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An Optimized CPML Formulation for High
Order FVTD Schemes for CED

Dinshaw S. Balsara, Saurav Samantaray, Kaiser Niknam, Jamesina J. Simpson and Gino Montecinos

Abstract— Developing an optimal perfectly matched layer
(PML) formulation is crucial for efficient CED calculations. This
becomes imperative for higher order CED schemes. If a PML
causes spurious back-reflection of waves into the computational
domain, those waves will be evolved by the higher order scheme
as if they are physical. We present a PML that is conformant in
its collocation and discretization with second, third and fourth
order finite volume time-domain (FVTD) schemes that preserve
global divergence. We present optimal PML parameters for
second, third and fourth order FVTD schemes based on a careful
numerically-motivated, optimization. At each order of accuracy
we have to repeat the optimization study in order to get the best
performance. We find that with increasing order of accuracy we
can achieve greater suppression of spuriously reflected waves
from the PML layer, especially at late times. Taking the finite
difference time-domain (FDTD) method as a baseline, our
schemes show as much as three orders of magnitude
improvement in the suppression of late time reflection of waves
from the PML layer. The schemes rely on several newly-invented
reconstruction strategies and a very novel Implicit Taylor ADER
(Arbitrary accuracy DERivatives) predictor step. Riemann
solvers provide the corrector step.

Index Terms—Electromagnetic propagation, computational
electromagnetics, FDTD, FVTD, DGTD, PML.

[. INTRODUCTION

HE numerical solution of Maxwell’s equations, also

referred to as computational electrodynamics (CED), is

central to numerous applications in science and
engineering. For more than fifty years, the finite-difference
time-domain (FDTD) method (Yee [46], Taflove and Hagness
[43], Taflove, Oskooi and Johnson [42]) has been the method
of choice for CED applications. The popularity of FDTD, as
well as its fidelity to the physics, stems from its use of the
Yee-type staggering of electric and magnetic field intensities.
FDTD provides a direct interpretation of the two curl-type
equations given by Faraday’s and extended Ampere’s laws
and a natural satisfaction of the constraint equations given by
Gauss’ law for electric charge and the absence of magnetic
monopoles. It also provides for a perfectly matched layer
(PML) formulation at the boundaries of the mesh, which
allows waves that are propagating towards the boundary to
seamlessly propagate out of the computational domain without
significant back-reflection into the computational domain
(Berenger [22], [23], Katz, Thiel and Taflove [32], Taflove
and Hagness [43] Gedney [24], [25], [28], Roden and Gedney
[38], Gedney and Zhao [27]). The mimetic preservation of
constraints, along with the computational efficiencies achieved
via PML, enabled the PML-enabled FDTD scheme to play a

dominant role in CED despite the fact that the method was
only second order accurate. Attempts to go past second order
with FDTD have not proved too successful. Towards the end
of his career, A. Taflove used to speculate whether we could
improve PML by treating the source terms fully implicitly
while the remaining terms were treated explicitly? This paper
answers that question in the affirmative.

There has been an effort to develop higher order methods
for CED that are based on higher order methods for fluid
mechanics (Munz et al. [37], Ismagilov [31], Barbas and
Velarde [16], Cockburn and Shu [19], [20]). Such efforts have
yielded an early generation of discontinuous Galerkin time-
domain (DGTD) methods (Hesthaven and Warburton [30],
Cockburn, Li and Shu [21], Lu, Zhang and Cai [36], Ren ef al.
[39], Wang et al. [45], Sun et al. [40], Angulo et al. [1])
which do not have the same mimetic properties as FDTD; i.e.
they are not globally divergence-constraint preserving. It is
possible to appreciate the crux of the problem by realizing that
DG methods, like all higher order Godunov methods for
fluids, are based on a zone-centered collocation of fluid
variables which are updated using fluxes that are evaluated
(using Riemann solvers) at the faces of the mesh. The Yee-
type staggering of variables fundamentally requires a facial
collocation of vector field components that are updated in a
globally divergence constraint-preserving fashion using edge-
collocated variables.

But there is another field of study, namely numerical
magnetohydrodynamics (MHD), that also relies on a
Faraday’s law update for the magnetic field. For a while, it
seemed like that field underwent an independent line of
evolution with the development of multidimensional Riemann
solvers that could be applied to the edges of the mesh (Balsara
[5], [6], [7], Balsara and Nkonga [10]) and the development of
globally divergence-preserving reconstruction (Balsara [2],
[3], [4]) that relied on facial collocation of vector fields. The
inevitable cross-fertilization of ideas happened when one of us
realized these were just the right advances for obtaining a
Yee-type mimetic collocation of CED variables that could
indeed be extended to high order. Therefore, the stage was set
for bringing insights from modern numerical MHD methods
into CED. This was done for globally divergence constraint-
preserving finite volume time-domain (FVTD) methods in
Balsara et al. ([9], [11], [12]) and globally divergence
constraint-preserving DGTD methods (Balsara and Képpeli
[13], Hazra et al. [29], Balsara and Simpson [14]). The facial
collocation of variables and their high order constraint-
preserving reconstruction ensures that this new generation of
FVTD and DGTD methods can reach high orders of accuracy.
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The use of multidimensional Riemann solvers at the edges of
the mesh ensures that the methods are very stable,
multidimensionally upwinded and globally divergence
constraint-preserving.

To retrace the plan that made FDTD a highly successful
method, one has to build into these novel FVTD and DGTD
schemes the same facility for handling PML boundary
conditions. Since the new generation of FVTD schemes can
reach very high order of accuracy, our first geal is to try and
achieve optimal PML performance at all orders. While
working towards this goal, we discovered that the form of the
complex frequency shifted PML, a.k.a. CPML (Gedney [24],
[28], Roden and Gedney [38], Chew and Jin [18], Gedney et
al. [26], Chen et al. [17]), can play a big role in yielding
implementations that can either be successful or unsuccessful.
In other words, the structure of the equations plays an
important role in the success of the PML algorithm. The
physical reason is that the FVTD scheme has a particular
discretization on the mesh and it is very advantageous if the
CPML equations also have a conformant discretization on the
mesh. Therefore, our second goal is to derive and describe a
set of CPML equations that are conformant with the
constraint-preserving structure of Maxwell’s equations.

We also find that FVTD schemes at each specific order of
accuracy have to be optimized for peak performance in a
different way. Therefore, our third goal is to obtain optimal
PML parameters for second, third and fourth order FVTD
schemes based on a careful optimization study. In this paper,
we restrict attention to optimizing PML for divergence
constraint-preserving FVTD, leaving a thorough study of
optimized PML for divergence constraint-preserving DGTD to
a subsequent paper.

The above paragraphs have presented a big-picture
approach to CED and PML. But a successful implementation
of CED and PML requires a third algorithmic ingredient.
While the reconstruction and the multidimensional Riemann
solvers provide high order and constraint preservation
respectively, there is a third feature in the CED and PML
equations that also demands attention. It stems from the fact
that the source terms can strongly dominate the hyperbolic
PDE. Numerical implementations for hyperbolic PDEs that
are not incredibly stable in the face of stiff source terms tend
to become unstable. It is for this reason that Balsara et al. ([9],
[11], [12]) paid particular attention to CED formulations that
could handle stiff source terms. They presented certain ADER
(Arbitrary accuracy DERivative) methods for the accurate
temporal update of Maxwell’s equations in the face of stiff
source terms. In fairness, even Maxwell’s equations with large
conductivities benefit from ADER methods that are
simultaneously highly accurate in their time integration and
provide a fully time-implicit (and therefore very stable)
treatment of source terms, as shown in Balsara et al. ([11],
[12]). But the structure of the PML equations is such that they
require an even stronger dose of stability in the face of stiff
source terms. It is for this reason that a fourth goal of this
paper is to present a novel Implicit Taylor form of ADER
which is particularly well-suited for CED in general and PML
in particular. We present such a formulation here.

PML is applied to a thin layer of zones, often 6 to 10 zones
wide, at the outer boundary of the mesh. As a result, within
just these zones, the PML is required to provide an almost
achromatic damping of all waves that impinge on this layer
from almost any direction. As a result, the structure of the
PML equations, and the collocation of PML variables on the
faces of the mesh, becomes very important. Section II
describes the derivation of the PML equations used here; with
some additional helpful material in Supplement A. Section III
describes the collocation of electric and magnetic flux
densities at the faces of the mesh; with some additional helpful
material in Supplement B. Section IV, when used along with
Section II, shows that there is an optimal collocation of PML
variables and describes how those variables should be
collocated on the mesh; and some helpful material is provided
in Supplement C. Taken together, Sections III and IV describe
the reconstruction problem where we start with facial
variables and obtain those same variables at all locations on
the mesh. Because this paper is focused on 2D, we describe
the reconstruction problem in 2D, while pointing to places in
the literature where the 3D reconstruction problem has been
described. Section V describes the Implicit Taylor variant of
ADER; again, there is helpful material in Supplement D.
Specifically, we provide a formulation that is exceptionally
well-suited for CED. The third algorithmic ingredient is the
multidimensional Riemann solver which provides coupling
across zones and allows for propagation of waves on these
zones. This is described in Section VI. Section VII provides a
pointwise description of how the entire PML for FVTD is
implemented. Section VIII presents an optimization exercise
for PML. Section IX presents conclusions.

II CPML EQUATIONS IN A FORMAT THAT IS SUITABLE FOR
CONSTRAINT -PRESERVING FVTD/DGTD SCHEMES

A. Derivation of the CPML Equations

The globally constraint-preserving FVTD scheme is
designated for ordinary Maxwell’s equations, a.k.a
Maxwellian equations, in which Maxwell’s equations are
written as a set of first-order linear partial differential
equations. As a result, Maxwell’s equations may be cast in
flux form as detailed in Balsara et al. ([11]). Whereas this
holds in many simple CED simulations, it is not relevant to
complex cases in which Maxwell’s equations are presented as
a set of higher-order partial differential equations (a.k.a, non-
Maxwellian equations) as in the case for CPML.

One common way to deal with this issue is to introduce
some intermediate variables to transform the non-Maxwellian
equations into a set of first-order partial differential equations
which can be brought as close as possible to a flux form.
However, this comes at the cost of introducing extra variables,
i.e. auxiliary PML variables, which correspondingly leads to
extra differential equations. Here, we follow the method first
suggested by Roden & Gedney [38] and Gedney & Zhao [27]
to convert the non-Maxwellian CPML equations into
Maxwellian ones. This approach is based on the stretched-
coordinate formulation.
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Following the notation of Balsara et al. ([11], [12]), the

time-harmonic  Maxwell’s curl equations in stretched-
coordinate space are expressed as
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where B, By and B_are the x-, y-, and z -components

of the magnetic flux density vector, and D , D ,and D, are

the x-, y-, and z - components of the electric flux density

vector. Also, & and u are permittivity and magnetic

permeability, respectively.s , s , and s, are the PML
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where o, o,, 0, represents the PML conductivity profile in

each Cartesian direction, K_, K

o> Ky, K are the real parts of the

PML constitutive parameters, and the role of a,, a - and a,

is to shift the poles for the PML constitutive parameters off of
the origin and into the upper-half complex plane.

The CPML equations (2.1) — (2.6) have a non-Maxwellian
form in the time domain. To convert these equations into
Maxwellian form, £_, ﬂy ,and f_ are introduced as follows
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Consider for the moment (2.1). Using (2.8), (2.1) may be
written as
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Next, two auxiliary PML variables are introduced for (2.9)
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where the superscript H in Q;I’Z denotes that the auxiliary
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variable corresponding to the magnetic field vector, the first
subscript corresponds to the direction in which the PML is
absorbing the wave, and the second subscript corresponds to
the orientation of the H field component.

Using (2.10) and (2.11), (2.9) may now be expressed in the
following form
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Plugging (2.13) into (2.10) and rearranging terms yields
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The same approach may be applied to (2.11). As a result,
(2.1) and its PML counterparts may be expressed in the time
domain as
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Applying the same approach to (2.2) — (2.6), the resulting set
of Maxwell’s equations in 3D with PML included, can be
written. Supplement A provides the full set of detailed PML
equations in physical space showing that they form a non-
conservative hyperbolic system.
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As detailed in Balsara et al. [11], writing the characteristic
matrices from Supplement A allows us to perform a
characteristic analysis of the wave speeds, which plays a
crucial role in the implementation of the Reimann solvers in
Section VI. Performing such a characteristic analysis here, the
electromagnetic waves propagating in the x-, y-, and z-
directions of the grid are found to propagate with the expected
wave speeds, since the diagonal matrix of eigenvalues are

A" =diag(—c/KX,—C/KX,O,...,0,+C/K'x,+C/KX) (2.18)

18X1

A :diag(—()/K‘y,—C/Ky,O,...,(),-i—C/K'y,+C/Ky)IXXI(2.19)

A =di(lg(—c/l(‘z,—c/K'Z,O,...,O,+C/K‘Z,+C/K'Z) (2.20)

Here “c” is the speed of light in vacuum. This completes our
analysis of the CPML equations. (In a late stage of review, a
referee pointed out the existence of other PML formulations
Gedney et al. [26], Chen ef al. [17] and Lu, Zhang and Cai
[36] where the PML update equations have pure source terms,
without any gradient terms. The ADER methods developed
here are expressly suited to handling stiff source terms.
Therefore, we do Dbelieve that the above-mentioned
formulations would do substantially better with the ADER
methods developed here, but it was too late to explore them in
this paper.)

B. Parameter Specification for the CPML Equation

The PML parameters are designed to vary gradually in the
PML region. This is done because any abrupt change in wave
propagation characteristics can cause undue back-reflection of
electromagnetic radiation. Therefore, we catalogue the method
of setting up all the coefficients in one place. This will also be
useful when these parameters have to be optimized in a later

section so as to minimize back-reflection. For ™ we set:
ref
O_max — O- (m + 1)
n, Ax

with 77, = A _ 376.72

&1, &

where 3<m <4 in the above equation, and & and p, are

2.21)

relative permittivity and permeability. The PML layer ranges
over X, Sx<x, + d , where “d” is the thickness of the PML
layer. The variation of the PML conductivity is given by

O_max X=X, !
o, (x)= d

0 otherwise

for x, <x<x +d (2.22)

where again we use the same 3<m<4 in the above
equation. The above parameter has the dimensions of a
physical conductivity. The next parameter can be interpreted
as a scaling of the coordinate system, which means it is
dimensionless.

m

e[ (6™ 1) for x, <x<x, +d
r(x) = d

1 otherwise

(2.23)

where we also use the same 3 < m <4 in the above equation,
and k™ >1. Typically, ™ €[1,25]. The speed of light

“c” decreases by a factor of x, (x) in the PML region

because «, (x) multiplies both the permittivity and the

permeability. The low-frequency behavior of the PML is also
improved by shifting the pole away from the origin and into
the lower half of the complex plane. This is accomplished by
having

max | X, +d —x
a™ | —— for x,<x<x +d
a (x)= d (2.24)
0 otherwise
Because of the relationship

s.(x) =k (x)+ 0, (x)/(a,(x)+ joe,) we see that a,(x)
has the same units as o, (x) . We also want a, (x, + Ax/ 2) to

be much larger than o (x, + Ax/ 2) which is why the scaling

goes in the opposite direction in the above equation.

Putting it all together, any PML can be specified by the
distance “d”, which is also the thickness of the PML layer as
specified in number of zones. The further specification of the
PML depends on specifying four numbers given by

(O'ref ,Kmax,amax,m). These are the parameters we will use

in our optimization study. Experience has shown that o'

and k™ are the most important parameters. As a result, our
optimization efforts will usually focus on these two
parameters.

III. DIVERGENCE CONSTRAINT-PRESERVING RECONSTRUCTION
OF CED VARIABLES

The facial electric and magnetic flux densities form the
primal variables of the FVTD scheme. Divergence constraint-
preserving FVTD, along with divergence constraint-
preserving DGTD, relies on collocating the x-components of
the electric and magnetic flux densities at the x-faces of the
mesh. Likewise, the y-components of the electric and
magnetic flux densities are collocated at the y-faces of the
mesh and the z-components of the electric magnetic flux
densities vectors are collocated at the z-faces of the mesh. It is
important to realize that the divergence constraint couples all
the components of the reconstructed vector field. One has,
therefore, to treat the entire vector field as a single entity
where the constraint causes the modes of one component to
couple with the modes of the other components. Please see
Fig. 1 from Balsara ef al. [11] for a schematic diagram on how
the vector fields are collocated on a zone. The PML variables
in the next section follow the exact same collocation pattern.

The facial collocation of all the primal CED variables also
suggests that they should be updated by using gradients of
variables that are available at the edges of the mesh. Indeed,
an examination of the CED equations from Section II would
show that we just need the resolved states from two-
dimensional Riemann solvers which are applied at the edges
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of the mesh in order to obtain an update strategy for the face-
centered CED variables.

When the problem is restricted to two dimensions in the xy-
plane, as it is out here, the z-components become zone-
centered, while the x- and y-components still remain face-

centered. Furthermore, in that two-dimensional limit, Dz and

Bz should be treated as zone-centered variables that are to be

updated with one-dimensional Riemann solvers.

The full three-dimensional divergence constraint-preserving
reconstruction problem at second, third and fourth order of
accuracy is described in Balsara et al. ([11], [12]). In this
paper we use only the two-dimensional restrictions of the
reconstruction problem. While this can be worked out, there
are nuances in the reconstruction that enter into the ADER
formulation. For this reason, Supplement B describes the two-
dimensional divergence constraint-preserving reconstruction
problem at second, third and fourth orders. The explicit
presentation of the two-dimensional constraint-preserving
reconstruction also gives the engineering community an easily
accessible introduction to this topic.

IV. FACIALLY-MATCHING RECONSTRUCTION OF PML
VARIABLES

The PML algorithm is intended to only act on a narrow
layer of zones that is ten or so zones wide at the outer
boundary of the computational domain. All the waves
impinging on that layer should be absorbed in that layer. As a
result, it is crucial to have a good collocation of variables for
PML. An examination of the governing equations shows that
we will have the best conformity between the CED variables
and the PML variables if sz’QZ , and Qf’Z,Qf’ , are

collocated at the x-faces of the mesh. An examination of the

source terms for the update of D, and B, shows that the PML

variables which are facially collocated in this fashion will
have direct influence on the field variables that they are
intended to suppress. Similarly, the update equations for
QH
y.z°
the gradients in the y- and z-directions, giving us a further
indication that it is best to collocate them in the x-faces. By
examining the remaining PML equations we see that

Qf e Qf _and Qf o QXE _should be collocated at the y-faces of

QZ}, and Qf’Z,QZE. , show that they are dependent only on

the mesh. Likewise, Q:’y , Q:”x and Qf’y , Qf’x should be
collocated at the z-faces of the mesh.

The facial collocation of all the PML variables also suggests
that they should be updated by using gradients of variables
that are available at the edges of the mesh. Indeed, an
examination of the PML equations from Section II would
show that we just need the resolved states from two-
dimensional Riemann solvers which are applied at the edges
of the mesh in order to obtain an update strategy for the face-
centered PML variables. This will be further amplified in

Section IV. Realize, therefore, that the update strategy for the
PML variables has also been made very conformant with the
update strategy for the face-centered components of the
electric and magnetic flux densities. This allows us to make
the most compact discretization of PML; which is good
because the PML only acts on a thin layer of zones where it
has to be maximally effective.

For two-dimensional problems that are restricted to the xy-
plane we suppress all gradients in the z-direction. As a result,

H E E

. H
we can eliminate O, , 0. ,, 0.  and so that we have

Z,x

just eight PML variables to consider instead of twelve in
three-dimensions. Furthermore, in that two-dimensional limit,

H H E E
Qx,vav,x and QXJ,,QM should be treated as zone-centered

variables that are to be updated with one-dimensional
Riemann solvers.

Now realize that the PML update equations, along with the
update equations for the regular CED, form a hyperbolic PDE
system, albeit one with very stiff source terms. Because of the
coupling between the two sets of equations via the source
terms, the whole PDE system has to be treated as one entire
system of equations. Therefore, if one is to design an “in-the-
small” predictor step in the next section, the PML variables
should also be reconstructed at all locations within any zone
that is undergoing PML. But please realize that the PML
variables are not required to be divergence-preserving. They
are, nevertheless, required to be order preserving. In other
words, the reconstruction strategy for PML must retain all the
modes that are needed for the order property while also
matching the facially collocated PML variables and their
transverse variation in the faces of the mesh. Such a
reconstruction strategy has been designed by Balsara,
Samantaray and Subramanian [15] and is called the WENO-
ADP reconstruction strategy. In other words, it draws on ideas
from WENO (weighted essentially non-oscillatory)
reconstruction while being ADP (almost divergence-
preserving). In Balsara, Samantaray and Subramanian [15] we
present the full 3D version of this algorithm from a
mathematician’s perspective. Here we present the simplified
version of the same, with some more helpful explanations and
in two dimensions, to make it more accessible to engineers in
Supplement C.

V. IMPLICIT TAYLOR ADER PREDICTOR FORMULATION FOR
CED

We now focus on the Implicit Taylor variant of ADER
(Arbitrary Accurate DERivatives), which was first formulated
by Montecinos and Toro [33] and modified significantly with
an eye to improving its utility by Montecinos and Balsara [34].
There is also the paper by Montecinos [35], but it does not
construct as detailed expressions as this paper. We claim that
this variant of ADER is optimally suited for CED. The PDE
that is used in CED can be most easily written as

U +AU +BU +CU_=SU (5.1)
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Here U 1is the solution vector and A, Band C are
characteristic matrices which depend on the permittivity,
permeability, ¢ and x . The matrices vary slowly in space
and do not vary in time; they are documented explicitly in
Supplement A. The characteristic matrices are also solution-
independent. As a result, they can be specified at any location
within a zone. Furthermore, they vary only by small amounts
within a zone with the result that we only need to retain linear
variation with respect to space in the characteristic matrices.
The source term SU is also linear in the solution vector U.
The matrix S depends on the conductivity and the
conductivity can assume large values in metallic materials.
Furthermore, the conductivity can have very large variation
within a zone. Our goal will be to build a method that is
uniquely adapted to the features of the PDE that governs CED
calculations. We realize that the source terms can be so large
that the solution method should be time-implicit in its
treatment of the source terms. Furthermore, it is desirable to
retain first derivatives in S. It is also beneficial to a lesser
extent to retain first derivatives in the characteristic matrices.

The full algorithm calls for a suitably high order spatial
reconstruction step. This reconstruction gives us a high order
representation of the solution within each zone. This is
followed by a local predictor step applied within each zone.
This predictor step gives us an “in-the-small” time-evolution
of the solution based on the spatial variation within the zone.
This time-evolution is made consistent with the governing
equation in (5.1). The predictor step is then followed by the
corrector step where the Riemann solvers are applied across
zones and the time update is effected. The corrector step helps
to connect the time-evolution across zones and is described
later in Section VI. In this Section, we will first illustrate the
construction of an Implicit Taylor ADER predictor
formulation for CED in three dimensions and at second and
third orders. We will then document the fourth order case in
Supplement D, where only the final results are shown.

A. Second Order Implicit Taylor ADER Predictor Formulation

Using (5.1) we can write

UIZ—AUX—BU},—CUZ+SU (5.2)
In an Implicit Taylor expansion, we assume that we have the
solution at some time =7, where 7 > 0, and we relate it to
the solution at 1=0. Since we are propagating backward in
time, the scheme becomes implicit. Since this is only a second
order scheme, the backward Taylor series expansion gives

U +(-n)U; =U’ (5.3)
Where the superscripts 7 and 0 denote the time points at
which the solution is evaluated. From (5.1), (5.2) and (5.3) we
can write

U =U"+7[ -AU} - BU} -CU; +SU" | (5.4)

Now realize that the unknowns in the above equation are U,
U, U; and U . Clearly, (5.4) is only one equation, so it

cannot give us all four of the above-mentioned vectors. We
clearly need a trick to proceed. Now realize that (5.4) can be
differentiated w.r.t. the x-coordinate and we realize that all
second derivatives become zero in this second order
approximation. The same can be done with all the other
coordinate directions. The result is

Ul =[1- 1'S]7I U’ where a=x,y,z (5.5)

Once U, U; and U] have been obtained using the above

equation, we can easily find
U* =[1-78] ' {U"+7[-AU] -BU; -CU: |} (5.6)

This completes our description of the second order Implicit
Taylor ADER predictor scheme.

B. Third Order Implicit Taylor ADER Predictor Formulation
We make the same assumption as was made for the derivation
of the second order scheme. In other words, we assert the
solution at some time =7, where 7 > 0, and we relate it to
the solution at #=0. Since we are propagating backward in
time, the scheme becomes implicit. Because this is a third
order scheme, the backward Taylor series expansion gives

U +(-0)U] + (-7)’ U, /2=U". (5.7)

Where the superscripts 7 and 0 denote the time points at
which the solution is evaluated. Differentiating (5.1) with
respect to the time variable ¢ we obtain

U, :_A(U[)x_B(Ut)y_C(Ut)z+S(Ut)' (5.8)

Now, using (5.2) in (5.8) we can obtain the following

expression for U,, which is independent of any temporal

t
derivative terms:

U,=A"U_ +B'U, +CU_+ (AB) U, +(BC) U,
+{AC)U . +({oA)-(as)) U, + ({eB)-(BS))U,
+((oc) ~(cs))u, + (s*~(as))uU

where we have used the following compact forms which
enables us to have a very compact notation

(5.9)

(AB) = AB+BA; (3S) = AS, +BS  +CS_;
(0,8)=A,8, +BS +CS:(0,8)=A S +BS +CS:
<GZS> =AS +BS +CS; for any matrix S

-1

- 1

<P35 1> = [I -78 +—12S2} where "B," stands for the
2

Pade approximation at 3" order.
<73A> =TA —1'2 <AS>/2; <z'3B> =7B - TZ <BS>/2;

(r,c)=rCc—-7* (cs)/2
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From (5.2), (5.7) and (5.9) we can write
U" = U’ +7[-AU} - BU], - CUZ +sU” |
A’UL +B’Uj, +C'UL +(AB) UL, +(BC) U,
1
- 72| +{AC) U +({oA)-{AS)) UL +((aB) - (BS)) U;

+({ac) -(cs))ul +(s* - (os)) U
(5.10)

. . . T
Now realize that the unknowns in the above equations are U

T T T

u.,U,, 0, U, U, U_,U, U, andU,, . Clearly,

(5.10) is only one equation, so it cannot give us all ten of the
above-mentioned vectors. We clearly need a trick similar to
the one used for the second order derivation, to proceed. Now
realize that (5.10) can be differentiated with respect to the x-
coordinate to obtain the following expression:

~AU, -BU, -CU_ +SU, -
-A U, -B U -CU_+S U’ Y
((a,a)+(oa)~(as)) U}, +(B,B) U,

+H(CC)UZ +((A,B)+(2B) + (B,A) +(BS)) U],

T (A, c)+(aC,) .
+(<Bxc>+<BCX>)UyZ +(+<0C><CS> jU
+((0,A) (A, 8)-(aS )+ —(28)) U’

+((0.B)~(B.S) - (BS ) U (ig) <cxs>) v
[+((s,8)-(2,8) U’

T 0
U =U +7

Xz

5.11)

Note that to obtain the above expression we have suppressed
all the second-order derivatives of S. Now we can greatly

simplify the expression for U; from that of (5.11) if we ignore

all the gradients of A, B, Cand S. This allows us to keep
only the terms that dominate in the evolution of the gradient of
the solution. The gradient of the solution is not one of the
primary desiderata of the method, but it is essential for the
overall implementation of the method. So, this choice is
justified. This approximation enables us to get

2,247

Ul = U] +7SUT —%r S'U;-(r,A) UL —~(z,B) U —(r,C) U,
(5.12)

Similarly, the derivatives in the y- and z- directions are given
by

U, = U} +2SU; —§12S2U2—<13A> U~ (z;B) U}, —(r,C) U}, ;

202447

1
Ul =U! +7SU° -5’8 U~ (r,A)UL—(z,B) U’ —(r,C) UL, .
(5.13)

Retaining the assumption that all the linear variations in A,
B, Cand S are suppressed, we can differentiate (5.12) once
more to obtain

1
U =U° +SUT ——7°S°U7. (5.14)
pe * T
Now solving for U; , from (5.14) we get
T -1
Ul = (RS, . (5.15)

Analogously we obtain five more expressions from

T - 0 .
Uaﬂ=<P3$]>Uaﬁ with @ =x,y,z and B=x,y,z (5.16)

Equations (5.15) and (5.16) give us explicit values for U; ,

X

T T

v vl U

W zz> Xy

T
, U
yz

terms are obtained, they can be substituted in (5.12) and (5.13)
to get simple expressions for the first derivatives as follows:

U)Tf = <P3SiI > {Uz - <T3A> U;Tcx_ <T3B> U)Try - <T3C> U;z} >
U; = <P354 >{ Oy - <73A> Uiy— <T3B> U;y - <73C> U;z} 5 (5.17)
0

vz =(ps ) {ul - (mA) UL~ (rB) UL ~(r.C) UL} .

T . .
and U_ . Once these second derivative

. P T T T
Once the linear variations U,, U, and U, have been

X

obtained, we can assemble all the terms in (5.10) to obtain U’
explicitly as:

U’ = |:I —7S+ lrz(sz = (asb}
2

v —|:<z-3A> L <8A>:|U; _[<TSB> Lo <6B>}U;

1 T 1 T 1 T
_[<73C> + 572 (ac)} Ul —;#Azuxx —;rzBZUW

2,247

1 1
——7'C’U, -—7" (AB)U

2 2

1 1
. —;TZ (BC) U, —;rz (AC)U’,

(5.18)

The above expression is designed to minimize the number of
matrix-vector multiplication steps. The square matrices,
indicated by the square brackets in the above equation, can be
pre-computed for each zone and re-used, if one wishes. In
many useful limits that arise in CED, the inverse can also be
analytically pre-computed using a computer algebra system.
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This completes our description of the third order Implicit
Taylor ADER predictor scheme.

It is advantageous to extract some essential insights about
the Implicit Taylor ADER predictor algorithm and its
treatment of source terms with increasing order of accuracy.
To that end, ignore the spatial variation of the source terms

and inter-compare the matrix [1- rS]il in (5.5) and (5.6), the
-1

1
matrix |:I—z-S +—rZSZ:| in (5.15) to (5.18) and then the
2

-1
1 1

matrix [I—z-S+—rZS2 ——1353} in (D.3) to (D.8). We see
2 6

that they are successively high order Padé approximations for

the fully implicit treatment of the equation U, =SU, where the

source terms, SU, can be stiff. Since the Padé approximations
are optimal up to the desired order, we realize that the Implicit
Taylor ADER predictor algorithm is optimal for the treatment
of stiff source terms by its very design. In other words, it is
ideally suited for CED applications where the stiff source
terms are of the form SU with the matrix S having zero or
negative eigenvalues. Another useful insight would be to note
that in large parts of the computational domain, the source
terms might be zero. In that limit, and in those zones, the
matrix inversion becomes unnecessary and the method
becomes even more efficient. In fact, it becomes as efficient as
an Explicit Taylor version of ADER. For those who are
mathematically inclined and know the previous literature,
another insight is also worthwhile. Realize that, compared
with the conventional Implicit ADER of Toro and Montecinos
[44], this approach should be superior, mainly because this
formulation decouples the algebraic equations for state and
derivatives in sub-problems where the same matrix inversion
is required.

C. Implementation of the Implicit Taylor ADER Algorithm at
Second Order

In this and the next sections (and in Supplement D. I]) we
consider the ADER algorithm applied to a zone of extent Ax
and Ayin the two spatial directions. In that zone we want to

build an “in-the-small” predictor step with a timestep Af. The
first thing to realize is that we have to identify the suitable
temporal quadrature points for each order of accuracy; these
are obtained based on Gaussian quadrature. For second order
accurate evolution we only need one quadrature point which is
at the middle of the timestep. But to obtain an efficient
implementation it helps to go from the physical space-time
[-Ax/2,a0/2]x[-Ay /2,809 /2] %[0,Ac]  to  the
reference element in space-time given by
[-1/2,1/2]x[-1/2,1/2]x[0,1]. Since we have only one

temporal quadrature point at second order, we define

element

7, =1/ 2 in the reference element. To obtain an “in-the-small”

predictor step we would like to have the entire reconstruction

polynomial at time 7, .

We can achieve the goal of obtaining the entire
reconstruction polynomial at time 7, by using all the results

from Sub-Section V.4. But first we have to address two
further issues. First, we need to understand how (5.5) and (5.6)
get modified when recast in the reference space-time element.
It is easy to see that the transformation of variables requires us
to make the transcription

At At
A>—A ;B>—B; S—>ArS
Ax Ay

(5.19)

With this transcription, we can set 7, =1/2in (5.5) and (5.6).

Second, we need to learn how to go from the reconstruction in
(B.6), (B.7) and (C.2), which is only available at 7 =0, to the

state U* and the derivatives Ui_‘ and U;‘ at the advanced time.

The important insight is that in two dimensions U™is a 14
component column vector written as

(Dx‘ 2 Dv 2 D: 4 Bx ’ By ’ Bz ? Q\I:IZ ’ QYHt > Q:IZ > Q\['i\ > Q}tz > Qf) > Qf: ’ Q}tx )T

. But realize from (B.6), (B.7) that the electric and magnetic
flux density terms can have quadratic variations of the form

(x2 —1/12), (y2 —1/12) and xy . Furthermore, from (C.2)

we know that the remaining eight terms may also have

variations of the form xy . We, therefore, realize that U’ and

the derivatives Ui and Ui at 7 =0 can be obtained at the

zone center by differentiation of equations like (B.6), (B.7)
and (C.2). Furthermore, because of the extra terms in (B.6),

(B.7) and (C.2), we can also obtain U’ , v’

0
, and U - at

7 = 0 and we should account for their time-evolution.

0
y b
can extend (5.5) to obtain

onx > UO

Once U, U, U W

0 .
and U are in hand, we

(5.20)

U:fp = [I—TIST] U(;ﬂ ;o ape {xa y}

We use these in addition to (5.5) and (5.6) with 7 =17, to

obtain U, U7, U}, uT, U} and U} . With these time-

advanced derivatives in hand, we can obtain the predicted
solution at any face-centered or edge-centered quadrature
point at which we may want to apply a 1D or 2D Riemann
solver. In other words, this predictor step has given us the
spatially and temporally second order accurate predicted
solution which can now be used to obtain the input states for
the Riemann solvers. It also gives us the fully time-implicit
source terms, evaluated from within the zone of interest, at
each of the faces of that zone. The final facial source terms
that are needed for the one stage update of the facial variables
will then be obtained via arithmetic averaging from each of
the two zones that abut the face; and this will be described in
further detail in Section VII. This completes our description of
the ADER predictor step at second order.
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D. Implementation of the Implicit Taylor ADER Algorithm at
Third Order

At third order, the transcription from physical space-time
element to the reference element is unchanged. Similarly,
(5.19) is also unchanged. At third order we have two

quadrature points given by T, =(1—1/\/§ ) / 2 and

T, = (1 +1/ \/5)/2 . There are other nuances that we
encounter at third order, and we address them next.

Now realize that permittivity, permeability and
conductivity, as well as PML parameters, can indeed vary with
spatial location within a zone. But they do not vary with time.
Therefore, at third order and beyond, we have also to account
for the spatial derivatives of the matrices A, B and S,
though we do not need to account for their time derivatives.
We do that simply via finite differencing. Let us illustrate with

a simple example. Let A, and A, be the matrices for A at the
right and left boundaries of the zone being considered.
Similarly, let A, and A be the matrices for A at the up and

down boundaries of the zone being considered. We can then
write

A =(A-A ) /A A =(A,-A,) Ay (5.21)
Therefore, the gradients of the matrices that we are
considering also become important at third order and beyond.
The big benefit of including these gradients is that they allow
us to account for variation in material properties within a
zone; i.e. a kind of sub-cell resolution. We will see later on
that this sub-cell resolution helps us in obtaining superior late-
time behavior in the PML at higher orders.

Now recall from scanning the reconstructed modes in
Supplement B. /7 and Supplement C. /I that in addition to
modes with quadratic variation we will have modes with cubic
variation. Therefore, at the center of the zone, and at time

. 0 0 0 0 0 0 0
7 =0we can obtain U, U_, Uy, U, Uyy, ny, U,
Uo Uo Uo . . . 13
wyo Uy and U, Using these, our task is to obtain U ,
T T T T T T T T T
Ueo Uys Ui Uy Uy Ups Uy Uy and Uy at

scaled times 7 =7, and T =7,. As in the second order case,
we extend (5.15) to write

T

U”ﬁ}/ :<P3571>U2[fy; (Z,,B,;/E{x,y}

We can assert (5.15), to (5.18), along with (5.22) at scaled

(5.22)

times 7=7 and 7 =7, to obtain our desired result. With

these time-advanced derivatives in hand, we can obtain the
predicted solution at any face-centered or edge-centered
spatial quadrature point at which we may want to apply a 1D
or 2D Riemann solver. For CED, the material properties do
not evolve in time. We can, therefore, make the simplification
of using time-integrated states at the spatial quadrature points

where we want to invoke these Riemann solvers. That reduces
the number of Riemann solvers that need to be invoked. This
step also gives us the fully time-implicit source terms,
evaluated from within the zone of interest, at each of the faces
of that zone.

VI. TWO-DIMENSIONAL RIEMANN SOLVER AND ITS ROLE IN
THE SINGLE STAGE CORRECTOR STEP

We first describe the two-dimensional Riemann solver
whilst putting it in context with the reconstruction and
predictor steps from Sections III, IV and V. We then describe
the single stage corrector step.

A. Description of the Two-Dimensional Riemann Solver

Multidimensional Riemann solvers that are practical and
easy to implement were first worked out in Balsara [5], [6], [7]
and Balsara and Nkonga [10]. For CED applications, the
structure of the multidimensional Riemann solver becomes
even simpler because of two reasons:- First, the system is
linear and second, there are symmetries that we can exploit in
the update equations. We describe the multidimensional
Riemann solver with all the simplifications incorporated in
this Section. This also gives us insight into the time-update
strategy that is used in the corrector step.

Consider the set of equations described in (2.15), (2.16) and
(2.17) and please focus on the parts that correspond to spatial
gradients in those equations. We see from (2.15) that the

corrector step update of D in (2.15) requires the two
gradients 0(B, / u) / Oy and 5(By / ,u) / 0z . The gradients
can be evaluated in the x-faces where D_ is collocated. Now
realize that the corrector step update of QyH . in (2.16) relies
only on one of the two previous gradients, 6(BZ / ,u) / oy.
Also recall that Q;[ . is also collocated in the same x-faces.

Also realize that the corrector step update of QZH y in (2.17)
relies only on the other of the two previous gradients,
a(By / ,u) / 0z . Therefore, if we have a physically motivated

(i.e. multidimensionally upwinded) strategy for obtaining B,
variables at the z-edges of the mesh and B ) variables at the y-

edges of the mesh, it would then be easy to update (2.15),
(2.16) and (2.17) in the corrector step. The coefficients in front
of the gradient terms in (2.15), (2.16) and (2.17) are time-
independent and can be spatially averaged at the x-faces of the
mesh when carrying out the corrector step. By examining the
full equation set in (A.1) to (A.18) we realize that a similar
consideration can be applied to each of the matched triplets of
update equations.

To obtain the desired accuracy in space and time for the
update in the corrector step, we only need to use the
previously-described numerical algorithms as follows. Using
Sections III and IV, we reconstruct all variables with the
desired spatial accuracy. Then using Section V we can make a
matching, temporally high order accurate, in-the-small, time-
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U

RU >
U

edge is seen from above in Fig. 1a as the thick dot and we also
see the four zones that lie in the xy-plane. The subscripts
“RU”, “LU”, “LD” and “RD” denote the Right-Up, Left-Up,
Left-Down and Right-Down zones. Since we have the
accurate space and time evolution within each of the four

U U

> U,pand U, that come together at the z-edge. The z-

zones shown in Fig. 1a, the four states U and

RU LU LD
U,,can be evaluated at the z-edge with the desired spatial
and temporal accuracy. These four states form the input states
of the multidimensional Riemann solver.

The task of the multidimensional Riemann solver shown in
Fig. la is to produce a unique resolved state at the z-edge

shown in Fig. 1a. Specifically, at the z-edge we only want D_

and B_. Notice that at no point in the update of (A.1) to

(A.18) will we need the PML “Q” variables at any of the
edges. This allows us to restrict our focus to a much smaller
6%6 hyperbolic system given by

D, 0 -B_/ (k1)
D, B/ (k) 0
o|D.| o|-B, /(x| 06| B /(x,u)
ot| B, | ox 0 av| D./(x,8)
By -D, / (k&) 0
B, D, /(k.é) -D, / (k&)
, , (6.1)
B, /(1) 0,.-9.,
-B, / (k1) ol -0y,
JCcH I ) IR
oz| =D,/ (x.¢) —Q;’Z + Qj,y
D, /(ke) | | -0l +0O;,
0 0., +0; .

The x-, y- and z-directional fluxes in the above equation will
be denoted by F, G and H. When working with the
multidimensional Riemann solver we only restrict attention to
the above six-component system. The source terms on the
right hand side of (6.1) do not contribute to the Riemann
solver; though they will contribute to the eventual corrector
step. An examination of the x-flux shows us, see (2.18), that
the waves propagate symmetrically in the x-direction with

right- and left-going speeds S, = c/ k. and =S, = —c/ K, .
Likewise, an examination of the y-flux shows us, see (2.19),
that the waves propagate symmetrically in the y-direction with
up- and down-going speeds S, = c/ K, and —-S, = —c/ K, .
These speeds do contribute to the multidimensional Riemann
solver, as shown in Fig. 1b.

Between the states U RU and U we have the formation

LU >
of a one-dimensional Riemann problem in the x-direction with
a resolved state U, , as shown in Fig. 1b, and given explicitly
by

(6.2)

_ !
U, ZE(URU +ULU)_E(F(URU)_F(ULU ))

From the state UZ we can also obtain the y-flux G(U;]).

Between the states U,, and U we have the formation of a

LD >
one-dimensional Riemann problem in the x-direction with a

resolved state U*D, as shown in Fig. 1b. To obtain U*D, just
replace U — D in (6.2). From the state U; we can also obtain

and U, , we

the y-flux G(U;). Between the states U,
have the formation of a one-dimensional Riemann problem in
the y-direction with a resolved state U;, as shown in Fig. 1b,
and given explicitly by

1

|
U, = E(URU + URD)_E(G(URU)_G(URD ))

(6.3)

From the state U; we can also obtain the x-flux F(U;).

Between the states U, U and U we have the formation of a

LD >
one-dimensional Riemann problem in the y-direction with a

resolved state Uz, as shown in Fig. 1b. To obtain Uz , just

replace R — L in (6.3). From the state Uz we can also obtain
the x-flux F (UL ) .

The four resolved states then interact to produce the
strongly interacting state U™ which covers the z-edge, as
shown in Fig. 1b. This is the state that will give us the z-edge-
centered DZ* and B:* that we seek. The method for obtaining

this state is given in (13) of Balsara [7] and is explicitly
written

w1 . 11 . .
U= —E[F(UR)—SRURJ+E|:F(UL)+SRUL:|

—E[G(U;)—SUU;]+$[G(U*D)+SUU;]

(6.4)

Once U is obtained, its third and sixth components give us
the resolved z-edge-centered D:* and B;* that we seek. Once

a multidimensional Riemann solver is developed as
documented here, a cyclic rotation of its input variables can be
used to yield multidimensional Riemann solvers that act in the
yz-plane and xz-plane. This gives us all the edge-centered
variables that are required for making a one-step update of
(A.1) to (A.18) in the corrector step.
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1a) ¥

®-
v

Fig. 1a shows four zones in the xy-plane that come together at the z-edge of a
three-dimensional mesh. Since the mesh is viewed from the top in plan view,
the z-edge is shown by the black dot and the four abutting zones are shown as
four squares. The four states have subscripts given by “RU” for right-upper;
“LU” for left-upper; “LD” for left-down and “RD” for right-down. Fig la
shows the situation before the states start interacting via four one-dimensional
and one multidimensional Riemann problems. The arrows indicate that
higher-order space-time reconstruction within each of the four zones is used to
obtain the four input states at the z-edge.

Ay
1b) : —
U, | U, I Uy
| |
o —* —_— —' “ —-— - -
U] Sl/ U; -
’U** ¢
I y Sy _
1 =Sk S;I
U, ! U, ! Uy

Fig. 1b shows the same situation as Fig. 1a. However, it shows the situation
after the four incoming states from Fig. la start interacting with each other.
Four one-dimensional Riemann problems, shown by dashed lines and single-
starred states, develop between the four pairs of states. The shaded region with
the double-starred state depicts the strongly interacting state that arises when
the four one-dimensional Riemann problems interact with one another. We
want to find the z-components of the electric displacement and magnetic
induction in the strongly interacting state.

The two-dimensional Riemann solver presented here is such
that it reduces precisely to a one-dimensional Riemann solver
when all the variations are strictly in one dimension. For this
reason, it is also suitable for use in two dimensional
applications where all the variations in the third dimension are
suppressed. This completes our description of the two-
dimensional Riemann solver.

B. Description of the Single Stage Corrector Step
It is also valuable to describe a single stage update from time
¢t" to time ¢" + At for a mesh with zones of size Ax and Ay in

the x- and y-directions. We instantiate that using (2.15), (2.16)
and (2.17). Evaluated at any x-face, the update equation for

DX can be written as follows

D= pr A
T (ks

- z=Az/2 <By/”>

—m(@y/ “)

(<Bz /'u>|y:Ay/2 - <Bz /'u>|y:—Ay/2 )

z=—Az/2 ) + A1 (<Q;IZ> B <Q ,
(6.8)

In the above equation, <K'y> , <K‘z > are averaged over the area

of the x-face being considered. The y-edge centered update

terms <By /,u>|Z:AZ/2 and <By /’u>|z=—Az/2 are obtained from

one space and one time integration over the upper and lower
y-edges of the x-face being considered. The y-edge centered

update terms <BZ / y>|y: Av/2 and <Bz / y>|y:_ Ay AT€ obtained

from one space and one time integration over the upper and
lower z-edges of the x-face being considered. The source

terms <Q;f:>and <Q:fy>are obtained by two space and one

time integration over the facial area from the two zones that
abut the x-face being considered. The use of quadrature
formulae in the corrector step, and the fact that the predictor
and reconstruction steps taken together have produced space-
time accurate inputs for the Riemann solver, ensures that the
formulation of the corrector step extends naturally to all orders
of accuracy. Now that the notation is established, it is easy to
write the update equations for the further PML variables that
reside in the x-face as follows

o/ = gl A—Ay — ((B. /i),y ~(BLS 1),y
At %
_g<(ay * (Gy/Ky )) QN>
(6.9)
and
R e ved (YL N OV B
At

__<(az +(GZ/KZ))QZv>

(90
(6.10)

This completes our description of the single stage update step.
Now that we have seen it for the x-faces, it is easy to extend it
to all the other faces of the mesh.

VII. POINTWISE DESCRIPTION OF THE IMPLEMENTATION OF THE
PML ALGORITHM FOR FVTD

The implementation is based on three major algorithmic
pieces, which are in some sense pivotal to the success of any
higher order Godunov methodology. Conceptually, any one-
step higher order Godunov scheme consists of the following
three ingredients: 1) A higher order reconstruction step
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(Sections III and V), 2) A predictor step (Section V) and 3) A
corrector step (Section VI). The first algorithmic piece
consists of the reconstruction of all the relevant variables with
sufficiently high order of spatial accuracy. The second
algorithmic piece consists of making an “in-the-small” time
evolution of the solution within each zone. This should be
done with sufficiently good temporal accuracy and a fully
implicit treatment of the stiff source terms. The third
algorithmic piece consists of coupling the zones so that waves
can flow across zones. This is done with the help of the
multidimensional Riemann solver. The algorithm can be
described in pointwise fashion as follows:-

1) Using the divergence constraint-preserving reconstruction
algorithm from Section III, reconstruct the facial electric and
magnetic flux densities. This provides us with the spatially
reconstructed solution for the two vector fields that hold over
the entire zone for all the zones of the mesh.

2) In just the zones where the PML is to be activated, use the
WENO-ADP algorithm from Section IV to reconstruct the
PML variables so that they are available over the entire zone
of interest. This step only needs to be invoked in the PML-
active zones.

3) Using the Implicit Taylor algorithm from Section V, obtain
a space-time accurate representation of the solution at all the
temporal quadrature points within each zone. This means that
all the modes for all the variables that were reconstructed in
steps 1) and 2) above are now available with sufficient space-
time accuracy at all the temporal quadrature points within each
zone.

4) Usually in CED, the material properties do not change in
time, with the result that the matrices in (5.1) are not time-
dependent. This ensures that it is acceptable to use time-
integration at each of the spatial quadrature points within each
face or edge where the 1D or 2D Riemann solvers will be
applied. This is explained further in the last three Sub-sections
of Section V.

5) The ADER step also produces all the source terms (i.e. the
terms on the right hand sides) that will be needed a couple of
steps later in the single stage update of (A.1) to (A.18). These
source terms are fully time-implicit because of the Implicit
Taylor ADER step. When the source terms are needed at any
face, they can be obtained by averaging from the space-time
evolved variables from the two zones that abut that face.

6) Using the time-integrated variables from either side of each
face, apply the 1D Riemann solvers to obtain the desired face-
centered variables. Similarly, using the time-integrated
variables from the four zones that come together at each edge,
apply the 2D Riemann solver to obtain the desired edge-
centered variables. The outputs from the Riemann solvers will
be spatially and temporally accurate. The Riemann solvers are
described in Section VI. (In truly 3D calculations, only the
multidimensional Riemann solvers need to be invoked at the
edges of the mesh. The one-dimensional Riemann solvers are
only needed when we have a 2D calculation.)

7) With those face-centered source terms in hand from Step 5,
and edge-centered variables in hand from Step 6, carry out a

single step update of the CED wvariables and the PML
variables. This is the corrector step. It advances the solution

from a time ¢" to a time #" + At by making a single stage
update of (A.1) to (A.18).

Notice that the parts of the mesh that rely on CED and the
parts of the mesh where PML is invoked have exactly the
same update algorithm with the exception of step 2) above.
This makes it very easy to integrate our PML formulation in a
pre-existing CED code. The third order reconstruction costs
about twice as much as the second order reconstruction. The
fourth order reconstruction costs about 2.5 times as much as
the third order reconstruction. Similar ratios prevail with
respect to the implicit Taylor ADER method. But please recall
that in this method the reconstruction has to be done only
once, and likewise for the ADER step. In other methods that
use higher order Runge-Kutta updates in time, we remind the
reader that the fourth order SSP-RK method requires five
stages. In other words, there are considerable savings in the
methods presented here. While we have not made a parallel
implementation, a higher order Runge-Kutta method would
also require multiple messaging steps, whereas this method
only requires one messaging step per timestep.

VIII. AN OPTIMIZATION EXERCISE FOR PML

A. The Model Problem

In order to evaluate the performance of the PML, the
numerical experiment presented in Taflove and Hagness ([41])
is performed (in Section 7.11.1). For this experiment, a TEz
grid is used as shown in Fig. 2. The source is located in free
space at the center of a 40 mm X 40 mm grid (at Point O in
Fig. 2).

2)

40

y-direction
L]
»

1 x-direction 40

Fig. 2 - The experimental setup is shown. A y-directed electric current source
is located at the center of the grid (point O) and the E-fields are recorded at
points A and B. The main grid (in white) is surrounded by PML (in yellow).

The source is on a y-directed electric field and is set to a
differentiated Gaussian pulse waveform defined as

7(0)=2[(t~1,) /1, Jesp{~[(s1,) 10, T}

where ¢, =

(8.1)

t, =4t . The grid has a resolution

of 1 mm in both Cartesian directions and is surrounded by
PML on all four sides (shown as the yellow region in Fig. 2).
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PML thicknesses of 6 and 10 cells are tested. The simulation
is run with a Courant-Friedrichs-Lewy (CFL) value of 0.4, to a

final time of 3x107° seconds. A von Neumann analysis in
Balsara and Kappeli [13] has shown that the FVTD schemes
have a limiting CFL of 0.5. As a result, our choice of a CFL of
0.4 is quite large for this class of scheme.

Electric fields are recorded at observation points A and B in
the grid. Point A is in the same y-plane as the source, but 2
mm away from the PML, and point B is 2 mm away from both
the bottom and left sides of the PML. The observed electric
fields at Points A and B are compared with the corresponding
electric fields from a much larger grid (a reference grid) in
which there are no reflections from the boundaries during the

timespan of the simulation. The relative error, Rel.error|;’j

,caused by the PML at time step n and grid location (i, ) is

/|

calculated as

n

ij T Lorer ref ,;max (82)

n
Rel.errorf; ; = |E| Y

i,j

where E|;’/ is the electric field recorded at time step n and

location (i,/), E,, :’j is the reference grid electric field

recorded at time step 7 and at location (i, j ), and E

ref ,max ij
is the maximum amplitude of the reference electric field at
location (i, /) and over the entire time span of the simulation.

B. Optimization Exercise at Second Order for 10-cell and 6-
cell PML

Similar to Taflove and Hagness [41], one has to undertake
an optimization study to ensure that we get a PML with
minimal back-reflection. We carry out such an optimization
study independently for each order of accuracy because we
have found that the optimal parameters change quite a bit as
we go from second to third order. Fig. 3a shows the response
of an optimized 10-cell PML for the model problem described
in the previous Sub-section. The parameters used for this

ma:

*,m)=(0.5, 25, 0.2, 3). Fig. 3a is
optimized to minimize back-reflection at early times. We see
that the early time response of our method is roughly
comparable to FDTD; however the late time response is vastly
superior. The late time response is very important because it
shows us that any waves that may have interacted with matter
on the computational domain will not back-reflect and build
up error on the mesh. In that regard, observe that the waves do
not damp out fast enough when FDTD is used. We attribute
that to the fact that FVTD, via its use of the Implicit Taylor
predictor step, treats the source terms in a fully implicit
fashion, whereas FDTD is only half-implicit. This explains
why FVTD at second order shows a vastly improved late-time
response. It may even prove advantageous to optimize PML
separately for its late-time response. This late time optimized

. ref max
Figure are (o " ,x ,a

performance can be achieved by using the parameters

ref max  m

(" k™ d™ m)=(0.5, 25, 0.2, 4).
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Fig 3a shows the optimal choice (early response) of 10-cell CPML for 2™
order FVTD. Relative error at points A (left panel) and B (right panel) for 10-
cell CPML zones with the FDTD (black traces), 2" order FVTD with the best
performance at early and late times (red traces). Notice that in order to
minimize reflection at late times we need quite large values of “s and k™. Only
the ADER formulation with Implicit Taylor gives this level of unconditional
stability in the face of very large PML conductivities; thereby showing its
unique utility for CED. Note too that the difference in early time behavior is
only very slight between the optimized 2™ order FVTD and optimized FDTD.
Also observe that the FDTD oscillations never die out at late times owing to
its semi-implicit formulation; whereas at late times 2" order FVTD is close to
two full orders of magnitude better than FDTD!

Fig 3b

ref  max ma
(AN S

shows the response of a 6-cell PML with

* om)=(0.5, 25, 02,3). We see that it too

performs very well and seems to outperform FDTD in early
and late-time response. Notice too that if an optimization
study is carried out with 10-cell PML, the use of the same
parameters for 6-cell PML will usually yield an optimal 6-cell
PML scheme. In other words, one can set optimal parameters
for second order PML in a code and those parameters will
work sufficiently well regardless of the number of cells in the
PML. Fig. 4 shows how our optimal values for 2" order
accurate PML were obtained. The plot makes it quite easy to
realize why Figs. 3a and 3b were indeed the optimal choices
for PML at second order.

3b)107 Point A with 6-cell PML

Point B with 6-cell PML
[—FpTD
|~ = FVTD:optimal, "' = 0.5, s = 25, m = 3

[—FoTD |
- - FVTD:optimal, 0™ = 0.5, x™* =25, m =3

Relative error
Relative error

0 0.5 1 15 2 25 3 0 0:5 1 15 2 2:5 3
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Fig 3b shows the optimal choice (early response) of 6-cell CPML for 2™ order
FVTD. Relative error at points A (left panel) and B (right panel) for 6-cell
CPML zones with the FDTD (black traces), 2™ order FVTD with the best
performance at early and late times (red traces). Also observe that at late times
2" order FVTD is close to one and a half orders of magnitude better than
FDTD!
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Fig 4. Decibel contour plots of the maximum relative error observed at points
A (top row) and B (bottom row) as a function of ¢™ and ™ for 10-cell
CPMLs with the FVTD over early (left column) and late (right column)
responses. The late responses only measure the error over times [1.3,3]x107 .
These plots allow us to choose optimal CPML parameters for 2" order FVTD
if we want to minimize the boundary response at early times or late times.
Fortunately, the early and late response becomes optimal for the same
parameter set that is centered at 6*=0.5 with increasing values of k. The
previous figure shows that an optimized choice of CPML parameters can yield
almost an order of magnitude improvement in the late time response.

C. Optimization Exercise at Third Order for 10-cell and 6-
cell PML

Fig. 5a shows the response of an optimized 10-cell PML for
the model problem. The parameters used for this Figure are

(o-ref,rcmax,amax,m) =(03,1.5,02,4). At early times, the
third order PML with FVTD is marginally inferior to the
FDTD, however please observe that at late times, our 3" order
FVTD scheme produces results that are three full magnitudes

better than FDTD. Fig. 5b shows the response of an optimized
6-cell PML for the model problem. The parameters used for

ta ,m)=(03,1.5,02, 4). We

realize, therefore, that once a PML has been optimized for a
certain layer width, it does not need to be optimized again
when the layer width is altered. Fig. 6 shows how our optimal
values for 3" order accurate PML were obtained.

this Figure are still (o-"e'/ ., K
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Fig 5a shows the optimal choice of 10-cell CPML for 3™ order FVTD.
Relative error at points A (left panel) and B (right panel) for 10-cell CPML
zones with the FDTD (black traces), 3 order FVTD with the best
performance at early and late times (red traces). Notice that in order to
minimize reflection at late times we need quite small values of “s and k”; this
is different from the 2" order case. Note too that the difference in early time
behavior is only very slight between the optimized 3™ order FVTD and
optimized FDTD. The first few bounces at early time in Fig. 5 represent the

first few reflections within the PML layer. They show a slightly larger value
than FDTD because the higher order method also tries to simultaneously
capture wave motion between the physical domain and the PEC at the outer
boundary of the PML more accurately and with lower dispersion. In other
words, the initial bounces represent a tussle between a method that wants to be
more accurate in its wave propagation and a PML formulation that wants to
damp waves. Also observe that the FDTD oscillations never die out at late
times owing to its semi-implicit formulation; whereas at late times 3™ order
FVTD is three full orders of magnitude better than FDTD!
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Fig 5b shows the optimal choice of 6-cell CPML for 3 order FVTD. Relative
error at points A (left panel) and B (right panel) for 6-cell CPML zones with
the FDTD (black traces), 3" order FVTD with the best performance at early

and late times (red traces). Also observe that at late times 3™ order FVTD is
one full order of magnitude better than FDTD!

Point A with 10-cell PML, early response

®

Point A with 10-cell PML, late response

Fig 6. Decibel contour plots of the maximum relative error observed at points
A (top row) and B (bottom row) as a function of ¢™ and «™ for 10-cell
CPMLs with the FVTD over early (left column) and late (right column)
responses. The late responses only measure the error over times [1.3,3]x107 .
These plots allow us to choose optimal CPML parameters for 3™ order FVTD
if we want to minimize the boundary response at early times or late times.
Fortunately, the early and late response becomes optimal for the same
parameter set that is centered at 6™=0.3 with somewhat lower values of k.
The previous figure shows that an optimized choice of CPML parameters can
yield almost two orders of magnitude improvement in the late time response.

D. Optimization Exercise at Fourth Order for 10-cell and 6-
cell PML

Fig. 7a shows the response of an optimized 10-cell PML for
the model problem. The parameters used for this Figure are

ref max  ma:
b

(o ,a™ m)=(03,1.5, 0.2, 3)
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parameters used for this Figure are still

ref max m;

o k™ a™ ,m)=(03, 15,02, 3).
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Fig 7a shows the optimal choice of 10-cell CPML for 4™ order FVTD.
Relative error at points A (left panel) and B (right panel) for 10-cell CPML
zones with the FDTD (black traces), 4" order FVTD with the best
performance at early and late times (red traces). Notice that in order to
minimize reflection at late times we need quite small values of “s and k”;
these are quite similar to the 3™ order case. Note too that the difference in
early time behavior is only very slight between the optimized 4" order FVTD
and optimized FDTD. The same explanation that applied to Fig. 5 for the
early bounces also applies to Fig. 7. Also observe that the FDTD oscillations
never die out at late times owing to its semi-implicit formulation; whereas at
late times 4™ order FVTD is two and a half full orders of magnitude better
than FDTD!
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Fig 7b shows the optimal choice of 6-cell CPML for 4™ order FVTD. Relative
error at points A (left panel) and B (right panel) for 6-cell CPML zones with
the FDTD (black traces), 4" order FVTD with the best performance at early
and late times (red traces). Also observe that at late times 4" order FVTD is
one full order of magnitude better than FDTD!

8) o5 Point A with 10-cell PML, early response

20|

Point B with 10-cell PML, late response
777]

Fig 8. Decibel contour plots of the maximum relative error observed at points
A (top row) and B (bottom row) as a function of ¢*f and ™ for 10-cell
CPMLs with the FVTD over early (left column) and late (right column)

responses. The late responses only measure the error over times [1.3,3]x107 .
These plots allow us to choose optimal CPML parameters for 4" order FVTD
if we want to minimize the boundary response at early times or late times.
Fortunately, the early and late response becomes optimal for the same
parameter set that is centered at 6™=0.3 with somewhat lower values of k.
The previous figure shows that an optimized choice of CPML parameters can
yield almost two orders of magnitude improvement in the late time response.

For the fourth order FVTD case also the realization that
once a PML has been optimized for a certain layer width, it
does not need to be optimized again when the layer width is
altered stays consistent with the second and third order
schemes. Fig. 8 shows how our optimal values for 4" order
accurate PML were obtained.

IX. CONCLUSIONS

The emergence of high order accurate, globally divergence
constraint-preserving FVTD schemes (Balsara et al. [9], [11],
[12]) and DGTD schemes (Balsara and Képpeli [13], Hazra et
al. [29], Balsara and Simpson [14]) calls for similarly accurate
strategies for treating radiative boundaries. This is because in
a CED calculation, the spuriously back-reflected waves
interfere with the physical solution of the problem. Once such
spurious waves are established on the computational domain, a
higher order CED scheme will capture them and evolve them
as if they are physical waves. For this extremely important
reason, it is crucial to design superlative PML methods for the
new classes of emerging FVTD and DGTD schemes. In this
paper we focus on high order accurate, globally divergence
constraint-preserving FVTD schemes for CED. A version of
CPML is derived and presented in Section II and the
Supplement A which is closely conformant with the structure
of the FVTD scheme itself.

The electric and magnetic flux densities form the primal
variables for our scheme. Innovations in the constraint-
preserving reconstruction of electric and magnetic flux
densities are described in Section III. The most beneficial
collocation of CPML variables is also described. The
corresponding reconstruction of the CPML variables can be
carried out with the newly-invented WENO-ADP method of
Balsara, Samantaray and Subramanian [15] and that method is
described with more helpful details in Section IV. The Implicit
Taylor ADER predictor step is another highly novel invention
and it is described in Section V. It is important because it
allows us to tackle the stiff CPML source terms in a fully
time-implicit fashion at all orders of accuracy. The Implicit
Taylor ADER formulation presented here is uniquely well-
suited for CED calculations.

Section VI describes the 1D and 2D Riemann solvers and
their role in the corrector step. Consequently, a full timestep
consists of a reconstruction step that is high order accurate in
space. This is followed by the Implicit Taylor ADER predictor
step which gives us a suitably high order temporal extension
of the reconstructed variables. The application of the Riemann
solvers in the corrector step, and the use of the same to obtain
a full space-time accurate update, then completes the method.
Section VII describes implementation-related details in step-
by-step fashion and an optimization study in Section VIII
yields the desired results.
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Based on this work we see that the CPML parameters
should be optimized differently for each order of accuracy.
However, once optimized, the same parameters perform
optimally for both the 6-cell and 10-cell PML. Therefore, once
an optimal set of parameters is packaged into a code for each
different order of accuracy, it can be used for a range of PML
layers. The optimal PML parameters for second, third and
fourth order accurate FVTD schemes have been documented
in this paper. We also find that the late time behavior of the
CPML described here is several orders of magnitude better
than the behavior of CPML in FDTD schemes. We attribute
that to our use of the fully-implicit Taylor ADER methods
developed here, which contrast quite starkly with the half-
implicit methods that are traditionally used in FDTD. In a
subsequent work we shall extend this PML formulation to
globally divergence constraint-preserving DGTD schemes.
Since our formulation is also fully general, we will also extend
it to FDTD and DGTD schemes for polarized media in
subsequent papers.

At the end of Section VII we have pointed out one
advantage of this method as it pertains to parallelism. In
Section V it can also be observed that this method makes
optimal use of matrix multiplications, which is going to be a
forte of the upcoming GPU architectures. In Balsara,
Samantaray and Subramanian [15] we have also shown that
the global constraint preservation in these methods is a big
asset in overcoming the late time instability that is present in
AMR calculations involving CED. We see, therefore, that the
methods presented have their own strong suits.
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