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Abstract— Developing an optimal perfectly matched layer 

(PML) formulation is crucial for efficient CED calculations. This 
becomes imperative for higher order CED schemes. If a PML 
causes spurious back-reflection of waves into the computational 
domain, those waves will be evolved by the higher order scheme 
as if they are physical. We present a PML that is conformant in 
its collocation and discretization with second, third and fourth 
order finite volume time-domain (FVTD) schemes that preserve 
global divergence. We present optimal PML parameters for 
second, third and fourth order FVTD schemes based on a careful 
numerically-motivated, optimization. At each order of accuracy 
we have to repeat the optimization study in order to get the best 
performance. We find that with increasing order of accuracy we 
can achieve greater suppression of spuriously reflected waves 
from the PML layer, especially at late times. Taking the finite 
difference time-domain (FDTD) method as a baseline, our 
schemes show as much as three orders of magnitude 
improvement in the suppression of late time reflection of waves 
from the PML layer. The schemes rely on several newly-invented 
reconstruction strategies and a very novel Implicit Taylor ADER 
(Arbitrary accuracy DERivatives) predictor step. Riemann 
solvers provide the corrector step.  
 

Index Terms—Electromagnetic propagation, computational 
electromagnetics, FDTD, FVTD, DGTD, PML. 

I. INTRODUCTION 
HE numerical solution of Maxwell’s equations, also 
referred to as computational electrodynamics (CED), is 
central to numerous applications in science and 

engineering. For more than fifty years, the finite-difference 
time-domain (FDTD) method (Yee [46], Taflove and Hagness 
[43], Taflove, Oskooi and Johnson [42]) has been the method 
of choice for CED applications. The popularity of FDTD, as 
well as its fidelity to the physics, stems from its use of the 
Yee-type staggering of electric and magnetic field intensities. 
FDTD provides a direct interpretation of the two curl-type 
equations given by Faraday’s and extended Ampere’s laws 
and a natural satisfaction of the constraint equations given by 
Gauss’ law for electric charge and the absence of magnetic 
monopoles. It also provides for a perfectly matched layer 
(PML) formulation at the boundaries of the mesh, which 
allows waves that are propagating towards the boundary to 
seamlessly propagate out of the computational domain without 
significant back-reflection into the computational domain 
(Berenger [22], [23], Katz, Thiel and Taflove [32], Taflove 
and Hagness [43] Gedney [24], [25], [28], Roden and Gedney 
[38], Gedney and Zhao [27]). The mimetic preservation of 
constraints, along with the computational efficiencies achieved 
via PML, enabled the PML-enabled FDTD scheme to play a 

dominant role in CED despite the fact that the method was 
only second order accurate. Attempts to go past second order 
with FDTD have not proved too successful. Towards the end 
of his career, A. Taflove used to speculate whether we could 
improve PML by treating the source terms fully implicitly 
while the remaining terms were treated explicitly? This paper 
answers that question in the affirmative. 

 There has been an effort to develop higher order methods 
for CED that are based on higher order methods for fluid 
mechanics (Munz et al. [37], Ismagilov [31], Barbas and 
Velarde [16], Cockburn and Shu [19], [20]). Such efforts have 
yielded an early generation of discontinuous Galerkin time-
domain (DGTD) methods (Hesthaven and Warburton [30], 
Cockburn, Li and Shu [21], Lu, Zhang and Cai [36], Ren et al. 
[39], Wang et al. [45], Sun et al. [40], Angulo  et al. [1]) 
which do not have the same mimetic properties as FDTD; i.e. 
they are not globally divergence-constraint preserving. It is 
possible to appreciate the crux of the problem by realizing that 
DG methods, like all higher order Godunov methods for 
fluids, are based on a zone-centered collocation of fluid 
variables which are updated using fluxes that are evaluated 
(using Riemann solvers) at the faces of the mesh. The Yee-
type staggering of variables fundamentally requires a facial 
collocation of vector field components that are updated in a 
globally divergence constraint-preserving fashion using edge-
collocated variables. 

 But there is another field of study, namely numerical 
magnetohydrodynamics (MHD), that also relies on a 
Faraday’s law update for the magnetic field. For a while, it 
seemed like that field underwent an independent line of 
evolution with the development of multidimensional Riemann 
solvers that could be applied to the edges of the mesh (Balsara 
[5], [6], [7], Balsara and Nkonga [10]) and the development of 
globally divergence-preserving reconstruction (Balsara [2], 
[3], [4]) that relied on facial collocation of vector fields. The 
inevitable cross-fertilization of ideas happened when one of us 
realized these were just the right advances for obtaining a 
Yee-type mimetic collocation of CED variables that could 
indeed be extended to high order. Therefore, the stage was set 
for bringing insights from modern numerical MHD methods 
into CED. This was done for globally divergence constraint-
preserving finite volume time-domain (FVTD) methods in 
Balsara et al. ([9], [11], [12]) and globally divergence 
constraint-preserving DGTD methods (Balsara and Käppeli 
[13], Hazra et al. [29], Balsara and Simpson [14]). The facial 
collocation of variables and their high order constraint-
preserving reconstruction ensures that this new generation of 
FVTD and DGTD methods can reach high orders of accuracy. 
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The use of multidimensional Riemann solvers at the edges of 
the mesh ensures that the methods are very stable, 
multidimensionally upwinded and globally divergence 
constraint-preserving.  

 To retrace the plan that made FDTD a highly successful 
method, one has to build into these novel FVTD and DGTD 
schemes the same facility for handling PML boundary 
conditions. Since the new generation of FVTD schemes can 
reach very high order of accuracy, our first goal is to try and 
achieve optimal PML performance at all orders. While 
working towards this goal, we discovered that the form of the 
complex frequency shifted PML, a.k.a. CPML (Gedney [24], 
[28], Roden and Gedney [38], Chew and Jin [18], Gedney et 
al. [26], Chen et al. [17]), can play a big role in yielding 
implementations that can either be successful or unsuccessful. 
In other words, the structure of the equations plays an 
important role in the success of the PML algorithm. The 
physical reason is that the FVTD scheme has a particular 
discretization on the mesh and it is very advantageous if the 
CPML equations also have a conformant discretization on the 
mesh. Therefore, our second goal is to derive and describe a 
set of CPML equations that are conformant with the 
constraint-preserving structure of Maxwell’s equations. 

 We also find that FVTD schemes at each specific order of 
accuracy have to be optimized for peak performance in a 
different way. Therefore, our third goal is to obtain optimal 
PML parameters for second, third and fourth order FVTD 
schemes based on a careful optimization study. In this paper, 
we restrict attention to optimizing PML for divergence 
constraint-preserving FVTD, leaving a thorough study of 
optimized PML for divergence constraint-preserving DGTD to 
a subsequent paper. 

 The above paragraphs have presented a big-picture 
approach to CED and PML. But a successful implementation 
of CED and PML requires a third algorithmic ingredient. 
While the reconstruction and the multidimensional Riemann 
solvers provide high order and constraint preservation 
respectively, there is a third feature in the CED and PML 
equations that also demands attention. It stems from the fact 
that the source terms can strongly dominate the hyperbolic 
PDE. Numerical implementations for hyperbolic PDEs that 
are not incredibly stable in the face of stiff source terms tend 
to become unstable. It is for this reason that Balsara et al. ([9], 
[11], [12]) paid particular attention to CED formulations that 
could handle stiff source terms. They presented certain ADER 
(Arbitrary accuracy DERivative) methods for the accurate 
temporal update of Maxwell’s equations in the face of stiff 
source terms. In fairness, even Maxwell’s equations with large 
conductivities benefit from ADER methods that are 
simultaneously highly accurate in their time integration and 
provide a fully time-implicit (and therefore very stable) 
treatment of source terms, as shown in Balsara et al. ([11], 
[12]). But the structure of the PML equations is such that they 
require an even stronger dose of stability in the face of stiff 
source terms. It is for this reason that a fourth goal of this 
paper is to present a novel Implicit Taylor form of ADER 
which is particularly well-suited for CED in general and PML 
in particular. We present such a formulation here. 

 PML is applied to a thin layer of zones, often 6 to 10 zones 
wide, at the outer boundary of the mesh. As a result, within 
just these zones, the PML is required to provide an almost 
achromatic damping of all waves that impinge on this layer 
from almost any direction. As a result, the structure of the 
PML equations, and the collocation of PML variables on the 
faces of the mesh, becomes very important. Section II 
describes the derivation of the PML equations used here; with 
some additional helpful material in Supplement A. Section III 
describes the collocation of electric and magnetic flux 
densities at the faces of the mesh; with some additional helpful 
material in Supplement B. Section IV, when used along with 
Section II, shows that there is an optimal collocation of PML 
variables and describes how those variables should be 
collocated on the mesh; and some helpful material is provided 
in Supplement C. Taken together, Sections III and IV describe 
the reconstruction problem where we start with facial 
variables and obtain those same variables at all locations on 
the mesh. Because this paper is focused on 2D, we describe 
the reconstruction problem in 2D, while pointing to places in 
the literature where the 3D reconstruction problem has been 
described. Section V describes the Implicit Taylor variant of 
ADER; again, there is helpful material in Supplement D. 
Specifically, we provide a formulation that is exceptionally 
well-suited for CED.  The third algorithmic ingredient is the 
multidimensional Riemann solver which provides coupling 
across zones and allows for propagation of waves on these 
zones. This is described in Section VI. Section VII provides a 
pointwise description of how the entire PML for FVTD is 
implemented. Section VIII presents an optimization exercise 
for PML. Section IX presents conclusions. 

 

II CPML EQUATIONS IN A FORMAT THAT IS SUITABLE FOR 
CONSTRAINT -PRESERVING FVTD/DGTD SCHEMES 

A. Derivation of the CPML Equations 
The globally constraint-preserving FVTD scheme is 

designated for ordinary Maxwell’s equations, a.k.a 
Maxwellian equations, in which Maxwell’s equations are 
written as a set of first-order linear partial differential 
equations.  As a result, Maxwell’s equations may be cast in 
flux form as detailed in Balsara et al. ([11]). Whereas this 
holds in many simple CED simulations, it is not relevant to 
complex cases in which Maxwell’s equations are presented as 
a set of higher-order partial differential equations (a.k.a, non-
Maxwellian equations) as in the case for CPML. 

 One common way to deal with this issue is to introduce 
some intermediate variables to transform the non-Maxwellian 
equations into a set of first-order partial differential equations 
which can be brought as close as possible to a flux form.  
However, this comes at the cost of introducing extra variables, 
i.e. auxiliary PML variables, which correspondingly leads to 
extra differential equations. Here, we follow the method first 
suggested by Roden & Gedney [38] and Gedney & Zhao [27] 
to convert the non-Maxwellian CPML equations into 
Maxwellian ones. This approach is based on the stretched-
coordinate formulation. 
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 Following the notation of Balsara et al. ([11], [12]), the 
time-harmonic Maxwell’s curl equations in stretched-
coordinate space are expressed as 
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where xB , yB   and zB are the x -, y -, and z  -components 

of the magnetic flux density vector, and xD , yD , and zD  are 
the x -, y -, and z - components of the electric flux density 
vector.  Also, ε  and µ  are permittivity and magnetic 

permeability, respectively. xs , ys , and zs  are the PML 
constitutive parameters defined as 
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where xσ , yσ , zσ  represents the PML conductivity profile in 

each Cartesian direction, xκ , yκ , zκ  are the real parts of the 

PML constitutive parameters, and the role of xa , ya , and za  
is to shift the poles for the PML constitutive parameters off of 
the origin and into the upper-half complex plane.  

The CPML equations (2.1) – (2.6) have a non-Maxwellian 
form in the time domain. To convert these equations into 
Maxwellian form, xβ , yβ , and zβ  are introduced as follows 
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Consider for the moment (2.1). Using (2.8), (2.1) may be 
written as 
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Next, two auxiliary PML variables are introduced for (2.9) 
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where the superscript H in ,
H

y zQ  denotes that the auxiliary 
variable corresponding to the magnetic field vector, the first 
subscript corresponds to the direction in which the PML is 
absorbing the wave, and the second subscript corresponds to 
the orientation of the H field component. 

Using (2.10) and (2.11), (2.9) may now be expressed in the 
following form  
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Expanding the first terms on the righthand side of (2.10) yields 
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Plugging (2.13) into (2.10) and rearranging terms yields  
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The same approach may be applied to (2.11).  As a result, 
(2.1) and its PML counterparts may be expressed in the time 
domain as  
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Applying the same approach to (2.2) – (2.6), the resulting set 
of Maxwell’s equations in 3D with PML included, can be 
written. Supplement A provides the full set of detailed PML 
equations in physical space showing that they form a non-
conservative hyperbolic system.  
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 As detailed in Balsara et al. [11], writing the characteristic 
matrices from Supplement A allows us to perform a 
characteristic analysis of the wave speeds, which plays a 
crucial role in the implementation of the Reimann solvers in 
Section VI. Performing such a characteristic analysis here, the 
electromagnetic waves propagating in the 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-
directions of the grid are found to propagate with the expected 
wave speeds, since the diagonal matrix of eigenvalues are  

( )
18 X 1

0 0/ , / , , , , / , /x
x x x xdiag c c c cκ κ κ κ= − − … + +Λ  (2.18) 

( )
18 X 1

0 0/ , / , , , , / , /y
y y y ydiag c c c cκ κ κ κ− −= … + +Λ (2.19) 

( )
18 X 1

0 0/ , / , , , , / , /z

z
z z zdiag c c c cκ κ κ κ= − − … + +Λ (2.20) 

Here “c” is the speed of light in vacuum. This completes our 
analysis of the CPML equations. (In a late stage of review, a 
referee pointed out the existence of other PML formulations 
Gedney et al. [26], Chen et al. [17] and Lu, Zhang and Cai 
[36] where the PML update equations have pure source terms, 
without any gradient terms. The ADER methods developed 
here are expressly suited to handling stiff source terms. 
Therefore, we do believe that the above-mentioned 
formulations would do substantially better with the ADER 
methods developed here, but it was too late to explore them in 
this paper.) 

 

B. Parameter Specification for the CPML Equation 
The PML parameters are designed to vary gradually in the 

PML region. This is done because any abrupt change in wave 
propagation characteristics can cause undue back-reflection of 
electromagnetic radiation. Therefore, we catalogue the method 
of setting up all the coefficients in one place. This will also be 
useful when these parameters have to be optimized in a later 
section so as to minimize back-reflection. For maxσ we set: 
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where 3 4m≤ ≤  in the above equation, and rε and rµ are 
relative permittivity and permeability. The PML layer ranges 
over 0 0x x x d≤ ≤ + , where “d” is the thickness of the PML 
layer. The variation of the PML conductivity is given by 
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where again we use the same 3 4m≤ ≤  in the above 
equation. The above parameter has the dimensions of a 
physical conductivity. The next parameter can be interpreted 
as a scaling of the coordinate system, which means it is 
dimensionless. 
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where we also use the same 3 4m≤ ≤  in the above equation, 
and max 1κ ≥ . Typically, [ ]max 1, 25κ ∈ . The speed of light  

“c” decreases by a factor of ( )x xκ in the PML region 

because ( )x xκ multiplies both the permittivity and the 
permeability. The low-frequency behavior of the PML is also 
improved by shifting the pole away from the origin and into 
the lower half of the complex plane. This is accomplished by 
having  
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Because of the relationship 

0( ) ( ) ( ) ( ( ) )x x x xs x x x xa jκ σ ωε= + +  we see that ( )x xa  

has the same units as ( )x xσ . We also want 0( 2)x x xa + ∆  to 

be much larger than 0( 2)x x xσ + ∆ which is why the scaling 
goes in the opposite direction in the above equation.  
 Putting it all together, any PML can be specified by the 
distance “d”, which is also the thickness of the PML layer as 
specified in number of zones. The further specification of the 
PML depends on specifying four numbers given by 

( )max max, , ,ref a mσ κ . These are the parameters we will use 

in our optimization study. Experience has shown that refσ
and maxκ  are the most important parameters. As a result, our 
optimization efforts will usually focus on these two 
parameters. 
 

III. DIVERGENCE CONSTRAINT-PRESERVING RECONSTRUCTION 
OF CED VARIABLES 

The facial electric and magnetic flux densities form the 
primal variables of the FVTD scheme. Divergence constraint-
preserving FVTD, along with divergence constraint-
preserving DGTD, relies on collocating the x-components of 
the electric and magnetic flux densities at the x-faces of the 
mesh. Likewise, the y-components of the electric and 
magnetic flux densities are collocated at the y-faces of the 
mesh and the z-components of the electric magnetic flux 
densities vectors are collocated at the z-faces of the mesh. It is 
important to realize that the divergence constraint couples all 
the components of the reconstructed vector field. One has, 
therefore, to treat the entire vector field as a single entity 
where the constraint causes the modes of one component to 
couple with the modes of the other components. Please see 
Fig. 1 from Balsara et al. [11] for a schematic diagram on how 
the vector fields are collocated on a zone. The PML variables 
in the next section follow the exact same collocation pattern. 

 The facial collocation of all the primal CED variables also 
suggests that they should be updated by using gradients of 
variables that are available at the edges of the mesh. Indeed, 
an examination of the CED equations from Section II would 
show that we just need the resolved states from two-
dimensional Riemann solvers which are applied at the edges 
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of the mesh in order to obtain an update strategy for the face-
centered CED variables. 

 When the problem is restricted to two dimensions in the xy-
plane, as it is out here, the z-components become zone-
centered, while the x- and y-components still remain face-
centered. Furthermore, in that two-dimensional limit, zD and 

zB  should be treated as zone-centered variables that are to be 
updated with one-dimensional Riemann solvers. 

 The full three-dimensional divergence constraint-preserving 
reconstruction problem at second, third and fourth order of 
accuracy is described in Balsara et al. ([11], [12]). In this 
paper we use only the two-dimensional restrictions of the 
reconstruction problem. While this can be worked out, there 
are nuances in the reconstruction that enter into the ADER 
formulation. For this reason, Supplement B describes the two-
dimensional divergence constraint-preserving reconstruction 
problem at second, third and fourth orders. The explicit 
presentation of the two-dimensional constraint-preserving 
reconstruction also gives the engineering community an easily 
accessible introduction to this topic. 

 

IV. FACIALLY-MATCHING RECONSTRUCTION OF PML 
VARIABLES 

The PML algorithm is intended to only act on a narrow 
layer of zones that is ten or so zones wide at the outer 
boundary of the computational domain. All the waves 
impinging on that layer should be absorbed in that layer. As a 
result, it is crucial to have a good collocation of variables for 
PML. An examination of the governing equations shows that 
we will have the best conformity between the CED variables 

and the PML variables if  , ,,H H

y z z yQ Q and , ,,E E

y z z yQ Q  are 
collocated at the x-faces of the mesh. An examination of the 

source terms for the update of xD  and xB shows that the PML 
variables which are facially collocated in this fashion will 
have direct influence on the field variables that they are 
intended to suppress. Similarly, the update equations for 

, ,,H H

y z z yQ Q and , ,,E E

y z z yQ Q  show that they are dependent only on 
the gradients in the y- and z-directions, giving us a further 
indication that it is best to collocate them in the x-faces. By 
examining the remaining PML equations we see that 

, ,,H H
z x x zQ Q and , ,,E E

z x x zQ Q should be collocated at the y-faces of 

the mesh. Likewise, , ,,H H

x y y xQ Q and , ,,E E

x y y xQ Q  should be 
collocated at the z-faces of the mesh.  

 The facial collocation of all the PML variables also suggests 
that they should be updated by using gradients of variables 
that are available at the edges of the mesh. Indeed, an 
examination of the PML equations from Section II would 
show that we just need the resolved states from two-
dimensional Riemann solvers which are applied at the edges 
of the mesh in order to obtain an update strategy for the face-
centered PML variables. This will be further amplified in 

Section IV. Realize, therefore, that the update strategy for the 
PML variables has also been made very conformant with the 
update strategy for the face-centered components of the 
electric and magnetic flux densities. This allows us to make 
the most compact discretization of PML; which is good 
because the PML only acts on a thin layer of zones where it 
has to be maximally effective. 

 For two-dimensional problems that are restricted to the xy-
plane we suppress all gradients in the z-direction. As a result, 

we can eliminate ,
H
z xQ , ,

H

z yQ , ,
E

z yQ and ,
E
z xQ  ; so that we have 

just eight PML variables to consider instead of twelve in 
three-dimensions. Furthermore, in that two-dimensional limit, 

, ,,H H

x y y xQ Q and , ,,E E

x y y xQ Q  should be treated as zone-centered 
variables that are to be updated with one-dimensional 
Riemann solvers.  

 Now realize that the PML update equations, along with the 
update equations for the regular CED, form a hyperbolic PDE 
system, albeit one with very stiff source terms. Because of the 
coupling between the two sets of equations via the source 
terms, the whole PDE system has to be treated as one entire 
system of equations. Therefore, if one is to design an “in-the-
small” predictor step in the next section, the PML variables 
should also be reconstructed at all locations within any zone 
that is undergoing PML. But please realize that the PML 
variables are not required to be divergence-preserving. They 
are, nevertheless, required to be order preserving. In other 
words, the reconstruction strategy for PML must retain all the 
modes that are needed for the order property while also 
matching the facially collocated PML variables and their 
transverse variation in the faces of the mesh. Such a 
reconstruction strategy has been designed by Balsara, 
Samantaray and Subramanian [15] and is called the WENO-
ADP reconstruction strategy. In other words, it draws on ideas 
from WENO (weighted essentially non-oscillatory) 
reconstruction while being ADP (almost divergence-
preserving). In Balsara, Samantaray and Subramanian [15] we 
present the full 3D version of this algorithm from a 
mathematician’s perspective. Here we present the simplified 
version of the same, with some more helpful explanations and 
in two dimensions, to make it more accessible to engineers in 
Supplement C.  

 

V. IMPLICIT TAYLOR ADER PREDICTOR FORMULATION FOR 
CED 

We now focus on the Implicit Taylor variant of ADER 
(Arbitrary Accurate DERivatives), which was first formulated 
by Montecinos and Toro [33] and modified significantly with 
an eye to improving its utility by Montecinos and Balsara [34]. 
There is also the paper by Montecinos [35], but it does not 
construct as detailed expressions as this paper. We claim that 
this variant of ADER is optimally suited for CED. The PDE 
that is used in CED can be most easily written as 

    t x y z++ + =U A U B U C U S U             (5.1) 
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Here U  is the solution vector and A , B and C are 
characteristic matrices which depend on the permittivity, 
permeability, σ  and κ . The matrices vary slowly in space 
and do not vary in time; they are documented explicitly in 
Supplement A. The characteristic matrices are also solution-
independent. As a result, they can be specified at any location 
within a zone. Furthermore, they vary only by small amounts 
within a zone with the result that we only need to retain linear 
variation with respect to space in the characteristic matrices. 
The source term SU is also linear in the solution vector U . 
The matrix S  depends on the conductivity and the 
conductivity can assume large values in metallic materials. 
Furthermore, the conductivity can have very large variation 
within a zone. Our goal will be to build a method that is 
uniquely adapted to the features of the PDE that governs CED 
calculations. We realize that the source terms can be so large 
that the solution method should be time-implicit in its 
treatment of the source terms. Furthermore, it is desirable to 
retain first derivatives in S . It is also beneficial to a lesser 
extent to retain first derivatives in the characteristic matrices.  

 The full algorithm calls for a suitably high order spatial 
reconstruction step. This reconstruction gives us a high order 
representation of the solution within each zone. This is 
followed by a local predictor step applied within each zone. 
This predictor step gives us an “in-the-small” time-evolution 
of the solution based on the spatial variation within the zone. 
This time-evolution is made consistent with the governing 
equation in (5.1). The predictor step is then followed by the 
corrector step where the Riemann solvers are applied across 
zones and the time update is effected. The corrector step helps 
to connect the time-evolution across zones and is described 
later in Section VI. In this Section, we will first illustrate the 
construction of an Implicit Taylor ADER predictor 
formulation for CED in three dimensions and at second and 
third orders. We will then document the fourth order case in 
Supplement D, where only the final results are shown. 

A. Second Order Implicit Taylor ADER Predictor Formulation  
Using (5.1) we can write 

   t x y z= − − − +U A U B U C U S U           (5.2) 

In an Implicit Taylor expansion, we assume that we have the 
solution at some time t τ= , where 0τ > , and we relate it to 
the solution at 0t = . Since we are propagating backward in 
time, the scheme becomes implicit. Since this is only a second 
order scheme, the backward Taylor series expansion gives 

0( ) t
τ ττ+ − =U U U                 (5.3) 

Where the superscripts τ  and 0 denote the time points at 
which the solution is evaluated. From (5.1), (5.2) and (5.3) we 
can write 

0

x y z
τ τ τ τ ττ= + − − − +  U U AU BU CU SU       (5.4) 

Now realize that the unknowns in the above equation are τU , 

x
τU , y

τU and z
τU . Clearly, (5.4) is only one equation, so it 

cannot give us all four of the above-mentioned vectors. We 
clearly need a trick to proceed. Now realize that (5.4) can be 
differentiated w.r.t. the x-coordinate and we realize that all 
second derivatives become zero in this second order 
approximation. The same can be done with all the other 
coordinate directions. The result is 

[ ] 1 0 where , ,x y zτ
α ατ α−
= − =U I S U        (5.5) 

Once x
τU , y

τU and z
τU  have been obtained using the above 

equation, we can easily find 

[ ] { }01
x y z

τ τ τ ττ τ−  = − + − − − U I S U AU BU CU  (5.6) 

This completes our description of the second order Implicit 
Taylor ADER predictor scheme. 

B. Third Order Implicit Taylor ADER Predictor Formulation   
We make the same assumption as was made for the derivation 
of the second order scheme. In other words, we assert the 
solution at some time t τ= , where 0τ > , and we relate it to 
the solution at 0t = . Since we are propagating backward in 
time, the scheme becomes implicit. Because this is a third 
order scheme, the backward Taylor series expansion gives 

02(( ) ) / 2t tt
τ τ ττ τ−+ − + =U U U U .         (5.7) 

Where the superscripts τ  and 0 denote the time points at 
which the solution is evaluated. Differentiating (5.1) with 
respect to the time variable t  we obtain  

( ) ( ) ( ) ( )tt t t t tx y z= − − − +A B C SU U U U U .       (5.8) 

Now, using (5.2) in (5.8) we can obtain the following 
expression for ttU , which is independent of any temporal 
derivative terms: 

( ) ( )

( ) ( )

2 2 2

2

xx yy zz xy

y

t yz

xz x

t

z

= + + + +

+ −∂ ∂

∂ ∂

+ −

+ − + −

+

A U B U C U AB U BC U

AC U A AS U B BS U

C CS U S S U

U

  (5.9) 

where we have used the following compact forms which 
enables us to have a very compact notation 

2 21
3

1

2

3

3

; ; 

; ;

;   

   "
1

"
2

2 ; 

 

for any matrix

where stands for the 

Pade approximation at 3  order.rd

y z

x y x z y y y zx y

z y z

x

x x

z

y x

z x z

P Pτ τ

τ τ τ τ

−
−

≡ + ∂ ≡ + +

∂ ≡ + + ∂ ≡ + +

∂ ≡ + +

≡

−

− +

≡

 
  

A

S

A BB AB BA S S S CS

S S S C S S S B S C S

S S S C S S

S

A A

A

S

A B

A B

I S

A 2
3

2
3

2 ;

2

τ τ

τ τ τ≡

−≡

−

B B BS

C C CS
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 From (5.2), (5.7) and (5.9) we can write  

[ ]

( ) ( )

( ) ( )

2

2

2

0

2

2

1

2

xy yz

xz x y

z

x y z

xx yy zz

τ τ τ τ

τ τ

τ

τ τ

τ τ τ

τ

τ τ

τ

τ − −

= + − − − +

+ +

+ + ∂ + ∂

+ ∂

−

− ∂

+

− +

+ 
 
 
 
 

U U

AB U BC U

AC U A

U

AU BU CU SU

AS U B BS U

CS

A U B U C U

C S S U

.

                        (5.10) 

Now realize that the unknowns in the above equations are
τ

U  

x
τ

U , y
τ

U , z
τ

U  xx
τ

U , yy
τ

U , zz
τ

U , xy
τ

U , yz
τ

U  and xz
τ

U . Clearly, 
(5.10) is only one equation, so it cannot give us all ten of the 
above-mentioned vectors. We clearly need a trick similar to 
the one used for the second order derivation, to proceed. Now 
realize that (5.10) can be differentiated with respect to the x-
coordinate to obtain the following expression: 

( )

( )

( )

( )

( )

2

2

0 1

2x

x
x x

x x x x

x x

x x x xy

x x
x x yz xz

x x x x

x x
x x

xx xy xz

y z

xx yy

x
x

zz

y

τ

τ

τ

τ

τ τ

τ

τ

τ τ

τ τ τ

τ τ

τ

τ

τ τ

+
+

−

− +

− − − +
= + −

− − −

∂

+

∂ − +

+ + +

− − + −

+

+ +

+ +
+ ∂

+ ∂ ∂

∂
+ ∂

−
−

−

 
 
  

 
 
 



U U

A

A B

AU BU CU SU

A U B U C U S U

A

C

A

B B A B U

A AC
B C BC U U

C

A A S AS U

C C S
B B

A S U B B U

C C U S

CS

S

S BS U
CS

S

( )

z

x x

τ

τ− ∂+

 
 
 
 
 
 
 
 
 
 
 
 



 


 


U

S S US

  

                    (5.11) 

Note that to obtain the above expression we have suppressed 
all the second-order derivatives of S . Now we can greatly 

simplify the expression for x
τ

U from that of (5.11) if we ignore 
all the gradients of A , B , C and S . This allows us to keep 
only the terms that dominate in the evolution of the gradient of 
the solution. The gradient of the solution is not one of the 
primary desiderata of the method, but it is essential for the 
overall implementation of the method. So, this choice is 
justified. This approximation enables us to get 

2 2
3 3 3

0 1

2
xxx x x x xy xz

τ τ τ ττ ττ τ τ τ τ− − −= + −U SU A U CU S U B U U

                      .(5.12) 

Similarly, the derivatives in the y- and z- directions are given 
by  

2 2

3

2 2
3 3 3

3

0

0
3

1

2

1

2

;

.

y y

z

y y xy

x

y yz

z yz zz z z z

y
τ

τ

τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ

=

+

− −

−

−

− − −

+ −

=

U U S U B U U

U U S

SU A U C

SU A UU UCB U

                      (5.13) 

Retaining the assumption that all the linear variations in A , 
B , C and S   are suppressed, we can differentiate (5.12) once 
more to obtain 

2 20 1

2xx xx xx xx
τ τ ττ τ= + −U SU UU S .           (5.14) 

Now solving for xx
τ

U , from (5.14) we get 

01
3xx xxPτ −=U US  .                (5.15) 

Analogously we obtain five more expressions from   
1

3

0     with   , ,    and   , ,P x y z x y zβ
τ
α αβ α β−= = =SU U     (5.16) 

Equations (5.15) and (5.16) give us explicit values for xx
τ

U , 

yy
τ

U , zz
τ

U , xy
τ

U , yz
τ

U  and xz
τ

U . Once these second derivative 
terms are obtained, they can be substituted in (5.12) and (5.13) 
to get simple expressions for the first derivatives as follows: 

{ }
{ }
{ }

1

1

1

3 3 3

3

0
3

0
3 3

3 33 3

3

0

;

;

.

xx

y y xy

x x xy xz

yy yz

yzz z zz zx

P

P

P

τ

τ

τ τ τ

τ τ τ

τττ τ

τ τ τ

τ τ τ

τ τ τ

−

−

−

− −

− − −

− − −

= −

=

=

U U U U

U U U U

U U U

S A U B C

S B

U

A U C

S A U B C

(5.17)  

Once the linear variations x
τ

U , y
τ

U  and z
τ

U  have been 

obtained, we can assemble all the terms in (5.10) to obtain 
τ

U
explicitly as: 

2

2 2

2 2

2 2 2 2

2 2 2 2

0

3 3

2

3

1
1

2

1 1

2 2

1 1 1

2 2 2

1 1 1 1

2 2 2

( )

2

x y

z

xy yz

x

xz

x yy

zz

τ τ

τ

τ τ τ

τ τ

τ

τ

τ

τ

τ τ

τ τ

τ τ τ

τ

τ

τ τ τ

−

= + −

− + +

+ − −

− − −

− ∂

∂ − ∂

− ∂

−

 
  

   
    
 
 
 
 
 
 

 
  

 
  



U

U

S S

A B

C C A

I S

U A U B U

AB U BC U

U B U

UC CU A

                      (5.18) 

The above expression is designed to minimize the number of 
matrix-vector multiplication steps. The square matrices, 
indicated by the square brackets in the above equation, can be 
pre-computed for each zone and re-used, if one wishes. In 
many useful limits that arise in CED, the inverse can also be 
analytically pre-computed using a computer algebra system. 
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This completes our description of the third order Implicit 
Taylor ADER predictor scheme. 

 It is advantageous to extract some essential insights about 
the Implicit Taylor ADER predictor algorithm and its 
treatment of source terms with increasing order of accuracy. 
To that end, ignore the spatial variation of the source terms 
and inter-compare the matrix [ ]

1
τ

−
−I S in (5.5) and (5.6), the 

matrix 2 2

1
1

2
τ τ

−

− + 
  
I S S in (5.15) to (5.18) and then the 

matrix 2 2 3 3

1
1 1

2 6
τ τ τ

−

− + − 
  

I SS S in (D.3) to (D.8). We see 

that they are successively high order Padé approximations for 

the fully implicit treatment of the equation t =U S U , where the 
source terms, SU , can be stiff. Since the Padé approximations 
are optimal up to the desired order, we realize that the Implicit 
Taylor ADER predictor algorithm is optimal for the treatment 
of stiff source terms by its very design. In other words, it is 
ideally suited for CED applications where the stiff source 
terms are of the form SU with the matrix S  having zero or 
negative eigenvalues. Another useful insight would be to note 
that in large parts of the computational domain, the source 
terms might be zero. In that limit, and in those zones, the 
matrix inversion becomes unnecessary and the method 
becomes even more efficient. In fact, it becomes as efficient as 
an Explicit Taylor version of ADER. For those who are 
mathematically inclined and know the previous literature, 
another insight is also worthwhile. Realize that, compared 
with the conventional Implicit ADER of Toro and Montecinos 
[44], this approach should be superior, mainly because this 
formulation decouples the algebraic equations for state and 
derivatives in sub-problems where the same matrix inversion 
is required. 

C. Implementation of the Implicit Taylor ADER Algorithm at 
Second Order 

In this and the next sections (and in Supplement D. II) we 
consider the ADER algorithm applied to a zone of extent x∆
and y∆ in the two spatial directions. In that zone we want to 
build an “in-the-small” predictor step with a timestep t∆ . The 
first thing to realize is that we have to identify the suitable 
temporal quadrature points for each order of accuracy; these 
are obtained based on Gaussian quadrature. For second order 
accurate evolution we only need one quadrature point which is 
at the middle of the timestep. But to obtain an efficient 
implementation it helps to go from the physical space-time 
element [ ] [ ] [ ]/ 2, / 2 / 2, / 2 0,x x y y t−∆ ∆ × −∆ ∆ × ∆  to the 
reference element in space-time given by 
[ ] [ ] [ ]1 / 2,1 / 2 1 / 2,1 / 2 0,1− × − × . Since we have only one 
temporal quadrature point at second order, we define 

1 1 / 2τ = in the reference element. To obtain an “in-the-small” 
predictor step we would like to have the entire reconstruction 
polynomial at time 1τ . 

 We can achieve the goal of obtaining the entire 
reconstruction polynomial at time 1τ  by using all the results 
from Sub-Section V.A. But first we have to address two 
further issues. First, we need to understand how (5.5) and (5.6) 
get modified when recast in the reference space-time element. 
It is easy to see that the transformation of variables requires us 
to make the transcription  

  ;    ;    
t t

t
x y

∆ ∆
→ → → ∆

∆ ∆
A A B B S S         (5.19) 

With this transcription, we can set 1 1 / 2τ = in (5.5) and (5.6). 
Second, we need to learn how to go from the reconstruction in 
(B.6), (B.7) and (C.2), which is only available at 0τ = , to the 

state τU  and the derivatives 1

x
τU and 1

y
τU at the advanced time. 

The important insight is that in two dimensions 1τU is a 14 
component column vector written as 

( ), , , , , , , ,, , , , , , , , , , , , ,
TH H H H E E E E

x y z x y z y z x y x z y x y z x y x z y xD D D B B B Q Q Q Q Q Q Q Q
. But realize from (B.6), (B.7) that the electric and magnetic 
flux density terms can have quadratic variations of the form 

( )2 1 /12x − , ( )2 1 /12y − and xy . Furthermore, from (C.2) 

we know that the remaining eight terms may also have 
variations of the form xy . We, therefore, realize that 0U  and 

the derivatives 0

xU  and 0

yU  at 0τ = can be obtained at the 
zone center by differentiation of equations like (B.6), (B.7) 
and (C.2). Furthermore, because of the extra terms in (B.6), 

(B.7) and (C.2), we can also obtain 0

xxU , 0

yyU  and 0

xyU  at 

0τ =  and we should account for their time-evolution.  

 Once 0U , 0

xU , 0

yU , 0

xxU , 0

yyU  and 0

xyU  are in hand, we 
can extend (5.5) to obtain  

[ ]1 0
1

1   ; ,    { , }x yαβ αβ
τ α βτ −

= − ∈U I S U      (5.20) 

We use these in addition to (5.5) and (5.6) with 1τ τ=  to 

obtain 1τU , 1

x
τU , 1

y
τU , 1

xx
τU , 1

yy
τU  and 1

xy
τU . With these time-

advanced derivatives in hand, we can obtain the predicted 
solution at any face-centered or edge-centered quadrature 
point at which we may want to apply a 1D or 2D Riemann 
solver. In other words, this predictor step has given us the 
spatially and temporally second order accurate predicted 
solution which can now be used to obtain the input states for 
the Riemann solvers. It also gives us the fully time-implicit 
source terms, evaluated from within the zone of interest, at 
each of the faces of that zone. The final facial source terms 
that are needed for the one stage update of the facial variables 
will then be obtained via arithmetic averaging from each of 
the two zones that abut the face; and this will be described in 
further detail in Section VII. This completes our description of 
the ADER predictor step at second order. 
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D. Implementation of the Implicit Taylor ADER Algorithm at 
Third Order 

At third order, the transcription from physical space-time 
element to the reference element is unchanged. Similarly, 
(5.19) is also unchanged. At third order we have two 

quadrature points given by ( )1 1 1 / 3 2τ = −  and 

( )2 1 1 / 3 2τ = + . There are other nuances that we 

encounter at third order, and we address them next. 

 Now realize that permittivity, permeability and 
conductivity, as well as PML parameters, can indeed vary with 
spatial location within a zone. But they do not vary with time. 
Therefore, at third order and beyond, we have also to account 
for the spatial derivatives of the matrices A , B  and S , 
though we do not need to account for their time derivatives. 
We do that simply via finite differencing. Let us illustrate with 
a simple example. Let RA and LA be the matrices for A at the 
right and left boundaries of the zone being considered. 
Similarly, let UA and DA  be the matrices for A at the up and 
down boundaries of the zone being considered. We can then 
write 

( ) ( )  ;   / /R L U Dx yx y= − = −∆ ∆A A A A A A          (5.21) 

Therefore, the gradients of the matrices that we are 
considering also become important at third order and beyond. 
The big benefit of including these gradients is that they allow 
us to account for variation in material properties within a 
zone; i.e. a kind of sub-cell resolution. We will see later on 
that this sub-cell resolution helps us in obtaining superior late-
time behavior in the PML at higher orders. 

 Now recall from scanning the reconstructed modes in 
Supplement B. II and Supplement C. II that in addition to 
modes with quadratic variation we will have modes with cubic 
variation. Therefore, at the center of the zone, and at time 

0τ = we can obtain 
0

U , 
0

xU , 
0

yU , 
0

xxU , 
0

yyU , 
0

xyU , 
0

xxxU , 
0

yyyU , 
0

xxyU and 
0

xyyU . Using these, our task is to obtain 
τ

U , 

x
τ

U , y
τ

U , xx
τ

U , yy
τ

U , xy
τ

U , xxx
τ

U , yyy
τ

U , xxy
τ

U  and xyy
τ

U  at 

scaled times 1τ τ=  and 2τ τ= . As in the second order case, 
we extend (5.15) to write 

1 0
3 , { }; , ,P x yαβγ αβγ

τ α β γ− ∈= SU U        (5.22) 

We can assert (5.15), to (5.18), along with (5.22) at scaled 

times 1τ τ=  and 2τ τ=  to obtain our desired result. With 
these time-advanced derivatives in hand, we can obtain the 
predicted solution at any face-centered or edge-centered 
spatial quadrature point at which we may want to apply a 1D 
or 2D Riemann solver. For CED, the material properties do 
not evolve in time. We can, therefore, make the simplification 
of using time-integrated states at the spatial quadrature points 

where we want to invoke these Riemann solvers. That reduces 
the number of Riemann solvers that need to be invoked. This 
step also gives us the fully time-implicit source terms, 
evaluated from within the zone of interest, at each of the faces 
of that zone. 

VI. TWO-DIMENSIONAL RIEMANN SOLVER AND ITS ROLE IN 
THE SINGLE STAGE CORRECTOR STEP 

We first describe the two-dimensional Riemann solver 
whilst putting it in context with the reconstruction and 
predictor steps from Sections III, IV and V. We then describe 
the single stage corrector step. 

A. Description of the Two-Dimensional Riemann Solver 
Multidimensional Riemann solvers that are practical and 

easy to implement were first worked out in Balsara [5], [6], [7] 
and Balsara and Nkonga [10]. For CED applications, the 
structure of the multidimensional Riemann solver becomes 
even simpler because of two reasons:- First, the system is 
linear and second, there are symmetries that we can exploit in 
the update equations. We describe the multidimensional 
Riemann solver with all the simplifications incorporated in 
this Section. This also gives us insight into the time-update 
strategy that is used in the corrector step.  

 Consider the set of equations described in (2.15), (2.16) and 
(2.17) and please focus on the parts that correspond to spatial 
gradients in those equations. We see from (2.15) that the 
corrector step update of xD in (2.15) requires the two 

gradients ( )/zB yµ∂ ∂ and ( )/yB zµ∂ ∂ . The gradients 

can be evaluated in the x-faces where xD  is collocated. Now 

realize that the corrector step update of ,
H
y zQ  in (2.16) relies 

only on one of the two previous gradients, ( )/zB yµ∂ ∂ . 

Also recall that ,
H
y zQ  is also collocated in the same x-faces. 

Also realize that the corrector step update of ,
H
z yQ  in (2.17) 

relies only on the other of the two previous gradients, 

( )/yB zµ∂ ∂ . Therefore, if we have a physically motivated 

(i.e. multidimensionally upwinded) strategy for obtaining zB
variables at the z-edges of the mesh and yB variables at the y-
edges of the mesh, it would then be easy to update (2.15), 
(2.16) and (2.17) in the corrector step. The coefficients in front 
of the gradient terms in (2.15), (2.16) and (2.17) are time-
independent and can be spatially averaged at the x-faces of the 
mesh when carrying out the corrector step. By examining the 
full equation set in (A.1) to (A.18) we realize that a similar 
consideration can be applied to each of the matched triplets of 
update equations. 

 To obtain the desired accuracy in space and time for the 
update in the corrector step, we only need to use the 
previously-described numerical algorithms as follows. Using 
Sections III and IV, we reconstruct all variables with the 
desired spatial accuracy. Then using Section V we can make a 
matching, temporally high order accurate, in-the-small, time-
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RUU , 

LUU , LDU and RDU  that come together at the z-edge. The z-
edge is seen from above in Fig. 1a as the thick dot and we also 
see the four zones that lie in the xy-plane. The subscripts 
“RU”, “LU”, “LD” and “RD” denote the Right-Up, Left-Up, 
Left-Down and Right-Down zones. Since we have the 
accurate space and time evolution within each of the four 
zones shown in Fig. 1a, the four states  RUU , LUU , LDU and 

RDU can be evaluated at the z-edge with the desired spatial 
and temporal accuracy. These four states form the input states 
of the multidimensional Riemann solver. 

 The task of the multidimensional Riemann solver shown in 
Fig. 1a is to produce a unique resolved state at the z-edge 
shown in Fig. 1a. Specifically, at the z-edge we only want zD
and zB . Notice that at no point in the update of (A.1) to 
(A.18) will we need the PML “Q” variables at any of the 
edges. This allows us to restrict our focus to a much smaller 
6×6 hyperbolic system given by 
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   (6.1) 

The x-, y- and z-directional fluxes in the above equation will 
be denoted by F, G and H. When working with the 
multidimensional Riemann solver we only restrict attention to 
the above six-component system. The source terms on the 
right hand side of (6.1) do not contribute to the Riemann 
solver; though they will contribute to the eventual corrector 
step. An examination of the x-flux shows us, see (2.18), that 
the waves propagate symmetrically in the x-direction with 
right- and left-going speeds R xS c κ= and R xS c κ− = − . 
Likewise, an examination of the y-flux shows us, see (2.19), 
that the waves propagate symmetrically in the y-direction with 
up- and down-going speeds U yS c κ= and U yS c κ− = − . 
These speeds do contribute to the multidimensional Riemann 
solver, as shown in Fig. 1b.  

Between the states RUU  and LUU , we have the formation 
of a one-dimensional Riemann problem in the x-direction with 
a resolved state *

UU , as shown in Fig. 1b, and given explicitly 
by 

( ) ( ) ( )( )* 1 1

2 2U RU LU RU LU
RS

= + − −U U U F U F U    (6.2) 

From the state *
UU we can also obtain the y-flux ( )*

UG U . 

Between the states RDU  and LDU , we have the formation of a 
one-dimensional Riemann problem in the x-direction with a 
resolved state *

DU , as shown in Fig. 1b. To obtain *
DU , just 

replace U D→  in (6.2). From the state *
DU we can also obtain 

the y-flux ( )*

DG U . Between the states RUU  and RDU , we 
have the formation of a one-dimensional Riemann problem in 
the y-direction with a resolved state *

RU , as shown in Fig. 1b, 
and given explicitly by 

( ) ( ) ( )( )* 1 1

2 2R RU RD RU RD
US

= + − −U U U G U G U    (6.3) 

From the state *
RU we can also obtain the x-flux ( )*

RF U . 

Between the states LUU  and LDU , we have the formation of a 
one-dimensional Riemann problem in the y-direction with a 
resolved state *

LU , as shown in Fig. 1b. To obtain *
LU , just 

replace R L→ in (6.3). From the state *
LU we can also obtain 

the x-flux ( )*

LF U . 

 The four resolved states then interact to produce the 
strongly interacting state **U  which covers the z-edge, as 
shown in Fig. 1b. This is the state that will give us the z-edge-
centered **

zD and **
zB  that we seek. The method for obtaining 

this state is given in (13) of Balsara [7] and is explicitly 
written  

( ) ( )

( ) ( )

** * * * *

* * * *

1 1

4 4

1 1

4 4

R R R L R L
R R

U U U D U D
U U

S S
S S

S S
S S

= − − + +

− − + +

      

      

U F U U F U U

G U U G U U

 

                      (6.4) 

Once **U  is obtained, its third and sixth components give us 
the resolved z-edge-centered **

zD and **
zB  that we seek. Once 

a multidimensional Riemann solver is developed as 
documented here, a cyclic rotation of its input variables can be 
used to yield multidimensional Riemann solvers that act in the 
yz-plane and xz-plane. This gives us all the edge-centered 
variables that are required for making a one-step update of 
(A.1) to (A.18) in the corrector step. 
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Fig. 1a shows four zones in the xy-plane that come together at the z-edge of a 
three-dimensional mesh. Since the mesh is viewed from the top in plan view, 
the z-edge is shown by the black dot and the four abutting zones are shown as 
four squares. The four states have subscripts given by “RU” for right-upper; 
“LU” for left-upper; “LD” for left-down and “RD” for right-down. Fig 1a 
shows the situation before the states start interacting via four one-dimensional 
and one multidimensional Riemann problems. The arrows indicate that 
higher-order space-time reconstruction within each of the four zones is used to 
obtain the four input states at the z-edge. 

        

Fig. 1b shows the same situation as Fig. 1a. However, it shows the situation 
after the four incoming states from Fig. 1a start interacting with each other. 
Four one-dimensional Riemann problems, shown by dashed lines and single-
starred states, develop between the four pairs of states. The shaded region with 
the double-starred state depicts the strongly interacting state that arises when 
the four one-dimensional Riemann problems interact with one another. We 
want to find the z-components of the electric displacement and magnetic 
induction in the strongly interacting state. 

The two-dimensional Riemann solver presented here is such 
that it reduces precisely to a one-dimensional Riemann solver 
when all the variations are strictly in one dimension. For this 
reason, it is also suitable for use in two dimensional 
applications where all the variations in the third dimension are 
suppressed. This completes our description of the two-
dimensional Riemann solver. 
 

B. Description of the Single Stage Corrector Step  
It is also valuable to describe a single stage update from time 

nt to time nt t+ ∆ for a mesh with zones of size x∆ and y∆ in 
the x- and y-directions. We instantiate that using (2.15), (2.16) 
and (2.17). Evaluated at any x-face, the update equation for 

xD  can be written as follows 

( )

( ) ( )

1

, ,//

/2 /2

22
H H

n n

y

y z z y
z

y

z zy y y y

z zzy z

x x
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+
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=−∆=∆
− − −

∆
+

∆
−

∆

=

∆
+

∆

                        (6.8) 

In the above equation, yκ , zκ are averaged over the area 
of the x-face being considered. The y-edge centered update 
terms /2y z zB µ

=∆  and /2y z zB µ
=−∆ are obtained from 

one space and one time integration over the upper and lower 
y-edges of the x-face being considered. The y-edge centered 
update terms /2z y yB µ =∆ and /2z y yB µ =−∆  are obtained 

from one space and one time integration over the upper and 
lower z-edges of the x-face being considered. The source 
terms ,

H

y zQ and ,

H

z yQ are obtained by two space and one 
time integration over the facial area from the two zones that 
abut the x-face being considered. The use of quadrature 
formulae in the corrector step, and the fact that the predictor 
and reconstruction steps taken together have produced space-
time accurate inputs for the Riemann solver, ensures that the 
formulation of the corrector step extends naturally to all orders 
of accuracy. Now that the notation is established, it is easy to 
write the update equations for the further PML variables that 
reside in the x-face as follows 

( )

( )( )

, , 2
0

,
0

; 1 ;
/2 /2

y
y z y z

y
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y y z

H n H n
z zy y y y

y y

Q

Q

t

y

t

Q

a

B B
σ

ε κ

ε

µ µ

σ κ

+
=∆ =−∆

∆
= −

∆
−

− +
∆

                       (6.9) 

and 

( )

( )( )

, , 2
0

,
0

; 1 ;
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                      (6.10) 

This completes our description of the single stage update step. 
Now that we have seen it for the x-faces, it is easy to extend it 
to all the other faces of the mesh. 

 

VII. POINTWISE DESCRIPTION OF THE IMPLEMENTATION OF THE 
PML ALGORITHM FOR FVTD 

The implementation is based on three major algorithmic 
pieces, which are in some sense pivotal to the success of any 
higher order Godunov methodology. Conceptually, any one-
step higher order Godunov scheme consists of the following 
three ingredients: 1) A higher order reconstruction step 
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(Sections III and IV), 2) A predictor step (Section V) and 3) A 
corrector step (Section VI). The first algorithmic piece 
consists of the reconstruction of all the relevant variables with 
sufficiently high order of spatial accuracy. The second 
algorithmic piece consists of making an “in-the-small” time 
evolution of the solution within each zone. This should be 
done with sufficiently good temporal accuracy and a fully 
implicit treatment of the stiff source terms. The third 
algorithmic piece consists of coupling the zones so that waves 
can flow across zones. This is done with the help of the 
multidimensional Riemann solver. The algorithm can be 
described in pointwise fashion as follows:- 

1) Using the divergence constraint-preserving reconstruction 
algorithm from Section III, reconstruct the facial electric and 
magnetic flux densities. This provides us with the spatially 
reconstructed solution for the two vector fields that hold over 
the entire zone for all the zones of the mesh. 

2) In just the zones where the PML is to be activated, use the 
WENO-ADP algorithm from Section IV to reconstruct the 
PML variables so that they are available over the entire zone 
of interest. This step only needs to be invoked in the PML-
active zones. 

3) Using the Implicit Taylor algorithm from Section V, obtain 
a space-time accurate representation of the solution at all the 
temporal quadrature points within each zone. This means that 
all the modes for all the variables that were reconstructed in 
steps 1) and 2) above are now available with sufficient space-
time accuracy at all the temporal quadrature points within each 
zone. 

4) Usually in CED, the material properties do not change in 
time, with the result that the matrices in (5.1) are not time-
dependent. This ensures that it is acceptable to use time-
integration at each of the spatial quadrature points within each 
face or edge where the 1D or 2D Riemann solvers will be 
applied. This is explained further in the last three Sub-sections 
of Section V. 

5) The ADER step also produces all the source terms (i.e. the 
terms on the right hand sides) that will be needed a couple of 
steps later in the single stage update of (A.1) to (A.18). These 
source terms are fully time-implicit because of the Implicit 
Taylor ADER step. When the source terms are needed at any 
face, they can be obtained by averaging from the space-time 
evolved variables from the two zones that abut that face. 

6) Using the time-integrated variables from either side of each 
face, apply the 1D Riemann solvers to obtain the desired face-
centered variables. Similarly, using the time-integrated 
variables from the four zones that come together at each edge, 
apply the 2D Riemann solver to obtain the desired edge-
centered variables. The outputs from the Riemann solvers will 
be spatially and temporally accurate. The Riemann solvers are 
described in Section VI. (In truly 3D calculations, only the 
multidimensional Riemann solvers need to be invoked at the 
edges of the mesh. The one-dimensional Riemann solvers are 
only needed when we have a 2D calculation.) 

7) With those face-centered source terms in hand from Step 5, 
and edge-centered variables in hand from Step 6, carry out a 

single step update of the CED variables and the PML 
variables. This is the corrector step. It advances the solution 
from a time nt to a time nt t+ ∆  by making a single stage 
update of  (A.1) to (A.18). 

 Notice that the parts of the mesh that rely on CED and the 
parts of the mesh where PML is invoked have exactly the 
same update algorithm with the exception of step 2) above. 
This makes it very easy to integrate our PML formulation in a 
pre-existing CED code. The third order reconstruction costs 
about twice as much as the second order reconstruction. The 
fourth order reconstruction costs about 2.5 times as much as 
the third order reconstruction. Similar ratios prevail with 
respect to the implicit Taylor ADER method. But please recall 
that in this method the reconstruction has to be done only 
once, and likewise for the ADER step. In other methods that 
use higher order Runge-Kutta updates in time, we remind the 
reader that the fourth order SSP-RK method requires five 
stages. In other words, there are considerable savings in the 
methods presented here. While we have not made a parallel 
implementation, a higher order Runge-Kutta method would 
also require multiple messaging steps, whereas this method 
only requires one messaging step per timestep. 

 

VIII. AN OPTIMIZATION EXERCISE FOR PML 

A. The Model Problem 
In order to evaluate the performance of the PML, the 

numerical experiment presented in Taflove and Hagness ([41]) 
is performed (in Section 7.11.1). For this experiment, a TEz 
grid is used as shown in Fig. 2. The source is located in free 
space at the center of a 40 mm × 40 mm grid (at Point O in 
Fig. 2).  

               
Fig. 2 - The experimental setup is shown. A y-directed electric current source 
is located at the center of the grid (point O) and the E-fields are recorded at 
points A and B. The main grid (in white) is surrounded by PML (in yellow). 

The source is on a y-directed electric field and is set to a 
differentiated Gaussian pulse waveform defined as  

( ) ( )[ ] ( )[ ]{ }20 02 / exp /w wJ t t t t t t t= − − − −       (8.1) 

where wt = 0 4 wt t=  . The grid has a resolution 
of 1 mm in both Cartesian directions and is surrounded by 
PML on all four sides (shown as the yellow region in Fig. 2).  
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PML thicknesses of 6 and 10 cells are tested.  The simulation 
is run with a Courant-Friedrichs-Lewy (CFL) value of 0.4, to a 
final time of 93 10−× seconds. A von Neumann analysis in 
Balsara and Kappeli [13] has shown that the FVTD schemes 
have a limiting CFL of 0.5. As a result, our choice of a CFL of 
0.4 is quite large for this class of scheme. 

Electric fields are recorded at observation points A and B in 
the grid. Point A is in the same y-plane as the source, but 2 
mm away from the PML, and point B is 2 mm away from both 
the bottom and left sides of the PML. The observed electric 
fields at Points A and B are compared with the corresponding 
electric fields from a much larger grid (a reference grid) in 
which there are no reflections from the boundaries during the 
timespan of the simulation. The relative error, ,Rel.error|ni j

,caused by the PML at time step 𝑛𝑛 and grid location ( ),i j  is 
calculated as 

, ref ref ,max, , ,
Rel.error| nn nn

i j i j i j i j
E E E= −      (8.2) 

where 
,

n

i j
E   is the electric field recorded at time step 𝑛𝑛 and 

location ( ),i j , ref ,

n

i jE  is the reference grid electric field 

recorded at time step n  and at location ( ),i j , and ref ,max ,

n

i j
E   

is the maximum amplitude of the reference electric field at 
location ( ),i j  and over the entire time span of the simulation.  

 

B. Optimization Exercise at Second Order for 10-cell and 6-
cell PML 

Similar to Taflove and Hagness [41], one has to undertake 
an optimization study to ensure that we get a PML with 
minimal back-reflection. We carry out such an optimization 
study independently for each order of accuracy because we 
have found that the optimal parameters change quite a bit as 
we go from second to third order. Fig. 3a shows the response 
of an optimized 10-cell PML for the model problem described 
in the previous Sub-section. The parameters used for this 
Figure are max max

( ), , , (0.5, 25, 0.2, 3)ref a mσ κ = . Fig. 3a is 
optimized to minimize back-reflection at early times. We see 
that the early time response of our method is roughly 
comparable to FDTD; however the late time response is vastly 
superior. The late time response is very important because it 
shows us that any waves that may have interacted with matter 
on the computational domain will not back-reflect and build 
up error on the mesh. In that regard, observe that the waves do 
not damp out fast enough when FDTD is used. We attribute 
that to the fact that FVTD, via its use of the Implicit Taylor 
predictor step, treats the source terms in a fully implicit 
fashion, whereas FDTD is only half-implicit. This explains 
why FVTD at second order shows a vastly improved late-time 
response. It may even prove advantageous to optimize PML 
separately for its late-time response. This late time optimized 

performance can be achieved by using the parameters  
max max

( ), , , (0.5, 25, 0.2, 4)ref a mσ κ = .  

 
Fig 3a shows the optimal choice (early response) of 10-cell CPML for 2nd 
order FVTD. Relative error at points A (left panel) and B (right panel) for 10-
cell CPML zones with the FDTD (black traces), 2nd order FVTD with the best 
performance at early and late times (red traces). Notice that in order to 
minimize reflection at late times we need quite large values of “s and k”. Only 
the ADER formulation with Implicit Taylor gives this level of unconditional 
stability in the face of very large PML conductivities; thereby showing its 
unique utility for CED. Note too that the difference in early time behavior is 
only very slight between the optimized 2nd order FVTD and optimized FDTD. 
Also observe that the FDTD oscillations never die out at late times owing to 
its semi-implicit formulation; whereas at late times 2nd order FVTD is close to 
two full orders of magnitude better than FDTD! 

Fig 3b shows the response of a 6-cell PML with 
max max

( ), , , (0.5, 25, 0.2, 3)ref a mσ κ = . We see that it too 
performs very well and seems to outperform FDTD in early 
and late-time response. Notice too that if an optimization 
study is carried out with 10-cell PML, the use of the same 
parameters for 6-cell PML will usually yield an optimal 6-cell 
PML scheme. In other words, one can set optimal parameters 
for second order PML in a code and those parameters will 
work sufficiently well regardless of the number of cells in the 
PML. Fig. 4 shows how our optimal values for 2nd order 
accurate PML were obtained. The plot makes it quite easy to 
realize why Figs. 3a and 3b were indeed the optimal choices 
for PML at second order. 

 

Fig 3b shows the optimal choice (early response) of 6-cell CPML for 2nd order 
FVTD. Relative error at points A (left panel) and B (right panel) for 6-cell 
CPML zones with the FDTD (black traces), 2nd order FVTD with the best 
performance at early and late times (red traces). Also observe that at late times 
2nd order FVTD is close to one and a half orders of magnitude better than 
FDTD! 
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Fig 4. Decibel contour plots of the maximum relative error observed at points 
A (top row) and B (bottom row) as a function of σref and κmax for 10-cell 
CPMLs with the FVTD over early (left column) and late (right column) 
responses. The late responses only measure the error over times [1.3,3]×10-9 . 
These plots allow us to choose optimal CPML parameters for 2nd order FVTD 
if we want to minimize the boundary response at early times or late times. 
Fortunately, the early and late response becomes optimal for the same 
parameter set that is centered at σref=0.5 with increasing values of k. The 
previous figure shows that an optimized choice of CPML parameters can yield 
almost an order of magnitude improvement in the late time response. 
 

C. Optimization Exercise at Third Order for 10-cell and 6-
cell PML 

Fig. 5a shows the response of an optimized 10-cell PML for 
the model problem. The parameters used for this Figure are 

max max
( ), , , (0.3, 1.5, 0.2, 4)ref a mσ κ = . At early times, the 
third order PML with FVTD is marginally inferior to the 
FDTD, however please observe that at late times, our 3rd order 
FVTD scheme produces results that are three full magnitudes 
better than FDTD. Fig. 5b shows the response of an optimized 
6-cell PML for the model problem. The parameters used for 
this Figure are still max max

( ), , , (0.3, 1.5, 0.2, 4)ref a mσ κ = . We 
realize, therefore, that once a PML has been optimized for a 
certain layer width, it does not need to be optimized again 
when the layer width is altered. Fig. 6 shows how our optimal 
values for 3rd order accurate PML were obtained. 

 
Fig 5a shows the optimal choice of 10-cell CPML for 3rd order FVTD. 
Relative error at points A (left panel) and B (right panel) for 10-cell CPML 
zones with the FDTD (black traces), 3rd  order FVTD with the best 
performance at early and late times (red traces). Notice that in order to 
minimize reflection at late times we need quite small values of “s and k”; this 
is different from the 2nd order case. Note too that the difference in early time 
behavior is only very slight between the optimized 3rd order FVTD and 
optimized FDTD. The first few bounces at early time in Fig. 5 represent the 

first few reflections within the PML layer. They show a slightly larger value 
than FDTD because the higher order method also tries to simultaneously 
capture wave motion between the physical domain and the PEC at the outer 
boundary of the PML more accurately and with lower dispersion. In other 
words, the initial bounces represent a tussle between a method that wants to be 
more accurate in its wave propagation and a PML formulation that wants to 
damp waves. Also observe that the FDTD oscillations never die out at late 
times owing to its semi-implicit formulation; whereas at late times 3rd order 
FVTD is three full orders of magnitude better than FDTD!  

 
Fig 5b shows the optimal choice of 6-cell CPML for 3rd order FVTD. Relative 
error at points A (left panel) and B (right panel) for 6-cell CPML zones with 
the FDTD (black traces), 3rd  order FVTD with the best performance at early 
and late times (red traces). Also observe that at late times 3rd order FVTD is 
one full order of magnitude better than FDTD! 

 

Fig 6. Decibel contour plots of the maximum relative error observed at points 
A (top row) and B (bottom row) as a function of σref and κmax for 10-cell 
CPMLs with the FVTD over early (left column) and late (right column) 
responses. The late responses only measure the error over times [1.3,3]×10-9 . 
These plots allow us to choose optimal CPML parameters for 3rd order FVTD 
if we want to minimize the boundary response at early times or late times. 
Fortunately, the early and late response becomes optimal for the same 
parameter set that is centered at σref=0.3 with somewhat lower values of k. 
The previous figure shows that an optimized choice of CPML parameters can 
yield almost two orders of magnitude improvement in the late time response. 

 

D. Optimization Exercise at Fourth Order for 10-cell and 6-
cell PML 

Fig. 7a shows the response of an optimized 10-cell PML for 
the model problem. The parameters used for this Figure are 

max max
( ), , , (0.3, 1.5, 0.2, 3)ref a mσ κ =
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parameters used for this Figure are still 
max max

( ), , , (0.3, 1.5, 0.2, 3)ref a mσ κ = .  

 
Fig 7a shows the optimal choice of 10-cell CPML for 4th order FVTD. 
Relative error at points A (left panel) and B (right panel) for 10-cell CPML 
zones with the FDTD (black traces), 4th  order FVTD with the best 
performance at early and late times (red traces). Notice that in order to 
minimize reflection at late times we need quite small values of “s and k”; 
these are quite similar to the 3rd order case. Note too that the difference in 
early time behavior is only very slight between the optimized 4th order FVTD 
and optimized FDTD. The same explanation that applied to Fig. 5 for the 
early bounces also applies to Fig. 7. Also observe that the FDTD oscillations 
never die out at late times owing to its semi-implicit formulation; whereas at 
late times 4th order FVTD is two and a half full orders of magnitude better 
than FDTD! 

 

Fig 7b shows the optimal choice of 6-cell CPML for 4th order FVTD. Relative 
error at points A (left panel) and B (right panel) for 6-cell CPML zones with 
the FDTD (black traces), 4th  order FVTD with the best performance at early 
and late times (red traces). Also observe that at late times 4th order FVTD is 
one full order of magnitude better than FDTD! 

 

Fig 8. Decibel contour plots of the maximum relative error observed at points 
A (top row) and B (bottom row) as a function of σref and κmax for 10-cell 
CPMLs with the FVTD over early (left column) and late (right column) 

responses. The late responses only measure the error over times [1.3,3]×10-9 . 
These plots allow us to choose optimal CPML parameters for 4th order FVTD 
if we want to minimize the boundary response at early times or late times. 
Fortunately, the early and late response becomes optimal for the same 
parameter set that is centered at σref=0.3 with somewhat lower values of k. 
The previous figure shows that an optimized choice of CPML parameters can 
yield almost two orders of magnitude improvement in the late time response. 

For the fourth order FVTD case also the realization that 
once a PML has been optimized for a certain layer width, it 
does not need to be optimized again when the layer width is 
altered stays consistent with the second and third order 
schemes. Fig. 8 shows how our optimal values for 4th order 
accurate PML were obtained. 

IX. CONCLUSIONS 
The emergence of high order accurate, globally divergence 
constraint-preserving FVTD schemes (Balsara et al. [9], [11], 
[12]) and DGTD schemes (Balsara and Käppeli [13], Hazra et 
al. [29], Balsara and Simpson [14]) calls for similarly accurate 
strategies for treating radiative boundaries. This is because in 
a CED calculation, the spuriously back-reflected waves 
interfere with the physical solution of the problem. Once such 
spurious waves are established on the computational domain, a 
higher order CED scheme will capture them and evolve them 
as if they are physical waves. For this extremely important 
reason, it is crucial to design superlative PML methods for the 
new classes of emerging FVTD and DGTD schemes. In this 
paper we focus on high order accurate, globally divergence 
constraint-preserving FVTD schemes for CED. A version of 
CPML is derived and presented in Section II and the 
Supplement A which is closely conformant with the structure 
of the FVTD scheme itself.  

 The electric and magnetic flux densities form the primal 
variables for our scheme. Innovations in the constraint-
preserving reconstruction of electric and magnetic flux 
densities are described in Section III. The most beneficial 
collocation of CPML variables is also described. The 
corresponding reconstruction of the CPML variables can be 
carried out with the newly-invented WENO-ADP method of 
Balsara, Samantaray and Subramanian [15] and that method is 
described with more helpful details in Section IV. The Implicit 
Taylor ADER predictor step is another highly novel invention 
and it is described in Section V. It is important because it 
allows us to tackle the stiff CPML source terms in a fully 
time-implicit fashion at all orders of accuracy. The Implicit 
Taylor ADER formulation presented here is uniquely well-
suited for CED calculations. 

 Section VI describes the 1D and 2D Riemann solvers and 
their role in the corrector step. Consequently, a full timestep 
consists of a reconstruction step that is high order accurate in 
space. This is followed by the Implicit Taylor ADER predictor 
step which gives us a suitably high order temporal extension 
of the reconstructed variables. The application of the Riemann 
solvers in the corrector step, and the use of the same to obtain 
a full space-time accurate update, then completes the method. 
Section VII describes implementation-related details in step-
by-step fashion and an optimization study in Section VIII 
yields the desired results. 
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 Based on this work we see that the CPML parameters 
should be optimized differently for each order of accuracy. 
However, once optimized, the same parameters perform 
optimally for both the 6-cell and 10-cell PML. Therefore, once 
an optimal set of parameters is packaged into a code for each 
different order of accuracy, it can be used for a range of PML 
layers. The optimal PML parameters for second, third and 
fourth order accurate FVTD schemes have been documented 
in this paper. We also find that the late time behavior of the 
CPML described here is several orders of magnitude better 
than the behavior of CPML in FDTD schemes. We attribute 
that to our use of the fully-implicit Taylor ADER methods 
developed here, which contrast quite starkly with the half-
implicit methods that are traditionally used in FDTD. In a 
subsequent work we shall extend this PML formulation to 
globally divergence constraint-preserving DGTD schemes. 
Since our formulation is also fully general, we will also extend 
it to FDTD and DGTD schemes for polarized media in 
subsequent papers. 

 At the end of Section VII we have pointed out one 
advantage of this method as it pertains to parallelism. In 
Section V it can also be observed that this method makes 
optimal use of matrix multiplications, which is going to be a 
forte of the upcoming GPU architectures. In Balsara, 
Samantaray and Subramanian [15] we have also shown that 
the global constraint preservation in these methods is a big 
asset in overcoming the late time instability that is present in 
AMR calculations involving CED. We see, therefore, that the 
methods presented have their own strong suits. 
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