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Following the idea that a stable sexaquark state with quark content (uuddss) would have gone unnoticed
by experiments so far and that such a particle would be a good dark matter candidate, we investigate the
possible role of a stable sexaquark in the physics of compact stars given the stringent constraints on
the equation of state that stem from observations of high mass pulsars and GW170817 bounds on the
compactness of intermediate mass stars. We find that there is a “sexaquark dilemma” (analogous to the
hyperon dilemma) for which the dissociation of the sexaquark in quark matter is a viable solution fulfilling
all present constraints from multimessenger astronomy. The parameters needed to model the hybrid star,
including sexaquarks, are in line with parameters of preexisting quark- and hadronic-matter models.
We find that current constraints—tidal deformability in accordance with GW170817 and maximum mass
above the lower limit from PSR J0740þ 6620—can be satisfied twoways: with early quark deconfinement
such that neither sexaquarks nor hyperons are present in any neutron star interiors, or with later
deconfinement such that a neutron-sexaquark shell surrounds the inner quark matter core.

DOI: 10.1103/PhysRevD.105.103005

I. INTRODUCTION

The present work is devoted to consideration of the
consequences for neutron star (NS) phenomenology that
would follow from the existence of a possible stable
sexaquark (S) state with the quark content uuddss.
The S is an electrically neutral spinless boson with

baryon number BS ¼ 2 and strangeness SS ¼ −2 in a
flavor-singlet state. If it is light enough to be stable against
weak decay (mS < mp þmΛ þme ¼ 2054 MeV), then
the S is a good dark matter candidate [1,2], and experiments
to date would not have been sensitive to it [3]. The
sexaquark has to be distinguished from the H-dibaryon
(H) with the same quark content, which was introduced by

Jaffe [4] and estimated using the MIT bag model to have a
mass of 2150 MeV—greater thanmΛ þmp þme and hence
weak interaction unstable with a lifetime Oð10−10 sÞ). As
illustrated in Fig. 1, both a molecule of two Λ hyperons, as
well as a more tightly bound state of three diquarks,
could exist.
Our specific goal is to investigate whether the existence

of neutron stars with masses above 2 M⊙, and the evidence
that NS radii vary slowly with masses above ∼1.4 M⊙,
excludes the existence of a scalar strongly interacting
dibaryon with mass in the range where it is a potential
dark matter candidate, ≈2mN to 2054 MeV. To this end, we
use a preexisting formalism for the hadronic equation of
state and extend it to include a S along with a two-flavor
constant-speed-of-sound equation of state (EOS) for decon-
fined quark matter, and we consider two methods for
interpolating between them. With a nonexhaustive explo-
ration of model parameters (without adjusting beyond the
normal range), we find that a stable S with mass above
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≈1885 MeV is compatible with current neutron star obser-
vations. We find solutions of two types: (i) with early
deconfinement and neither sexaquarks nor hyperons
present in neutron stars of any mass and (ii) with a layer
containing both sexaquarks and nucleons outside a quark
matter core. When our understanding of the transition
between hadronic and quark matter is improved, knowl-
edge of neutron stars may provide constraints on the
allowed mass of a sexaquark, or even point to its existence.
Indeed, we find that a S naturally explains the soft EOS at
low densities implied by observations of GW170817.

II. OVERVIEW

One of the puzzling questions in the physics of hadrons
concerns the structure of recently discovered multiquark
clusters, such as pentaquarks and tetraquarks. Are these
states molecules of color-neutral (hadronic) subclusters
analogous to the hydrogen molecule of atomic physics?
Or are they multiquark states bound by confining forces
between color charged quarks and diquarks? Or some of
each? As an example, the recently discovered all-charm
tetraquark X(6900) [5] can a priori be viewed as a molecule
of two J=ψ mesons or a diquark-antidiquark bound state.
Similarly, a pentaquark could be a baryon-meson molecule
or a bound state of two diquarks and an antiquark. For more
details, see the textbook [6].
While the H state has been investigated in lattice QCD

calculations [7–11] and a binding energy of a few to
80 MeV has been found at still unphysically large quark
mass, the much lighter and possibly more compact S state is
not yet accessible to lattice QCD calculations [12].
In a recent calculation within a constituent quark model,

Buccella obtained the mass of the S as a bound state of
three diquarks to be mS ¼ 1883 MeV [13], while Azizi
et al. have obtained it to be about mS ¼ 1180 MeV using
QCD sum rules [14]. Buccella showed also that this
estimate does not depend on the choice of the parameters
for the constituent quark masses by replacing the latter with
an expression using the heavier nonet mesons, mS¼
2MKð1430Þ−ð1=2ÞMf0ð1370Þ þ40MeVþð1=2Þ½MN−MΔ�þ
MΣ−MY� ¼1876.5MeV, where the first three terms
correspond to the constituent mass and the other terms

to the contribution of the chromomagnetic interaction [13].
A S in this mass range is sufficiently heavy to not induce
instability in the deuteron (D) and other nuclei [3,15].
For mS ≤ mD ¼ 1876.122 MeV, the S is absolutely

stable due to baryon number conservation, while as
long as mS ≤ mp þme þmΛ ¼ 2054.466 MeV its decay
requires ΔS ¼ 2 and is hence doubly weak, and its lifetime
exceeds the age of the Universe [15,16]. In this study we
suppose that the S may be a deeply bound state with low
enough mass to be absolutely or effectively stable; in that
case it is an attractive dark matter (DM) candidate [2,3].
The observed dark matter to baryon ratio is ΩDM=ΩB ¼
5.3� 0.1 [17,18], and a successful model for dark matter
should account for this value. In fact, an abundance of S
dark matter in agreement with this observation follows [2]
from statistical mechanics using quark masses as deter-
mined from lattice QCD, given the effective freeze-out
temperature Teff ≈ 150 MeV formS in the expected range.

1

Another environment for the production of the S, apart
from the hadronization transition in the early Universe, is
the “little bang” in ultrarelativistic heavy-ion collisions at
the LHC, where not only traditional hadrons but also light
nuclei and antinuclei are abundantly produced. Recently,
the ratio of light sexaquarks relative to the deuteron to be
expected under these conditions has been estimated within
a thermal statistical model [21] and found to be sizeable,
of the order 1. Abundant production of sexaquarks is not
sufficient for their discovery—there remains the problem of
the detection of the S and discriminating it from the far
more abundant neutrons. Experiments to date have not had
the required discriminating power, and no evidence for
sexaquark production currently exists; see [3] for an
analysis of detection strategies.
In the present work, we consider sexaquarks in the mass

range of 1885 MeV < mS < 2054 MeV.2 We study the
possible relevance of the S for the properties of neutron
stars in light of recent multimessenger observations that
constrain the mass-radius diagram and tidal deformability.
When the S is present in cold dense baryonic matter in
neutron stars, it forms a Bose condensate since the temper-
ature in fully catalyzed neutron stars (of the order of a few
keV) is much smaller than the critical temperature for Bose-
Einstein condensation. The latter amounts to about one
MeV for particles with a mass around 2 GeV and typical
densities of fractions of the nuclear saturation density. The
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FIG. 1. Comparison of two realizations of a color singlet
hadron with the quark content (uuddss). Left: hadronic molecule
of two ΛðudsÞ hyperons, corresponding to the H-dibaryon.
Right: compact bound state of three diquarks, bound by color
forces, which corresponds to a possible structure of the sex-
aquark.

1The predicted ΩDM=ΩB is very insensitive to the assumed
freeze-out temperature; the relevant range is motivated by the
recent result of Tc ¼ 156.5� 1.5 MeV for the pseudocritical
temperature obtained in lattice QCD simulations [19]. Note a
plotting error in [2] is corrected in version 2 of [20]; the formulas
given in [2] are correct.

2The lower end of the range is sufficient that condensation of
sexaquarks below saturation density can be avoided and above
the upper end of the range the S decays inOð10−10 sÞ and is not a
dark matter candidate.
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sexaquark condensate appears as soon as the baryon-
chemical potential in the center of the star fulfills
μb ¼ mS=2, unless a transition to nonhadronic degrees of
freedom occurs first. For a density-independent mass, for
instance, mS ¼ 1941ð2054Þ MeV, this occurs for a star
with M ¼ 0.21 M⊙ð0.7 M⊙Þ, respectively. The mass mS ¼
1941 MeV is chosen as an illustrative case because, for a
density-independent mass and mS ¼ 1941 MeV, the Bose
condensation occurs exactly at saturation density. Saturation
density is roughly the lowest density at which condensation
can be tolerated due to the existence of nuclei. Therefore,
due to the saturation of the pressure, once Bose condensation
occurs, 0.21 M⊙ is roughly the maximum NS mass that can
be reached for a noninteracting S with mass less than
1941 MeV, unless a transition to new degrees of freedom
replaces hadrons. Such a low maximum mass is in clear
contradiction with the observation of pulsars as massive as
2 M⊙ like PSR J0740þ 6620 [22] or PSR J0348þ 0432
[23] and many, many lower-mass neutron stars.
The problem with S Bose condensation is alleviated by

the plausible assumption that the effective mass of the S is
medium dependent and increases with density, similar to
the behavior of the other baryon masses at supersaturation
densities. However, as we will show in this work, simply a
medium-dependent mass for the S is insufficient to allow
for neutron star masses consistent with the observational
constraint Mmax ≳ 2 M⊙. This constitutes the “sexaquark
dilemma” to which this work is devoted. The same is true
for hyperons—the so-called hyperon puzzle. It is known
that the hyperon puzzle can be solved by quark deconfine-
ment; see, e.g., [24,25] and references therein. Therefore,
we explore in the present paper various scenarios for the
sexaquark dilemma and the viability of solution by quark
deconfinement.
In a recent work, McDermott et al. [26] argued that a

deeply bound S—in the mass range considered here—
would be incompatible with the delayed neutrino signal
from supernova (SN) 1987A. However, the interconversion
amplitude between the S and twoΛ’s is naturally small, and
the value needed to not impact SN1987A cooling is
comfortably in the expected range [3,15], so SN1987A
cooling is not the show stopper for sexaquark dark matter
envisaged in [26].3 While the conditions relevant to the
analysis of [26] are unlike the steady state conditions we
consider, we note that their assumed hyperon-rich envi-
ronment and medium independence of the masses, and
neglect of the possibility of quark deconfinement, would
not be applicable for our solution of the S dilemma.
The structure of the present paper is as follows. In Sec. III

we present the formalism of calculating the EOS of hadronic

matter based on the density dependent (DD) relativistic mean
field (RMF) model in neutron star matter. In Sec. IV the EOS
of quark matter is obtained and the theory of two different
approaches for constructing the hybrid stars are given. In
Sec. V we present our results for the properties of purely
hadronic stars, including S particles, and discuss their
dilemmas. The deconfinement solution for this dilemma is
discussed in Sec. VI. Finally, the summary and conclusion
are given in Sec. VII. The guide to the terminology of the
paper is presented in Appendix A while Appendix B
describes the hadronic and quark matter equations of state
in the P-μ plane.

III. A RELATIVISTIC DENSITY FUNCTIONAL
APPROACH TO HYPERNUCLEAR MATTER

WITH SEXAQUARK

The study of nuclear matter based on relativistic
approaches with a Lagrangian density, including baryons
and mesons as degrees of freedom, has a long history
[28–31]. Principles of effective field theories were applied
to these models, see, e.g., [32], and the original treatment as
full-fledged field theories was replaced more recently by an
interpretation as density functional theories [33]. In this
work the EOS of hadronic matter is obtained from a
generalized relativistic density functional (GRDF) with
baryon-meson couplings that depend on the total baryon
density of the system. The original density functional for
nucleonic matter considers the isoscalar σ and ω mesons
and the isovector ρ meson as exchange particles that
describe the effective in-medium interaction. The density
dependence of the couplings is adjusted to describe proper-
ties of atomic nuclei [34,35]. It has been confirmed that
such GRDFs are successful in reproducing the properties of
nuclear matter around nuclear saturation [36].
The explicit introduction of mesons in relativistic density

functionals is not necessary for the description of nuclear
matter since the theoretical formulation can be based on
the baryonic degrees of freedom and their densities only.
This is realized, e.g., in relativistic point-coupling models,
see [37] and references therein. However, the use of mesons
is convenient from a practical point of view as they
represent a simple means to describe the relevant compo-
nents of the effective interaction.
GRDFs with different functional forms of the density

dependent couplings have been studied, e.g., in [38], and
various parametrizations are available in the literature [39].
In the present work the parametrization DD2 [40] is used
for the σ, ω, and ρ couplings. It was obtained by fitting
properties of finite nuclei: binding energies, charge and
diffraction radii, surface thicknesses, and spin-orbit split-
tings. It predicts characteristic nuclear matter parameters
that are consistent with recent constraints [41]. In particu-
lar, a saturation density of 0.149065 fm−3, a binding energy
per nucleon of 16.02MeV, and an incompressibility ofK ¼
242.7 MeV in symmetric nuclear matter are found. The

3Similarly, the conclusions of [27] do not apply to sexaquark
dark matter because the suppressed interconversion between
sexaquark and two baryons inhibits the destruction of sexaquarks
in the high-temperature hadronic phase.
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isospin dependence can be characterized by a symmetry
energy of J ¼ 31.67 MeV at saturation with a slope
parameter of L ¼ 55.04 MeV. Because no constraints were
imposed at suprasaturation densities in determining the
DD2 parameters, the EOS constitutes a pure extrapolation
in this density range. The DD2 model leads to a rather stiff
EOS at high baryon densities with a maximum neutron star
mass of 2.4 solar masses in a pure nucleonic scenario of the
strongly interacting system. This approach with nucleons
has been extended to include light and heavy clusters as
quasiparticles modified by medium effects [40,42], which
are important in the finite-temperature EOS for astro-
physical applications, e.g., the simulation of core-collapse
supernovae or neutron-star mergers [41]. The internal
structure of these clusters is not taken into account, and
they are treated as pointlike particles.
In the description of neutron-star matter one has to

consider that new baryonic degrees of freedom can become
active with increasing density as the chemical potentials
rise. Neglecting any interaction, a new species appears
when the corresponding chemical potential crosses the
particle mass. This usually leads to a softening of the EOS
as it is known for hyperons—the so-called “hyperon
puzzle” which has been discussed in [24,25,43] and the
literature cited therein. However, if the interaction with an
additional ϕ meson, which couples only to strangeness-
carrying hyperons, is included in the GRDF, a sufficient
stiffening of the EOS can be achieved. In our present study,
all particles in the octet of spin 1=2 baryons are included
in the model as degrees of freedom. Their interaction is
described by the exchange of σ, ω, ρ, and ϕ mesons with
appropriately adjusted couplings to the baryons. The S
particle is a further baryonic degree of freedom in the
GRDF with a density dependent mass shift that models
the effect of the interaction with the medium. For the
description of neutron star matter, electrons and muons are
added in the GRDF to achieve charge neutrality. The
electron and muon densities, assuming identical lepton
chemical potentials, for the given baryon density are
determined by the condition of β equilibrium.
In the present work with the application to neutron stars

we can restrict ourselves to the case of matter at zero
temperature. At densities below saturation there are no
hyperons or sexaquarks and the unified crust EOS of the
original GRDF-DD2 model with clusters is used. It con-
tains the well-known sequence of nuclei in a body-centered
cubic lattice with a uniform background of electrons and a
neutron gas above the neutron drip line. The transition to
homogeneous matter just below the nuclear saturation
density is described consistently within the same approach.
The main modification is to include the new degrees of
freedom at supersaturation densities in the GRDF model.
This will be described in the following subsections. All
equations follow the traditional convention of ℏ ¼ c ¼ 1 of
nuclear physics.

A. NS matter EOS with hyperons and sexaquark

The hadronic part of the core in a neutron star is assumed
to consist of homogeneous matter composed of strongly
interacting baryons and charged noninteracting leptons in
full thermodynamic equilibrium. Explicitly, these degrees
of freedom are protons (p), neutrons (n), hyperons (Λ, Σþ,
Σ0, Σ−, Ξ0, Ξ−), the S, electrons (e), and muons (μ). All
information on the thermodynamic properties of the system
can be obtained from a grand canonical thermodynamic
potential density ΩðfμigÞ that depends only on the chemi-
cal potentials μi of the individual particles at zero temper-
ature. These can be expressed as

μi ¼ Biμb þQiμq þ Siμs þ Liμl ð1Þ

with the individual baryon (Bi), charge (Qi), strangeness
(Si), and lepton (Li) numbers. Independent quantities are
the baryon (μb), charge (μq), strangeness (μs), and lepton
(μl) chemical potentials (assuming identical electron lepton
and muon lepton chemical potentials). The condition of
full equilibrium with respect to strangeness-changing
reactions corresponds to μs ¼ 0 and, in the case of β
equilibrium in a neutron star, we have vanishing neutrino
chemical potentials μνe ¼ μνμ ¼ μl ¼ 0. Thus only two
independent chemical potentials, μb and μq, remain.
These have to be determined for a given baryon density,

nb ¼
X
i

Bin
ðvÞ
i

¼ nðvÞp þ nðvÞn þ nðvÞΛ þ nðvÞΣþ þ nðvÞΣ0 þ nðvÞΣ−

þ nðvÞΞ0 þ nðvÞΞ− þ 2nðvÞS ; ð2Þ

and total charge density,

nQ ¼
X
i

Qin
ðvÞ
i

¼ nðvÞp þ nðvÞΣþ − nðvÞΣ− − nðvÞΞ− − nðvÞe − nðvÞμ ð3Þ

with the particle number (or vector) densities nðvÞi , see
below. Requiring local charge neutrality corresponds to
nq ¼ 0, and thus the charge chemical potential μq will be
fixed too. Finally, the EOS of neutron star matter depends
only on the baryon chemical potential μb.
All constituent particles with vacuum rest masses mi are

considered as quasiparticles in the medium with effective
masses m�

i ¼ mi − Si and effective chemical potentials
μ�i ¼ μi − Vi. These contain scalar and vector potentials,
Si and Vi, that describe the interaction of the particles in the
medium. They arise from the coupling of the meson fields
σ, ω, ρ, and ϕ with coupling strengths Γiσ, Γiω, Γiρ, and Γiϕ

to nucleons and hyperons, or they are modeled effectively
by a mass shift ΔmS for the sexaquark. The couplings are
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assumed to depend on the total density of nucleons and
hyperons,

ncpl ¼ nb − 2nS; ð4Þ

and the mass shift depends on the baryon density (2). Using
the meson field names also for the field strengths, the
potentials for nucleons and hyperons have the form

Si ¼ Γiσσ; ð5Þ

and

Vi ¼ Γiωωþ Γiρρþ Γiϕϕþ BiVðrÞ þWðrÞ
i ; ð6Þ

whereas they are given by

SS ¼ −ΔmS ð7Þ

and

VS ¼ WðrÞ
S ð8Þ

for the sexaquark. The rearrangement contributions VðrÞ,
WðrÞ

i , see below, are required for thermodynamic consis-
tency. The coupling of a particle i to a meson m can be
written as

Γim ¼ gimΓmðncplÞ ð9Þ

with prefactors gim and density dependent coupling functions
ΓmðncplÞ. The dependence of these functions on the baryon
density nb is given by the functional forms as introduced in
[34] and used for the DD2 parametrization, i.e.,

ΓmðncplÞ ¼ ΓmðnðvÞsat ÞfmðxÞ ð10Þ

with x ¼ ncpl=n
ðvÞ
sat , the couplings at saturation ΓmðnðvÞsat Þ and

functions

fmðxÞ ¼ am
1þ bmðxþ dmÞ2
1þ cmðxþ dmÞ2

ð11Þ

for m ¼ σ, ω and

fρðxÞ ¼ exp½−aρðx − 1Þ� ð12Þ

for theρmeson. See [40] for the actual parameters andmasses
of the mesons. The coupling Γϕ of the ϕmeson is assumed to

be constant in the present model with Γϕ ¼ ΓωðnðvÞsat Þ. In the
following, also derivativesΓ0

m ¼ dΓm=dncpl of the couplings
will appear.

The coupling factors gim in Eq. (9) of nucleons and
hyperons to the vector mesons can be expressed with help
of the quantum numbers Bi, Qi, and Si of a particle i as

giω ¼ Bi þ
Si
3
; ð13Þ

giρ ¼ 2Qi − Bi − Si; ð14Þ

giϕ ¼
ffiffiffi
2

p

3
Si; ð15Þ

following the usual SU(6) coupling scheme, see, e.g., [44].
The coupling factors for the σ meson to the nucleons are
given by gpσ ¼ gnσ ¼ 1. For hyperons, they are determined
by fixing their in-medium potential UY with Y ¼ Λ;Σ;Ξ in

symmetric nuclear matter at saturation density nðvÞsat of the
DD2 parametrization. Explicitly, they are given by

gYσ ¼ ½ðgYωΓωðnðvÞsat Þ þ Γ0
ωðnðvÞsat ÞnðvÞsat Þωsat

− Γ0
σðnðvÞsat ÞnðsÞsat −UY �ðΓσðnðvÞsat ÞσÞ−1 ð16Þ

with the vector density nðvÞsat and the scalar density nðsÞsat at
saturation of the DD2 parametrization.
In principle, the interaction of the S particle with the

medium can be described by a coupling to the mesons as
for the other baryonic degrees of freedom. However, this
requires to introduce several unknown meson-sexaquark
couplings. Since the sexaquark will exist as a condensate at
zero temperature, only the difference VS − SS of the vector
and scalar potentials appears in the equations. This effective
potential rises, to lowest order, proportional to the baryon
density. Thus it is sufficient to describe the interaction with
the medium simply by a mass shift,

ΔmS ¼ mSxS
nb
n0

; ð17Þ

giving the effective mass

m�
S ¼ mS − SS ¼ mS þ ΔmS: ð18Þ

For simplicity in a first exploration, we describe this with a
single adjustable parameter xS and fixed constants mS and
n0. The mass shift (17) rises linearly with the baryon
density and represents an effective repulsive interaction
with the medium for positive xS. Due to this density
dependence, there appears a rearrangement contribution
in the vector potential (8) of the S particle. It depends
linearly on the scalar density of the sexaquark and is thus
considerably smaller than the mass shift as long as this
density is small compared to the baryon density.
Obviously, electrons and muons are treated as free

particles since they do not participate in the strong inter-
action, and there is no electric potential in uniform matter.
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The meson fields themselves are found from the meson
field equations,

m2
σσ ¼ Γσnσ; ð19Þ

m2
ωω ¼ Γωnω; ð20Þ

m2
ρρ ¼ Γρnρ; ð21Þ

m2
ϕϕ ¼ Γϕnϕ; ð22Þ

with the source densities

nσ ¼
X
i

giσn
ðsÞ
i ; ð23Þ

nω ¼
X
i

giωn
ðvÞ
i ; ð24Þ

nρ ¼
X
i

giρn
ðvÞ
i ; ð25Þ

nϕ ¼
X
i

giϕn
ðvÞ
i : ð26Þ

The rearrangement contributions

VðrÞ ¼ Γ0
ωnωωþ Γ0

ρnρρ − Γ0
σnσσ ð27Þ

and

WðrÞ
i ¼ nðsÞS

∂ΔmS

∂nðvÞi

ð28Þ

in Eqs. (6) and (8) arise due to the dependence of the
couplings and mass shifts, respectively, on the densities.

B. Particle densities and relativistic density functional

The densities of the particles depend on their effective
chemical potentials μ�i and effective masses m�

i . In a
relativistic model, vector and scalar densities have to be
distinguished. The vector density of a fermion is given by

nðvÞi ¼ gi

Z
d3p
ð2πÞ3 θðpi − pÞ ¼ gi

6π2
p3
i ð29Þ

with degeneracy factor gi and an integration up to the Fermi
momentum

pi ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½μ�i �2 − ½m�
i �2

p
if μ�i > m�

i

0 if μ�i ≤ m�
i

ð30Þ

at zero temperature. The expression for the scalar density of
a fermion,

nðsÞi ¼ gi

Z
d3p
ð2πÞ3

m�
i

Eðp;m�
i Þ
θðpi − pÞ

¼ gi
4π2

�
μ�i pi − ðm�

i Þ2 ln
μ�i þ pi

m�
i

�
; ð31Þ

contains an additional factor m�
i =E in the integral as

compared to the vector density with the energy

Eðp;m�
i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ½m�

i �2
q

; ð32Þ

depending on the momentum p, thus μ�i ¼ Eðpi;m�
i Þ with

the Fermi momentum pi. For the bosonic S, there is only
a finite density at zero temperature when the condition
μ�S ¼ m�

S is satisfied, and we have Bose-Einstein conden-
sation. In this case the vector and scalar densities are
identical and can be written as

nðvÞS ¼ nðsÞS ¼
�
gSξS if μ�S ¼ m�

S

0 else
ð33Þ

with degeneracy gS ¼ 1 and a factor ξS. The latter can be
determined from the given baryon density nb as

ξS ¼ ðnb − nðvÞn − nðvÞp − nðvÞΛ − nðvÞΣþ − nðvÞΣ0 − nðvÞΣ−

− nðvÞΞ0 − nðvÞΞ− Þ=gS ð34Þ

at the condensation point.
The relativistic density functional assumes the form of a

grand canonical thermodynamic potential density in the
present approach. It is given explicitly by the expression

ΩðfμigÞ ¼
X
i∈F

Ωi þ ΩS þ Ωmeson −ΩðrÞ
meson − ΩðrÞ

mass ð35Þ

with a contribution

Ωi ¼ −
1

4
½μ�i nðvÞi −m�

i n
ðsÞ
i � ð36Þ

of the fermionic quasiparticles i ∈ F ¼ fp; n;Λ;Σþ;Σ0;
Σ−;Ξ0;Ξ−g. The condensate contribution of the bosonic
sexaquarks is formally given by

ΩS ¼ gSξSðm�
S − μ�SÞ; ð37Þ

and the meson contribution has the form

Ωmeson ¼ −
1

2
ðΓωnωωþ Γρnρρþ Γρnρρ − ΓσnσσÞ: ð38Þ

Finally, the meson rearrangement contribution

ΩðrÞ
meson ¼ VðrÞncpl ð39Þ
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and the mass shift rearrangement contribution

ΩðrÞ
mass ¼

X
i¼n;p;S

nðvÞi WðrÞ
i ð40Þ

appear in Eq. (35). With the above definition of Ω, the
standard relations

nðvÞi ¼ −
∂Ω
∂μi

����
fμjgj≠i

nðsÞi ¼ ∂Ω
∂mi

����
fμjg

ð41Þ

are valid as required for thermodynamic consistency. It is
easily noted that ΩS ¼ 0 because either ξS ¼ 0 form�

S ≠ μ�S
or m�

S ¼ μ�S with ξS > 0 if condensation occurs. Generally,
the condition μ�S ≤ m�

S applies to the model with sexa-
quarks. Since the S is uncharged and does not couple to the
mesons, this corresponds to

BSμb ≤ mS − SS þWðrÞ
S ¼ mS þ ΔmS þ nðsÞS

∂ΔmS

∂nðvÞS

ð42Þ

with baryon number BS ¼ 2. Thus there is a condition on
the baryon chemical potential μb that is limited from above.
If this maximum is reached, then the baryon density can
only rise by an increase of the condensate density of the
sexaquark. With an increase of its effective mass, due to the
mass shift, the condensation point moves to higher baryon
chemical potentials.

C. Parameters and thermodynamic properties

The rest masses mi of nucleons, hyperons, and mesons
used in the GRDF are given in Tables I and II.
The baryon masses follow the recommendations of the

Particle Data Group [45], except for the sexaquark that
depends on the considered scenario, see Sec. V. Here we
assume the lowest mass of sexaquarks that can be consid-
ered is determined by the value that avoids a condensation
at baryon densities below the nuclear saturation density in
symmetric nuclear matter in the DD2 model. The masses of
the ω and ρ mesons are standard values used in relativistic
density functionals, and mσ is a fit parameter of the DD2
interaction. The mass of the ϕ meson, as well as those of
the electron and muon, are taken from [45]. Values of the
baryon-meson couplings Γm at the reference density

nðvÞsat and the coefficients in the functions fm,
cf. Eqs. (11) and (12), can be found in [40], and we recall

that Γϕ ¼ ΓωðnðvÞsat Þ. The reference density nðvÞsat ¼
0.149065 fm−3 is the nuclear saturation density of the
DD2 parametrization corresponding to a scalar density of

nðsÞsat ¼ 0.139650 fm−3. The values UΛ ¼ −28 MeV, UΣ ¼
30 MeV, and UΞ ¼ −14 MeV from [46] are adopted for
the hyperon potentials at saturation in symmetric nuclear
matter to calculate the coupling factors (16). The parameter
xS in the mass shift (17) is varied in the model to explore
changes of the EOS caused by different onsets for the
condensation of sexaquarks.
All thermodynamic properties of the system can be

derived from the grand canonical thermodynamic potential
density (35), e.g., the pressure P is simply given by
P ¼ −Ω. The free energy density f is equal to the internal
energy density ε and can be calculated easily as

f ¼ ε ¼ Ωþ
X
i

μin
ðvÞ
i : ð43Þ

The speed of sound in unit of the speed of light is found
from

c2s ¼
dP
dε

ð44Þ

and should not exceed one to be physically permitted.

IV. HIGH DENSITY EQUATION OF STATE

A. Quark matter EOS

At low temperatures and very high densities, it has
been proven that the favorite state of three flavor color-
superconducting quark matter would be the color-flavor-
locking (CFL) phase [47]. Then one could ask what will
happen to the quark matter state at lower densities, in
particular, in the region of the quark-hadron phase tran-
sition. In order to answer this question, one has to solve
self-consistently the coupled gap equations for quark
masses and diquark pairing gaps in the competing chan-
nels. Such a task has been attacked within the Nambu–
Jona-Lasinio (NJL) model for dense quark matter [48]. The
solution, which for the case of three flavors and three
colors, was presented for the first time in Refs. [49–51] and
shows that there is a corridor for the two-flavor color
superconducting (2SC) phase between hadronic matter and
the CFL phase.

TABLE I. Rest masses of nucleons and hyperons in the
generalized relativistic density functional. The rest mass of the
sexaquark depends on the scenario, see text.

Particle i mi [MeV] Particle i mi [MeV]

p 938.272081 Σ0 1192.642
n 939.565413 Σ− 1197.449
Λ 1115.683 Ξ0 1314.86
Σþ 1189.37 Ξ− 1321.71

TABLE II. Rest masses of mesons in the generalized relativistic
density functional.

Meson i σ ω ρ ϕ

mi [MeV] 546.212459 783 763 1019.461
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This corridor is illustrated in the corresponding phase
diagrams shown in Figs. 1 and 2 of Ref. [49], Figs. 5 and 6
of Ref. [50], and Fig. 11 of Ref. [51]. According to these
works, the strange quark flavor appears in quark matter
only for chemical potentials of about 450 MeV and marks
the transition from the 2SC phase to the CFL phase of color
superconductivity. Within a hybrid neutron star scenario,
this transition typically occurs for star masses above 2 M⊙,
see [52]. It has been demonstrated, e.g., in Refs. [36,52]
that the onset mass of quark deconfinement (i.e., the onset
of the 2SC phase) in compact stars gets lowered when
increasing the diquark coupling and with it the size of
the pairing gap. See also the above quoted figures of
Refs. [49–51].
This effect can be understood by inspecting the approxi-

mate formula for the quark matter pressure in [53], where
for the 2SC phase the additional pressure contribution ∝
μ2bΔ2 arises (see also [54,55] for recent applications of this
formula). Increasing the diquark gap Δ increases the quark
pressure so that the intersection point with the hadronic
pressure PHðμbÞ is shifted to lower chemical potentials viz.
densities.
Consequently, the hadron-to-quark matter transition

constructions discussed in the following subsection join
three-flavor hadronic matter and two-flavor (2SC) quark
matter phases. For a different scenario within the density
functional approach to quark matter, where all three quark
flavors appear simultaneously, see [56].
We consider here the scenario that at high enough

density S particles are dissociated into a 2SC phase of
quark matter, which is microscopically described by the
nonlocal NJL (NLNJL) model while its formulation has
been fitted [57] to the simple parametrization of constant
speed of sound (CSS) [58] at higher densities and zero
temperature. The microscopic NLNJL model is a covariant
extension of the NJL model in which the quark fields
interact via momentum dependent vertices [59–61]. It has
been shown in [57] that the EOS obtained from this method
is fitted very well (regarding the χ2 value) to CSS para-
metrization for quark matter EOS. Indeed, a mapping from
the two-dimensional space of NLNJL model to the three-
dimensional space of CSS model has been performed in
this paper using a simple functional. With this functional
that is introduced in [57], the EOS of color superconducting
quark matter can be obtained for each value of vector
meson coupling (ηV) and diquark coupling (ηD). The
resulting EOS, which has a microscopic justification, is
fitted to the following parametrization for CSS quark
matter:

PQðμbÞ ¼ Aðμb=μ0Þð1þ1=c2sÞ − B; ð45Þ

where μ0 ¼ 1000 MeV defines a scale for the chemical
potential. In (45), there are three free parameters
which have to be defined. The squared speed of sound

c2s ¼ dPQ=dε has to be large enough so that the maximum
mass Mmax of the corresponding neutron star sequence
exceeds the observational lower bound on it, which presently
amounts to 2.01 M⊙ at 68.3% credibility [22]. The prefactor
A could change the slope of the function PQðμbÞ and the
effective bag pressure B imposes the confinement effect at
low densities in quark matter EOS and makes the pressure
to have negative value in this region. Once the pressure as
a function of chemical potential is obtained, one could
calculate the baryon density (nb ¼ dPQ=dμb), as well as the
energy density (εQ ¼ nbμb − PQ) for the quark matter. For
the relation between the NLNJL and CSS models of quark
matter, see also the recent work [62].

In [57], for NLNJL parameters 0.70 < ηD < 0.80 and
0.11 < ηV < 0.18, the parameter mapping to the space
of the CSS model resulted in the following range of
parameters: 0.449<c2s <0.541, 91.484 < A½MeV=fm3� <
101.116, and 82.437 < B½MeV=fm3� < 92.290. In the
current work, we use several different sets of these
parameters in order to find out which of them is modeling
the hybrid star with sexaquarks in the outer core in such a
way to fulfill all observational constraints.
We consider four different scenarios for solving the S

dilemma in compact stars denoted as follows, where the
subscript i labels two mass choices for the S (i ¼ 1885,
1941), in MeV:

(i) Scenario DSiY: An early deconfinement (D) before
sexaquark (Si) and hyperon (Y) onset,

(ii) Scenario SiDY: deconfinement after sexaquark but
before hyperon onset,

(iii) Scenario SiYD: deconfinement after both sexaquark
and hyperon onset when S is prior,

(iv) Scenario YSiD: like previous case but hyperon
is prior.

In this work, the value of ηD has been taken to be 0.75 in
accordance to the Fierz transformation of a one-gluon
exchange interaction [48].
For the present hadronic matter EOS and the quark

matter EOS, the transition from hadronic matter to decon-
fined quark matter occurs at low chemical potential.
Moreover, because of the softening of the hadronic matter
EOS at higher chemical potential after the appearance of
hyperons, we encounter the reconfinement problem [58],
which will be ignored in applying the Maxwell construc-
tion following the argument [24] that once the deconfine-
ment occurs at a certain critical density, the hadronic matter
EOS is not valid anymore beyond that point.
For moving the transition point to higher chemical

potentials, we may apply an extra bag pressure to the
quark matter EOS, which could be either a constant one
(B0) or a μb-dependent one. The μb-dependent bag pressure
BeffðμbÞ is efficient for making a stronger phase transition
with a big jump in density (a bigger difference in the slope
of hadronic matter and quark matter EOS at the transition
point) at the transition point.
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The larger the density jump, the stronger the effect of
softening the EOS, which leads to more compact hybrid
stars at the transition. This may help to fulfill the demand-
ing constraint on the tidal deformability, 70 < Λ1.4 < 580
at 1.4 M⊙, deduced from the gravitational wave signal of
the binary neutron star merger GW170817 [63]. For a
sufficiently large jump in energy density (Δε≳ εc, see [64]
for details), a gravitational instability may occur which,
after stability is recovered for sufficiently stiff quark matter
at higher densities, leads to the formation of an alternate
branch of hybrid stars in the M-R diagram [65]. This
potentially observable feature of a strong phase transition is
accompanied with the phenomenon of mass-twin stars [66].
Due to the constraint of causality on the speed of sound,
however, a parametrization of BeffðμbÞ with a sufficiently
large value of Δε may not be admissible.
The μb dependence of the bag pressure has been

introduced in [67] in the following form:

BeffðμbÞ ¼ B1f<ðμbÞ; ð46Þ

with the switching functions

f<ðμbÞ ¼
1

2

�
1 − tanh

�
μb − μ<
Γ<

��
: ð47Þ

While in [67] the parametrization of BeffðμbÞ resulted in
mass twins, in the present work (as also in Ref. [62]), it will
suffice to accommodate the tidal deformability constraint
but not lead to mass twins. It is worth mentioning that
in (45), the value of B reads

B ¼ B0 þ BeffðμbÞ; ð48Þ

in which B0 is a constant value, and BeffðμbÞ is defined
according to (46). We have changed the parameters in the
above definition, as well as the parameters of quark matter
EOS, several times to find the best sets (to the best of our
knowledge) of parameters, which not only fulfills all
observational constraints but also results in an appropriate
transition point to be a proper solution for one of the
considered scenarios in this work.

B. Hybrid EOS

Within the two-phase approaches to hybrid neutron star
matter, the most common phase transition constructions are
the Maxwell construction (MC) and the recently developed
crossover interpolations, see [68] for a recent review. While
the MC has been in use already since the early days of
discussing quark deconfinement in neutron stars [69] with
varying but physically equivalent formulations, for the
crossover interpolations a word of caution may be in order.
The idea of the interpolation construction pioneered in

[70,71] is to facilitate a thermodynamically consistent
transition from a relatively soft hadronic EOS that could

be trusted up to and slightly beyond saturation density, to a
stiff quark matter EOS with a region of validity above 3–5
times saturation density. Strictly speaking, in the crossover
transition region neither of the input equations of state are
trustworthy. Therefore, no Maxwell construction would be
applicable and alternatives have been developed to inter-
polate between soft hadronic and stiff quark matter equa-
tions of state in the crossover region. The first construction
[71] was not formulated in natural variables of the
thermodynamic potential, which was corrected in the
second version [70], but both interpolations were defined
by a “mixing” of the input EOS, even in the crossover
region where they are, strictly speaking, not applicable.
Furthermore, the weight functions for the mixing were
chosen as Fermi functions with the unphysical implication
of a nonzero probability for quark matter at low and
hadronic matter at high densities. An alternative to facilitate
treatment of the hadron-to-quark matter crossover is the
replacement interpolation construction (RIC) developed in
[72,73] to describe the situation of a mixed phase due to
pasta structures in the hadron-to-quark matter transition.
The RIC treatment was applied to the stiff-soft transition
case in the context of solving the hyperon puzzle [24]
without introducing an unphysical high-density hadronic
component. A more general two-zone interpolation method
that followed the intentions discussed in [68] has recently
been developed in [74] and used within a Bayesian analysis
of neutron star constraints on the EOS.
Here we employ both the MC, as well as RIC, for the

first-order phase transition from DD2Y-Tþ S EOS to
CSS quark matter EOS, to investigate the appearance of
S particles in hybrid stars. To do this, we try to find a stable
hybrid star with the 2SC phase of quark matter in the core
surrounded by a layer of nuclear matter or hypernuclear
matter, which includes sexaquarks.

1. Maxwell construction

In the MC, the Gibbs conditions for phase equilibrium
have to be fulfilled globally, i.e.,

μH ¼ μQ ¼ μc; ð49Þ

TH ¼ TQ ¼ Tc; ð50Þ

PHðμb; μeÞ ¼ PQðμb; μeÞ ¼ Pc: ð51Þ

The above conditions guarantee the chemical, thermal,
and mechanical phase equilibrium at the transition point
between hadronic phase and quark matter phase for which
the critical values of the thermodynamic variables are
denoted with the subscript c. We apply the conditions
for the zero temperature case in the present work.
Within the MC scheme, the reconfinement phenomenon

[58] can occur, which consists in a second (unphysical)
crossing of the hadronic and quark matter equations of
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state. It can be dealt with in the MC by ignoring the
unphysical crossing. The reconfinement situation can also
be removed by applying a RIC with negative value of Δp,
as it has been discussed in [25].

2. Replacement interpolation construction

Within the RIC, we assume that neither the hadronic
matter nor the quark matter equations of state are reliable in
a corridor around their unphysical crossing, e.g., in the
reconfinement region. Therefore, two boundary points, i.e.,
μH before the reconfinement and μQ after the reconfine-
ment, are defined so that the interpolated pressure could be
described by a parabolic form between them,

PMðμbÞ¼α2ðμb−μcÞ2þα1ðμb−μcÞþð1þΔPÞPc; ð52Þ

where the μc and pc corresponds to the critical point at
which the wrong Maxwell transition from quark matter to
hadronic matter has occurred. The α1, α2, as well as μH and
μQ, could be obtained from the continuity conditions at the
borders of the mixed-phase

PHðμHÞ ¼ PMðμHÞ; ð53Þ

PQðμQÞ ¼ PMðμQÞ; ð54Þ

∂
∂μPHðμHÞ ¼

∂
∂μPMðμHÞ; ð55Þ

∂
∂μPQðμQÞ ¼

∂
∂μPMðμQÞ: ð56Þ

The RIC allows us to have a solution for which the
quark core of the NS is surrounded by a mixture of usual
nuclear matter, sexaquark, and even hyperons if the upper
boundary of the mixed phase goes beyond the hyperon
onset. Therefore, we can have solutions for all scenarios in
this way. Moreover, changing the parameters of the RIC
enable us to have a larger part of the sequence in the
sexaquark-nuclear phase than in the MC case.

V. PURELY HADRONIC STARS
AND THEIR PROBLEMS

Since numerous abbreviations have been used in this
work, we collect them all together for the convenience of
the readers in Appendix A.
With the GRDF for hadronic matter at hand, it is possible

to explore the EOS and corresponding properties of neutron
stars. There are various scenarios to be distinguished in
the following. The simplest case with only nucleons and
leptons corresponds to the original DD2 model as presented
in [40]. Adding hyperons the model is called DD2Y-T to
distinguish it from the similar model DD2Y introduced in
[75]. The DD2Y-T predictions were compared already to

other EOS models with hyperons in [76]. Finally, after
including also the sexaquark, there is the full model, which
will be denoted DD2Y-Tþ S in the following.
To start, the mass of the sexaquark is taken to be

constant. When the mass of the sexaquark is equal to
2054 MeV, the onset of the S occurs at about 0.25 fm−3

(more than 1.5 times the saturation density) with an
immediate appearance of the Bose-Einstein condensation
(BEC), and the neutron star will collapse with increasing
central density because the pressure remains constant.
The obvious suggestion is including the repulsive

interaction of sexaquarks by considering an increasing
density-dependent mass for S particles, as done for hyper-
ons. Considering the S particle as a composite system of
diquarks embedded in the baryonic medium suggests that a
dissociation of the bound state into a many-body correla-
tion in the continuum could be studied in a microscopic
model. But this requires intricate calculations that are not in
the scope of the present work, and we leave it for the future.
In this work, we only consider the S particle as a pointlike
boson with a medium dependent mass. As it was mentioned
in Sec. IVA, we suggest that all possible substructures can
lead to a medium dependent mass of S particles.
Hereafter, we consider a linear density dependence of the

mass of the S in which the mass shift is positive so that
the instability problem of the NS is prevented since the
corresponding increase of the chemical potential following
the condensation criterion allows a rising pressure. At zero
density, the effective mass of S particles, i.e., m�

S, is given
by the vacuummass of S particlemS and the rate of increase
that is given by a factor xS times the baryon density nb in
the unit of the reference density n0 ¼ 0.15 fm−3,

m�
Sðnb; xSÞ ¼ mS

�
1þ xS

nb
n0

�
: ð57Þ

This assumption results in an increase of the onset density
of S formation and subsequent condensation, so that there
is still an increase of the pressure at higher densities.
An estimate of reasonable values for x can be derived

from the change of the effective potential Ui ¼ Vi − Si of
the octet baryons with the baryon density nb as

xi ¼
n0
mi

dUi

dnb
: ð58Þ

These effective slopes calculated in the DD2Y-T model are
depicted in Fig. 2. The slopes for the various hyperons
are typically large and positive near nuclear saturation
density and transition to being slowly increasing beyond
nb ≈ 0.4 fm−3. As we shall see, without a transition to a
deconfined phase, the observed range of neutron star
masses cannot be reproduced, so only a portion of the
range shown in Fig. 2 will prove to be physically relevant. It
should also be noted that the constant-slope approximation
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we use for the S in the present work may be an over-
simplification as it is only applicable for hyperons for
relatively small ranges of nb.
The onset density for the condensation of sexaquarks

depends on its rest mass in vacuum and the slope parameter
x. One can see this onset by plotting 2μb as a function of
density for different parameter choices, as shown in the
panel (a) of Fig. 3. The onset density occurs as soon as the
baryo-chemical potential of the hadronic matter fulfills
2μb ¼ m�

S. The full and dashed black lines in Fig. 3 show
the value of 2μb as a function of nb for the DD2 and
DD2Y-T models. The effective mass of sexaquarks is also
plotted in the same figure, for three values of the vacuum
rest mass and several slope parameters. When the vacuum
mass of sexaquarks is ≤ 1885 MeV, Bose condensation
occurs for any density in the absence of repulsive inter-
actions between sexaquarks and nucleons and more careful
modeling would be required. Thus we do not consider
lower masses for the S here.
For mS ¼ 1941 MeV, condensation occurs exactly at

nuclear saturation density if x ¼ 0, while for S2054 the
intersection point with the black lines occurs at a higher
baryon density of about 0.25 fm−3. Obviously, the onset of
condensation occurs at higher densities as x increases.
Therefore, varying the value of x results in different
scenarios for the NS, regarding the priority of Y onset
and S onset, if the density dependence of hyperon masses is
taken as given.
Different behaviors of the effective mass of sexaquarks

are reflected in how the pressure changes with baryon
density, as shown in panel (b) of Fig. 3 for illustrative cases.
The pressure is constant beyond the onset density for Bose
condensation causing an instability of the neutron star
calculated with the corresponding equations of state. For
positive x, the increase of the effective mass causes a rise of
the pressure; this could also be attributed to the effect of a
repulsive potential at short distances.

The particle fractions as a function of baryon density in β
equilibrated matter are shown in Fig. 4, where the S is taken
to have an effective mass that increases with the density.
The dashed lines show the results for the heavier S, i.e.,
S1941 (mS ¼ 1941 MeV) and the solid lines correspond to
the lighter S, i.e., S1885 (mS ¼ 1885 MeV). As the figure
shows, for x ¼ 0.05 the S particles appear before hyperons
but for x ¼ 0.08, S onset occurs after the hyperon onset.
However, for the lower mass of sexaquarks, the hyperon
onset is very close to the S onset and the only hyperon
which appears before the S is the lightest one, i.e., Λ. It is
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FIG. 3. Panel (a) shows double baryonic chemical potential as a
function of baryon density while panel (b) shows the pressure as a
function of baryon density for DD2, DD2Y-T, and DD2Y-Tþ S
for three different slopes of the mass shift of S particles.
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concluded from Fig. 4 that the appearance of sexaquarks
affects the hyperon onset. When there is a delay in S1941
onset because of the larger mass, hyperons appear at lower
densities compared to the S1885 case.
The speed of sound cs is a quantity that can be derived

directly from the pressure and energy density, see Eq. (44).
It has to be smaller than the speed of light to have a causal
EOS. The square of cs for the hadronic equations of state is
depicted in Fig. 5 showing that the causality condition is
fulfilled in the whole range of energy densities for all
combinations of S mass and slope parameter x.

A. Sexaquark and hyperon dilemma in neutron stars

Each combination of mS and x leads to an equation of
state of neutron star matter and corresponding mass-radius
relation that can be compared to the predictions of the
original DD2 and DD2Y-T models without sexaquark.
In Fig. 6, the mass-radius [panel (a)] and mass-density
[panel (b)] relations for neutron stars obtained from DD2
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FIG. 6. Mass vs radius (a) and mass vs central density (b) for
compact stars with an effective S mass m�

Sðnb; xÞ given by
Eq. (57). The solid (dashed) lines correspond to S1885 ð1941Þ with
the cases x ¼ 0.03, 0.05, 0.08 in green, blue, and red colors,
respectively. For a comparison the new 1-σ mass-radius con-
straints from the NICER analysis of observations of the massive
pulsar PSR J0740þ 6620 [22] are indicated in red [77] and blue
[78] regions. Additionally, the green bar marks the radius of a 1.4
solar mass neutron star from a joint analysis of the gravitational-
wave signal GW170817 with its electromagnetic counterparts at
90% confidence [79]. The cyan region is from the NICER mass-
radius measurement on PSR J0030þ 0451 [80]. The gray and
light orange regions correspond to the estimates of the compo-
nents of the binary system labeled as M1 and M2 of the
GW170817 merger [81].
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and DD2Y-T, as well as DD2Y-Tþ S, are shown when
the S particles are supposed to have a mass that increases
with density.
The S dilemma for the DD2Y-Tþ S models, i.e., the

decrease of the maximum neutron star masses due to the
softening of the EOS with the appearance of sexaquarks,
is also seen. As the figure shows, for x ¼ 0.03, 0.05 the
maximum mass of the neutron stars does not reach 2 M⊙
and more repulsive effects are needed in hadronic matter to
reach the lower bound of the maximum mass of neutron
stars, as exemplified by x ¼ 0.08.
Another important constraint for an EOS is the tidal

deformability of a neutron star, deduced by LIGO and
Virgo collaborations from GW170817 [63] and translated
to a multimessenger constraint on the radius at 1.4 M⊙ in
[79], shown as a green bar in panel (a) of Fig. 6. The only
line which crosses it is the blue solid line corresponding to
DD2Y-Tþ S1885 with x ¼ 0.05.

The tidal deformability parameters Λ1 and Λ2 of the
high- and low-mass components of the binary merger event
have been constructed from the ΛðMÞ relation [63]. We
show in Fig. 7 the observational constraints for the tidal
deformability parameters along with predictions for the
various equations of state.
As can be seen, the only EOS which lies in the green

credibility region is DD2Y-Tþ S when mS ¼ 1885 MeV
and x ¼ 0.05. However, this model does not fulfill the
constraint on the maximum mass, Mmax ≥ 2 M⊙ [22],
see Figs. 6 and 7 panel (b). It should also be stressed that
the standard hadronic matter model, DD2Y-T, also fails to
satisfy the tidal deformability constraint.
Therefore, we conclude that within our setting, where the

stiff nucleonic RMF parametrization “DD2” (that violates
the tidal deformability constraint) sets the hadronic matter
baseline, a purely hadronic EOS is ruled out—independent
of the existence of a sexaquark.
In Fig. 6, some special values for the slope factor x and

mS have been selected based on the range which fulfills
the constraints of the combination of mS and x. These
constraints for x as a function of mS are shown in Fig. 8.
The boundaries are defined as follows:
(1) S appears below the maximum mass of the NS in

matter with only nucleons: the region above the blue
solid line is excluded.

(2) S appears below the maximum mass of the NS in
matter with nucleons and hyperons: the region above
the red solid line is excluded.

(3) Condensation of the S occurs only above the
saturation density: the region below the violet solid
line is excluded.200 400 600 800

Λ
1

0

500

1000

1500

Λ
2

90 %

50 %

(a) DD2
DD2Y-T
DD2Y-T+S1941 x=0.05

DD2Y-T+S1941 x=0.08

DD2Y-T+S1885 x=0.05

DD2Y-T+S1885 x=0.08

1 1.5 2 2.5
M [M

O.
]

10
0

10
1

10
2

10
3

10
4

Λ

DD2
DD2Y-T
DD2Y-T+S

1885
 x=0.03

DD2Y-T+S
1941

 x=0.03

DD2Y-T+S
1885

 x=0.05

DD2Y-T+S
1941

 x=0.05

DD2Y-T+S
1885

 x=0.08

DD2Y-T+S
1941

 x=0.08

GW170817
(Low-spin prior)

(b)

FIG. 7. (a) Tidal deformability parameters Λ1 and Λ2 of the
high- and low-mass components of the binary merger. The results
have been shown for mS ¼ 1941, 1885 MeV, and x ¼ 0.050,
0.08. The solid lines correspond to S1885, while the dashed lines
correspond to S1941. The green region is the placed constraints on
the tidal effects by LIGO and Virgo Collaborations from
GW170817 [63]. (b) Dimensionless tidal deformability Λ as a
function of the star mass. The green line shows the Λ1.4 constraint
from the low-spin prior analysis of GW170817 [63].

FIG. 8. Allowed (white) and excluded (light and dark grey)
regions in the plane of mS and x values as defined by constraints
on the sexaquark condensation. See text for details and explan-
ation of the additional lines. The region of masses mS > mp þ
me þmΛ ¼ 2054 MeV is also excluded by the requirement of
sexaquark stability on cosmological timescales, if S is the dark
matter. For further details, see text.
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(4) Condensation of the S does not occur below the
saturation density: the region left of the yellow solid
line is excluded.

(5) No decreasing mass of the S (i.e., constant pressure
above the density of condensation and below the
endpoint of the neutron star M-R relation): the
region below x ¼ 0 is excluded.

(6) Avoiding an unstable S that decays in 10−10 s: the
region too much above 2054 MeV is excluded
(mS > mp þme þmΛ ¼ 2054 MeV).

These constraints are of different quality. Most hadronic
mean-field models, including the DD2 version, use param-
eters that are fitted to properties of nuclei but provide only
an extrapolation of the equation of state above saturation
that is less well constrained. Thus, constraints on the
sexaquark parameters are stronger if they are related to

low-density properties, e.g., the condensation criteria
(yellow and pink lines), or if they are independent of the
description of the medium, e.g., the stability criterion with
respect to decay into constituents. Constraints arising from
neutron-star observables are more dependent on the model
because the equation of state at higher densities is exam-
ined, and the limits on the allowed parameter ranges may
vary to some extent.
Combining all constraints, only the white region

remains. However, the border of the white region, which
lies on the line x ¼ 0, is also strictly excluded within the
framework of our analysis because it leads to BEC of a
constant-mass S, which limits the maximum mass of purely
hadronic neutron stars to Mmax ≲ 0.7 M⊙. A scenario
according to which such a BEC of sexaquarks triggers a
catastrophic rearrangement of the neutron star structure
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FIG. 9. The upper panels show the mass-radius relation for the hybrid star in each scenario, which includes S1941 based on the
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(star quake), which entails the conversion to a hybrid
neutron star with a color superconducting (CFL) quark
matter core, has recently been considered in [56].
In addition to these boundaries, three dotted vertical lines

for specific values of the sexaquark mass are shown.
Furthermore, the green line corresponds to the condition
of S condensation at the onset of hyperons. The sexaquark
appears before (after) hyperons for points below (above)
this line. Dashed blue and red lines, which are almost
on top of each other, show S condensation at the center of
a neutron star, which includes nucleons and nucleons-
hyperons, respectively, with a mass of M ¼ 1.4 M⊙.
In the next sections we discuss hybrid equations of state,

which include a deconfined phase of matter, to understand
if they favor, exclude, or constrain the existence of a
sexaquark.

VI. DECONFINEMENT SOLUTION FOR THE
HYPERON AND SEXAQUARK DILEMMAS

It was mentioned in Sec. IV that two different types of
construction are used for dealing with hybrid stars. We
compare their results regarding the maximum mass, radius,
tidal deformability, and the sequence of particles onset for
constructed hybrid stars in this section.
The resultant parameters for the EOS, which have been

obtained as a hybrid solution for different scenarios using
the MC and RIC, are listed in Table III and Table IV,
respectively. The quark matter parameters have been
selected and tuned in such a way to describe a desirable
critical point for the transition from hadronic phase to quark
phase. (The corresponding hadronic matter and quark
matter equations of state for each scenario, which includes
S1941, are given in Appendix B in Fig. 14 in the P-μ plane,

while the ones which include S1885 are shown in Fig. 15.)
As we already mentioned, the “reconfinement” phenome-
non at higher chemical potentials has been ignored when a
Maxwell construction is employed.
The effect of applying a RIC is to shift the deconfine-

ment onset to higher densities than in a Maxwell con-
struction which, therefore, allows S particles to exist in the
core of higher mass neutron stars—around the mass of the
lightest observed NS. Around the reconfinement point,
neither the hadronic EOS nor the quark matter one is
reliable. Indeed, nature prefers the phase with the higher
pressure (transition occurs from a stiff EOS to a softer one)
but at the same time a transition from deconfined quark
matter to a confined hadronic phase is nonphysical. In this
situation, the RIC with a negative value of Δp in (52) is a
mathematical approach that allows to describe a crossover
transition from the softer hadronic phase to the stiffer quark
phase. It is worth mentioning that RIC with a negative value
of Δp results in an interpolated EOS, which is stiffer than
both the hadronic and quark matter equations of state. One
should notice that for each set of hadronic equations of state
and quark matter equations of state, there is always a
minimum value of Δp for which causality is fulfilled, i.e.,
c2s ¼ ðn=μÞ=ðd2P=dμ2Þ < 1. Therefore, not only d2P=dμ2

must be positive but also it has to be greater than n=μ. The
first value of Δp in Table IV for each set is the minimum
allowed value.
The mass-radius relations of the hybrid stars correspond-

ing to the EOS plotted in Fig. 14 are shown in Fig. 9.
It can be seen that all obtained solutions fulfill all

observational constraints regarding the mass radius of neu-
tron stars except for the recent radius constraint for the
1.4 solar mass neutron star obtained by Dietrich et al. [79],
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which is not fulfilled by any of MC lines in upper panels.
Only MC-S1941-5 crosses it marginally, while all hybrid
solutions with S1885 in lower panels cross this green bar. We
expect this issue will result in remarkable difference in tidal
deformability plots for upper and lower panels.
The maximum mass is obtained via MC for MC-S1941-5

and MC-S1941-3 because the stiffest quark matter EOS with
ηv ¼ 0.17, which results in the maximum value of the
speed of sound, i.e., c2s=c2 ¼ 0.52, has been used for
constructing these two solutions. As the lower panels of
Fig. 9 show, the sets that include S1885 are mainly a solution
for the early deconfinement scenario, and the second
crossing corresponding to reconfinement is also visible
in the M-R curves. If one neglects this early deconfinement
and applies RIC to the second crossing, the appearance of
sexaquarks is also possible at the interpolated region.
Evidently, the onset of deconfinement has been shifted
to higher mass for RIC compared to MC in the lower panels
of Fig. 9, and therefore, the constructed hybrid stars are a
solution for the S1885DY scenario instead of DS1885Y.
Comparing the three lower panels of this figure, one sees
that for fixed mass of sexaquarks, increasing the slope of
the mass shift x increases the reconfinement density and
therefore allows the interpolated region to cover higher
masses of hybrid stars, around 1.4 M⊙.
The softer EOS has the smaller radius, and therefore,

around 1.4 M⊙, the softest EOS should have the best tidal
deformability. As Fig. 9 shows, the M-R curves with S1885,
which are shown in the lower panels, have the smaller radius.
The tidal deformability has also been calculated for all
obtained hybrid stars, and the results are plotted in Fig. 10.
In this figure, panel (a) shows the results for MC, while the
results for RIC are plotted in panel (b).
It can be seen in Fig. 10 that the tidal deformability

results for MC solutions with S1941 are either totally out of
the green credibility region or marginally cross it, espe-
cially the YS1941D scenario which is strongly disfavored by
the results of tidal deformability.
However, for the hybrid star solutions with S1885, not

only the M-R constraints are fulfilled but also the tidal
deformability puzzle has been solved, and the observational
constraints from GW170817 with the 90% credibility is
fulfilled. Both MC and RIC with S1885 result in hybrid
stars compatible with both mass-radius constraints and
tidal deformability constraints. Since (neglecting repulsion
between sexaquarks and nucleons) condensation of sex-
aquarks occurs at saturation density or below, if mS ≤
1885 MeV, andmS ¼ 1885 MeV is the mass for which the
condensation occurs exactly at saturation density, mS near
1885 MeV may be most favorable for compatibility with
observational constraints of neutron stars [79].
Panel (a) of Fig. 11 shows that all obtained equations of

state are almost inside the gray region, which has been
introduced as the accepted region for P − ε lines in [82].
From panel (b) of this figure one concludes that the

causality constraint cs ≤ 1 (in units of the speed of light)
is fulfilled for the all solutions which include S1885.
As can be seen in the lower panels of Figs. 9 and panels

(a) and (b) of Fig. 10, we have found two different types
of stable hybrid stars, including sexaquarks, which fulfill
all modern observational constraints for pulsars. Taking
mS ¼ 1885 MeV with medium-dependent mass, and using
both the MC as well as the RIC, we have a transition from
DD2Y-Tþ S on the exterior to a 2SC phase quark matter
on the interior. We display the radial structure of a number
of illustrative cases, with the composition in panels (a1),
(b1), and (c1) and energy density and pressure in panels
(a2), (b2), and (c2). The stars in Fig. 12 do not satisfy both
the M-R and tidal deformability constraints, while those in
Fig. 13 satisfy all constraints.
In Fig. 12, panels (a1) and (a2) show the pure hadronic

star from DD2, panels (b1) and (b2) show the hyperonic
star, including sexaquarks, when mS ¼ 1885 MeV and
x ¼ 0.05, and panels (c1) and (c2) show the MC-S1941-4.
Figure 13 shows MC-S1885-7 and RIC-C-1, which are
representative of the different types of successful hybrid
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solutions with sexaquarks. As expected there is a jump in
energy density for the MC solutions, but we do not see this
jump in RIC, which is a crossover transition. Among the
solutions for which the profile of the star is plotted, the only
solution which has a quark matter core for M ¼ 1.4 M⊙ is
MC-S1885-7 because of the early deconfinement.
One can see the sequence of the onset of different

particles at different radii in the profiles of the composition
of each figure. The only star in which Λ hyperon could
appear using the Maxwell construction is MC-S1941-4; it
gives a solution for the YS1941D scenario, but it is not
compatible with tidal deformability constraint. Employing
RIC, a stable hybrid star with a typical radius of about

12 km can be obtained; it has an inner core of quark matter
while a layer with sexaquarks and neutrons connects it to a
normal nuclear matter crust. Not only does the sexaquark
appear in this model but also all constraints from neutron
stars are well fulfilled.
Thus we have shown that—contrary to the expectation of

[26] that a deeply bound dibaryon would be incompatible
with neutron stars—the observed NS properties are com-
patible with the hadron spectrum containing a stable
sexaquark for parameters similar to those commonly
adopted for hyperons and deconfined quark matter.
Whether the S appears in neutron stars or not depends
on how early matter deconfines to quarks.
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FIG. 12. The profile of the stars for DD2Y-T, DD2Y-Tþ S1885, and MC-S1941-4. The particle fraction as a function of the distance
from the center of star is shown in panels (a1) DD2Y-T, (b1) DD2Y-Tþ S1885, and (c1) MC-S1941-4. The pressure and the energy density
of each star are shown in panels (a2), (b2), and (c2). The profiles correspond toM ¼ 2 M⊙ andM ¼ 1.4 M⊙ for each star. The EOS for
DD2Y-Tþ S1885 when x ¼ 0.05 is a soft one, which can not reach to 2 M⊙ None of these models satisfies both maximum mass and
tidal deformability constraints.

SEXAQUARK DILEMMA IN NEUTRON STARS AND ITS … PHYS. REV. D 105, 103005 (2022)

103005-17



VII. CONCLUSIONS

Motivated by a stable sexaquark4 being a good darkmatter
candidate, we have investigated whether the maximum mass
and tidal deformability measurements of neutron stars are
compatible with the existence of such a particle. To address
this question we extended a relativistic mean field model of
hadrons to include sexaquarks and used a causal phenom-
enological EOS to describe the quark matter phase, restrict-
ing parameters to the range suggested by two flavor
superconductivity. A first-principles treatment of the cross-
over region between hadronic and quark matter phases is not
available for all EOS parameters of interest, so we investigate
two different approaches. When the conditions for appli-
cability of theMaxwell construction are met we use that, and
otherwise, we use a replacement interpolation construction.
We find that the existence of a stable sexaquark is well-

compatible with both the maximum mass and the highly

constraining tidal deformability of GW170817, given
present knowledge of the properties of hadronic and quark
matter. Whether or not a sexaquark exists, within our
framework the most massive stars must have a quark matter
core with stiff EOS to support their high mass.5 Among the
successful hybrid star solutions, which we develop, we find
two general types: those in which the quark matter core
is surrounded by nucleons, and others in which the core
and interpolated region is surrounded by a layer with a
substantial sexaquark (but negligible hyperon) fraction.
This potentially may lead to an observable signature of
sexaquarks in the cooling curve or kilonova properties.
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FIG. 13. Same as Fig. 12, but for MC-S1885-7 [panels (a1) and (a2)] and RIC-C-1 [panels (b1) and (b2)], both of which satisfy both the
maximum mass and tidal deformability constraints. In the first model, MC-S1885-7, outside the quark matter core there are only nucleons
and leptons, which in the RIC-C-1 model there is a layer outside the quark matter core, which has a significant sexaquark component.

4S ¼ uuddss, with mS < 2054 MeV to assure a lifetime
greater than the age of the Universe [3].

5There are purely hadronic models, some of them including
hyperons, with a softer EOS at high densities than the DD2
parametrization, which can satisfy the maximum mass and
tidal deformability constraints. However, this requires a modifi-
cation of the high-density couplings with more parameters, e.g.,
DD2-F [83], or specifically adjusted hyperon-meson couplings,
e.g., [84], or the introduction of additional coupling mechanisms,
e.g., [85].
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Satisfying the tidal deformability constraints on neutron
stars of ≈1.4 M⊙ while accommodating neutron star masses
above 2 M⊙ is very challenging. At low density the EOS
must be quite soft to produce compact ≈1.4 M⊙ neutron
stars, while at high density it must be stiff to support high
mass stars. Intriguingly, the sexaquark neatly solves this
problem by naturally producing the needed softening.
However, the softening at low density needed to fit current
deformability constraints can also be achieved by an early
onset of the quark matter phase. Thus within our treatment
we cannot judge whether neutron star properties may
actually call for a sexaquark or not. We also stress that
our approach in this paper has been entirely phenomeno-
logical; theoretical work is needed to decide whether the
parameters leading to the successful models with sexaquarks
can emerge from fundamental QCD and to accurately treat
the crossover between the quark and hadron phases. (The
same caveats also apply to models without sexaquarks.)
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APPENDIX A: GUIDE TO TERMINOLOGY

For the convenience of the readers, we collect in this
Appendix the explanations of the numerous abbreviations
that have been used in the main text of this work.
DD2: Parametrization of a GDRF

for hadronic matter includ-
ing only nucleons.

DD2Y-T: DD2 with hyperons by S.
Typel.

DD2Y-Tþ S: DD2Y-T with sexaquark.
GRDF: Generalized relativistic

density functional.
MC: Maxwell construction.
RIC: Replacement interpolation

construction.

DSiY: Deconfinement (D) before
sexaquark (Si) and hyperon
(Y) onset, where i ¼ 1885,
1941, 2054 denotes to the
mass of S in [MeV].

SiDY: Deconfinement after sexa-
quark but before hyperon
onset.

SiYD: Deconfinement after both
sexaquark and hyperon on-
set when S is prior.

YSiD: Deconfinement after both
sexaquark and hyperon on-
set when hyperon is prior.

CSSj, j ¼ 1; 2;…; 9: Constant speed of sound
parametrization for quark
matter EOS, where j de-
notes to the number of the
set in Table III.

MC-Si-j, j ¼ 1; 2;…; 9: Hybrid solution which has
been obtained from Max-
well construction where j
denotes the number of sets
in Table III.

CSS-A: Constant speed of sound
parametrization for quark
matter EOS where A de-
notes the case with x ¼
0.03 in Table IV.

CSS-B: Constant speed of sound
parametrization for quark
matter EOS where B de-
notes the case with x ¼
0.04 in Table IV.

CSS-C: Constant speed of sound
parametrization for quark
matter EOS where C de-
notes the case with x ¼
0.05 in Table IV.

RIC-A-k, k ¼ 1, 2, 3: Hybrid solution obtained
with RIC when S1885 is in
hadronic matter EOS. A is
defined the same as in CSS-
A and k corresponds to the
different sets for replace-
ment interpolation con-
struction in Table IV.

RIC-B-k, k ¼ 1, 2: SameasRIC-A-k,forA↔B,
corresponding to CSS-B.

RIC-C-k, k ¼ 1: SameasRIC-A-k,forA↔C,
corresponding to CSS-C.
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APPENDIX B: HADRONIC AND QUARK
MATTER EQUATIONS OF STATE

IN THE P-μ PLANE

In this Appendix, we illustrate the construction of the
hybrid EOS via MC and RIC given the hadronic and quark
matter equations of state as input.

In Fig. 14, the MC is performed for different scenarios of
hadronic and quark matter EOS combinations for the case
of mS ¼ 1941 MeV. As was discussed in Sec. IVA, the
reconfinement phenomenon is ignored at higher chemical
potentials when a Maxwell construction is employed. The
CSS_4 is almost masqueraded with the hadronic matter
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FIG. 14. MC for different scenarios of hybrid stars. The solutions for the S1941DY scenario when the deconfinement occurs after S1941
onset and before Y onset has been shown in panel (a). Panel (b) shows the solution for the YS1941D scenario when the deconfinement
occurs after both S onset and Yonset, and panel (c) shows the solution for the DS1941Y scenario when the deconfinement occurs before
S1941 onset and Y onset. The curves labeled CSS_1 to CSS_5 correspond to the quark matter EOS, which after MC give rise to the
parameter sets MC-S1941-1 to MC-S1941-5 which are given in Table III.

TABLE III. Parameter sets characterizing hybrid equations of state which have been investigated as a solution for MC when S1941 or
S1885 are included in hadronic matter.

Set
mS

[MeV] x ηV c2s=c2
A

[MeV fm−3]
B

[MeV fm−3]
B0

[MeV fm−3]
B1

[MeV fm−3]
μ<

[MeV]
Γ<

[MeV] Scenario

MC-S1941 − 1 1941 0.05 0.11 0.45 93.49 81.73 9.0 0 0 0 S1941DY
MC-S1941 − 2 1941 0.05 0.14 0.48 94.99 85.50 5.7 0 0 0 S1941DY
MC-S1941 − 3 1941 0.05 0.17 0.52 96.85 90.18 0 7.0 1020 110 S1941DY
MC-S1941 − 4 1941 0.08 0.14 0.48 94.99 85.50 0 10.0 1250 100 YS1941D
MC-S1941 − 5 1941 0.05 0.17 0.52 96.85 90.18 0 0 0 0 DS1941Y
MC-S1885 − 6 1885 0.030 0.14 0.48 94.99 85.50 0 0 0 0 S1885DY
MC-S1885 − 7 1885 0.035 0.13 0.47 94.45 84.14 0 0 0 0 DS1885Y
MC-S1885 − 8 1885 0.040 0.13 0.47 94.45 84.14 1.8 0 0 0 DS1885Y
MC-S1885 − 9 1885 0.050 0.13 0.47 94.45 84.14 3.5 0 0 0 DS1885Y

TABLE IV. Parameter sets characterizing hybrid equations of state which have been investigated as a solution for RIC when S1885 is
included in hadronic matter. In different sets, A corresponds to x ¼ 0.03, B corresponds to x ¼ 0.04, and C corresponds to x ¼ 0.05.

Set
mS

[MeV] x ηV c2s=c2
A

[MeV fm−3]
B

[MeV fm−3]
B0

[MeV fm−3] Δp

μH
[MeV

μQ
MeV] Scenario

RIC-A-1 1885 0.03 0.14 0.48 94.99 85.50 0 −3% 1027.76 1121.92 S1885DY
RIC-A-2 1885 0.03 0.14 0.48 94.99 85.50 0 −5% 1019.32 1261.74 S1885YD
RIC-A-3 1885 0.03 0.14 0.48 94.99 85.50 0 −7% 1012.81 1418.92 S1885YD
RIC-B-1 1885 0.04 0.14 0.48 94.99 85.50 −4 −7% 1064.10 1335.80 S1885YD
RIC-C-1 1885 0.05 0.12 0.46 93.95 82.88 0 −3% 1122.39 1286.74 S1885YD
RIC-C-2 1885 0.05 0.12 0.46 93.95 82.88 0 −5% 1097.33 1398.25 S1885YD
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EOS around the transition point. However, a μ-dependent
bag pressure has been used for constructing CSS_3 and
CSS_4 to produce a bigger change in the slope at the
transition point and therefore a bigger jump at the density,
but a bigger slope for the quark matter EOS is not
compatible with fulfilling the causality condition.

In Fig. 15, MC and RIC are performed for the case
mS ¼ 1885 MeV. Panel (d) shows a MC when an early
deconfinement happenswhile theother panels showRICwith
the possible minimum value ofΔp for which the mechanical
stability is fulfilled. The described situation of the reconfine-
ment and crossover transitionbyRIC isdepicted in this figure.
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