X + ar =⇒ r(X(m)) = X(m) + ar.

If A ∈ AX ∩Aloc,G
Γ , then by definition of Aloc,G

Γ , for any r ∈ G there is an ar ∈ Zd for which A =
ρ−ar(σr(A)). Since K commutes with the symmetry actions, it follows that K(A) = ρ−ar(σr(K(A))).
Combining the covariance relation (8.5) with (8.27) and (8.29) then shows that for all r ∈ G

ΠΛ
X(m)(K(A)) = ρ−ar ◦ σr ◦ΠΛ

X(m)(K(A)) ∈ Aloc,G
Γ .

The claim in (8.28) then follows from verifying (8.29) applies to X = bΛx (k). This can be seen by
using (8.26) to show that for each r ∈ G there is ar ∈ Zd for which r(bΛx (k)) = bΛx (k) + a.

The above shows that models with (S3) symmetry breaking will satisfy spectral stability as de-
scribed in Theorem 8.3 if they satisfy Assumption 8.2 and the uniform perturbation model criterion
from Section 6. Since the translation invariance implies that Λp

n = Λn, Section 6.3.2 becomes rele-

vant. In particular, the uniform perturbation model criterion will be satisfied if rΩ,E0
x (Λn) ≥ rn for

all x ∈ Λn for a sequence rn → ∞ sufficiently fast so that Assumption 6.11 holds with δn → 0.

8.4.2. The case (S2). We again consider a lattice Γ endowed with an action of Zd by translations
and assume that the metric respects this action. For the local Hamiltonians HΛn(s) we assume
the same construction as in the case (S3) with one alteration: it is not required that the initial

interaction or the perturbation take values in Aloc,G
Γ . Note that the periodic boundary conditions
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and translation invariance again imply Λp
n = Λn for all n, and so the results from Section 6.3.2 are

relevant here as they were in the case (S3). Also, one can assume the anchored representation of
the local Hamiltonians are again translation invariant as the anchoring procedure from Section 2.5
preserves this property.

Contrasted to the other two cases, the terms Φ(1)(x,m, s) ∈ AbΛx (m) constructed in Section 4 for

a fixed finite volume Λ usually do not belong to the algebra Aloc,G
Γ , see (4.46). Thus, the approach

for the other two cases does not work here and an alternate argument is needed.
Due to the covariance property (8.5) along with the assumptions of periodic boundary conditions

and translation invariance, the anchored terms are again translation invariant, that is

(8.30) ρa(Φ
(1)(x,m, s)) = Φ(1)(x+ a,m, s)

for all a ∈ Zd, x ∈ Λ, m ≥ R, and 0 ≤ s ≤ sΛγ . Using this, we will recombine the anchored terms to

produce elements of Aloc,G
Γ for which the conclusions of Proposition 4.2 and Theorem 4.8 still hold.

This is sufficient for applying the results of Section 5 and Section 6 as well as the theory developed
in this section.

Recall that G = ZN1 × · · · × ZNd
is the set of translations generating Aloc,G

Γ , and denote by
RG := maxa∈G |a|. Then, for m ≥ R define

(8.31) Φ
(1)
G (x,m+RG, s) =

1

|G|
∑
a∈G

Φ(1)(x+ a,m, s).

Applying (8.30) one trivially finds that Φ
(1)
G (x,m + RG, s) ∈ AbΛx (m+RG) ∩ Aloc,G

Γ as desired. It is
clear that these terms are self-adjoint, and due to periodic boundary conditions:

(8.32) V (1)(s) :=
∑
x∈Λ

∑
m≥R

Φ(1)(x,m, s) =
∑
x∈Λ

∑
m≥R+RG

Φ
(1)
G (x,m, s).

Furthermore, applying Theorem 4.8 to Φ(1)(x,m, s) shows that for m ≥ R+RG

(8.33) ∥Φ(1)
G (x,m, s)∥ ≤ sG(1)

sym(m)

where G
(1)
sym(m) = G(1)(m − RG) is also of decay class (η, γ

2v , θ). Hence, the conclusions of Theo-

rem 4.8 also hold for the averaged terms Φ
(1)
G (x,m, s).

To verify the conclusions of Proposition 4.2, for each x ∈ Λ we introduce the G-averaged global
operators

Φ
(1)
x,G(s) :=

∑
m≥R+RG

Φ
(1)
G (x,m, s) =

1

|G|
∑
a∈G

Φ
(1)
x+a(s),

where we use (8.31) for the second equality. If we denote by PΛ the ground state projection onto

the unperturbed Hamiltonian, then applying Proposition 4.2 to each Φ
(1)
x+a(s), shows that

(8.34) [PΛ,Φ
(1)
x,G(s)] =

1

|G|
∑
a∈G

[PΛ,Φ
(1)
x+a(s)] = 0

for all 0 ≤ s ≤ sΛγ as desired.
From (8.32)-(8.34), it is clear that one can continue through the arguments of Sections 5-6 using

the G-averaged local and global terms along with the decay function G
(1)
sym. Since these terms

belong to the algebra Aloc,G
Γ , the G-symmetric indistinguishability condition holds and the results

from this section can again be applied with no modifications.
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8.5. A class of one-dimensional examples with discrete symmetry breaking. In this sec-
tion we discuss a class of frustration-free quantum spin chains (Γ = Z) with discrete symmetry
breaking for which the conditions for stability with symmetry breaking as discussed in the previous
section can be explicitly verified.

Suppose ω is a pure, translation invariant matrix product state of a quantum spin chain with
a n-dimensional single-site Hilbert space. It is well-known, see [39], that there exists a positive
integer R, and a frustration-free interaction, 0 ≤ hω ∈ A[0,R] such that ω is the unique zero-energy
ground state on the whole chain for the model with local Hamiltonians

(8.35) Hω
Λ =

∑
x∈Z

[x,x+R]⊂Λ

hωx ,

where hωx ∈ A[x,x+r] is a translated copy of hω. Let us denote by Pω
Λ the orthogonal projection onto

kerHω
Λ . Then, there exists λ ∈ [0, 1), and a constant C such that for all A ∈ A[a,b] and [a, b] ⊂ [l, r]

we have ground state indistinguishability with an exponential rate:

(8.36) ∥P[l,r]AP[l,r] − ω(A)P[l,r]∥ ≤ C∥A∥(λa−l + λr−b).

The explicit details of this argument can be found in Theorem B.2. Thus, it is clear that rΩx (Λ) ≥
d(x, ∂Λ) for Ω(n) = 2Cλn. In particular, given a perturbation model for initial Hamiltonians
and Ω(r) as above, it is necessarily a uniform perturbation model. Moreover, the conditions of
Corollary 6.9 hold with perturbation regions Λp

n ↑ Z, and hence the results from Section 7 apply.
Next, consider N distinct pure, translation invariant matrix product states ω1, · · · , ωN of a

quantum spin chain. It was proved in [77, page 570, Theorem 1] that there exists a finite-range
frustration-free interaction 0 ≤ h ∈ A[0,R] for which the set of zero-energy ground states of the
infinite chains is exactly given by the convex hull of S0 := {ω1, · · · , ωN}. In the same paper, it was
also proved that h can be taken such that the orthogonal projection onto the ground state space
is given by P[a,b] =

⋁N
i=1 P

ωi

[a,b] where P
ωi

[a,b] is the orthogonal projection onto ker(Hωi

[a,b]), and that

there is a uniform positive lower bound on the spectral gaps:

γ0 := inf
[a,b]∈P0(Z)

gap(H[a,b]) > 0.

For models with this construction, one necessarily has that (8.14)-(8.16) from Assumption 8.2
are satisfied. First, (8.15) holds trivially with P i

[a,b] = Pωi

[a,b]. Second, as the matrix product states

are distinct, there is λ ∈ [0, 1) and C > 0 so that

(8.37)
Pωi

[a−n,b+n]AP
ωj

[a−n,b+n] − δijωi(A)P
ωi

[a−n,b+n]

 ≤ C∥A∥λn.

For i = j this is clear from (8.36), and the case of i ̸= j is discussed in Appendix B.2. Finally,
applying the above with A = 1l shows that the projections Pωi

[a−n,b+n] are nearly pairwise orthogonal

for large n:

(8.38) ∥Pωi

[a−n,b+n]P
ωj

[a−n,b+n]∥ ≤ Cλn, for i ̸= j,

from which (8.14) holds.
We now specialize to the situation in which the distinct pure states ωi are related by a finite

symmetry. Suppose we have a unitary representation G ∋ g ↦→ Ug of a finite group G on the single
site Hilbert space Hx, and let σg denote the corresponding automorphisms acting on the algebra
of quasi-local observables AΓ. Given a pure, translation invariant matrix product state ω, consider
the set of pure states, E0, defined by

(8.39) E0 = {ω ◦ σg | g ∈ G}.
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Then, E0 is a finite set of mutually disjoint translation-invariant pure states to which the previous
discussion can be applied, and moreover, the corresponding frustration-free finite-range interaction
can be chosen such that σg(h) = h. For such models we have the following theorem for stability.

Theorem 8.4. Let h ≥ 0 be a G-symmetric, frustration-free interaction for the set of distinct MPS
E0 as in (8.39). For any Λn ↑ Z and any interaction Φ ∈ BF with F for a weighted F -function as
in (6.13), there is a sequence of perturbation regions Λp

n ↑ Z so that

HΛn(s) =
∑

x,[x,x+R]⊂Λn

hx + s
∑

X⊆Λn

X∩Λp
n ̸=∅

Φ(X)

is a uniform gauge symmetry-breaking perturbation model. Moreover, there is an sγ > 0 for each
0 < γ < γ0 so that

(i) Ss is a simplex of ground state of the infinite spin chain (Γ = Z).
(ii) The GNS Hamiltonian in each of the extreme points of Ss has a simple ground state and a

spectral gap bounded below by γ.

Proof. From (8.37) and the surrounding discussion, we see that Assumption 8.2 holds with an
exponentially decaying function Ω for which

rΩ,E0
x (Λn) ≥ d(x, ∂Λn).

This decay implies that for any sequence of increasing and absorbing intervals Λn ↑ Z, there exists
a sequence perturbation regions

Λp
n = {x ∈ Λn : rΩ,E0

y (Λn) ≥ Kn + Ln for all y ∈ bΛn
x (Kn)}

for which Corollary 6.9 applies. For example, one can choose the sequences Ln and Kn as described
in Section 6.3, see (6.41). The claims regarding the infinite volume then follow from Theorem 8.3.

□

An identical construction using site-blocking of the local Hilbert spaces can be applied to obtain
models with spontaneous breaking of the lattice translation invariance that have p distinct p-
periodic ground states, for any p ≥ 2, see e.g. [77]. Other symmetries, such as lattice reflection
and charge conjugation can be treated in the same way. In each case Assumption 8.2 holds with
exponential decay as well as an analog of Theorem 8.4.

Appendix A. Estimating Transformations of Anchored Interactions

In this section, we review some basic estimates concerning quasi-local transformations of inter-
actions. Many of the results proven here run parallel to estimates that can be found in [83, Section
V.D.]. However, we restrict our attention to anchored interactions here, and this causes slight
differences in some arguments.

We begin with a simple lemma. For comparison, this lemma will play the role as [83, Lemma
A.9]. Let us introduce the following notation. For any x ∈ R, set
(A.1) |x|+ = max(x, 0) .

Furthermore, we will say that a function f : [0,∞) → [0,∞) is summable if

(A.2) ∥f∥ =

∞∑
n=0

f(n) <∞ .

Lemma A.1. Let F,G : [0,∞) → [0,∞) be summable functions. If G is also non-increasing, then
for any R ≥ 0, one has that

(A.3)
∑
k≥0

G(k)
∑

n≥|R−k−1|+

F (n) ≤ min (∥G∥∥F∥, H(R))
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where H : [0,∞) → [0,∞) is given by

(A.4) H(R) = G(0) · ⌊R/2⌋
∑

n≥⌊R/2⌋

F (n) + ∥F∥
∑

n≥⌊R/2⌋

G(n).

Proof. First note that for any R ≥ 0, one has the naive bound

(A.5)
∑
k≥0

G(k)
∑

n≥|R−k−1|+

F (n) ≤ ∥G∥∥F∥ .

It is also clear that for any 0 ≤ R < 2, H(R) = ∥G∥∥F∥.
For R ≥ 2, a different estimate holds. Note that, in this case, for 0 ≤ k ≤ ⌊R/2⌋ − 1, one has

(A.6) R− k − 1 ≥ R− ⌊R/2⌋ ≥ R/2

and so since G is non-increasing,

(A.7)

⌊R/2⌋−1∑
k=0

G(k)
∑

n≥|R−k−1|+

F (n) ≤ G(0) · ⌊R/2⌋
∑

n≥⌊R/2⌋

F (n).

For the remaining terms, it is clear that

(A.8)
∑

k≥⌊R/2⌋

G(k)
∑

n≥|R−k−1|+

F (n) ≤ ∥F∥
∑

k≥⌊R/2⌋

G(k)

This proves the estimate in (A.3). □

Let us now review the notion of a transformed interaction. Consider a ν-regular metric space
(Γ, d), and assume that Λ ⊂ Γ is finite and there is an associated quantum lattice system AΛ =
B(HΛ), see Section 2.2 for more details. For any x ∈ Λ and n ≥ 0, let us also denote by bΛx (n) =
{y ∈ Λ : d(x, y) ≤ n}. Let V ∈ AΛ denote the Hamiltonian associated with an anchored interaction
Φ : Λ× Z≥0 → AΛ, see Definition 2.5, i.e.

(A.9) V =
∑
x∈Λ

∑
n≥0

Φ(x, n) .

For any linear map K : AΛ → AΛ, we will refer to the composition

(A.10) K(V ) =
∑
x∈Λ

∑
n≥0

K(Φ(x, n))

as a transformed interaction. If the map K commutes with the involution, i.e.

(A.11) K(A)∗ = K(A∗) for all A ∈ AΛ ,

then one may re-write this composition K(V ) as an anchored interaction. In fact, using the local
decompositions described in Section 4.3, see (4.30), we see that for each x ∈ Λ and n ≥ 0

(A.12) K(Φ(x, n)) =
∑
m≥n

∆Λ
x,n;m(K(Φ(x, n)))

where we used (4.32). Now inserting (A.12) into (A.10), we find that

(A.13) K(V ) =
∑
x∈Λ

∑
n≥0

∑
m≥n

∆Λ
x,n;m(K(Φ(x, n))) =

∑
x∈Λ

∑
m≥0

Ψ(x,m)

where we have re-ordered the sums on m and n and set

(A.14) Ψ(x,m) =

m∑
n=0

∆Λ
x,n;m(K(Φ(x, n))) .
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It is easy to check that K(V ), as written in (A.13), is an anchored interaction as in Definition 2.5.
In fact, since K commutes with the involution, we have that

(A.15) Ψ(x,m)∗ = Ψ(x,m) ∈ AbΛx (m) for all x ∈ Λ and m ≥ 0 .

Moreover, if Φ satisfies (2.42), then so too does Ψ. In fact, if for some x ∈ Λ and m ≥ 0, we
have that Ψ(x,m) ̸= 0, then there is 0 ≤ n ≤ m for which ∆Λ

x,n;m(K(Φ(x, n))) ̸= 0. If n = m, then

0 ̸= ∆Λ
x,m;m(K(Φ(x,m))) = ΠΛ

bΛx (m)
(K(Φ(x,m))) and therefore, Φ(x,m) ̸= 0. In this case, since Φ

satisfies (2.42), we know that there are points y, z ∈ bΛx (m) for which d(y, z) > m− 1. Otherwise,
there is 0 ≤ n < m for which ∆Λ

x,n;m(K(Φ(x, n))) ̸= 0 and thus ∆Λ
x,n;m = ΠΛ

bΛx (m)
− ΠΛ

bΛx (m−1)
̸≡ 0.

In this case, it must be that bΛx (m) \ bΛx (m− 1) ̸= ∅. Thus with y = x and z ∈ bΛx (m) \ bΛx (m− 1),
we find y, z ∈ bΛx (m) for which d(y, z) > m− 1.

We will now show that if Φ and K have appropriate decay, then so too does Ψ. Let us now
assume that the linear mapping K : AΛ → AΛ is locally bounded and quasi-local. More precisely,
we assume that:

(i) K is locally bounded: There is a number p ≥ 0 and B <∞ for which

(A.16) ∥K(A)∥ ≤ B|X|p∥A∥.

for all A ∈ AX with X ⊂ Λ. Here p is called the order of the local bound for K.
(ii) K is quasi-local: There is a number q ≥ 0 and a non-increasing function G : [0,∞) → (0,∞)

with limr→∞G(r) = 0 for which

(A.17) ∥[K(A), B]∥ ≤ |X|q∥A∥∥B∥G(d(X,Y ))

for all A ∈ AX , B ∈ AY , and X,Y ⊂ Λ. Here q is called the order of the quasi-locality
bound for K and G is the associated decay function.

Let F be an F -function on (Γ, d) in the sense described in Section 2.2.3. For any r ≥ 0, we will
say that Φ has an r-th moment which is bounded by F if there is a number ∥Φ∥r,F <∞ for which
given any y, z ∈ Λ,

(A.18)
∑
x∈Λ

∑
n≥0:

y,z∈bΛx (n)

|bΛx (n)|r∥Φ(x, n)∥ ≤ ∥Φ∥r,FF (d(y, z)).

The following result is the analogue of [83, Theorem 5.13] for anchored interactions.

Theorem A.2. Let K : AΛ → AΛ be a linear map which is locally bounded and quasi-local, and
F be an F -function on (Γ, d). Set r = max(p, q) with p and q, respectively, the orders of the local
bound and quasi-local estimate for K, and let Φ ∈ Br

F be an anchored interaction on Λ, satisfying
(2.42). In this case, the terms of transformed interaction Ψ defined as in (A.13)-(A.14) satisfy the
following bound: for any y, z ∈ Λ,∑

x∈Λ

∑
m≥0:

y,z∈bΛx (m)

∥Ψ(x,m)∥ ≤ B∥Φ∥r,FF (d(y, z)) + 4κd(y, z)vH(d(y, z)/2)

+4
∑

w∈{y,z}

∑
x∈Λ:

d(x,w)>d(y,z)

H(d(x,w)) .(A.19)

Here the function H : [0,∞) → [0,∞) is given by

(A.20) H(R) = G(0)∥Φ∥r,F ⌊R/2⌋F (⌊R/2⌋ − 1) + ∥Φ∥r,FF (0)
∑

k≥⌊R/2⌋

G(k)
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Proof. We begin this argument as in the proof of [83, Theorem 5.13]. For each x ∈ Λ and m ≥ 0,
the estimate

∥Ψ(x,m)∥ ≤
m∑

n=0

∥∆Λ
x,n;m(K(Φ(x, n)))∥

≤ ∥K(Φ(x,m))∥+
m−1∑
n=0

∥∆Λ
x,n;m(K(Φ(x, n)))∥

≤ B|bΛx (m)|p∥Φ(x,m)∥+ 4

m−1∑
n=0

|bΛx (n)|q∥Φ(x, n)∥G(m− n− 1)(A.21)

follows using (A.14), the form of the local decompositions, see (4.30), the local bound (A.16), and
inserted the quasi-local bound (A.17) into the general estimate in Lemma 4.3, see (4.34). From
this bound, it is clear that∑

x∈Λ

∑
m≥0:

y,z∈bΛx (m)

∥Ψ(x,m)∥ ≤ B
∑
x∈Λ

∑
m≥0:

y,z∈bΛx (m)

|bΛx (m)|p∥Φ(x,m)∥

+4
∑
x∈Λ

∑
m≥0:

y,z∈bΛx (m)

m−1∑
n=0

|bΛx (n)|q∥Φ(x, n)∥G(m− n− 1)(A.22)

Using the bound on the r-th moment of Φ, the first term on the right-hand-side of (A.19) is clear.
For the second term above, we re-write

(A.23)∑
x∈Λ

∑
m≥0:

y,z∈bΛx (m)

m−1∑
n=0

|bΛx (n)|q∥Φ(x, n)∥G(m− n− 1) =
∑
x∈Λ

∑
k≥0

G(k)
∑
n≥0:

y,z∈bΛx (n+k+1)

|bΛx (n)|q∥Φ(x, n)∥ .

Now the argument diverges slightly from the proof of [83, Theorem 5.13]. Here, to further
estimate, we will split the sum on x ∈ Λ. Before doing so, for each x ∈ Λ, let us denote by m0(x)
the smallest integer m ≥ 0 for which y, z ∈ bΛx (m). Two observations readily follow. First, for any
x ∈ Λ, d(y, z) ≤ d(y, x) + d(x, z) ≤ 2m0(x). Next, for each fixed x ∈ Λ,

(A.24)
∑
k≥0

G(k)
∑
n≥0:

y,z∈bΛx (n+k+1)

|bΛx (n)|q∥Φ(x, n)∥ =
∑
k≥0

G(k)
∑

n≥|m0(x)−k−1|+

|bΛx (n)|q∥Φ(x, n)∥

where we have used the notation (A.1).
Let us now split Λ by writing

(A.25) Λy,z = {x ∈ Λ : max (d(x, y), d(x, z)) ≤ d(y, z)} = bΛy (d(y, z)) ∩ bΛz (d(y, z))
and setting Λ = Λy,z ∪Λc

y,z, a disjoint union. Note here that Λc
y,z = Λ\Λy,z. Now, for any x ∈ Λy,z,

we estimate∑
k≥0

G(k)
∑

n≥|m0(x)−k−1|+

|bΛx (n)|q∥Φ(x, n)∥ ≤
∑
k≥0

G(k)
∑

n≥|d(y,z)/2−k−1|+

|bΛx (n)|r∥Φ(x, n)∥

≤ H(d(y, z)/2)(A.26)

where we have used that d(y, z)/2 ≤ m0(x) and Lemma A.1. Note that in this application of
Lemma A.1 we have taken F (n) = |bΛx (n)|r∥Φ(x, n)∥ and used the analogue of (4.14). Since the
right-hand-side above is independent of x ∈ Λy,z and |Λy,z| ≤ |bΛy (d(y, z))| ≤ κd(y, z)ν by ν-
regularity of (Γ, d), see (2.1), we have now obtained the second term on the right-hand-side of
(A.19).
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Finally, for each x ∈ Λc
y,z there is w ∈ {y, z} for which d(x,w) > d(y, z). In this case,

(A.27)
∑
k≥0

G(k)
∑

n≥|m0(x)−k−1|+

|bΛx (n)|q∥Φ(x, n)∥ ≤
∑
k≥0

G(k)
∑

n≥|d(x,y)−k−1|+

|bΛx (n)|r∥Φ(x, n)∥

since d(x,w) ≤ m0(x) for each w ∈ {y, z}. Another application of Lemma A.1 completes the bound
claimed in (A.19). □

In applications of Theorem A.2, it is common to know more detailed properties of the function
F which bounds the decay of the anchored interaction Φ, see (A.18), as well as the function G
which bounds the quasi-locality of K, see (A.17). The corollary that follows demonstrates a useful
form of this estimate which holds whenever both F and G are members of the same decay class;
here we refer specifically to the decay classes described in Definition 4.5.

Corollary A.3. Under the assumptions of Theorem A.2, suppose further that there exist positive
numbers η, ξ, and θ for which both F and G, the decay functions associate to Φ and K through
(A.18) and (A.17) respectively, are in decay class (η, ξ, θ). In this case, for each 0 < η′ < η, there

is an F -function F η′

Ψ on (Γ, d) for which

(A.28)
∑
x∈Λ

∑
m≥0:

y,z∈bΛx (m)

∥Ψ(x,m)∥ ≤ F η′

Ψ (d(y, z))

and moreover, for any ζ > ν + 1, there are positive numbers C1, C2, d, and a
′ ,satisfying C1 ≥

C2e
−η′fξ(a

′dθ), for which one may take F η′

Ψ with the form F η′

Ψ = FΨ,0 · F dec
Ψ,η′ where:

(A.29) FΨ,0(r) =
1

(1 + r)ζ
and F dec

Ψ,η′(r) =

{
C1 if 0 ≤ r ≤ d

C2e
−η′fξ(a

′rθ) if r > d.

Proof. We prove this corollary in three steps. First, we argue that

(A.30)
∑
x∈Λ

∑
m≥0:

y,z∈bΛx (m)

∥Ψ(x,m)∥ ≤ GΨ(d(y, z))

for some function GΨ in decay class (η, ξ, θ). Then we show that the estimate above implies the

family of bounds in (A.28) with functions F η′

Ψ having the form described in (A.29). Finally, we

argue that each of the functions F η′

Ψ , as above, are indeed F -functions on (Γ, d).
A direct application of Theorem A.2 shows that (A.30) holds for the function GΨ defined by the

right-hand-side of (A.19). Note that the function H, as defined in (A.20), is clearly a member of
the decay class (η, ξ, θ), and thus so too is

(A.31) x ↦→ B∥Φ∥r,FF (x) + 4κxνH(x/2) ,

here we use, for example, the comments made in Remark 4.6. To conclude that this GΨ is in the
appropriate decay class, we need only confirm that this is true for the final term on the right-hand-
side of (A.19). Since H is in the appropriate decay class, for any 0 < η′ < η and each choice of

ζ > ν + 1, there are positive numbers C1, C2, a, and d, with C1 ≥ C2e
−η′fξ(ad

θ), for which

(A.32) (1 + r)ζH(r) ≤
{

C1 if 0 ≤ r ≤ d,

C2e
−η′fξ(ar

θ) if r > d.

In this case, we have that for 0 ≤ d(y, z) ≤ d,

(A.33) 4
∑

w∈{y,z}

∑
x∈Λ:

d(x,w)>d(y,z)

H(d(x,w)) ≤ 8C1max
x∈Λ

∑
y∈Λ

1

(1 + d(x, y))ζ
.
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When d(y, z) > d, we also have

(A.34) 4
∑

w∈{y,z}

∑
x∈Λ:

d(x,w)>d(y,z)

H(d(x,w)) ≤ 8C2e
−η′fξ(ad(y,z)

θ)max
x∈Λ

∑
y∈Λ

1

(1 + d(x, y))ζ
.

This completes the proof that GΨ is in decay class (η, ξ, θ).
Now, for any choice of ζ > ν + 1, we may write

(A.35) GΨ(r) =
1

(1 + r)ζ
(1 + r)ζGΨ(r) for all r ≥ 0 .

Since GΨ is in decay class (η, ξ, θ), arguing as above we see that the family of bounds claimed in
(A.28)-(A.29) holds.

Turning to the final point, let F η′

Ψ = FΨ,0F
dec
Ψ,η′ be as in (A.29). As is proven, e.g. in Proposition

A.2 of [83], the function

(A.36) F̃ (r) =

{
C1 0 ≤ r ≤ d,

C2

(1+r)ζ
e−η′fξ(a

′rθ) r > d.

is an F -function on (Γ, d). One also readily checks that

(A.37)
1

(1 + d)ζ
F̃ (r) ≤ F η′

Ψ (r) ≤ F̃ (r) for all r ≥ 0 ,

and thus F η′

Ψ is an F -function on (Γ, d) as well. □

Appendix B. Indistinguishability of Matrix Product States

We consider ground state indistinguishability for a frustration-free quantum spin chains with
matrix product (MPS) ground states and open boundary conditions. We show that for such models
there is an exponential decay function Ω for which the indistinguishability radius can be taken as
the distance from the site to the volume boundary, i.e. rΩx (Λ) = d(x, ∂Λ). After setting notation
and reviewing key properties of MPS, we prove ground state indistinguishability for models with
a unique infinite volume ground state. Afterwards, we turn to an example of discrete symmetry
breaking where the local ground state space is spanned by several distinct MPS, and discuss how
in the thermodynamic limit the ground states become orthogonal.

B.1. MPS Indistinguishability with a Unique Ground State. We associate the same on-site
Hilbert space to each site, i.e. Hx = Cd for each x ∈ Z, and assume the MPS is translation invariant
and has a primitive transfer operator E : Mk → Mk. Here, k is the bond dimension of the MPS
and Mk is the set of k × k matrices. For a fixed an orthonormal basis {|i⟩ : i = 1, . . . d} ⊂ Hx,
these assumptions imply there is a set of matrices {vi}di=1 ⊂Mk generating the MPS, and a density
matrix ρ ∈Mk for which E (in isometric form) satisfies:

(B.1) E(B) :=
d∑

i=1

v∗iBvi, E(1l) = 1l, Et(ρ) = ρ.

The primitive assumption guarantees ρ is invertible, and that there is a λ ∈ [0, 1) and c > 0 for
which

(B.2) ∥En − E∞∥ ≤ cλn

where E∞(B) := Tr(ρB)1l.
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It is well known that for the resulting MPS2

(B.3) Mk ∋ B ↦→ Γ[l,r](B) :=
d∑

il,...,ir=1

Tr(Bvil · · · vir)|il . . . ir⟩ ∈ H[l,r],

there is a (non-unique) finite-range, frustration-free interaction on Aloc
Z so that the ground state

space for each of the corresponding local Hamiltonians is kerH[l,r] = ranΓ[l,r]. Moreover, the
assumptions guarantee that this model has a unique ground state in the thermodynamic limit,
ω : AZ → C, defined by

(B.4) ω(A) = Tr(ρEA(1l)), ∀A ∈ Aloc
Z

where for each A ∈ A[a,b] and all B ∈Mk:

(B.5) EA(B) := V ∗
[a,b]A⊗BV[a,b] with V[a,b] :=

d∑
ia,...,ib=1

|ia . . . ib⟩ ⊗ via · · · vib .

For any finite interval [a, b], it is easy to verify using (B.1) that

(B.6) V ∗
[a,b]V[a,b] = Eb−a+1(1l) = 1l,

and moreover, that the state ω is consistent with the identification A ↦→ A′ := 1l⊗n ⊗ A ⊗ 1l⊗m ∈
A[a−n,b+m]. For the latter, one finds ω(A′) = ω(A) by first verifying EA′ = En ◦ EA ◦ Em and then
using (B.1)-(B.4).

We now turn to the indistinguishability of the ground states. Given two intervals [a, b] ⊂ [l, r],
let P[l,r] denote the orthogonal projection onto ran(Γ[l,r]) and notice that for any A ∈ A[a,b],

(B.7) ∥P[l,r]AP[l,r] − ω(A)P[l,r]∥ = sup
Γ[l,r](B),Γ[l,r](C) ̸=0

⏐⏐⟨Γ[l,r](B), (A− ω(A)1l) Γ[l,r](C)
⟩⏐⏐

∥Γ[l,r](B)∥∥Γ[l,r](C)∥
.

The first result we provide, which will be used to bound the RHS above, was first proved in [39,
Lemma 5.2]. We provide the proof here as it outlines the basic techniques needed to establish
ground state indistinguishability.

Lemma B.1. Fix finite intervals [a, b] ⊆ [l, r] and let Γ[l,r] :Mk → H[l,r] be a translation invariant
MPS with primative transfer operator E as in (B.1)-(B.2). Then for any A ∈ A[a,b],

(B.8)
⏐⏐⏐⟨Γ[l,r](B), AΓ[l,r](C)

⟩
− ω(A) ⟨B,C⟩ρ

⏐⏐⏐ ≤ c
(
Tr(ρ−1)λa−l + λr−b

)
∥A∥∥B∥ρ∥C∥ρ

where ⟨B,C⟩ρ := Tr(ρB∗C) is the inner product on Mk induced by ρ, and ω is as in (B.4).

Proof. Fix any orthonormal basis B of Ck, and consider the LHS of (B.8). Using this orthonormal
basis to rewrite the trace and applying (B.1) and (B.5), the first inner product can be rewritten as⟨

Γ[l,r](B), AΓ[l,r](C)
⟩

=
∑

il,...,ir
jl,...,jr

Tr(v∗ir . . . v
∗
il
B∗)Tr(Cvjl . . . vjr)⟨il . . . ir|A|jl . . . jr⟩

=
∑

α,β∈B

∑
il,...,ir
jl,...,jr

⟨
α, v∗ir . . . v

∗
il
B∗α

⟩
⟨β,Cvjl . . . vjrβ⟩ ⟨il . . . ir|A|jl . . . jr⟩

=
∑

α,β∈B

⟨
α,Er−b ◦ EA ◦ Ea−l (B∗|α⟩⟨β|C)β

⟩
.(B.9)

Here, we use that A is supported on [a, b], and choose the convention that E0 is the identity operator
on Mk. Letting E∞ be as in (B.2), linearity implies that

(B.10) Er−b ◦ EA ◦ Ea−l = E∞ ◦ EA ◦ E∞ + (Er−b − E∞) ◦ EA ◦ E∞ + Er−b ◦ EA ◦ (Ea−l − E∞).
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Inserting the definition of E∞ and using the orthonormality of B, one finds that the first term
in this decomposition corresponds to the matrix inner product from (B.8), i.e.

(B.11) ω(A) ⟨B,C⟩ρ =
∑

α,β∈B
⟨α,E∞ ◦ EA ◦ E∞ (B∗|α⟩⟨β|C)β⟩ .

For the second term, we can similarly rewrite the summation as∑
α,β∈B

⟨
α, (Er−b − E∞) ◦ EA ◦ E∞ (B∗|α⟩⟨β|C)β

⟩
= Tr(CρB∗(Er−b − E∞) ◦ EA(1l)).

Notice that ∥EA∥ ≤ ∥A∥ since V[a,b] is an isomertry. As a result, using (B.2) and applying Holder’s
inequality proves:

|Tr(CρB∗(Er−b − E∞) ◦ EA(1l))| ≤ ∥(Er−b − E∞) ◦ EA(1l)∥∥CρB∗∥1
≤ cλr−b∥A∥∥Cρ1/2∥2∥ρ1/2B∗∥2
= cλr−b∥A∥∥C∥ρ∥B∥ρ(B.12)

where ∥ · ∥k for k = 1, 2 denotes the usual trace class and Hilbert-Schmidt norms, respectively.
For the final term in (B.10), we again use (B.2) to bound⏐⏐⏐⟨α,Er−b ◦ EA ◦ (Ea−l − E∞) (B∗|α⟩⟨β|C)β

⟩⏐⏐⏐ ≤ cλa−l∥A∥∥B∗|α⟩∥∥C|β⟩∥

for any α, β ∈ B. Choose B to be any orthonormal basis that diagonalizes ρ, i.e. ρ|α⟩ = ρα|α⟩.
Summing over α ∈ B and applying Cauchy-Schwarz yields,∑

α∈B
∥B∗|α⟩∥ =

∑
α

ρ−1/2
α ∥B∗ρ1/2|α⟩∥ ≤

√
Tr(ρ−1)∥B∥ρ.

The analogous bound holds when summing over β. As a consequence,

(B.13)
∑

α,β∈B

⏐⏐⏐⟨α,Er−b ◦ EA ◦ (Ea−l − E∞) (B∗|α⟩⟨β|C)β
⟩⏐⏐⏐ ≤ cTr(ρ−1)λa−l∥A∥∥B∥ρ∥C∥ρ.

Thus, inserting (B.10) into (B.9), the bound in (B.8) follows from combining (B.11)-(B.13). □

In the situation that A = 1l, the operator inside the summation of (B.9) becomes Er−l+1 =
E∞+(Er−l+1−E∞). In this case, the argument from Lemma B.1 simplifies, and using an estimate
similar to (B.13) one can prove

(B.14)
⏐⏐⏐⟨Γ[l,r](B),Γ[l,r](C)

⟩
− ⟨B,C⟩ρ

⏐⏐⏐ ≤ cTr(ρ−1)λr−l+1∥B∥ρ∥C∥ρ,

see, e.g. [39, Lemma 5.2]. Choosing B = C, this bound implies that Γ[l,r] is injective for sufficiently
large intervals. Specifically, for any 0 ̸= B ∈Mk one has

(B.15) 1− cTr(ρ−1)λr−l+1 ≤
∥Γ[l,r](B)∥2

∥B∥2ρ
≤ 1 + cTr(ρ−1)λr−l+1.

We are now ready to prove the lower bound on the indistinguishability radius for models with
MPS ground states and a unique thermodynamic limit.

Theorem B.2. Fix finite intervals [a, b] ⊆ [l, r] and let Γ[l,r] :Mk → H[l,r] be a translation invariant
MPS with primative transfer operator E as in (B.1)-(B.2). Then for any A ∈ A[a,b],

(B.16) ∥P[l,r]AP[l,r] − ω(A)P[l,r]∥ ≤ C(r − l + 1)
[
Tr(ρ−1)(λr−l+1 + λa−l) + λr−b

]
∥A∥

where ω is as in (B.4) and C(n) := c(1 − cTr(ρ−1)λn)−1. As a result, one has rΩx (Λ) ≥ d(x, ∂Λ)
for all sites x in an interval Λ when choosing

(B.17) Ω(n) := 2C(n)(2Tr(ρ−1) + 1)λn.
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Before proving the result, we note that if we set X = [a, b] and Λ = [l, r], then d(X, ∂Λ) =
min{l − a, r − b}, and so one could further bound (B.16) by

(B.18) ∥PΛAPΛ − ω(A)PΛ∥ ≤ C(|Λ|)(2Tr(ρ−1) + 1)λd(X,∂Λ)∥A∥,
which motivates the choice for the LTQO function. The extra factor of two in (B.17) comes from
replacing the infinite state ω with the finite ground state functional ωΛ(A) = Tr(APΛ)/Tr(PΛ) used
to define the indistinguishability radius, see (2.9).

Proof. Fix nonzero matrices B,C ∈Mk. Applying (B.8) and (B.14), one obtains the bound

|
⟨
Γ[l,r](B), (A− ω(A)1l)Γ[l,r](C)

⟩
| ≤|

⟨
Γ[l,r](B), AΓ[l,r](C)

⟩
− ω(A) ⟨B,C⟩ρ |(B.19)

+ |ω(A)|
⏐⏐⏐⟨Γ[l,r](B),Γ[l,r](C)

⟩
− ⟨B,C⟩ρ

⏐⏐⏐
≤c
[
Tr(ρ−1)(λr−l+1 + λa−l) + λr−b

]
∥A∥∥B∥ρ∥C∥ρ(B.20)

Therefore, (B.16) follows from combining this with (B.7) as inverting the bounds in (B.15) implies

(B.21)
∥B∥ρ

∥Γ[l,r](B)∥
≤ 1√

1− cTr(ρ−1)λr−l+1
.

To determine the indistinguishability radius, for any site x ∈ Λ one trivially has that bΛx (n) =
[x− n, x+ n] for all n ≤ d(x, ∂Λ). Thus, if A ∈ A[x−m,x+m] for m ≤ n, (B.16) implies

∥PbΛx (n)
APbΛx (n)

− ω(A)PbΛx (n)
∥ ≤ C(n−m)(2Tr(ρ−1) + 1)λn−m∥A∥,

where we trivially use λ2n+1 ≤ λn−m. Defining the state ωΛ(A) := Tr(APΛ)/Tr(PΛ), the indistin-
guishability radius is given by bounding

∥PbΛx (n)
APbΛx (n)

− ωΛ(A)PbΛx (n)
∥ ≤ ∥PbΛx (n)

APbΛx (n)
− ω(A)PbΛx (n)

∥+ |ωΛ(A)− ω(A)|.

Thus, the claimed bound on rΩx (Λ) follows from estimating the second quantity above.

For Λ sufficiently large, injectivity implies ωΛ(A) = k−2
∑k2

i=1 ⟨ΓΛ(Bi), AΓΛ(Bi)⟩ for an orthonor-
mal basis {ΓΛ(Bi)} of ran(ΓΛ). For any normalized state ΓΛ(B), the arguments from (B.20)-(B.21)
apply with B = C to produce

| ⟨ΓΛ(B), AΓΛ(B)⟩ − ω(A)| ≤C(n−m)(2Tr(ρ−1) + 1)λn−m∥A∥,
where we use (B.18), that C(r) and λr are decreasing functions, and n − k ≤ d(bx(k), ∂Λ) ≤ |Λ|.
Thus, the result follows from the bound

|ωΛ(A)− ω(A)| ≤ 1

k2

k2∑
i=1

| ⟨ΓΛ(Bi), AΓΛ(Bi)⟩ − ω(A)| ≤ C(n−m)(2Tr(ρ−1) + 1)λn−m∥A∥.

□

B.2. Indistinguishability with Multiple MPS Ground States. We now turn our attention
to the situation of a frustration-free model whose ground states are spanned by several distinct
MPS. Specifically, we assume there are n ≥ 2 matrix product states for which the corresponding
infinite volume ground states are unique, i.e.

ωi ̸= ωj for i ̸= j,

and the ground state space of the local Hamiltonians is kerHΛ =
∑n

i=1 ran(Γ
i
Λ). Each of these

matrix product states individually satisfy the conditions of the previous section, namely (B.1)-
(B.2), and so each of the infinite states ωi is of the form (B.4), see also (B.5). As outlined in
Section 8, the correct indistinguishability condition in this situation is:

(B.22) ∥P i
[a−n,b+n]AP

j
[a−n,b+n] − δijωi(A)P

i
[a−n,b+n]∥ ≤ ∥A∥Ω(n)
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for all A ∈ A[a,b] where P
i
Λ is the orthogonal projection onto ran(Γi

Λ). Applying Theorem B.2, such
a bound clearly holds when i = j. Therefore, we need only show that in the case that i ̸= j,

(B.23) sup
Γi
Λ(B),Γj

Λ(C )̸=0

⏐⏐⏐⟨Γi
Λ(B), AΓj

Λ(C)
⟩⏐⏐⏐

∥Γi
Λ(B)∥∥Γj

Λ(C)∥
≤ ∥A∥Ω(n),

where we set Λ = [a − n, b + n]. This is the content of [77, Lemma 6]. We briefly outline this
argument.

To simplify notation, consider two distinct infinite states ω1, ω2 : AZ → C defined via matrix
product states on the same quantum spin system. Let {vi}di=1 ⊂ Mk and {wi}di=1 ⊂ Ml be the set
of matrices defining Γ1

Λ and Γ2
Λ with respect to the same orthonormal basis for Hx = Cd. Arguing

similarly as in (B.9), for any A ∈ A[a,b], one has⟨
Γ1
Λ(B), AΓ2

Λ(C)
⟩
=
∑
α∈Bk
β∈BL

⟨α,Fn ◦ FA ◦ Fn (B∗|α⟩⟨β|C)β⟩

were Bk, and Bl are orthonormal bases for the respective virtual spin spaces and, with respect to
the isometries from (B.5), the transfer operators FA and F on Mk×l are given by

FA(B) =V ∗
[a,b]A⊗BW[a,b](B.24)

F(B) =

d∑
i=1

v∗iBwi = V ∗(1ld ⊗B)W(B.25)

where V :=
∑

i |i⟩ ⊗ vi and W :=
∑

i |i⟩ ⊗ wi are isometries for a single site.
Using a modified version of the argument used to obtain (B.13), see also (B.21), one finds that

(B.23) follows from showing that

(B.26) ∥F∥ := sup
0 ̸=B∈Mk×l

∥F(B)∥ρ2
∥B∥ρ2

< 1

where ∥B∥2ρ2 := Tr(ρ2B
∗B) is the inner product induced by the density matrix ρ2 associated with

ω2. It is easy to see that ∥F∥ ≤ 1 as for any B,C ∈Mk×l

|Tr(ρ2C∗F(B))|2 ≤ Tr(ρ2C
∗V ∗V C)Tr(ρ2W

∗1l⊗B∗BW ) = Tr(ρ2C
∗C)Tr(ρ2B

∗B),

where we use that V ∗V = 1l, and W ∗1l⊗B∗BW =
∑

iw
∗
iB

∗Bwi with (B.1). Strict equality follows
from showing that ∥F∥ = 1 implies ω1 = ω2. The details of this argument, which can be found at
the end of the proof of [77, Lemma 6], are left to the reader.
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