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1 Introduction

Cosmological simulations predict that the dark matter halos of low-redshift galaxies are
triaxial on large scales. In addition to such very large scale asphericity, an interaction between
dark matter and baryons could lead to an accumulation of dark matter in regions of gas
overdensities, resulting in a (puffy) DM disk or other structure in the inner galaxy. Here we
propose a strategy for detecting such small-scale DM structures if they exist.

Energy transfer is most efficient in collisions between similar mass particles, so a DM
accumulation in the vicinity of baryons would be greatest for DM whose mass is of order
the mass of H and He, and likely undetectably small for significantly lower and higher mass
DM. The random velocities of DM particles in the halo are generally larger than those of gas
in the disk, so on average a DM-baryon collision causes the DM particle final phase space
to approach that of the initial baryon. The scattering heats the gas, which then re-cools
through standard mechanisms. (An almost infinitesimal fraction of DM particles intersect a
star; those would just reflect or more usually be trapped in the star, negligibly impacting the
global DM distribution.) The net DM accumulation would be greatest around the longest-
lived gas structures and of course would be proportional to the cross-section between DM
and baryons.

Our purpose here is to introduce a practical and unambiguous diagnostic of structure
in the distribution of DM on small scales, as could result from DM-baryon interactions.

Rotation curves are central tools to study the mass distribution of individual galaxies [1].
The dark matter distribution can be estimated by subtracting the baryonic components from
the observed mass distribution. There is a degeneracy in the mass distribution determination
using rotation curves: two different mass distributions can lead to the same rotation curve.
This degeneracy can be broken by imposing that the DM distribution have a particular func-
tional form. Common DM halo models are spherically symmetric. A given DM distribution
model can be favored/excluded because it gives better/worse rotation curves fits, but being
able to rigorously exclude a model based on incompatibilities with some rotation curve fea-
tures would be a powerful tool. One feature to consider is sphericity. Whether DM disks, or
DM structures such as non-monotonic radial density exist, is still an open question [2–5].

In a previous paper, we fit 121 galaxy rotation curves with a hadronically interacting
dark matter (HIDM) model composed of a DM halo and a DM disk that scales the halo-
baryons interactions [6]. We showed that this model outperforms 7 other canonical DM and
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modified gravity models. This finding motivates the need for having other, model indepen-
dent, indicators of non-spherical dark mater structures in galaxies. (Note that the analysis
does not reveal the thickness of the DM disk, which is presumably thick.)

Some non-spherical mass distributions can produce rotation curves that are impossible
to build from a spherical distribution. For example, a ring of mass produces an outward
gravitational pull inside of the ring, a phenomena that is impossible to reproduce with a
spherical mass distribution. We propose a method to detect some such asphericities and test
it on the SPARC rotation curves dataset [7].

In sections 2 and 3 we derive a general asphericity diagnostic for rotation curves and
test it on some ideal mass distributions. In section 4 we evaluate the asphericity diagnostic
for the SPARC galaxy rotation curves and show how the asphericity diagnostic is related
to our previously developed HIDM model. The diagnostic is defined independently of any
specific mass model.

2 Spherical inequalities

We derive spherical inequalities that can be violated when the rotation curve admits some
asphericities. These inequalities are only based on the rotation curve v(r) and are model-
independent. This makes them the perfect tool for asphericity detection in well measured
rotation curves. However not all asphericities violate the inequality. Thus, if the inequality
is violated (at an observationally robust level), asphericity of the DM halo is rigorously
established, but the halo can be aspherical without violating the inequality.

Continuous. Consider a spherical mass distribution: v =
√

GM
r whereM is the total mass

inside the sphere of radius r. Then, dvdr =
√
G
2

(
1
r
dM
dr −

M
r2

)√
r
M , so

dv

dr
= 1

2

√
G

rM

dM

dr
− v

2r . (2.1)

Hence, since dM
dr ≥ 0, we have the inequality

∆(r) ≡ 1 + v

2r

(
dv

dr

)−1
≥ 0, i.e., (2.2)

= 1 + d ln r
d ln v ≥ 0 (2.3)

at all radii for any spherical mass distribution. Note ∆ < 0 implies that the mass distribution
is non-spherical but the existence of a non-spherical mass distribution does not imply ∆ < 0.
For example, the Mestel disk [8, 9] is a disk distribution that has the same rotation curve as
a point mass and therefore does not violate the spherical inequality.

Discrete. It is usefully to write the spherical inequality for discrete measurements since
observations are at a discrete set of radii. Let i and j be 2 data points of a rotation curve
with rj > ri. Then we have Mi ≤Mj where Mi,j is the total mass inside the sphere of radius
ri,j . Assume that the mass distribution is spherical: Mi,j = v2

i,jri,j/G. This leads to the
inequality v2

i ri ≤ v2
j rj and

∆ij ≡ 1− vi
vj

√
ri
rj
≥ 0 (2.4)
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Mass model Radial density Comments

Exponential disk Σ(r) = Σ0e
−r/r0 detectable sphericity

violation

Pseudo isothemal halo ρ(r) = ρ0
(1+r/r0)2 spherical

Oblate spheroid (Hubble

profile) [9]

ρ(m2) = ρ0

(
1 +

(
m
r0

)2
)−3/2

with m2 = R2 + z2

1−e2

e = 1: flat, e = 0: spherical;
no detectable sphericity
violation

Einasto halo [10] ρ(r) = ρ0 exp
(
− 2
α

(
r
r0

)α
− 1

)
spherical

Exponential disk + piso halo ρ(r, z) = ρpiso(r) + δ(z)Σexp(r)
superposition of a disk
and a halo

Annulus

Σ(r) = Σ0rect
( r−r0

d

)
with rect(r) =

{
1 |x| ≤ 1

2
0 otherwise

produces a negative inner
rotation curve

Table 1. Mass distribution examples. r is the radial (spherical) coordinate, R is the radial distance
in cylindrical coordinates and z is the vertical distance.

for any spherical mass distribution. Asphericity diagnostic ∆ can be used to detect aspheric-
ity: negative ∆ij implies that there exists some non-sperical structure such as a disk or a
ring. Let δv be the error on velocity v. Then, the error on ∆ij is

δ∆ij =

√√√√ 1
v2
j

ri
rj

(δvi)2 + v2
i

v4
j

ri
rj

(δvj)2. (2.5)

3 Examples

In figures 1 and 2 we show the asphericity diagnostic ∆ for several different mass models:
exponential disk, pseudo-isothermal halo, Hubble oblate spheroid, Einasto halo and a su-
perposition of an exponential disk with the pseudo-isothermal (piso) halo (table 1). The
exponential disk violates significantly the spherical inequality. The Hubble oblate spheroid is
an example of a non-spherical distribution that doesn’t violate the spherical inequality. When
a halo is added to an exponential disk, if the halo is massive enough, the asphericity becomes
undetectable. We illustrate this phenomena with a piso halo. If the exponential disk has the
same scale radius r0 as the piso halo, the asphericity is detectable iff. c = Σ0

ρ0r0
> 52.55.

4 Asphericity of the DM distribution in the SPARC galaxies

In this section, we compute ∆ij (2.4) for the DM contribution of the SPARC galaxies in
order to seek unambigiously non-spherical DM structures. The contribution of the DM to
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Figure 1. Left: blue: rotation curve of an annulus of inner radius r0/2 and outer radius 3r0/2.
Orange: corresponding asphericity diagnostic ∆. The inner negative rotation curve means that a test
particle is pulled outward. This phenomena occurs in gas contributions to particular SPARC rotation
curves when there are gas over-densities at a certain radius. Right: rotation curve and asphericity
diagnostic for the superposition of a piso halo and an annulus with the same scale radius r0, width
d = r0 and Σ0 = ρ0r0.

the rotation curve is

v2
DM = v2

obs −Υdiskv
2
disk −Υbulgev

2
bulge − v2

gas (4.1)

where vobs is the observed circular velocity, vdisk and vbulge are the contributions of the
stars to the observed velocity assuming a stellar mass-to-light ratio of 1M�/L� and vgas is
the contribution of the gas. Υdisk and Υbulge are the stellar disk and bulge mass to light
ratios. Note that vi is not the velocity of the ith component. It is the contribution of the
ith component to the total circular velocity and is derived by computing the gravitational
potential of the ith component from the mass densities. The total gravitational potential is
the sum of the contributions of each mass component and v2

obs =
∑
i v

2
i . The main unknown

is Υ. In this work, Υ is estimated by individually fitting each rotation curve with an Einasto
halo [10]. We use the Einasto model because it can reproduce a great diversity of spherical
halo shapes and has been show to fit the SPARC data particularly well [6, 11]. In order
to obtain a realistic mean mass to light ratio around 0.5 as suggested by stellar population
synthesis [12–14], the following term is added to the χ2 when fitting, as in [6]:

χ2
Υ =

(
Υ∗,i −Υ∗
σΥ∗

)2

(4.2)

where Υ∗ = 0.5 is the assumed mean mass to light ratio and σΥ∗ is the standard deviation of
Υ∗ values in an ensemble of galaxies, estimated to be σΥ∗ = 0.125;1 Υ∗,i = Υdisk,i is the disk
stellar mass to light ratio of the ith galaxy and Υbulge,i = 1.4Υ∗,i is the ratio for the bulge;
see [6] for more information about these choices. The Einasto fits have 4 free parameters: 3
halo parameters and the stellar mass to light ratio.

1In equation (4.2), σΥ∗ is a global parameter that represents the variance in the true stellar mass to light
ratio of the ensemble of galaxies. Recall that each galaxy’s stellar mass to light ratio is determined by fitting
a Einasto halo to the rotation curve so σΥ∗ is not the error on Υ∗ for each individual fits. Since this error is
not straightforward to estimate and the overall asphericity diagnostic significance is not sensitive to Υ∗, we
do not include this error in the estimate of the error on ∆ij that is then fully determined by the error on the
rotation curve measurements (equation (2.5)).

– 4 –



J
C
A
P
0
3
(
2
0
2
2
)
0
4
9

5.0 2.5 0.0 2.5 5.0
log r/r0

2

0

lo
g

v

5.0 2.5 0.0 2.5 5.0
log r/r0

4

2

0

lo
g

v

5.0 2.5 0.0 2.5 5.0
log r/r0

2

1

0

lo
g

v

5.0 2.5 0.0 2.5 5.0
log r/r0

2

1

lo
g

v

5.0 2.5 0.0 2.5 5.0
log r/r0

0.0

0.5

1.0

lo
g

v

5.0 2.5 0.0 2.5 5.0
log r/r0

2

0

lo
g

v

5.0 2.5 0.0 2.5 5.0
log r/r0

2

0

lo
g

v

5.0 2.5 0.0 2.5 5.0
log r/r0

0

2

lo
g

v

1.0

0.5

0.0

0.5

1.0
exponential disk

0

10

20

p iso halo

1

0

1

2
spheroid e=0.1

1

0

1

2
spheroid e=0.9

1

0

1

2
einasto = 0.1

1

0

1

2
einasto = 1

1

0

1

2
exp disk + piso  c=10

1

0

1

2
exp disk + piso  c=100

Figure 2. Rotation curve and asphericity diagnostic for various mass distributions; blue: rotation
curve, Orange: asphericity diagnostic ∆. Sphericity is violated when ∆ < 0 and the slope of the
log-log rotation curve is less than 1 (eq. (2.3)). The second row left plot corresponds to an almost
spherical spheroid while the right one corresponds to an almost flat spheroid. Note that even thought
these spheroids are not spherically symmetric mass distributions, ∆ is positive and this quantity
cannot be used to detect asphericity in this case. The two bottom models are a superposition of a
pseudo-isothermal halo and an exponential disk with the same scale radius R0 and c = Σ0

ρ0R0
. The

asphericity is detectable via a negative ∆ iff. c > 52.55.

For each galaxy we compute a set of ∆ij where i, j are neighbor data points, then we
combine the significances of these values in order to determine the significance that a given
galaxy violates sphericity. The error on the DM contribution that is used in eq. (2.5) is

δvDM = vobs
vDM

δvobs. (4.3)
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Figure 3. Left: distribution of the ∆ij(vDM) values for all i, j neighbors datapoints of the SPARC
rotation curves. Right: distribution of χ2

dof per galaxy for three values of mean stellar mass to
light ratios, showing that the choice of mean Υ∗ does not significantly change the conclusions. The
individual mass to light ratios are determined using Einasto fits.

The p-value that one data-point k does not violate sphericity (i.e that ∆ is positive) is the
Gaussian integral

pk = 1
σk
√

2π

∫ ∞
0

exp
(
−1

2

(
x−∆k

σk

)2)
dx (4.4)

= 1
2

(
1 + Erf

( ∆k√
2σk

))
(4.5)

with ∆k = ∆k,k+1 and σk = δ∆k (defined in eq. (2.5)). Note that pk ∼ 0 means that data-
point k shows significant sphericity violation while pk ∼ 1 means that data-point k does not
show sphericity violation. Using Fisher’s method for each galaxy, define

χ2 = −2
n∑
k=1

ln(pk). (4.6)

If the pk are independent random variables drawn from the uniform distribution [0, 1], then
χ2 follows a χ2 distribution with 2n degrees of freedom. Hence we define χ2

dof = 1
2nχ

2. Now
we see that χ2

dof ∼ 1 implies that there is no preference for asphericity nor sphericity, while
χ2

dof > 1 implies that the pk are biased toward 0 and that there is a significant preference
for asphericity. We find that χ2

dof < 1 for every galaxy in the SPARC dataset and sphericity
is not manifestly violated within the measurement uncertainties; this is shown in figure 3.
In figures 5 and 6, we show a sample of 12 galaxies from SPARC that exhibit at least one
significantly negative ∆ value.

Given the error provided by SPARC, these negative ∆ values are not sufficient to give
evidence for asphericity. More precise measurements of these particular galaxies’ rotation
curves are needed in order to determine whether any of these galaxies may contain non-
spherical DM structures of the types detectable through a region of negative ∆.

Given the present large error bars on the ∆ values from SPARC, the statistical indicator
derived above is not very useful for identifying promising candidate galaxies which may have
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DM structure detectable through a negative ∆. As an alternate approach, we use our fit
to the SPARC rotation curves for the hadronically interacting dark matter (HIDM) model
developed in [6], and calculate ∆(r) for the model DM distribution. This model includes a
piso halo and a DM disk that scales the interaction rate per unit volume between the gas
particles in the gas disk and DM particles in the DM halo. The radial density of the DM
disk is

ΣDM(r) = ζ ρhalo(r) vobs(r) Σgas(r) (4.7)

where ζ is a galaxy-dependent free parameter. This leads to a model where the total observed
velocity is

v2
HIDM = Υdiskv

2
disk + Υbulgev

2
bulge + v2

gas + v2
DMdisk + v2

pIso (4.8)

where vpIso = 4πGρ0R
2
c

(
1− Rc

r tan−1
(
r
Rc

))
with free parameters Rc and ρ0; the contribu-

tion of the DM disk vDMdisk is derived from equation (4.7). The model has a total of 4 free
parameters Rc, ρ0, ζ and Υ∗ per galaxy. The fitting procedure is explained in more detail
in [6].

These fits allows us to select 4 galaxies that have particularly massive DM disks (fig-
ure 4). The two galaxies in the upper row should have an in-principle-detectable-negative
asphericity diagnostic stemming from their non-spherical DM component, according to our
HIDM model fit. (While the fit to UGC06614 yields a small negative value of ∆ at large
radius, it may be undetectably small.) This means that if the model holds and if the uncer-
tainty on the measurements were low enough, it would be possible to detect non-spherical
structures by measuring the asphericity diagnostic for their rotation curves. Fit results for a
selection of other galaxies are summarized in table 2, showing that a number of other galaxies
are also good candidates to display a negative ∆.

5 Conclusion

We have introduced an asphericity diagnostic ∆, whose positivity is a necessary condition
for a spherically symmetric distribution. In section 3 we showed that the asphericity of some
mass distributions such as exponential disks and rings can be detected using this tool, via a
negative value of asphericity parameter ∆.

In section 4, the diagnostic is tested on real rotation curves in the SPARC dataset in
order to look for non-spherical dark matter structures. Overall, there is no strong evidence
for non-spherical DM structures in the studied dataset given the precision of the measure-
ments. However, with more precise measurements this tool could be a useful diagnostic of
non-spherical DM structures that could emerge from baryon interactions. Given that the dis-
tribution of significance χ2

dof of the asphericity diagnostic peaks around 0.2 (figure 3 right),
the exact same measurements with an error

√
5 smaller could show significant asphericity.

Note that this is only a lower bound on the required increase in needed precision assuming
identical measurement values.

The five SPARC galaxies with the highest dark matter asphericity significance are
NGC5005, UGCA444, UGC11914, NGC7793 and UGC05253, with χ2

dof = 0.48, 0.49, 0.61,
0.59, 0.48 respectively; χ2

dof is defined (see section 4) such that χ2
dof ≥ 1 would be a robust

indicator of asphericity. The five galaxies with the highest percentage of negative ∆ values
are NGC2683, F563-1, UGC11914, NGC6015, NGC7793 with 30, 18, 21, 20, 33% of negative
values respectively. Currently, the error bars on the rotation curves are too high for these
to be significant evidence of non-spherically symmetric dark matter. Moreover based on the
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Figure 4. Sample of 4 galaxies that have a particularly massive DM disk in the HIDM-IS model.
Black markers: observed rotation curve; dashes: stellar contribution displayed with the optimal Υ∗;
dots: gas contribution. (Since stars form from gas, it is natural that in UGC11557 one sees similar
structure in stars as in gas.) The blue line is the model DM contribution that is the superposition
of a disk and a halo. The orange line is the asphericity diagnostic derived from this DM rotation
curve. The presence of a non-spherical DM distribution can in principle be detectable in the top two,
using the asymmetry diagnostic introduced here, but the signature would not be strong enough in the
lower pair.

HIDM fit of [6] the DM distribution in these galaxies — in spite of not being spherical —
would not be expected to be manifestly asymmetric in the manner needed for the asphericity
diagnostic to reveal it. More results for individual galaxies are summarized in table 2.

Using the HIDM model fit from [6], we identified four galaxies that are compatible with
a particularly heavy dark mater disk built up through DM accretion in the baryonic disk:
UGC11557, NGC7793, UGC06614 and UGC05253. These are displayed in figure 4 where
it can be seen that NGC7793 and UGC05253 may be good candidates for future detection
of small-scale structure in the dark matter distribution using the asphericity diagnostic, if
measurement accuracy can be sufficiently improved.

Independently of the HIDM model of [6], galaxies displaying a strong variation in the
radial distribution of gas are the best candidates for having ∆ < 0, if any galaxies do. A DM
ring would be a smoking gun for HIDM interactions, and would be strongest in galaxies with
the strongest gas rings. The measurement error bars in figure 4 include rough systematic
errors assigned by the SPARC collaboration which can be reduced by more precise modeling
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Figure 5. Sample of 6 galaxies with the highest likelihood of showing a non-trivial asphericity
diagnostic with better data, based on their current χ2

dof values (eq. (4.6)) based on the SPARC
measurements. Blue markers: contribution of the DM to the rotation curve. Orange markers: discrete
asphericity diagnostic ∆ij . Orange solid line: asphericity diagnostic predicted by the HIDM model fit.
A significantly negative ∆ij would show the presence of DM structures like rings, or disks that make
the rotation curve drop faster than a spherical distribution. The error is computed assuming that
there is no error on the mass to light ratio determination using equation (2.5). Different mass to light
ratios imply different DM contributions and therefore different ∆ij , so in a future attempt to detect
asphericity, the mass-to-light ratio should be determined by stellar population synthesis modeling for
each galaxy to be studied.

of the radial velocity data, suggesting that the required reduction of errors in ∆ can be within
reach.

In sum, to most effectively investigate whether there is a non-trivial small-scale struc-
ture in DM, as a result of DM collecting with gas, the following observational procedure is
suggested:

1. Identify galaxies for which good rotation curves can be obtained (viewing angle neither
too edge-on or flat-on).
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Figure 6. Sample of 6 galaxies with the highest percentage of negative ∆ values. Same legend as
figure 5.

2. Identify a subset of galaxies with strong radial variations in gas or gas+stars, especially
ring-like structures.

3. Make accurate measurements of the circular velocity as well as the mass distribution of
gas and stars in the radial region enclosing the gas structure, with high radial resolution.
It is crucial to measure all of these accurately, to accurately find the DM contribution.
It is not necessary to improve the measurements at large radii far beyond the gas, which
is fortunate since tracing the rotation curve at large radius can be difficult.

4. Perform detailed stellar-population modeling of these individual galaxies, in order to
accurately assign the correct stellar mass-to-light ratio, which may change as a function
of radius.

Using this data, the DM contribution to the rotation curves of the selected galaxies can be
determined, so the local asphericity diagnostic ∆ introduced here can be measured. Finding
that ∆ < 0 with sufficiently small statistical and systematic error bars, even at one radial
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position, would provide unambiguous proof that DM has aspherical structure. (Of course,
observing it at a sequence of radii and in multiple galaxies would be needed to become
convinced.) The last two columns of table 2 can be helpful in selecting promising galaxies
for detecting a negative ∆, based on the HIDM modeling of [6]. Perhaps the most favorable
three in the SPARC dataset, in terms of a strong signal covering a significant radial region
according to the HIDM fit, would be NGC2915, 6195 and 3521, while independently of the
model, NGC7793 and UGC1155 are good candidates.
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