
Decentralized Online Convex Optimization in Networked Systems

Yiheng Lin * 1 Judy Gan * 2 Guannan Qu 3 Yash kanoria 2 Adam Wierman 1

Abstract
We study the problem of networked online con-
vex optimization, where each agent individually
decides on an action at every time step and agents
cooperatively seek to minimize the total global
cost over a finite horizon. The global cost is made
up of three types of local costs: convex node costs,
temporal interaction costs, and spatial interaction
costs. In deciding their individual action at each
time, an agent has access to predictions of local
cost functions for the next k time steps in an r-
hop neighborhood. Our work proposes a novel
online algorithm, Localized Predictive Control
(LPC), which generalizes predictive control to
multi-agent systems. We show that LPC achieves
a competitive ratio of 1 + Õ(ρkT ) + Õ(ρrS) in an
adversarial setting, where ρT and ρS are constants
in (0, 1) that increase with the relative strength
of temporal and spatial interaction costs, respec-
tively. This is the first competitive ratio bound on
decentralized predictive control for networked on-
line convex optimization. Further, we show that
the dependence on k and r in our results is near
optimal by lower bounding the competitive ratio
of any decentralized online algorithm.

1. Introduction
A wide variety of multi-agent systems can be modeled as
optimization tasks in which individual agents must select
actions based on local information with the goal of coopera-
tively learning to minimize a global objective in an uncertain,
time varying environment. This general setting emerges in
applications such as formation control (Chen & Wang, 2005;
Oh et al., 2015), power systems control (Molzahn et al.,
2017; Shi et al., 2021), and multiproduct price optimization
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(Caro & Gallien, 2012; Candogan et al., 2012). In all these
cases, it is key that the algorithms used by agents use only
local information due to the computational burden created
by the size of the systems, the information constraints in the
systems, and the need for fast and/or interpretable decisions.

At this point, there is a mature literature focused on decen-
tralized optimization, e.g. Bertsekas & Tsitsiklis (1989);
Boyd et al. (2011); Shi et al. (2015); Nedić et al. (2018),
see Xin et al. (2020) for a survey; however, the design of
learning policies for uncertain, time-varying environments
requires decentralized online optimization. The literature
studying decentralized online optimization is still nascent
(see the related work section for a discussion of recent pa-
pers, e.g. Li et al. (2021b); Yuan et al. (2021); Yi et al.
(2020)) and many challenging open questions remain.

Three issues of particular importance for real-world applica-
tions are the following.

First, temporal coupling in actions is often of first-order im-
portance to applications. For example, startup costs, ramp-
ing costs, and switching costs are prominent in settings such
as power systems and cloud computing, and lead to penalties
for changing actions dramatically over time. The design of
online algorithms to address such temporal interaction costs
has received significant attention in the single-agent case re-
cently, e.g, smoothed online optimization (Goel et al., 2019;
Lin et al., 2020), convex body chasing (Argue et al., 2020b;
Sellke, 2020), online optimization with memory (Agarwal
et al., 2019; Shi et al., 2020), and dynamic pricing (Besbes
& Lobel, 2015; Chen & Farias, 2018).

Second, spatial interaction costs are of broad importance in
practical applications. Such costs arise because of the need
for actions of nearby agents to be aligned with one another,
and are prominent in settings such as economic team theory
(Marschak, 1955; Marschak & Radner, 1972), combinato-
rial optimization over graphs (Hochba, 1997; Gamarnik &
Goldberg, 2010), and statistical inference (Wainwright &
Jordan, 2008). An example is (dynamic) multiproduct pric-
ing, where the price of a product can impact the demand of
other related products (Song & Chintagunta, 2006).

Third, leveraging predictions of future costs has long been
recognized as a promising way to improve the performance
of online agents (Morari & Lee, 1999; Lin et al., 2012;
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Badiei et al., 2015; Chen et al., 2016; Shi et al., 2019; Li
et al., 2020). As learning tools become more prominent,
the role of predictions is growing. By collecting data from
repeated trials, data-driven learning tools make it possible
to provide accurate predictions for near future costs. For
example, in multiproduct pricing, good demand forecasts
can be constructed up to a certain time horizon and are
invaluable in setting prices (Caro & Gallien, 2012).

In addition to the three issues above, we would like to high-
light that existing results for decentralized online optimiza-
tion focus on designing algorithms with low (static) regret
(Hosseini et al., 2016; Li et al., 2021b) , i.e., algorithms that
(nearly) match the performance of the best static action in
hindsight. In a time-varying environment, it is desirable
to instead obtain stronger bounds, such as those on the dy-
namic regret or competitive ratio, which compare to the
dynamic optimal actions instead of the best static action in
hindsight, e.g., see results in the centralized setting such as
Lin et al. (2020); Li et al. (2020); Shi et al. (2020).

This paper aims to address decentralized online optimiza-
tion with the three features described above. In particular,
we are motivated by the open question: Can a decentral-
ized algorithm make use of predictions to be competitive for
networked online convex optimization in an adversarial en-
vironment when spatial and temporal costs are considered?

Contributions. This paper provides the first competitive
algorithm for decentralized learning in networked online
convex optimization. Agents in a network must each make
a decision at each time step, to minimize a global cost
which is the sum of convex node costs, spatial interaction
costs and temporal interaction costs. We propose a predic-
tive control framework called Localized Predictive Control
(LPC, Algorithm 1) and prove that it achieves a competitive
ratio of 1 + Õ(ρkT ) + Õ(ρrS), which approaches 1 exponen-
tially fast as the prediction horizon k and communication
radius r increase simultaneously. Our results quantify the
improvement in competitive ratio from increasing the com-
munication radius r (which also increases the computational
requirements) versus increasing the prediction horizon k,
and imply that – as a function of problem parameters – one
of the two “resources” k and r emerges as the bottleneck
to algorithmic performance. Given any target competitive
ratio, we find the minimum required prediction horizon k
and communication radius r as functions of the temporal
interaction strength and the spatial interaction strength, resp.

Further, we show that LPC is order-optimal in terms of k and
r by proving a lower bound on the competitive ratio for any
online algorithm. We formalize the near optimality of our
algorithm by showing that a resource augmentation bound
follows from our upper and lower bounds: our algorithm
with given k and r performs at least as well as the best
possible algorithm that is forced to work with k′ and r′

which are a constant factor smaller than k and r respectively.

The algorithm we propose, LPC, is inspired by Model Pre-
dictive Control (MPC). After fixing the prediction horizon
k and the communication radius r, each agent makes an
individual decision by solving a k-time-step optimization
problem, on a local neighborhood centered at itself and with
radius r. In doing so, the algorithm utilizes all available
information and makes a “greedy” decision. One benefit of
this algorithm is its simplicity and interpretability, which is
often important for practical applications. Moreover, since
the algorithm is local, the computation needed for each
agent is independent of the network size.

Our main results are enabled by a new analysis methodology
which obtains two separate decay factors for the propagation
of decision errors (a temporal decaying factor ρT and spatial
decaying factor ρS) through a novel perturbation analysis.
Specifically, the perturbation analysis seeks to answer the
following question: If we perturb the boundary condition of
an agent v’s r-hop neighborhood at the time step which is
τ -th later than the present, how does that affect v’s current
decision, in terms of spatial distance r and temporal distance
τ? With our analysis, we are able to bound the impact on
v’s current decision by O(ρτT ρ

r
S), where the decay factors

ρT and ρS increase with the strength of temporal/spatial
interactions among individual decisions. This novel analysis
is critical for deriving a competitive ratio that distinguishes
the decay rate for temporal and spatial distances.

To illustrate the use of our results in a concrete application,
Appendix B provides a detailed discussion of dynamic mul-
tiproduct pricing, which is a central problem in revenue
management. The resulting revenue maximization problem
fits into our theoretical framework, and we deduce from
our results that LPC guarantees near optimal revenue, in
addition to reducing the computational burden (Schlosser,
2016) and providing interpretable prices (Biggs et al., 2021)
for products.

Related Work. This paper contributes to the literature in
three related areas, each of which we describe below.

Distributed Online Convex Optimization. Our work relates
to a growing literature on distributed online convex optimiza-
tion with time-varying cost functions over multi-agent net-
works. Many recent advances have been made including dis-
tributed OCO with delayed feedback (Cao & Basar, 2021),
coordinating behaviors among agents (Li et al., 2021a; Cao
& Başar, 2021), and distributed OCO with a time-varying
communication graph (Hosseini et al., 2016; Akbari et al.,
2017; Yuan et al., 2021; Li et al., 2021b; Yi et al., 2020).
A common theme of the previous literature is the idea that
agents can only access partial information of time-varying
global loss functions, thus requiring local information ex-
change between neighboring agents. To the best of our
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knowledge, our paper is the first in this literature to provide
competitive ratio bounds or consider spatial and temporal
costs, e.g., switching costs.

Online Convex Optimization (OCO) with Switching Costs.
Online convex optimization with switching costs was first
introduced in Lin et al. (2012) to model dynamic power
management in data centers. Different forms of cost func-
tions have been studied since then, e.g., Chen et al. (2018);
Shi et al. (2020); Lin et al. (2020), in order to fit a variety
of applications from video streaming (Joseph & de Veciana,
2012) to energy markets (Kim & Giannakis, 2017). The
quadratic form of switching cost was first proposed in Goel
& Wierman (2019) and yields connections to optimal con-
trol, which were further explored in Lin et al. (2021). The lit-
erature has focused entirely on the centralized, single-agent
setting. Our paper contributes to this literature by providing
the first analysis of switching costs in a networked setting
with a decentralized algorithm.

Perturbation Analysis of Online Algorithms. Sensitivity
analysis of convex optimization problems studying the prop-
erties of the optimal solutions as a function of the prob-
lem parameters has a long and rich history (see Fiacco &
Ishizuka (1990) for a survey). The works that are most re-
lated to ours consider the specific class of problems where
the decision variables are located on a horizon axis, or con-
sider a general network and aim to show the impact of
a perturbation on a decision variable is exponentially de-
caying in the graph distance from that variable, e.g., Shin
et al. (2021); Shin & Zavala (2021); Lin et al. (2021). The
idea of using exponentially decaying perturbation bounds
to analyze an online algorithm is first proposed in Lin et al.
(2021), where only the temporal dimension is considered.
This style of perturbation analysis is key to the proof of our
competitive bounds and, to prove our competitive bounds,
we provide new perturbation results that separate the impact
of spatial and temporal costs in a network for the first time.
Additionally, our analysis is enabled by new results on the
decay rate of a product of exponential decay matrices, which
may be of independent interest.

Notation. A complete notation table can be found in Ap-
pendix A. Here we describe the most commonly used nota-
tion. In a graph G = (V, E), we use dG(v, u) to denote the
distance (i.e. the length of the shortest path) between two
vertices v and u. Nr

v denotes the r-hop neighborhood of
vertex v, i.e., Nr

v := {u ∈ V | dG(u, v) ≤ r}. ∂Nr
v denotes

the boundary ofNr
v , i.e., ∂Nr

v = Nr
v \Nr−1

v . We generalize
these notations to temporal-spatial graphs as follows. Let
× denote the Cartesian product of sets, and N (k,r)

(t,v) := {τ ∈
Z | t ≤ τ < t+k}×Nr

v , ∂N
(k,r)
(t,v) := N

(k,r)
(t,v) \N

(k−1,r−1)
(t,v) .

For any subset of vertices S, we use E(S) to denote the
set of all edges that have both endpoints in S, and define
S+ = {u ∈ V | ∃v ∈ S s.t. dG(u, v) ≤ 1} (i.e., S and its

1-hop neighbors). Let ∆ denote the maximum degree of any
vertex in G; h(r) := supv|∂Nr

v |. We say a function is in
C2 if it is twice continuously differentiable. We use ∥·∥ to
denote the (Euclidean) 2-norm for vectors and the induced
2-norm for matrices.

2. Problem Setting
We consider a set of agents in a networked system where
each agent individually decides on an action at each time
step and the agents cooperatively seek to minimize a global
cost over a finite time horizon H . Specifically, we consider
a graph G = (V, E) of agents. Each vertex v ∈ V denotes an
individual agent, and two agents v and u interact with each
other if and only if they are connected by an undirected edge
(v, u) ∈ E . At each time step t = 1, 2, . . . ,H , each agent v
picks an n-dimensional local action xvt ∈ Dv

t , where n is
a positive integer and Dv

t ⊂ Rn is a convex set of feasible
actions. The global action at time t is the vector of agent
actions xt = {xvt }v∈V , and incurs a global state cost, which
is the sum of three types of local cost functions:

• Node costs: Each agent v incurs a time-varying node cost
fvt (x

v
t ), which characterizes agent v’s local preference

for its local action xvt .
• Temporal interaction costs: Each agent v incurs a time-

varying temporal interaction cost cvt (x
v
t , x

v
t−1), that char-

acterizes how agent v’s previous local action xvt−1 inter-
acts with its current local action xvt .

• Spatial interaction costs: Each edge e = (v, u) incurs
a time-varying spatial interaction cost1 set (x

v
t , x

u
t ). This

characterizes how agents v and u’s current local actions
affect each other.

In our model, the node cost is the part of the cost that only
depends the agent’s current local action. If the other two
types of costs are zero functions, each agent will trivially
pick the minimizer of its node cost. Temporal interaction
costs encourage agents to choose a local action that is “com-
patible” with their previous local action. For example, a
temporal interaction could be a switching cost which pe-
nalizes large deviations from the previous action, in order
to make the trajectory of local actions “smooth”. Such
switching costs can be found in work on single-agent online
convex optimization, e.g., Chen et al. (2018); Goel et al.
(2019); Lin et al. (2020). Spatial interaction costs, on the
other hand, can be used to enforce some collective behav-
ior among the agents. For example, spatial interaction can
model the probability that one agent’s actions affects its
neighbor’s actions in diffusion processes on social networks
(Kempe et al., 2015); or model interactions between comple-

1Since e is an undirected edge, the order we write the two
inputs (the action of v and the action of u) does not matter. Note
that set can be asymmetric for agents v and u, e.g., set (xv

t , x
u
t ) =

set (x
u
t , x

v
t ) = ∥xv

t + 2xu
t ∥2.
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ment/substitute products in multiproduct pricing (Candogan
et al., 2012).

Our analysis is based on standard smoothness and convexity
assumptions on the local cost functions (see Appendix A
for definitions of smoothness and strong convexity):
Assumption 2.1. For µ > 0, ℓf < ∞, ℓT < ∞, ℓS < ∞,
the local cost functions and feasible sets for all t, v, e satisfy:

• fvt : Rn → R≥0 is µ-strongly convex, ℓf -smooth, and in
C2;

• cvt : Rn × Rn → R≥0 is convex, ℓT -smooth, and in C2;
• set : Rn × Rn → R≥0 is convex, ℓS-smooth, and in C2;
• Dv

t ⊆ Rn satisfies int(Dv
t ) ̸= ∅ and can be written as

Dv
t := {xvt ∈ Rn | (gvt )i(x

v
t ) ≤ 0,∀1 ≤ i ≤ mv

t },
where each (gvt )i : Rn → R is a convex function in C2.

Note that the assumptions above are common, even in the
case of single-agent online convex optimization, e.g., see Li
et al. (2020); Shi et al. (2020); Lin et al. (2021).

It is useful to separate the global stage costs into two parts
based on whether the cost term depends only on the current
global action or whether it also depends on the previous
action. Specifically, the part that only depends on the current
global action xt is the sum of all node costs and spatial
interaction costs. We refer to this component as the (global)
hitting cost and denote it as

ft(xt) :=
∑
v∈V

fvt (x
v
t ) +

∑
(v,u)∈E

s
(v,u)
t (xvt , x

u
t ).

The rest of the global stage cost involves the current global
action xt and the previous global action xt−1. We refer to it
as the (global) switching cost and denote it as

ct(xt, xt−1) =
∑
v∈V

cvt (x
v
t , x

v
t−1).

Combining the global hitting and switching costs, the net-
worked agents work cooperatively to minimize the total
global stage costs in a finite horizon H starting from a
given initial global action x0 at time step 0: cost(ALG) :=∑H

t=1(ft(xt) + ct(xt, xt−1)), where ALG denotes the de-
centralized online algorithm used by the agents. The of-
fline optimal cost is the clairvoyant minimum cost one can
incur on the same sequence of cost functions and the ini-
tial global action x0 at time step 0, i.e., cost(OPT ) :=

minx1:H

∑H
t=1(ft(xt) + ct(xt, xt−1)).

We measure the performance of any online algorithm ALG
by the competitive ratio (CR), which is a widely-used metric
in the literature of online optimization, e.g., Chen et al.
(2018); Goel et al. (2019); Argue et al. (2020a).
Definition 2.2. The competitive ratio of online algo-
rithm ALG is the supremum of cost(ALG)/cost(OPT )
over all possible problem instances, i.e., CR(ALG) :=
supG,H,x0,{fv

t ,cvt ,s
e
t ,D

v
t } cost(ALG)/cost(OPT ).

u1

u2

v

u3

u4

t+ 2

u1

u2

v

u3

u4

t+ 1

u1

u2

v

u3

u4

t
fv
t

cvt

set

u1

u2

v

u3

u4

t− 1

history
future

Figure 1: Illustration of available information for agent v at
time t in networked online convex optimization with k = 2
and r = 1, for the network with V = {u1, u2, v, u3, u4}
and E = {(u1, u2), (u2, v), (v, u3), (u2, u3), (u3, u4)}).

Finally, we define the partial hitting and switching costs
over subsets of the agents. In particular, for a subset of
agents S ⊆ V , we denote the joint action over S as xSt :=
{xvt | v ∈ S} and define the partial hitting cost and partial
switching cost over S as

fSt (x
S+

t ) :=
∑
v∈S

fvt (x
v
t ) +

∑
(v,u)∈E(S+)

s
(v,u)
t (xvt , x

u
t ),

cSt (x
S
t , x

S
t−1) :=

∑
v∈S

cvt (x
v
t , x

v
t−1), (1)

This notation is useful for presenting decentralized online
algorithms where the optimizations are performed over the
r-hop neighborhood of each agent.

2.1. Information Availability Model

We assume that each agent has access to local cost functions
up to a prediction horizon k into the future, for themselves
and their neighborhood up to a communication radius r. In
more detail, recall that Nr

v denotes the r-hop neighborhood
of agent v, i.e., Nr

v := {u ∈ V | dG(u, v) ≤ r}. Before
picking a local action xvt at time t, agent v can observe
k steps of future node costs, temporal interaction costs,
and spatial interaction costs within its r-hop neighborhood,
{{(fuτ , cuτ ) | u ∈ Nr

v }, {seτ | e ∈ E(Nr
v )}}t≤τ<t+k , and

the previous local actions in Nr
v : {xut−1 | u ∈ Nr

v }.

We provide an illustration of the local cost functions known
to agent v at time t in Figure 1. In the figure, the black
circles, blue lines, and orange lines denote the node costs,
temporal interaction costs, and spatial interaction costs re-
spectively. The known functions are marked by solid lines.
Note that, in addition to the local cost functions, agent v
also knows the local actions in Nr

v at time t− 1, which are
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not illustrated in the figure.

To simplify notation, in cases when the prediction horizon
exceeds the whole horizon length H , we adopt the conven-
tion that fvt (x

v
t ) = µ

2 ∥x
v
t ∥

2, cvt ≡ set ≡ 0 and Dv
t = Rn

for t > H . These extended definitions do not affect our
original problem with horizon H .

As in many previous works studying the power of predic-
tions in the online optimization literature, e.g., Yu et al.
(2020); Lin et al. (2020); Li et al. (2020); Lin et al. (2021),
we assume the k-step predictions of cost functions are exact
and leave the case of inexact predictions for future work.
This model is reasonable in the case where the predictors
can be trained to be very accurate for the near future. Al-
though we focus on exact predictions throughout this paper,
we also discuss how to extend this available information
model to include inexact predictions in Appendix C.3.

3. Algorithm and Main Results

Algorithm 1 Localized Predictive Control (for agent v)

Parameters: k and r.
for t = 1 to H do

Receive information {xut−1 | u ∈ Nr
v } and

{{(fuτ , cuτ ) | u ∈ Nr
v }, {seτ | e ∈ E(Nr

v )}}t≤τ<t+k.

Choose local action xvt to be the (t, v)-th element in

ψ
(k,r)
(t,v)

(
{xut−1 |u∈Nr

v },
{
θuτ |(τ, u)∈∂N

(k,r)
(t,v)

})
the solution of (2), where θuτ := argminy∈Du

τ
fuτ (y).

end for

In this section we present our main results, which show that
our simple and practical LPC algorithm can achieve an order-
optimal competitive ratio for the networked online convex
optimization problem. We first introduce LPC in Section 3.1.
Then, we present the key idea that leads to our competitive
ratio bound: a novel perturbation-based analysis (Section
3.2). Next, we use our perturbation analysis to derive bounds
on the competitive ratio in Section 3.3. Finally, we show
that the competitive ratio of LPC is order-optimal in Section
3.4. An outline that highlights the major novelties in our
proofs can be found in Appendix C.

3.1. Localized Predictive Control (LPC)

The design of LPC is inspired by the classical model predic-
tive control (MPC) framework (Garcia et al., 1989), which
leverages all available information at the current time step
to decide the current local action “greedily”. In our context,
when an agent v wants to decide its action xvt at time t, the
available information includes previous local actions in the

r-hop neighborhood and k-step predictions of all local node
costs, temporal/spatial interaction costs. The boundaries of
all available information, which are formed by {t−1}×Nr

v

and ∂N (k,r)
(t,v) , are illustrated in Figure 2.

The pseudocode for LPC is presented in Algorithm 1. For
each agent v at time step t, LPC fixes the actions on the
boundaries of available information and then solves for
the optimal actions inside the boundaries. Specifically, de-
fine ψ(k,r)

(t,v)

(
{yut−1 | u ∈ Nr

v }, {zuτ | (τ, u) ∈ ∂N
(k,r)
(t,v) }

)
as

the optimal solution of the problem

min
t+k−1∑
τ=t

(
f
(Nr−1

v )
τ

(
x
(Nr

v )
τ

)
+ c

(Nr
v )

τ

(
x
(Nr

v )
τ , x

(Nr
v )

τ−1

))
s.t. xut−1 = yut−1,∀u ∈ Nr

v ,

xuτ = zuτ ,∀(τ, u) ∈ ∂N
(k,r)
(t,v) , (2)

xuτ ∈ Du
τ ,∀(τ, u) ∈ N

(k−1,r−1)
(t,v) ,

where the partial hitting cost and partial switching cost fSτ
and cSτ for a subset S of agents were defined in (1). Note that
ψ
(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
is a matrix of actions (in Rn) indexed

by (τ, u) ∈ N
(k−1,r−1)
(t,v) . (When the context is clear, we use

the shorthand ψ(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
.) Once the parameters

{yut−1} and {zuτ } are fixed, the agent v can leverage its
knowledge of the local cost functions to solve (2).

t+ 2

t+ 1

t
(t, v)

fv
t

cvt

set

t− 1
v q

r = 2

history
future

Figure 2: Illustration of LPC with k = 3, r = 2 on a
line graph (the underlying graph is replicated over the time
dimension). The orange node marks the decision variable
at (t, v). The green part denotes the decisions in Nr

v at
time (t− 1). The blue “U” shape denotes the boundary of
available information for node v at time t. Edge e := (v, q).

LPC fixes the parameters {yut−1} to be {xut−1}, which are
the previous local actions in Nr

v , and fixes the parameters
{zuτ } to be the minimizers of local node cost functions at
nodes in ∂N (k,r)

(t,v) . The selection of the parameters at nodes

in ∂N (k,r)
(t,v) plays a similar role as the terminal cost of classi-

cal MPC in centralized settings.
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For a single-agent system, MPC-style algorithms are per-
haps the most prominent approach for optimization-based
control (Garcia et al., 1989) because of their simplicity and
excellent performance in practice. LPC extends the ideas
of MPC to a multi-agent setting in a networked system by
leveraging available information in both the temporal and
spatial dimensions, whereas classical MPC focuses only on
the temporal dimension. This change leads to significant
technical challenges in the analysis.

3.2. Perturbation Analysis

The key idea underlying our analysis of LPC is that the
impact of perturbations to the actions at the boundaries of
the available information of an agent decay quickly, in fact
exponentially fast, in the distance of the boundary from the
agent. This quick decay means that small errors cannot
build up to hurt algorithm performance.

In this section, we formally study such perturbations by
deriving several new results which generalize perturbation
bounds for online convex optimization problems on net-
works. Our bounds capture both the effect of temporal
interactions as well as spatial interactions between agent
actions, which is a more challenging problem compared to
previous literature which considers either temporal interac-
tions (Lin et al., 2021) or spatial interactions (Shin et al.,
2021) but not both simultaneously.

More specifically, recall from Section 3.1 that for each agent
v at time t, LPC solves an optimization problem ψ

(k,r)
(t,v)

where actions on the boundaries of available information
(i.e., {t− 1} ×Nr

v and ∂N (k,r)
(t,v) ) are fixed. By the principle

of optimality, we know that if the actions on the boundaries
are selected to be identical with the offline optimal actions,
the agent can decide its current action optimally by solving
ψ
(k,r)
(t,v) . However, due to the limits on the prediction horizon

and communication radius, LPC can only approximate the
offline optimal actions on the boundaries (we do this by
using the minimizer of node cost functions). The key idea to
our analysis of the optimality gap of LPC is by first asking:
If we perturb the parameters ofψ(k,r)

(t,v) , i.e., the actions on the
information boundaries, how large is the resulting change
in a local action xv0

t0 for (t0, v0) ∈ N
(k,r)
(t,v) \ ∂N (k,r)

(t,v) (in the
optimal solution to (2))?

Ideally, we would like the above impact to decay expo-
nentially fast in the graph distance between node v0 and
the communication boundary for node v (i.e., r minus the
graph distance between v0 and v), as well as in the tempo-
ral distance between t0 and t. We formalize this goal as
exponentially decaying local perturbation bound in Defini-
tion 3.1. We then show in Theorem 3.2 and Theorem 3.3
that such bounds hold under appropriate assumptions.

Definition 3.1. Define xv0
t0

:= ψ
(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
(t0,v0)

,

and (xv0
t0 )

′ := ψ
(k,r)
(t,v)

(
{(yut−1)

′}, {(zuτ )′}
)
(t0,v0)

for
arbitrary boundary parameters {(yut−1)}, {(zuτ )} and
{(yut−1)

′}, {(zuτ )′}. We say an exponentially decaying local
perturbation bound holds if for non-negative constants

C1 = C1(ℓT /µ, (∆ℓS)/µ) <∞,

C2 = C2(ℓT /µ, (∆ℓS)/µ) <∞,

ρT = ρT (ℓT /µ) < 1, ρS = ρS((∆ℓS)/µ) < 1,

for any (t0, v0) and arbitrary boundary parameters
{(yut−1)

′}, {(zuτ )′}, {(yut−1)}, {(zuτ )}, we have:∥∥xv0
t0 − (xv0

t0 )
′∥∥

≤ C1

∑
(u,τ)∈∂N

(k,r)

(t,v)

ρ
|t0−τ |
T ρ

dG(v0,u)
S ∥zuτ − (zuτ )

′∥

+ C2

∑
u∈Nr

v

ρ
t0−(t−1)
T ρ

dG(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥.

Perturbation bounds were recently found to be a promising
tool for the analysis of adaptive control and online optimiza-
tion models(Lin et al., 2021). The exponentially decaying
local perturbation bound defined above is similar in spirit
to two recent results, i.e., Lin et al. (2021) derives a similar
perturbation bound for line graphs and Shin et al. (2021) for
general graphs with local perturbations. In fact, one may
attempt to derive such a bound by applying these results
directly; however, a major weakness of the direct approach
is that it will yield ρT = ρS , i.e., it cannot distinguish be-
tween spatial and temporal dependencies, and the bound
deteriorates as max{ℓT /µ, ℓS/µ} increases. For instance,
even if the temporal interactions are weak (i.e., ℓT /µ ≈ 0),
ρT = ρS can still be close to 1 if ℓS/µ is large, leading to
a large slack in the perturbation bound for small prediction
horizons k.

We overcome this limitation by redefining the action vari-
ables. Specifically, to focus on the temporal decay effect,
we regroup all local actions in {τ} ×Nr

v as a “large” deci-
sion variable for time τ (in Figure 1 we would group each
horizontal blue plane in Nr

v to create a new variable). After
regrouping, we have (k + 1) “large” decision variables lo-
cated on a line graph, where the strength of the interactions
between consecutive variables is upper bounded by ℓT . On
the other hand, to focus on spatial decay, we regroup all
local actions in {τ | t− 1 ≤ τ < t+k}×{v} as a decision
variable (in Figure 1 we would group each vertical orange
line connecting from t − 1 to t + k − 1 to create a new
variable). After regrouping, we have |V| “large” decision
variables located on G, where the strength of the interactions
between two neighbors is upper bounded by ℓS . Averaging
over the two perturbation bounds (since we have two valid
bounds, their average is also a valid bound) provides the
following exponentially decaying local perturbation bound
(see (14) in Appendix D.1 for details of the proof).
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Theorem 3.2. Under Assumption 2.1, the exponentially
decaying local perturbation bound (Definition 3.1) holds
with C1 = C2 = 2

√
∆ℓSℓT
µ , and

ρT =

√
1− 2

(√
1 + (2ℓT /µ) + 1

)−1

,

ρS =

√
1− 2

(√
1 + (∆ℓS/µ) + 1

)−1

.

Note that, as ℓT /µ (respectively ℓS/µ) tends to zero, ρT
(respectively ρS) in Theorem 3.2 also tends to zero with the
scaling ρT = Θ(

√
ℓT /µ) (resp. ρS = Θ(

√
ℓS/µ)).

Next, we provide a tighter bound (through a refined analysis)
for the regime where µ is much larger than ℓT , ℓS . Specifi-
cally, we establish a bound with the scaling ρT = Θ(ℓT /µ)
and ρS = Θ(ℓS/µ). Again, it is not possible to obtain this
result from previous perturbation bounds in the literature.
Theorem 3.3. Recall h(γ) := supv∈V |∂Nγ

v |. Given
any b1, b2 > 0, define a =

∑
γ≥0(

1+b1
1+b1+b2

)γh(γ),

ã =
∑

γ≥0(
1

1+b1
)γh(γ) and γS =

√
1+∆ℓS/µ−1√
1+∆ℓS/µ+1

. Sup-

pose Assumption 2.1 holds, a, ã < ∞ and µ ≥
max{8ãℓT ,∆ℓS(b1 + b2)/4}. Then the exponentially de-
caying local perturbation bound (Definition 3.1) holds with
C1 = C2 = max{ a2

2ã(1−4ãlT /µ) ,
2a2∆ℓS/µ

γS(1+b1+b2)(1−4ãlT /µ)}

ρT =
4ãℓT
µ

, ρS = (1 + b1 + b2)γS .

Note that ρT , ρS < 1 follow from the condition on µ. Also
observe that γS = Θ(ℓS/µ) as ℓS/µ→ 0.

The main difference between this result and Theorem 3.2 is,
instead of dividing and redefining the action variables, we
explicitly write down the perturbations along spatial edges
and along temporal edges in the original temporal-spatial
graph. We observe that per-time-step spatial interactions
are characterized by a banded matrix and that the inverse
of the banded matrix exhibits exponential correlation decay,
which implies the exponentially decaying local perturbation
bounds holds if the perturbed boundary action and the im-
pacted local action we consider are at the same the time step.
However, for a multi-time-step problem, to characterize the
impact at a local action at some time step due to perturbation
at a boundary action at a different time step is a difficult
problem. The main technical contribution of this proof is to
establish that a product of exponentially decaying matrices
still satisfies exponential decay under the conditions in The-
orem 3.3. In addition, we obtain a tight bound on the decay
rate of the product matrix (see Lemma C.3), which may be
of independent interest.

Our condition on a, ã <∞ and µ > max{8ãℓT ,∆ℓS(b1 +
b2)/4} characterizes a tradeoff between the allowable neigh-
borhood boundary sizes h(γ), and how large µ needs

to be compared to the interaction cost parameters ℓT , ℓS .
At one extreme, if h(γ) = ∆γ , then by setting b1 =
2∆ − 1 and b2 = 4∆2 − 2∆, we obtain a = ã = 2
but must make a strong requirement on µ, namely, µ >
max{16ℓT ,∆3ℓS(1 − 1

4∆2 )}. At the other extreme, if
h(γ) ≤ O(poly(γ)) (as is the case if G is a grid), then
a, ã < ∞ holds for any b1, b2 > 0, we can impose a
weaker requirement on µ: for example, taking b1 = b2 = 1
yields a requirement µ > max{8ãℓT ,∆ℓS/2} (where
ã =

∑
γ≥0(

1
2 )

γh(γ)); which grows only linearly in ∆,
and compares favorably with the µ > Ω(∆3) requirement
which arose earlier.

Proofs of Theorem 3.2 and Theorem 3.3 are in Appendix D.

3.3. From Perturbations to Competitive Bounds

We now present our main result, which bounds the compet-
itive ratio of LPC using the exponentially decaying local
perturbation bounds defined in the previous section.

Before presenting the result, we first provide some intuition
as to why the perturbation bounds are useful for deriving
the competitive ratio bound. Specifically, to bound the
competitive ratio requires bounding the gap between LPC’s
trajectory and the offline optimal trajectory. This gap comes
from the following two sources: (i) the per-time-step error
made by LPC due to its limited prediction horizon and
communication radius; and (ii) the cumulative impact of
all per-time-step errors made in the past. Intuitively, the
local perturbation bounds we derive in Section 3.2 allow
us to bound the per-step error made jointly by all agents
in LPC, and then we use the perturbation bounds from Lin
et al. (2021) help us to bound the second type of cumulative
errors.

We present our main result in the following theorem and
defer a proof outline to Appendix C.2. A formal proof can
be found in Appendix E.3.

Theorem 3.4. Suppose Assumption 2.1 and the exponen-
tially decaying local perturbation bound in Definition 3.1

holds. Define ρG := 1 − 2 ·
(√

1 + (2ℓT /µ) + 1
)−1

,

and define C3(r) :=
∑r

γ=0 h(γ) · ργS . If param-
eters r and k of LPC are large enough such that
O
(
h(r)2 · ρ2rS + C3(r)

2 · ρ2kT · ρ2kG
)
≤ 1

2 , then the compet-
itive ratio of LPC is upper bounded by

1 +O
(
h(r)2 · ρrS

)
+O

(
C3(r)

2 · ρkT
)
.

Here the O(·) notation hides factors that depend polynomi-
ally on ℓf/µ, ℓT /µ, and (∆ℓS)/µ; see Appendix E.3.

Recall that h(r) denotes the size of the largest r-hop bound-
ary in G. The bound in Theorem 3.4 implies that if h(r) can

be upper bounded by poly(r) · ρ−
(1−ι)r

2

S for some constant
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ι > 0, the competitive ratio of LPC can be upper bounded by
1 +O(ριrS ) +O(ρkT ), because C3(r) can be upper bounded
by some constant that depends on ι in this case. Therefore,
the competitive ratio improves exponentially with respect to
the prediction horizon k and communication radius r.

Note that the assumption h(r) ≤ poly(r) · ρ−
(1−ι)r

2

S is not
particularly restrictive: For commonly seen graphs like an
m-dimensional grid, h(r) is polynomial in r, so ι = 1
works. More generally, for graphs with bounded degree
∆ <∞, there exists δ = δ(∆) > 0 such that, for any graph
with node degrees bounded above by ∆ and any ℓS/µ ≤ δ,
we have ρS (from either Theorem 3.2 or Theorem 3.3) will
be small enough that, e.g., h(r) ≤ ∆r = O(ρ

− r
4

S ); i.e., ι =
1/2 works. Thus we can eliminate the dependence on h(r)
and C3(r) in the competitive ratio by making additional
assumptions on ℓS/µ. This result is stated in Corollary 3.5
whose proof is deferred to Appendix E.4. Corollary 3.5 is
a corollary of Theorem 3.4 and Theorem 3.3. We use the
bound in Theorem 3.3 and not the bound in Theorem 3.2
because Theorem 3.3 is tighter when ℓS/µ is small.

Corollary 3.5. Suppose Assumption 2.1 and inequalities
ℓS/µ ≤ ∆−7, and ℓT /µ ≤ 1/16 hold. If r and k satisfy that
O
(
ρrS + ρ2kT · ρ2kG

)
≤ 1

2 , then the competitive ratio of LPC

is upper bounded by 1+O
(
ρ
r/2
S

)
+O

(
ρkT
)
, where ρS and

ρT are given by Theorem 3.3 with parameters b1 = 2∆− 1
and b2 = 4∆2 − 2∆. The O(·) notation hides factors
that depend polynomially on ℓf/µ, ℓT /µ, and (∆ℓS)/µ,
see Appendix E.4 for the full constants.

3.4. A Lower Bound

We show that the competitive ratio in Theorem 3.4 is order-
optimal by deriving a lower bound on the competitive ratio
of any decentralized online algorithm with prediction hori-
zon k and communication radius r. The specific constants
and a proof of Theorem 3.6 can be found in Appendix F.

Theorem 3.6. The competitive ratio of any decentral-
ized online algorithm is lower bounded by 1 + Ω(λkT ) +

Ω(λrS), where λT =

(
1− 2

(√
1 + (4ℓT /µ) + 1

)−1
)2

,

and λS =

(
1− 2

(√
1 + (4ℓS/µ) + 1

)−1
)2

. The Ω(·)

notation hides factors that depend polynomially on 1/µ, ℓT ,
and ℓS .

While Theorem 3.6 highlights that Theorem 3.4 is order-
optimal, the decay factors λT , λS in the lower bound differ
from their counterparts ρT , ρS in the upper bound for LPC.
To understand the magnitude of the difference, we compare
the bounds on graphs with bounded degree ∆. The decay
factors are a function of the interaction strengths, which
are measured by ℓS/µ and ℓT /µ. Our lower bound on the

temporal decay factor λT and upper bound ρT only differ
by a constant factor in the log-scale, and the same holds for
the lower/upper bound in terms of the spatial decay factor.

To formalize this comparison, we derive a resource aug-
mentation bound that bounds the additional “resources” that
LPC needs to outperform the optimal decentralized online
algorithm.2 Here the prediction horizon k and the communi-
cation radius r can be viewed as the “resources” available to
a decentralized online algorithm in our setting. We ask how
large do k and r given to LPC need to be, to ensure that
it beats the optimal decentralized online algorithm given a
communication radius r∗ and prediction horizon k∗?

We formally state our result in the following corollary and
provide a proof in Appendix G.

Corollary 3.7. Under Assumption 2.1, suppose the optimal
decentralized online algorithm achieves a competitive ratio
of c(k∗, r∗) with prediction horizon k∗ and communication

radius r∗. Additionally assume that h(γ) = Õ
(
ρ
−γ/4
S

)
and ∆ ≥ 2, where the Õ notation hides a factor that de-
pends polynomially on γ. As k∗, r∗ → ∞, LPC achieves
a competitive ratio at least as good as that of the optimal
decentralized online algorithm when LPC uses a prediction
horizon of k = (4 + o(1))k∗ and a communication radius
of r = (16∆ log∆ + o(1))r∗.

Finally, note that we establish Corollary 3.7 based on the
local perturbation bound in Theorem 3.2 rather than Theo-
rem 3.3 for simplicity, because it does not make assumptions
on the relationship among µ, ℓT , and ℓS . We expect that
Theorem 3.3 can give better resource augmentation bounds
under stronger assumptions on µ, ℓT , and ℓS .

4. Concluding Remarks
In this work, we introduce and study a novel form of decen-
tralized online convex optimization in a networked system,
where the local actions of each agent are coupled by tem-
poral interactions and spatial interactions. We propose a
decentralized online algorithm, LPC, which leverages all
available information within a prediction horizon of length
k and a communication radius of r to achieve a competi-
tive ratio of 1 + Õ(ρkT ) + Õ(ρrS). Our lower bound result
shows that this competitive ratio is order optimal. Our re-
sults imply that the two types of resources, the prediction
horizon and the communication radius, must be improved
simultaneously in order to obtain a competitive ratio that
converges to 1. That is, it is not enough to either have a
large communication radius or a long prediction horizon, the
combination of both is necessary to approach the hindsight
optimal performance.

2See, e.g., Roughgarden (2020), for an introduction to this
flavor of bounds for expressing the near-optimality of an algorithm.
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A limitation of this work is that we have considered only ex-
act predictions in the available information model, the LPC
algorithm, and its analysis. Considering inexact predictions
is an important future goal and we are optimistic that our
work can be generalized in that direction using the roadmap
in Appendix C.3.
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A. Notation Summary and Definitions
The notation we use throughout the paper is summarized in the following two tables.

Table 1: Notation related to the graph/network structures.

Notation Meaning
G = (V, E) The network of agents connected by undirected edges;
dG(u, v) The graph distance (i.e. the length of the shortest path) between two vertices u and v in G;
Nr

v The r-hop neighborhood of vertex/agent v in G, i.e., Nr
v := {u ∈ V | dG(u, v) ≤ r};

∂Nr
v The boundary of the r-hop neighborhood of vertex/agent v, i.e., ∂Nr

v = Nr
v \Nr−1

v ;
h(r) The size of the largest r-hop boundary in G, i.e., h(r) := supv|∂Nr

v |;
∆ The maximum degree of any vertex v in G;

E(S) The set of all edges that have both endpoints in S, where S ⊆ V;
S+ The extension of S by 1-hop, i.e., S+ = S ∪ {u | ∃v ∈ S s.t. (u, v) ∈ E};

N
(k,r)
(t,v) {τ ∈ Z | t ≤ τ < t+ k} ×Nr

v , which is a set of (time, vertex) pairs;

∂N
(k,r)
(t,v) N

(k,r)
(t,v) \N (k−1,r−1)

(t,v) , which is a set of (time, vertex) pairs;

Table 2: Notation related to the optimization problems.

Notation Meaning
∥·∥ The (Euclidean) 2-norm for vectors and the induced 2-norm for matrices;
H The whole horizon length of Networked OCO problem;
[H] The sequence of integers 1, 2, . . . ,H;
Sm For any positive integer m, Sm denotes the set of all symmetric real m×m matrices;
yt1:t2 The sequence yt1 , yt1+1, . . . , yt2 , for t2 ≥ t1;
xvt The individual action of agent v at time step t. It is a vector in Rn;
xSt The joint action of all agents in set S ⊆ V at time t, i.e., xSt = {xvt }v∈S ;
xt The joint action of all agents in V at time t, i.e., xt = {xvt }v∈V . It is a shorthand of xVt ;
x∗t The offline optimal joint action of all agents at time t;
x∗τ |t The clairvoyant joint decision of all agents at time τ given that the joint decision is xt at time t;
fvt (x

v
t ) The node cost function for agent v ∈ V at time step t;

cvt (x
v
t , x

v
t−1) The temporal interaction cost function for agent v ∈ V at time step t;

set (x
v
t , x

u
t ) The spatial interaction cost for edge e = (v, u) ∈ E at time step t;

µ The strong convexity constant of node costs fvt ;
ℓf , ℓT , ℓS The smoothness constant of node costs, temporal interaction costs, and spatial interaction costs;
Dv

t The feasible set of xvt for agent v at time t. It is a convex subset of Rn;
θvt The minimizer of node cost function for v at time t subject to Dv

t , i.e., θvt = argminy∈Dv
t
fvt (y);

fSt (x
S+

t ) The total node costs and spatial interaction costs over a subset S ⊆ V at time t, i.e.,
fSt (x

S
t ) :=

∑
v∈S f

v
t (x

v
t ) +

∑
(v,u)∈E(S) s

(v,u)
t (xvt , x

u
t );

cSt (x
S
t ) The total temporal interaction costs over a subset S ⊆ V at time t, i.e., cSt (x

S
t ) :=

∑
v∈S c

v
t (x

v
t , x

v
t−1);

ft(xt) The total node costs and spatial interaction costs over a V at time t. A shorthand of fVt (xVt );
ct(xt) The total temporal interaction costs over V at time t. A shorthand of cVt (x

V
t );

ψ
(k,r)
(t,v) (·, ·) The optimal individual decisions in N (k,r)

(t,v) when the decision boundaries formed by {t− 1} ×Nr
v

and ∂N (k,r)
(t,v) are fixed as parameters;

ψ̃p
t (·, ·) The optimal global trajectory xt, xt+1, . . . , xt+p−2 when xt−1 and xt+p−1 are fixed as parameters;
ψ̃t(·) The optimal global trajectory xt, xt+1, . . . , xT when xt−1 is fixed as the parameter;

In addition to the notation in the tables above, we make use of the concepts of strong convexity and smoothness throughout
this paper.
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Definition A.1. For a fixed dimension m ∈ Z+, let D ⊂ Rm be a convex set, and suppose function ĥ : D → R is a
differentiable function. Then, ĥ is called ℓ-smooth for some constant ℓ ∈ R≥0 if

ĥ(y) ≤ ĥ(x) + ⟨∇ĥ(x), y − x⟩+ ℓ

2
∥y − x∥22,∀x, y ∈ Rm,

and is called µ-strongly convex for some constant µ ∈ R≥0 if

ĥ(y) ≥ ĥ(x) + ⟨∇ĥ(x), y − x⟩+ µ

2
∥y − x∥22,∀x, y ∈ Rm.

Here ⟨·, ·⟩ denotes the dot product of vectors.

B. Example: Multiproduct Pricing
The networked online convex optimization problem captures many applications where individual agents must make decisions
online in a networked system. In this section, we give a concrete motivating example from multiproduct pricing problems.
Many recent books of revenue management (Talluri & Ryzin, 2006; Gallego & Topaloglu, 2019) and papers (Song &
Chintagunta, 2006; Caro & Gallien, 2012; Candogan et al., 2012; Chen & Chen, 2015) describe numerous instances of this
problem. In our example below, we follow a similar pricing model as in Candogan et al. (2012).

Consider a setting where a large company sells n different products and wants to maximize its revenue by adjusting prices
adaptively in a time-varying market. Each vertex/agent v ∈ V corresponds to a product and xvt denotes its price at time t.
Two products v and u are connected by an edge if they interact, e.g., because the products are complements or substitutes.

We assume a classical linear demand model (Talluri & Ryzin, 2006; Gallego & Topaloglu, 2019), where the demand of v at
time t, denoted as dvt , is given by

dvt = avt − kvt x
v
t︸ ︷︷ ︸

Part 1

Part 2︷ ︸︸ ︷
−

∑
u∈N1

v\{v}

η
(u→v)
t xut +b

v
t x

v
t−1︸ ︷︷ ︸

Part 3

,

with parameters avt , k
v
t , b

v
t > 0 and η(u→v)

t ∈ R. Here, Part 1 corresponds to the nominal demand at price xvt ; Part 2 adds
the network externalities from v’s complements/substitutes, and Part 3 reflects the pent up demand of product v due to
high price at time t− 1. Note that the coefficient η(u→v)

t can be different with η(v→u)
t . To simplify the notations, for each

undirected edge e = (u, v), we define an aggregate coefficient γet := 1
2

(
η
(u→v)
t + η

(v→u)
t

)
.

The full revenue maximization problem can be written as

max
H∑
t=1

∑
v∈V

xvt d
v
t =

H∑
t=1

∑
v∈V

xvt (a
v
t − kvt x

v
t −

∑
u∈N1

v\{v}

η
(u→v)
t xut + bvt x

v
t−1)

s.t. 0 ≤ xvt ≤ pvt ,

(3)

which is equivalent to the following:

min −
H∑
t=1

∑
v∈V

xvt d
v
t =

H∑
t=1

∑
v∈V

[
xvt (−avt + kvt x

v
t +

∑
u∈N1

v\{v}

η
(u→v)
t xut − bvt x

v
t−1)

]
s.t. 0 ≤ xvt ≤ pvt

(4)

We assume that the product’s own price elasticity coefficient kvt is uniformly larger than the sum of magnitudes of
cross-elasticity coefficients, i.e., exist µ > 0, s.t.

ξvt := kvt −
∑

u∈N1
v\v

|γ(u,v)t | −
bvt + bvt+1

2
≥ µ/2 > 0
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holds for any (t, v). Further, we assume supv∈V,t∈H kvt ≤ ℓf/2, supv∈V,t∈H bvt ≤ b, and sup(u,v)∈E,t∈H |η(u→v)
t | ≤ γ.

We now observe that this problem fits within our framework with node, spatial, and temporal costs which are quadratic and
defined as follows.

fvt (x
v
t ) := ξvt

(
xvt −

avt
2ξvt

)2

,

s
(u,v)
t (xut , x

v
t ) := |γ(u,v)t |

(
xut + sgn

(
γ
(u,v)
t

)
· xvt
)2
,

cvt (x
v
t , x

v
t−1) :=

bvt
2

(
xvt − xvt−1

)2
.

Note that fvt (x
v
t ) is ξvt (x

v
t )

2 − avt x
v
t plus a constant (avt )

2/(4ξvt ), and the interaction functions can be rewritten as

s
(u,v)
t (xut , x

v
t ) = |γ(u,v)t |

(
(xut )

2 + (xvt )
2

)
+ 2γ

(u,v)
t xvt x

u
t , cvt (x

v
t , x

v
t−1) =

bvt
2

(
(xvt )

2 + (xvt−1)
2

)
− btx

v
t−1x

v
t .

Summing, we see that

H∑
t=1

∑
v∈V

fvt (x
v
t ) + cvt (x

v
t , x

v
t−1) +

H∑
t=1

∑
e∈E

set (x
u
t , x

v
t ) = (Objective in (4)) +

H∑
t=1

∑
v∈V

(avt )
2/(4ξvt ) . (5)

Hence the optimal solution of (4) is the same as the following problem:

min
H∑
t=1

∑
v∈V

fvt (x
v
t ) + cvt (x

v
t , x

v
t−1) +

H∑
t=1

∑
e∈E

set (x
u
t , x

v
t )

s.t. 0 ≤ xvt ≤ pvt

(6)

where the node cost function fvt (x
v
t ) is nonnegative, µ-strongly convex, and ℓf -smooth; the spatial interaction function is

nonnegative, convex and (4γ)-smooth; the temporal interaction function is nonegative, convex and (2b)-smooth.

The decentralized nature of our policy is important in this setting. Interpretable pricing algorithms (Biggs et al., 2021)
are attractive in practice. Our local pricing algorithm is indeed interpretable, since the current price of a given product is
transparently determined by reliable predictions of demand in the near future as well as interactions with directly related
products.

In addition, exactly solving the global multiproduct pricing problem can be computationally challenging in practice,
especially when the network is large. For example, large online e-commerce companies maintain millions of products,
which makes the entire network difficult to store, let alone do computation over. Moreover, due to the ease of changing
prices, e-commerce companies often use dynamic pricing and change prices on a daily (or quicker) basis, which magnifies
the computational burden.

B.1. Competitive Bound

We end our discussion of multiproduct pricing by showing how the competitive bound in Theorem 3.4 can be applied to the
revenue maximization problem of product networks through the use of the following lemma.

Lemma B.1. Suppose the competitive ratio of our general cost minimization problem is CR(k, r), which a function of
prediction horizon k and communication radius r. Suppose sup(u,v)∈E,t∈[H] a

u
t /a

v
t ≤ b̃, supv∈V,t∈[H]

av
t

pv
t
≤ c̃, then the

competitive ratio for the corresponding revenue maximization problem, defined as rev(ALG)/rev(OPT ), is at least
1− η

2 (CR(k, r)− 1), where ∆ denotes the degree of the product network and η := max{2(ℓf +∆b̃γ)/µ, c̃/µ}.

Proof. We define C :=
∑

t,v(a
v
t )

2/(4ξvt ). Suppose

CR(k, r) · cost(OPT ) ≥ cost(ALG),
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then
CR(k, r) · (−rev(OPT ) + C) ≥ (−rev(ALG) + C).

Rearranging the terms yields

(CR(k, r)− 1) · C ≥ CR(k, r)rev(OPT )− rev(ALG). (7)

To find a lower bound on rev(OPT ), we choose a pricing strategy such that xvt =
av
t

ηµ ≥ 0 where η = max{2(ℓf +

∆b̃γ)/µ, c̃/µ}. We first check that the demand is always nonnegative under this strategy:

avt − kvt
avt
ηµ

−
∑

u∈N1
v\{v}

η
(u→v)
t

aut
ηµ

+ bvt
avt−1

ηµ
≥ avt − kvt

avt
ηµ

−
∑

u∈N1
v\{v}

η
(u→v)
t

aut
ηµ

≥ avt − kvt
avt
ηµ

−
∑

u∈N1
v\{v}

b̃γ
avt
ηµ

≥ avt (1−
ℓf +∆b̃γ

ηµ
)

≥ avt
2
.

Moreover,
xvt ≤ avt /c̃ ≤ pvt .

Hence this is a feasible price strategy.

We lower bound the optimal revenue:

rev(OPT ) ≥
H∑
t=1

∑
v∈V

avt
ηµ

(avt − kvt
avt
ηµ

−
∑

u∈N1
v\{v}

η
(u→v)
t

aut
ηµ

+ bvt
avt−1

ηµ
)

≥
H∑
t=1

∑
v∈V

avt
ηµ

avt
2

≥ 2

η
C.

We further divide Equation (7) by rev(OPT ) to obtain

(CR(k, r)− 1)
C

rev(OPT )
≥ CR(k, r)− rev(ALG)/rev(OPT ).

Since CR(k, r) ≥ 1 for the cost minimization problem,

rev(ALG)/rev(OPT ) ≥ 1− (CR(k, r)− 1)
C

rev(OPT )
.

This allows us to complete the proof as follows

rev(ALG)/rev(OPT ) ≥ 1− η

2
(CR(k, r)− 1).

C. Proof Outline
In this section, we outline the major novelties in our proofs for the tighter exponentially decaying local perturbation bound
in Theorem 3.3 and the main competitive ratio bound for LPC in Theorem 3.4. The full details of the proofs of these and
other results are in the appendices following this one.
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C.1. Refined Analysis of Perturbation Bounds

We begin by outlining the four-step structure we use to prove Theorem 3.3. Our goal is to highlight the main ideas, while
deferring a detailed proof to Appendix D.2.

STEP 1. ESTABLISH FIRST ORDER EQUATIONS

We define h as the objective function in (2), where actions on the boundary are fixed as {zuτ |(τ, u) ∈ ∂N
(k,r)
(t,v) } and the

actions at time t− 1 are fixed as {xut−1|u ∈ Nr
v }. We denote those fixed actions as system parameter

ζ := (x
(Nr

v )
t−1 , {zuτ |(τ, u) ∈ ∂N

(k,r)
(t,v) }).

To avoid writing the time index t repeatedly, we use x̂i to denote actions at time t− 1 + i for 0 ≤ i ≤ k. The main lemma
in for this step is the following.
Lemma C.1. Given θ ∈ R, system parameter ζ and perturbation vector e, we have

d

dθ
ψ(ζ + θe) =M−1

(
R(1)e0 +R(k−1)ek +

k−1∑
τ=1

K(τ)eτ

)
where

M = ∇2
x̂1:k−1

h(ψ(ζ + θe), ζ + θe),

R(1) := −∇x̂0∇x̂1:k−1
h(ψ(ζ + θe), ζ + θe),

R(k−1) := −∇x̂k
∇x̂1:k−1

h(ψ(ζ + θe), ζ + θe),

K(τ) := −∇
x̂
(∂Nr

v )
τ

∇x̂1:k−1
h(ψ(ζ + θe), ζ + θe).

The proof for Lemma C.1 using first order conditions at the global optimal solution for convex function h(·, ζ + θe) and
then takes derivatives with respect to to θ. See Appendix D.2 for a proof.

STEP 2: EXPLOIT THE STRUCTURE OF MATRIX M

M is a hierarchical block matrix with the first level of dimension (k − 1) × (k − 1). When fixing the first level indices
(i.e. time indices) in M , the lower level matrices are non-zero only if the difference in the time indices is ≤ 1. Hence
we decompose M to a block diagonal matrix D and tri-diagonal block matrix A with zero matrix on the diagonal. Each
diagonal block in D is a graph-induced banded matrix, which captures the Hessian of h in a single time step. Denote each
diagonal block as Di,i for 1 ≤ i ≤ k − 1. Further, for 1 ≤ i ≤ k − 1, Ai,i−1 (similarly Ai,i+1) captures the temporal
correlation of individual’s action between consecutive time steps. Given this decomposition,

M−1 = (D +A)−1 = D−1(I +AD−1)−1.

For the ease of notation, we denote I +AD−1 by P. Note that P is not necessarily a symmetric matrix. Nevertheless, under
technical conditions on P ’s eigenvalues, we have the following power series expansion (Shin et al., 2020). The details are
presented in the Lemma C.2 in Appendix D.2.
Lemma C.2. Under the condition µ > 2ℓT , we have

P−1 =
∑
ℓ≥0

(I − P )ℓ. (8)

To understand the the power series in (8), consider the special case where each block Ai,j = ℓT · I , and Di,i = Q. Denote
P − I as J , which is equivalent to AD−1. Then, we have Ji,i = 0, Ji,i−1 = Ji,i+1 = ℓTQ

−1, Ji,j = 0 when |i− j| > 1.
Intuitively, J captures the “correlation over actions” after one time step. More generally, for ℓ ≥ 0 and any two time indices
τ ′, τ ,

Jℓ
τ ′,τ = ℓℓTQ

−ℓb(ℓ, τ, τ ′),

where b(ℓ, τ, τ ′) is a constant depending on ℓ, τ, τ ′ and equal to zero if ℓ < |τ − τ ′|.

Given that Q is a graph-induced banded matrix, Q−1 satisfies exponential-decay properties, which makes it plausible that
Q−ℓ is an exponential decay matrix with a slower rate.

For the general case, we need to bound terms similar to
∥∥(D−1

i1,i1
D−1

i2,i2
· · ·D−1

iℓ,iℓ
)u,v
∥∥. This is the goal of Step 3.
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STEP 3: PROPERTIES FOR GENERAL EXPONENTIAL-DECAY MATRICES

The goal of this step is to establish that a product of exponential decay matrices still exhibits exponential decay property
under technical conditions about the underlying graph.

Lemma C.3. Given any graph M = (V ′, E ′) and integers d, ℓ ≥ 1, suppose block matrices Ai ∈ R|V′|d×|V′|d all satisfy
exponential decay properties, i.e. exists Ci ≥ 0, and 0 ≤ λ < 1, s.t.,

∥(Ai)u,q∥ ≤ Ciλ
dM(u,q) for any node u, q ∈ M.

Select some δ > 0 s.t. λ′ = λ + δ < 1. If ã :=
∑∞

k=0(
λ
λ′ )

k(supu∈V′ |∂Nk
u |) < ∞, then

∏ℓ
i=1Ai satisfies exponential

decay properties with decay rate λ′, i.e., ∥∥∥∥∥(
ℓ∏

i=1

Ai)u,v

∥∥∥∥∥ ≤ C ′(λ′)
dM (u,v)

.

where C ′ = (ã)ℓ
∏ℓ

i=1 Ci.

A proof of Lemma C.3 can be found in the Appendix D.2.

STEP 4: ESTABLISH CORRELATION DECAY PROPERTIES OF MATRIX M

The last step of the proof is to study the properties of M . To accomplish this, we first show that, for time indices i, j ≥ 1,
Jℓ has the following properties:

• (Jℓ)i,j = 0 if ℓ < |i− j| or ℓ− |i− j| is odd.

• (Jℓ)i,j is a summation of terms
∏ℓ

k=1Ajk,ikD
−1
ik,ik

and the number of such terms is bounded by
(

ℓ
(ℓ−|i−j|)/2

)
.

We formally state and prove the above observation in Lemma D.3. We can further use Theorem C.3 on block matrices
Ajk,ikD

−1
ik

, which gives the following lemma.

Lemma C.4. Recall γS :=

√
1+(∆ℓS/µ)−1√
1+(∆ℓS/µ)+1

. Select δ > 0 s.t. γ′S = γS+δ < 1 and b :=
∑

γ≥0(
γS

γ′
S
)γh(γ). Given ℓ, i, j ≥ 1

and u, q ∈ V , we have ∥∥((Jℓ)i,j)u,q
∥∥ ≤

(
ℓ

(ℓ− |i− j|)/2

)
(b
2ℓT
µ

)ℓ(γ′S)
dG(u,q).

Intuitively speaking, Lemma C.4 bounds the correlations over actions for node u at time step t− 1 + i and action for node q
at time step t− 1 + j. We present its proof in the Appendix D.2.

Recall that, for 1 ≤ i, j ≤ k − 1,
M−1

i,j = D−1
i,i

∑
ℓ≥0

(−J)ℓi,j .

With the exponential decaying bounds on matrix Jℓ, we can thus conclude Theorem 3.3 by following a similar procedure as
in the proof of Theorem 3.1 of (Lin et al., 2021). We present the details in Appendix D.4.

C.2. From Perturbation to Competitive Ratio

We now show how to use the result proven in the previous section to prove our competitive ratio bounds in Theorem 3.4.
Our starting point is the assumption that the exponentially decaying local perturbation bound in Definition 3.1 holds for
some C1, C2 > 0 and ρS , ρT ∈ [0, 1), which is established using the proof approach outlined in the Section 3.3.

As we discussed in Section 3.3, our proof contains two key parts: (i) we bound the per-time-step error of LPC (Lemma C.7);
and (ii) show that the per-time-step error does not accumulate to be unbounded (Theorem C.8).

A key observation that enables the above analysis approach is that the aggregation of local per-time-step error made by
each agent at xvt can be viewed as a global per-time-step error in the joint global action xt. Following this observation, we
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first introduce a global perturbation bound that focuses on the global action xt rather than the local actions xvt . Recall that
ft denotes the global hitting cost (see Section 2). Define the optimization problem that solves the optimal trajectory from
global state xt−1 to xt+p−1

ψ̃p
t (y, z) = argmin

xt:t+p−1

t+p−1∑
τ=t

(fτ (xτ ) + cτ (xτ , xτ−1))

s.t. xt−1 = y, xt+p−1 = z, (9)

and another one that solves the optimal trajectory from global state xt−1 to the end of the game

ψ̃t(y) = argmin
xt:T

T∑
τ=t

(fτ (xτ ) + cτ (xτ , xτ−1))

s.t. xt−1 = y. (10)

The following global perturbation bound can be derived from Theorem 3.1 in Lin et al. (2021):

Theorem C.5 (Global Perturbation Bound). Under Assumption 2.1, the following perturbation bounds hold for optimization
problems (9) and (10):∥∥∥ψ̃p

t (y, z)t0 − ψ̃p
t (y

′, z′)t0

∥∥∥ ≤ CGρ
t0−t+1
G ∥y − y′∥+ CGρ

t+p−1−t0
G ∥z − z′∥,∥∥∥ψ̃t(y)t0 − ψ̃t(y

′)t0

∥∥∥ ≤ CGρ
t0−t+1
G ∥y − y′∥,

where ρG = 1− 2 ·
(√

1 + 2ℓT
µ + 1

)−1

and CG = 2ℓT
µ .

To make the concept of per-time-step error rigorous, we formally define it as the distance between the actual next action
picked by LPC and the clairvoyant optimal next action from previous action xt−1 to the end of the game:

Definition C.6 (Per-step error magnitude). At time step t, given the previous state xt−1, the (decentralized) online algorithm
ALG picks xt ∈ Dt. We define error et as

et :=
∥∥∥xt − ψ̃t(xt−1)t

∥∥∥.
Using the local perturbation bound in Definition 3.1, we show the per-time-step error of LPC decays exponentially with
respect to prediction length k and communication range r. This result is stated formally in Lemma C.7, and the proof can be
found in Appendix E.2.

Lemma C.7. For LPC with parameters r and k, et satisfies

e2t = O
(
h(r)2 · ρ2rS + C3(r)

2 · ρ2kT ρ2kG
)
·
∥∥xt−1 − x∗t−1

∥∥2
+O

(
h(r)2 · ρ2rS

) t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ )

+O
(
C3(r)

2 · ρ2kT
)
ft+k−1(x

∗
t+k−1),

where C3(r) :=
∑r

γ=0 h(γ) · ρ
γ
S .

Using the global perturbation bound in Theorem C.5, we show
∑T

t=1∥xt − x∗t ∥
2 can be upper bounded by the sum of

per-time-step errors of LPC in Theorem C.8. The proof can be found in Appendix E.1.

Theorem C.8. Let x0, x∗1, x
∗
2, . . . , x

∗
H denote the offline optimal global trajectory and x0, x1, x2, . . . , xH denote the

trajectory of ALG. The trajectory of ALG satisfies that

H∑
t=1

∥xt − x∗t ∥
2 ≤ C2

0

(1− ρG)2

H∑
t=1

e2t ,

where C0 := max{1, CG} and CG is defined in Theorem C.5.
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To understand the bound in Theorem C.8, we can set all per-time-step error et to be zero except a single time step τ . We see
the impact of eτ on the total squared distance

∑T
t=1∥xt − x∗t ∥

2 is up to some constant factor of eτ . This is because the
impact of eτ on ∥xt − x∗t ∥ decays exponentially as t increases from τ to T .

By substituting the per-time-step error bound in Lemma C.7 into Theorem C.8, one can bound
∑T

t=1∥xt − x∗t ∥
2 by the

offline optimal cost, which can be converted to the competitive ratio bound in Theorem 3.4.

C.3. Roadmap to Generalize the Proof to Inexact Predictions

In this section, we present a roadmap to generalize our proof to the case where predictions of future cost functions are inexact.
In the information availability model in Section 2.1, one can study inexact predictions by introducing additional disturbance
parameters {δvt , wv

t , w
e
t } to the 3 types of cost functions and generalize them to ft(xvt , δ

v
t ), c

v
t (x

v
t , x

v
t−1, w

v
t ), s

e
t (x

v
t , x

u
t , w

e
t )

for all t ∈ [H], v ∈ V, e = (v, u) ∈ E . {δvt , wv
t , w

e
t } represents the disturbances in the cost functions that are hard to predict

exactly. Before the decentralized online algorithm decides each local action, it receives the generalized cost functions
fvt (·, ·), cvt (·, ·, ·), set (·, ·, ·) and noisy predictions of the true disturbance parameters {δvt , wv

t , w
e
t } within k time steps and

an r-hop neighborhood. In the LPC algorithm (Algorithm 1), the optimization problem ψ
(k,r)
(t,v) can then be solved with

the noisy predictions of disturbance parameters. To analyze the performance of LPC in the presence of prediction errors,
one can first generalize the exponentially decaying perturbation bounds in Theorem 3.2 and Theorem 3.3 to include the
perturbations on disturbance parameters similar to what we already did in Theorem D.2. The prediction error on disturbance
parameters will result in an additional additive term in the per-step error bound in Lemma C.7. If one is willing to assume
that the total sum of prediction errors is O(cost(OPT )), as in Antoniadis et al. (2020), one can derive a competitive ratio
for LPC by substituting the per-step error bound into Theorem C.8. It is worth noting that the resulting competitive ratio will
inevitably depend on the quality of predictions, and will converge to a limit larger than 1 (under imperfect predictions) as
the prediction horizon k and the communication radius r increase.

D. Perturbation Bounds
This section provides the full proofs of the perturbation bounds stated in Section 3.2.

D.1. Proof of Theorem 3.2

We begin with a technical lemma. Recall that for any positive integer m, Sm denotes the set of all symmetric m×m real
matrices.
Lemma D.1. For a graph G′ = (V ′, E ′), suppose A is a positive definite matrix in S

∑
i∈V′ pi formed by |V ′| × |V ′| blocks,

where the (i, j)-th block has dimension pi × pj , i.e., Ai,j ∈ Rpi×pj . Assume that A is q-banded for an even positive integer
q; i.e.,

Ai,j = 0,∀dG′(i, j) > q/2.

Let a0 denote the smallest eigenvalue value of A, and b0 denote the largest eigenvalue value of A. Assume that b0 ≥ a0 > 0.
Suppose D = diag(D1, . . . , D|V′|), where Di ∈ Spi is positive semi-definite. Let M =

(
(A+D)−1

)
SR,SC

, where

SR, SC ⊆ {1, . . . , |V ′|}. Then we have ∥M∥ ≤ Cγd̂, where

C =
2

a0
, γ =

(√
cond(A)− 1√
cond(A) + 1

)2/q

, d̂ = min
i∈SR,j∈Sc

dG′(i, j).

Here cond(A) = b0/a0 denotes the condition number of matrix A.

We can show Lemma D.1 using the same method as Lemma B.1 in Lin et al. (2021). We only need to note that even when
the size of blocks are not identical, the m th power of a q-banded matrix is a qm-banded matrix for any positive integer m.

With the help of Lemma D.1, we can proceed to show a local perturbation bound on a general G′ in Theorem D.2, where G′

can be different from the network G of agents in Section 2. Compared with Theorem 3.1 in Lin et al. (2021), Theorem D.2
is more general because it considers a general network of decision variables while Theorem 3.1 in Lin et al. (2021) only
consider the special case of a line graph. Although Theorem D.2 does not consider the temporal dimension which features
in the local perturbation bound defined in Definition 3.1, we will use it to show Theorem 3.2 later by redefining the variables
from two perspectives.
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Theorem D.2. For a network G′ = (V ′, E ′) with undirected edges, suppose that each node v ∈ V ′ is associated with a
decision vector3 x̂v ∈ Rpv and a cost function f̂v : Rpv → R≥0, and each edge e = (u, v) ∈ E ′ is associated with an edge
cost ĉe : Rpv ×Rpu ×Rq → R≥0. Assume that f̂v is µ-strongly convex for all v ∈ V ′ and ĉe is ℓ-smooth for all e ∈ E ′. For
some subset S ⊂ V ′, define

E0 := {(u, v) ∈ E ′ | u, v ∈ V ′ \ S},
E1 := {(u, v) ∈ E ′ | u ∈ V ′ \ S, v ∈ S}.

For the disturbance vectors4 w ∈ R(|E0|+|E1|)×q indexed by e ∈ E0 ∪ E1 and y ∈ R
∑

v∈S pv indexed by v ∈ S, let ψ(w, y)
denote the optimal solution of the optimization problem

ψ(w, y) := argmin
x∈R|V′\S|×d

∑
v∈V′\S

f̂v(x̂v) +
∑

(u,v)∈E0

ĉ(u,v)(x̂u, x̂v, w(u,v)) +
∑

(u,v)∈E1

ĉ(u,v)(x̂u, yv, w(u,v)).

Then, we have that for any vertex u0 ∈ V ′ \ S, the following inequality holds:

∥ψ(w, y)u0
− ψ(w′, y′)u0

∥ ≤ C

( ∑
e∈E0∪E1

λdG′ (h,e)−1∥we − w′
e∥+

∑
v∈S

λdG′ (h,v)−1∥yv − y′v∥

)
,∀w, y, w′, y′,

where C := (2ℓ)/µ and λ := 1− 2 ·
(√

1 + (∆′ℓ/µ) + 1
)−1

. Here, ∆′ denote the maximum degree of any vertex v ∈ V ′

in graph G′. For e = (u, v) ∈ E ′, we define dG′(u0, e) := min{dG′(u0, u), dG′(u0, v)}.

Proof of Theorem D.2. Let e = [π⊤, ϵ⊤]⊤ be a vector where ϵ = {ϵv}v∈S for ϵv ∈ Rpv and π = {πe}e∈E0∪E1
, for

πe ∈ Rq . Let θ be an arbitrary real number. Define function ĥ : R
∑

v∈V′\S pv × R(|E0|+|E1|)×q × R
∑

v∈S pv → R≥0 as

ĥ(x̂, w, y) =
∑

v∈V′\S

f̂v(x̂v) +
∑

(u,v)∈E0

ĉ(u,v)(x̂u, x̂v, w(u,v)) +
∑

(u,v)∈E1

ĉ(u,v)(x̂u, yv, w(u,v)).

To simplify the notation, we use ζ to denote the tuple of system parameters, i.e.,

ζ := (w, y).

From our construction, we know that ĥ is µ-strongly convex in x, so we use the decomposition ĥ = ĥa + ĥb, where

ĥa(x̂, ζ) =
∑

v∈V′\S

µ

2
∥x̂v∥2 +

∑
(u,v)∈E0

ĉ(u,v)(x̂u, x̂v, w(u,v)) +
∑

(u,v)∈E1

ĉ(u,v)(x̂u, yv, w(u,v)),

ĥb(x̂, ζ) =
∑

v∈V′\S

(
f̂v(x̂v)−

µ

2
∥x̂v∥2

)
.

Since ψ(ζ + θe) is the minimizer of convex function ĥ(·, ζ + θe), we see that

∇x̂ĥ(ψ(ζ + θe), ζ + θe) = 0.

Taking the derivative with respect to θ gives that

∇2
x̂ĥ(ψ(ζ + θe), ζ + θe)

d

dθ
ψ(ζ + θe) = −

∑
v∈S

∇yv∇x̂ĥ(ψ(ζ + θe), ζ + θe)ϵv

−
∑

e∈E1∪E2

∇we
∇x̂ĥ(ψ(ζ + θe), ζ + θe)πe.

3We add a hat over the decision vector x̂v to distinguish it with the local action xv
t and global action xt defined in Section 2. We

assume x̂v is a pv dimensional real vector.
4We do not consider the disturbance vectors in the exponentially decaying local perturbation bounds defined in Definition 3.1, but

adding w into the edge costs makes Theorem D.2 more general. For each edge e, we is a q-dimensional real vector.
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To simplify the notation, we define

M := ∇2
x̂ĥ(ψ(ζ + θe), ζ + θe),which is a |V ′ \ S| × |V ′ \ S| block matrix,

R(v) := −∇yv
∇x̂ĥ(ψ(ζ + θe), ζ + θe),∀v ∈ S,which are |V ′ \ S| × 1 block matrix,

K(e) := −∇we
∇x̂ĥ(ψ(ζ + θe), ζ + θe),∀e ∈ E0 ∪ E1,which are |V ′ \ S| × 1 block matrices,

where in M , the block size is pu × pv,∀(u, v) ∈ (V ′ \ S)2; in R(v), the block size is pu × pv,∀u ∈ V ′ \ S; in K(e), the
block size is pu × q,∀u ∈ V ′ \ S. Hence we can write

d

dθ
ψ(ζ + θe) =M−1

(∑
v∈S

R(v)ϵv +
∑

e∈E1∪E2

K(e)πe

)
.

Recall that {R(v)}v∈S are |V ′ \ S|×1 block matrices with block size pu×pv,∀u ∈ V ′ \S; {K(e)}e∈E0∪E1
are |V ′ \ S|×1

block matrices with block size pu× q,∀u ∈ V ′ \S. Let N(v) denote the set of neighbors of vertex v on G′. For R(v), v ∈ S,
the (u, 1)-th block can be non-zero only if u ∈ (V ′ \S)∩N(v). For K(e), e ∈ E0 ∪E1, the (u, 1)-th block can be non-zero
only if u ∈ e and u ∈ V ′ \ S. Hence we see that

d

dθ
ψ(ζ + θe)u0

=
∑
v∈S

(M−1)u0,(V′\S)∩N(v)R
(v)
(V′\S)∩N(v),1ϵv +

∑
e∈E0∪E1

(M−1)u0,{u∈e|u∈V′\S}K
(τ)
{u∈e|u∈V′\S},1πe.

Since the switching costs cτ (·, ·, ·), τ = 1, . . . , p are ℓ-strongly smooth, we know that the norms of

R
(v)
(V′\S)∩N(v),1, and K(τ)

{u∈e|u∈V′\S},1

are all upper bounded by ℓ. Taking norms on both sides gives that∥∥∥∥ ddθψ(ζ + θe)u0

∥∥∥∥ ≤
∑
v∈S

ℓ
∥∥(M−1)u0,(V′\S)∩N(v)

∥∥∥ϵv∥+ ∑
e∈E0∪E1

ℓ
∥∥(M−1)u0,{u∈e|u∈V′\S}

∥∥∥πe∥. (11)

Note that M can be decomposed as M =Ma +Mb, where

Ma := ∇2
x̂ĥa(ψ(ζ + θe), ζ + θe),

Mb := ∇2
x̂ĥb(ψ(ζ + θe), ζ + θe).

Since Ma is block tri-diagonal and satisfies (µ+∆′ℓ)I ⪰Ma ⪰ µI , and Mb is block diagonal and satisfies Mb ⪰ 0, we
obtain the following using Lemma D.1:∥∥(M−1)u0,(V′\S)∩N(v)

∥∥ ≤ 2

µ
λdG′ (u0,v)−1, and

∥∥(M−1)u0,{u∈e|u∈V′\S}
∥∥ ≤ 2

µ
λdG′ (u0,e)−1,

where λ := (
√
cond(Ma)− 1)/(

√
cond(Ma) + 1) = 1− 2 ·

(√
1 + (2ℓ/µ) + 1

)−1

.

Substituting this into (11), we see that∥∥∥∥ ddθψ(ζ + θe)u0

∥∥∥∥ ≤ C

(∑
v∈S

λdG′ (u0,v)−1∥ϵv∥+
∑

e∈E0∪E1

λdG′ (u0,e)−1∥πe∥

)
,

where C = (2ℓ)/µ.

Finally, by integration we can complete the proof

∥ψ(ζ)u0 − ψ(ζ + e)u0∥ =

∥∥∥∥∫ 1

0

d

dθ
ψ(ζ + θe)u0dθ

∥∥∥∥
≤
∫ 1

0

∥∥∥∥ ddθψ(ζ + θe)u0

∥∥∥∥dθ
≤ C

(∑
v∈S

λdG′ (u0,v)−1∥ϵv∥+
∑

e∈E0∪E1

λdG′ (u0,e)−1∥πe∥

)
.
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Now we return to the proof of Theorem 3.2. For simplicity, we temporarily assume the individual decision points are
unconstrained, i.e., Dv

t = Rn. We discuss how to relax this assumption in Appendix D.3.

We first consider the case when
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
only differ at one entry yut−1 or zuτ . If the difference is

at zuτ , by viewing each subset {τ} ×Nr
v for τ ∈ {t− 1, t, . . . , t+ k} in the original problem as a vertex in the new graph

G′ and applying Theorem D.2, we obtain that∥∥xv0
t0 − (xv0

t0 )
′∥∥ ≤ C0

1 · (ρ0T )|t0−τ |∥zuτ − (zuτ )
′∥, (12)

where C0
1 = (2ℓT )/µ and ρ0T = 1− 2 ·

(√
1 + (2ℓT /µ) + 1

)−1

. On the other hand, by viewing each subset {τ | t− 1 ≤
τ < t+ k} × {u} for u ∈ Nr

v in the original problem as a vertex in the new graph G′ and applying Theorem D.2, we obtain
that ∥∥xv0

t0 − (xv0
t0 )

′∥∥ ≤ C1
1 · (ρ0S)dG(u,v0)∥zuτ − (zuτ )

′∥, (13)

where C1
1 = (2∆ℓS)/µ and ρ0S = 1− 2 ·

(√
1 + (2∆ℓS/µ)

)−1

. Combining (12) and (13) gives that

∥∥xv0
t0 − (xv0

t0 )
′∥∥ ≤ min{C0

1 · (ρ0T )|t0−τ |, C1
1 · (ρ0S)dG(u,v0)} · ∥zuτ − (zuτ )

′∥

≤
√
C0

1 · C1
1 · (ρ0T )|t0−τ |/2 · (ρ0S)dG(u,v0)/2 · ∥zuτ − (zuτ )

′∥

≤ C1 · ρ|t0−τ |
T ρ

dG(v0,u)
S ∥zuτ − (zuτ )

′∥ (14)

when
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
only differ at one entry zuτ for (τ, u) ∈ ∂N

(k,r)
(t,v) .

We can use the same method to show that when
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
only differ at one entry yut−1 for

u ∈ Nr
v , we have ∥∥xv0

t0 − (xv0
t0 )

′∥∥ ≤ C2ρ
t0−(t−1)
T ρ

dG(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥. (15)

In the general case where
(
{yut−1}, {zuτ }

)
and

(
{yut−1}, {zuτ }

)
differ not only at one entry, we can perturb the entries of

parameters one at a time and apply the triangle inequality. Then, the conclusion of Theorem 3.2 follows from (14) and (15).

D.2. Proof of Theorem 3.3

The proof follows a four step structure outlined in Appendix C.1.

STEP 1. ESTABLISH FIRST ORDER EQUATIONS

Given any system parameter ζ = (x
(Nr

v )
t−1 , {zuτ |(τ, u) ∈ ∂N

(k,r)
(t,v) }), we can define function ĥ as follows:

ĥ(x̂[k−1], ζ) =
k−1∑
i=1

∑
u∈Nr−1

v

fut−1+i(x̂
u
i ) +

k−1∑
i=1

∑
(u,u′)∈E(Nr

v )

s
(u,u′)
t−1+i(x̂

u
i , x̂

u′

i ) +
k∑

i=1

∑
u∈Nr

v

cut−1+i(x̂
u
i , x̂

u
i−1).

x̂0 coincides with xt−1 on every node in Nr
v . x̂k coincides with zt−1+k on every node in Nr

v . For 1 ≤ i ≤ k − 1, x̂ui
coincides with zut−1+i on the boundary, i.e., u ∈ ∂Nr

v .

Let perturbation vector e = [eT0 , e
T
1 , · · · , eTk−1, e

T
k ]

T where e0, ek ∈ R|Nr
v |×n and ei = R|∂Nr

v |×n for 1 ≤ i ≤ k − 1.

Given θ ∈ R, ψ(ζ + θe) is the global minimizer of convex function ĥ(·, ζ + θe), and hence we have

∇
x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe) = 0.
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Taking the derivative with respect to θ, we establish the following set of equations:

∇2

x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe)
d

dθ
ψ(ζ + θe) = −∇

x̂
(Nr

v )

0

∇
x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe)e0

−∇
x̂
(Nr

v )

k

∇
x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe)ek

−
k−1∑
τ=1

∇
x̂
(∂Nr

v )
τ

∇
x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe)eτ .

(16)

We adopt the following short-hand notation:

• M := ∇2

x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe), which is a hierarchical block matrix with the first level of dimension (k − 1)×

(k − 1), the second level of dimension |Nr−1
v | × |Nr−1

v | and the third level of dimension n× n.

• R(1) := −∇
x̂
(Nr

v )

0

∇
x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe), which is also a hierarchical block matrix with the first level of

dimension (k − 1)× 1, the second level of dimension |Nr−1
v | × |Nr

v | and the third level of dimension n× n.

• R(k−1) := −∇
x̂
(Nr

v )

k

∇
x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe), which is also a hierarchical block matrix with the first level of

dimension (k − 1)× 1, the second level of dimension |Nr−1
v | × |Nr

v | and the third level of dimension n× n.

• K(τ) := −∇
x̂
(∂Nr

v )
τ

∇
x̂
(N

r−1
v )

1:k−1

ĥ(ψ(ζ + θe), ζ + θe), which is also a hierarchical block matrix with the first level of

dimension (k − 1)× 1. the second level of dimension |Nr−1
v | × |∂Nr

v | and the third level of dimension n× n.

Using the above, we can rewrite (16) as follows:

d

dθ
ψ(ζ + θe) =M−1

(
R(1)e0 +R(k−1)ek +

k−1∑
τ=1

K(τ)yτ

)
.

Due to the structure of temporal interaction cost functions, for R(1)(resp. R(k−1)), only when the first level index is 1 (resp.
k − 1), the lower level block matrix is non-zero; due to the structure of spatial interaction cost functions, for K(τ), only
when the first level index is τ , the lower level block matrix is non-zero. Hence, for 1 ≤ τ ′ ≤ k − 1, we have

(
d

dθ
ψ(ζ + θe))τ ′ =M−1

τ ′,1R
(1)
1 e0 +M−1

τ ′,k−1R
(k−1)
k−1 ek +

k−1∑
τ=1

M−1
τ ′,τK

(τ)
τ yτ , (17)

where the subscripts on the right hand side denote the first level index of hierarchical block matrices M , R(1), R(k−1) and
K(τ).
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STEP 2. EXPLOIT THE STRUCTURE OF MATRIX M

We decompose M to block diagonal matrix D and tri-diagonal block matrix A such that M = D + A. We denote each
diagonal block in D as Di,i for 1 ≤ i ≤ k − 1. Other blocks in D are zero matrices.

D :=



∗ 0 · · · ∗
0 ∗ 0
...

. . .
∗ 0 · · · ∗

∗ 0 · · · ∗
0 ∗ 0
...

. . .
∗ 0 · · · ∗

. . .
∗ 0 · · · ∗
0 ∗ 0
...

. . .
∗ 0 · · · ∗


Each non-zero block in A is a diagonal block matrix, which captures the Hessian of temporal interaction cost between
consecutive time steps. Denote each block as Ai,j for 1 ≤ i, j ≤ k − 1.

A :=



∗ 0 · · · 0
0 ∗ 0
...

. . .
0 0 · · · ∗

∗ 0 · · · 0
0 ∗ 0
...

. . .
0 0 · · · ∗

∗ 0 · · · 0
0 ∗ 0
...

. . .
0 0 · · · ∗

. . .

∗ 0 · · · 0
0 ∗ 0
...

. . .
0 0 · · · ∗

∗ 0 · · · 0
0 ∗ 0
...

. . .
0 0 · · · ∗


We rewrite the inverse of M as follows:

M−1 = (D +A)−1 = D−1(I +AD−1)−1 = D−1P−1.

Next we show the proof for Lemma C.2.

Proof of Lemma C.2. We claim the eigenvalues of P are in {λ ∈ C||λ− z| ≤ R} for some R ∈ R>0 and z ∈ C \ {0} such
that R < |z|. We first establish Lemma C.2 based on the claim and then prove the claim.

We follow the argument as in the proof of Thm 4 in Shin et al. (2020). Since any eigenvalue λ of P satisfies |λ− z| ≤ R,
|λ/z − 1| ≤ R/|z| < 1. Thus, the eigenvalues of I − (1/z)P lie on {λ̃ ∈ C : |λ̃| ≤ R/|z|}, which guarantees
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ρ(I − (1/z)P ) < 1. Therefore,

P−1 =
1

z

(
I − (I − 1

z
P )

)−1

=
1

z

∑
q≥0

(I − 1

z
P )q.

We let z = 1 and R = 2ℓT
µ and prove the above claim by utilizing Gershgorin circle theorem for block matrices.

By Theorem 1.13.1 and Remark 1.13.2 of Tretter (2008), the following holds: Consider A = (Aij) ∈ Rdn×dn (d, n ≥ 1)
where Aij ∈ Rd×d and Aii is symmetric. Suppose σ(·) is the spectrum of a matrix. Define set

Gi := σ(Aii) ∪

{
∪d
k=1 B

(
λk(Aii),

∑
j ̸=i

∥Aij∥

)}

where B(·, ·) denotes a disk B(c, r) = {λ : ∥λ− c∥ ≤ r} and λk is the k-th smallest eigenvalues of Aii. Then,

σ(A) ∈ ∪n
i=1Gi.

Next, we use the above fact to find a superset of σ(P ). Every diagonal block of P is I . Moreover, Pi,j = 0 for |i− j| > 1,
Pi,i−1 = Ai,i−1D

−1
i−1,i−1, Pi,i+1 = Ai,i+1D

−1
i+1,i+1. Hence we have∑

j ̸=i

∥Pi,j∥ ≤ ∥Ai,i−1∥
∥∥D−1

i−1,i−1

∥∥+ ∥Ai,i+1∥
∥∥D−1

i+1,i+1

∥∥
≤ 2ℓT

µ
.

The last inequality is by Assumptions 2.1. Therefore, Gi = B(1, 2ℓTµ ). This implies all eigenvalues of P are in B(1, 2ℓTµ ).

To further simplify the notation in the power series expansion, we define J := AD−1 = P − I . Given any time indices τ ′

and τ , we have

(M−1)τ ′,τ = (D−1)τ ′,τ ′(P−1)τ ′,τ

= (D−1)τ ′,τ ′ ×
∑
ℓ≥0

(−J)ℓτ ′,τ ,
(18)

where the first equality is since D−1 is a diagonal block matrix, the second equality is due to Lemma C.2.

STEP 3: PROPERTY FOR GENERAL EXPONENTIAL-DECAY MATRICES

This step simply requires proving Lemma C.3.

Proof of Lemma C.3. Under the assumptions, we see that

∑
q

(
1

λ′
)dM(u,q)∥(A1A2 · · ·Aℓ)u,q∥ =

∑
q

(
1

λ′
)dM(u,q)

∥∥∥∥∥∥
∑

s1,··· ,sℓ−1

(A1)u,s1(A2)s1,s2 · · · (Aℓ)sℓ−1,q

∥∥∥∥∥∥
≤
∑
q

(
1

λ′
)dM(u,q)

∑
s1,··· ,sℓ−1

(C1λ
dM(u,s1))(C2λ

dM(s1,s2)) · · · (Cℓλ
dM(sℓ−1,q))

≤
∑
q

∑
s1,··· ,sℓ−1

ℓ∏
i=1

Ci(
λ

λ′
)dM(u,s1)+dM(s1,s2)+···+dM(sℓ−1,q)

≤ (ã)ℓ
ℓ∏

i=1

Ci.

(19)
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Hence, we obtain that ∥∥∥∥∥(
ℓ∏

i=1

Ai)u,q

∥∥∥∥∥ ≤ C ′(λ′)dM (u,q).

STEP 4: ESTABLISH CORRELATION DECAY PROPERTIES OF MATRIX M

In this step, we use the property developed for general exponential-decay matrices on M and derive the perturbation bound
in the Theorem 3.3.

Lemma D.3. For ℓ ≥ 1, time index i, j ≥ 1, Jℓ has the following properties:

• (Jℓ)i,j = 0 if ℓ < |i− j| or ℓ− |i− j| is odd.

• (Jℓ)i,j is a summation of terms
∏ℓ

k=1Ajk,ikD
−1
ik,ik

and the number of such terms is bounded by
(

ℓ
(ℓ−|i−j|)/2

)
.

Note for integers m, k ≥ 1, we define
(

m
k/2

)
= 0 if k is odd.

Proof. Since J is a tri-diagonal banded matrix, Jℓ
i,j = 0 for ℓ < |i− j|. We prove the rest of properties of J by induction

on ℓ. When ℓ = 1,
Ji,i = 0, Ji,i−1 = Ai,i−1D

−1
i−1,i−1, Ji,i+1 = Ai,i+1D

−1
i+1,i+1.

Lemma D.3 holds for the base case. Suppose Lemma D.3 holds for Jq for q ≤ ℓ− 1. Let q = ℓ, then

Jℓ
i,j =

∑
k

Jℓ−1
i,k Jk,j = Jℓ−1

i,j−1Aj−1,jD
−1
j,j + Jℓ−1

i,j+1Aj+1,jD
−1
j,j .

By induction hypothesis, Jℓ−1
i,j is a summation of terms

∏ℓ−1
k=1Ajk,ikD

−1
ik,ik

. Moreover, the number of such terms is bounded
by
(

ℓ−1
(ℓ−1−|i−j−1|)/2

)
+
(

ℓ−1
(ℓ−1−|i−j+1|)/2

)
. Next we will show

(
ℓ−1

(ℓ−1−|i−j−1|)/2
)
+
(

ℓ−1
(ℓ−1−|i−j+1|)/2

)
=
(

ℓ
(ℓ−|i−j|)/2

)
case

by case.

Case 1: ℓ− |i− j| is odd.

If ℓ− |i− j| is odd, then ℓ− 1− |i− j − 1| and ℓ− 1− |i− j + 1| are both odd. Under this case,(
ℓ− 1

(ℓ− 1− |i− j − 1|)/2

)
+

(
ℓ− 1

(ℓ− 1− |i− j + 1|)/2

)
= 0,

which is equal to
(

ℓ
(ℓ−|i−j|)/2

)
.

Case 2: ℓ− |i− j| is even and i = j. Under this case, we have(
ℓ− 1

(ℓ− 1− |i− j − 1|)/2

)
+

(
ℓ− 1

(ℓ− 1− |i− j + 1|)/2

)
=

(
ℓ− 1

ℓ/2− 1

)
+

(
ℓ− 1

ℓ/2− 1

)
.

Since ℓ is even,
(

ℓ−1
ℓ/2−1

)
+
(

ℓ−1
ℓ/2−1

)
=
(

ℓ
ℓ/2

)
=
(

ℓ
(ℓ−|i−j|)/2

)
.

Case 3: ℓ− |i− j| is even and i ̸= j.

If ℓ− |i− j| is even, then ℓ− 1− |i− j − 1| and ℓ− 1− |i− j + 1| are both even. We denote (ℓ− |i− j|)/2 as k0. By
triangle inequality, (ℓ− 1− |i− j − 1|)/2 and (ℓ− 1− |i− j + 1|)/2 are in {k0 − 1, k0}. Since i ̸= j,(

ℓ− 1

(ℓ− 1− |i− j − 1|)/2

)
+

(
ℓ− 1

(ℓ− 1− |i− j + 1|)/2

)
=

(
ℓ− 1

k0 − 1

)
+

(
ℓ− 1

k0

)
,

which sums to
(
ℓ
k0

)
by Pascal’s triangle.
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Next we present the proof of Lemma C.4.

Proof of Lemma C.4. By Lemma D.3, (Jℓ)i,j is a summation of terms
∏ℓ

k=1Ajk,ikD
−1
ik,ik

and the number of such terms is
bounded by

(
ℓ

(ℓ−|i−j|)/2
)
.

Define Bk := Ajk,ikD
−1
ik,ik

. Recall Ajk,ik is a diagonal matrix and Dik,ik is a graph-induced banded matrix.

∥(Bk)u,q∥ =
∥∥(Ajk,ikD

−1
ik,ik

)u,q
∥∥ =

∥∥(Ajk,ik)u,u(D
−1
ik,ik

)u,q
∥∥ ≤ ℓT

∥∥(D−1
ik,ik

)u,v
∥∥ ≤ 2ℓT

µ
γ
dG(u,v)
S .

where the last inequality is by using Lemma D.1 on Dik,ik .

Under the condition b <∞, we can use Lemma C.3 to obtain the following bound,∥∥∥∥∥(
ℓ∏

k=1

Ajk,ikD
−1
ik

)u,v

∥∥∥∥∥ ≤ (b
2ℓT
µ

)ℓ(γ′S)
dG(u,v).

Since the number of such terms is bounded by
(

ℓ
(ℓ−|i−j|)/2

)
, we have

∥∥((Jℓ)i,j)u,q
∥∥ ≤

(
ℓ

(ℓ− |i− j|)/2

)
(b
2ℓT
µ

)ℓ(γ′S)
dG(u,v).

Lemma D.4. Given 1 ≤ τ ′, τ ≤ k − 1, y ∈ R|∂Nr
v |×n and v0 ∈ Nr−1

v , we have∥∥∥∥∥
(
(M)−1

τ ′,τK
(τ)
τ y

)
v0

∥∥∥∥∥ ≤ C1ρ
|τ ′−τ |
T

∑
u∈∂Nr

v

ρ
dG(v0,u)−1
S ∥yu∥,

and for i ∈ {1, k − 1}, e ∈ R|Nr
v |×n,∥∥∥∥∥
(
(M−1)τ ′,i)R

(i)
i e

)
v0

∥∥∥∥∥ ≤ C2ρ
|τ ′−i|+1
T

∑
u∈Nr

v

ρ
dG(v0,u)
S ∥eu∥,

where ρT = 4ãℓT
µ and ρS = (1 + b1 + b2)γS . We let C1 = C2 = max{ a2

2ã(1−4ãℓT /µ) ,
2a2∆ℓS/µ

γS(1+b1+b2)(1−4ãℓT /µ)}.

Proof. Given 1 ≤ τ, τ ′ ≤ k − 1 and v0 ∈ Nr−1
v , since M−1 = D−1

∑
ℓ≥0(−J)ℓ, we have∥∥∥∥∥

(
(M)−1

τ ′,τK
(τ)
τ y

)
v0

∥∥∥∥∥ =

∥∥∥∥∥∥
(
D−1

τ ′,τ ′

∑
ℓ≥0

(−J)ℓτ ′,τK
(τ)
τ y

)
v0

∥∥∥∥∥∥. (20)

With slight abuse of notation, we use K to denote K(τ)
τ , and Q−1 to denote D−1

τ ′,τ ′ in this proof from now. We can rewrite
the right hand side of (20) using the new notation as follows:∥∥∥∥∥∥

(
Q−1

∑
ℓ≥0

(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥∥ ≤
∑
ℓ≥0

∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥
=
∑
ℓ≥0

∥∥∥∥∥∥
∑

q∈Nr−1
v

(
Q−1(−J)ℓτ ′,τ

)
v0,q

(Ky)q

∥∥∥∥∥∥
≤
∑
ℓ≥0

∑
q∈Nr−1

v

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τ

)
v0,q

∥∥∥∥∥∥∥(Ky)q∥.
(21)
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For a given q ∈ Nr−1
v and y ∈ R|∂Nr

v |d,

∥(Ky)q∥ =

∥∥∥∥∥∥
∑

u∈∂Nr
v

Kq,uyu

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

u∈∂Nr
v∩N1

q

Kq,uyu

∥∥∥∥∥∥.
where the last equality is since spacial interaction costs are only among neighboring nodes.

For a given u ∈ ∂Nr
v , since the spacial interaction cost for each edge is ℓS smooth,

∥Kq,uyu∥ ≤ ∥Kq,u∥∥yu∥ ≤ ℓS∥yu∥,

which gives
∥(Ky)q∥ ≤

∑
u∈∂Nr

v∩N1
q

ℓS∥yu∥.

Therefore, ∥∥∥∥∥∥
(
Q−1

∑
ℓ≥0

(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥∥ ≤ ℓS
∑
ℓ≥0

∑
q∈Nr−1

v

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τ

)
v0,q

∥∥∥∥∥∥
∑

u∈∂Nr
v∩N1

q

∥yu∥. (22)

By Lemma C.4, (−J)ℓτ ′,τ satisfies the following exponential decay properties: for any u, q ∈ Nr−1
v ,∥∥((Jℓ)τ ′,τ )u,q

∥∥ ≤
(

ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã

2ℓT
µ

)ℓ(γ′S)
dG(u,q),

where we choose δ = b1 · γS , γ′S = (1 + b1)γS and ã =
∑

γ≥0(
1

1+b1
)γh(γ).

Moreover, Q−1 (which denotes D−1
τ ′,τ ′ ) is the inverse of a graph-induced banded matrix. Q−1 satisfies: for any u, q ∈ Nr−1

v ,∥∥(Q−1)u,q
∥∥ ≤ 2

µ
γ
dG(u,q)
S <

2

µ
(γ′S)

dG(u,q),

where the first inequality is again by using Lemma D.1 on Dτ ′,τ ′ .

Applying Lemma C.3 on Q−1 and
∥∥((Jℓ)τ ′,τ )

∥∥, we have for any u, q ∈ Nr−1
v , and ℓ ≥ 1,

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,τ

)
u,q

∥∥∥∥∥∥ ≤ a2
2

µ

(
ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã

2ℓT
µ

)ℓ(λ′)dG(u,q),

where λ′ := γ′S + b2 · γS < 1 and a :=
∑

γ≥0(
1+b1

1+b1+b2
)γh(γ). Note that J0 := I , it is straightforward to verify that the

above inequality holds when ℓ = 0.

With the exponential decay properties of Q−1(−J)ℓτ ′,τ , we have∥∥∥∥∥∥
(
Q−1

∑
ℓ≥0

(−J)ℓτ ′,τKy

)
v0

∥∥∥∥∥∥ ≤ ℓSa
2 2

µ

∑
ℓ≥0

(
ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã

2ℓT
µ

)ℓ
∑

q∈Nr−1
v

(λ′)dG(v0,q)
∑

u∈∂Nr
v∪N1

q

∥yu∥

≤ ℓSa
2 2

µ

∑
ℓ≥|τ ′−τ |

(
ℓ

(ℓ− |τ ′ − τ |)/2

)
(ã

2ℓT
µ

)ℓ
∑

u∈∂Nr
v

∆(λ′)dG(v0,u)−1∥yu∥

≤ ∆ℓSa
2 2

µ

∑
ℓ≥|τ ′−τ |

(
4ãℓT
µ

)ℓ
∑

u∈∂Nr
v

(λ′)dG(v0,u)−1∥yu∥

≤ 2∆ℓSa
2

µ− 4ãℓT
(
4ãℓT
µ

)|τ
′−τ |

∑
u∈∂Nr

v

(λ′)dG(v0,u)−1∥yu∥

=
2∆ℓSa

2

λ′(µ− 4ãℓT )
(
4ãℓT
µ

)|τ
′−τ |

∑
u∈∂Nr

v

(λ′)dG(v0,u)∥yu∥.

(23)
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The third inequality uses
(

ℓ
(ℓ−|τ ′−τ |)/2

)
≤ 2ℓ, which can be proved using the following version of Stirling’s approximation:

For all n ≥ 1, e denotes the natural number,
√
2πn(n/e)ne1/(12n+1) < n! <

√
2πn(n/e)ne1/(12n).

Similarly, consider
∥∥∥((M−1)τ ′,i)R

(i)
i e)v0

∥∥∥ for i ∈ {1, k − 1}. With slight abuse of notation, in this proof, we use R to

denote R(i)
i and use the notation Q−1 to denote D−1

τ ′,τ ′ . Following the same steps as before, we have∥∥∥∥∥
(
(M−1)τ ′,i)R

(i)
i e

)
v0

∥∥∥∥∥ ≤
∑
ℓ≥0

∑
q∈Nr

v

∥∥∥∥∥∥
(
Q−1(−J)ℓτ ′,i

)
v0,q

∥∥∥∥∥∥∥(Re)q∥. (24)

Since temporal interactions occurs for the same node under consecutive time steps, R is a diagonal block matrix. Hence,

∥(Re)q∥ = ∥Rq,qeq∥ ≤ ℓT ∥eq∥.

Moreover, using the exponential decay properties of Q−1(−J)ℓτ ′,i, we have for u, q ∈ Nr−1
v ,∥∥∥∥∥∥

(
Q−1(−J)ℓτ ′,i

)
u,q

∥∥∥∥∥∥ ≤ a2
2

µ

(
ℓ

(ℓ− |τ ′ − i|)/2

)
(ã

2ℓT
µ

)ℓ(λ′)dG(u,q).

Therefore, ∥∥∥((M−1)τ ′,i)R
(i)
i e)v0

∥∥∥ ≤
∑
ℓ≥0

∑
q∈Nr

v

a2
2

µ

(
ℓ

(ℓ− |τ ′ − i|)/2

)
(ã

2ℓT
µ

)ℓ(λ′)dG(v0,q)ℓT ∥eq∥

≤
∑

ℓ≥|τ ′−i|

∑
q∈Nr

v

a2
2

µ

(
ℓ

(ℓ− |τ ′ − i|)/2

)
(ã

2ℓT
µ

)ℓ(λ′)dG(v0,q)ℓT ∥eq∥

≤ 2ℓTa
2

µ

∑
ℓ≥|τ ′−i|

(
4ãℓT
µ

)ℓ
∑
q∈Nr

v

(λ′)
dG(v0,q)∥eq∥

≤ 2ℓTa
2

µ− 4ãℓT
(
4ãℓT
µ

)|τ
′−i|

∑
q∈Nr

v

(λ′)dG(v0,q)∥eq∥

=
a2µ

2ã(µ− 4ãℓT )
(
4ãℓT
µ

)|τ
′−i|+1

∑
q∈Nr

v

(λ′)dG(v0,q)∥eq∥.

(25)

Given time index 1 ≤ τ ′ ≤ k − 1, node v0 ∈ Nr−1
v , and perturbation vector e = (e0, e1, · · · , ek),∥∥∥∥( ddθψ(ζ + θe))τ ′,v0

∥∥∥∥ ≤

∥∥∥∥∥
(
M−1

τ ′,1R
(1)
1 e0

)
v0

∥∥∥∥∥+
∥∥∥∥∥
(
M−1

τ ′,k−1R
(k−1)
k−1 ek

)
v0

∥∥∥∥∥+
k−1∑
τ=1

∥∥∥∥∥
(
M−1

τ ′,τK
(τ)
τ eτ

)
v0

∥∥∥∥∥
≤ a2µ

2ã(µ− 4ãℓT )

[
ρτ

′

T

∑
q∈Nr

v

ρ
dG(v0,q)
S ∥(e0)q∥+ ρk−τ ′

T

∑
q∈Nr

v

ρ
dG(v0,q)
S ∥(ek)q∥

]

+
k−1∑
τ=1

2∆ℓSa
2

λ′(µ− 4ãℓT )
ρ
|τ ′−τ |
T

∑
u∈∂Nr

v

(ρS)
dG(v0,u)∥(eτ )u∥

where ρT = 4ãℓT
µ and ρS = λ′ = (1 + b1 + b2)γS . We let C = max{ a2

2ã(1−4ãℓT /µ) ,
2a2∆ℓS/µ

γS(1+b1+b2)(1−4ãℓT /µ)}. Under the
condition µ ≥ max{8ãℓT ,∆ℓS(b1 + b2)/4}, ρT < 1 and ρS < 1.
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Then, ∥∥∥∥( ddθψ(ζ + θe))τ ′,v0

∥∥∥∥
≤ C

[
ρτ

′

T

∑
q∈Nr

v

ρ
dG(v0,q)
S ∥(e0)q∥+ ρk−τ ′

T

∑
q∈Nr

v

ρ
dG(v0,q)
S ∥(ek)q∥+

k−1∑
τ=1

ρ
|τ ′−τ |
T

∑
u∈∂Nr

v

(ρS)
dG(v0,u)∥(eτ )u∥

]
.

Finally, let ζ = {yut−1, z
u
τ |(τ, u) ∈ ∂N

(k,r)
(v,t) } and e = {(yut−1)

′ − yut−1, (z
u
τ )

′ − zuτ }. By integration,

∥∥∥ψ(k,r)
(t,v)

(
{yut−1}, {zuτ }

)
(t0,v0)

− (ψ
(k,r)
(t,v)

(
{(yut−1)

′}, {(zuτ )′}
)
(t0,v0)

∥∥∥ ≤
∫ 1

0

∥∥∥∥( ddθψ(ζ + θe))t0,v0

∥∥∥∥dθ,
which is bounded by

C
∑
u∈Nr

v

ρ
t0−(t−1)
T ρ

dG(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥+ C

∑
(u,τ)∈∂N

(k,r)

(t,v)

ρ
|t0−τ |
T ρ

dG(v0,u)
S ∥zuτ − (zuτ )

′∥.

D.3. Adding Constraints to Perturbation Bounds

Recall that in Appendix D.1 and D.2, we showed Theorem 3.2 and Theorem 3.3 under the assumption that the individual
decisions are unconstrained to simplify the analysis. In this section, we present a general way to relax this assumption by
incorporating logarithm barrier functions, which also applies for Theorem C.5.

Recall that in Assumption 2.1, we assume that Dv
t is convex with a non-empty interior, and can be expressed as

Dv
t := {xvt ∈ Rn | (gvt )i(xvt ) ≤ 0,∀1 ≤ i ≤ mv

t },

where the i th constraint (gvt )i : Rn → R is a convex function in C2. For any time-vertex pair (τ, v), we can approximate
the individual constraints

(gvτ )i(x
v
τ ) ≤ 0,∀1 ≤ i ≤ mv

τ ,

by adding the logarithmic barrier function −µ
∑mv

τ
i=1 ln (−(gvτ )i(x

v
τ )) to the original node cost function fvτ . Here, parameter

µ is a positive real number that controls how “good” the barrier function approximates the indicator function

IDv
τ
(xvτ ) =

{
0 if (gvτ )i(x

v
τ ) ≤ 0,∀1 ≤ i ≤ mv

τ ,

+∞ otherwise.

The approximation improves as parameter µ becomes closer to 0. Thus, the new node cost function will be

Bv
τ (x

v
τ ;µ) := fvτ (x

v
τ )− µ

mv
τ∑

i=1

ln (−(gvτ )i(x
v
τ )).

As an extension of the original notation, we use ψ(k,r)
(t,v) ({y

u
t−1}, {zuτ };µ) denote the optimal solution of the following

optimization problem

argmin
{xu

τ |(τ,v)∈N
(k−1,r−1)

(t,v)
}

t+k−1∑
τ=t

∑
u∈Nr

v

Bu
τ (x

u
τ ;µ) +

∑
u∈Nr

v

cuτ (x
u
τ , x

u
τ−1) +

∑
(u,q)∈E(Nr

v )

g
(u,q)
t (xut , x

q
t )


s.t. xut−1 = yut−1,∀u ∈ Nr

v ,

xuτ = zuτ ,∀(τ, u) ∈ ∂N
(k,r)
(t,v) .

Compared with ψ(k,r)
(t,v) ({y

u
t−1}, {zuτ }) defined in Section 3.1, the constraints xuτ ∈ Du

τ are removed and the node costs
fuτ (x

u
τ ) are replaced with Bu

τ (xτ ;µ).
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A key observation we need to point out is that the perturbation bounds we have shown in Appendix D.1 and D.2 do not
depend on the smoothness constant ℓf of node cost functions. That means the perturbation bound∥∥∥ψ(k,r)

(t,v)

(
{yut−1}, {zuτ };µ

)
(t0,v0)

− ψ
(k,r)
(t,v)

(
{(yut−1)

′}, {(zuτ )′};µ
)
(t0,v0)

∥∥∥
≤ C1

∑
(u,τ)∈∂N

(k,r)

(t,v)

ρ
|t0−τ |
T ρ

dG(v0,u)
S ∥zuτ − (zuτ )

′∥+ C2

∑
u∈Nr

v

ρ
t0−(t−1)
T ρ

dG(v0,u)
S

∥∥yut−1 − (yut−1)
′∥∥

holds for arbitrary µ, where C1, C2, ρS , ρT are specified in Theorem 3.2 or Theorem 3.3 and are independent of µ. Theorem
3.10 in Forsgren et al. (2002) guarantees that ψ(k,r)

(t,v) ({y
u
t−1}, {zuτ };µk) converge to ψ(k,r)

(t,v) ({y
u
t−1}, {zuτ }) for any positive

sequence {µk}∞k=1 that tends to zero. Thus the above perturbation bound also holds for ψ(k,r)
(t,v) ({y

u
t−1}, {zuτ }) which includes

the constraints on individual decisions.

Note that the argument we present in this section also works for Theorem C.5.

E. Competitive Bounds
This appendix includes the proofs of the competitive bounds presented in Section 3.3.

E.1. Proof of Theorem C.8

We first derive an upper bound on the distance between xt and x∗t .

Note that for any time step t, we have ∥∥∥xt − ψ̃t(xt−1)t

∥∥∥ ≤ et. (26)

Thus we see that

∥xt − x∗t ∥ =
∥∥∥xt − ψ̃1(x0)t

∥∥∥
≤
∥∥∥xt − ψ̃t(xt−1)t

∥∥∥+ t−1∑
i=1

∥∥∥ψ̃t−i+1(xt−i)t − ψ̃t−i(xt−i−1)t

∥∥∥
≤
∥∥∥xt − ψ̃t(xt−1)t

∥∥∥+ t−1∑
i=1

CGρ
i
G

∥∥∥xt−i − ψ̃t−i(xt−i−1)t−i

∥∥∥ (27a)

≤
t−1∑
i=0

C0ρ
i
G

∥∥∥xt−i − ψ̃t−i(xt−i−1)t−i

∥∥∥ (27b)

≤
t∑

i=1

C0ρ
t−i
G ei, (27c)

where in (27a), we used Theorem C.5 and the fact that ψ̃t−i(xt−i−1)t can be written as

ψ̃t−i(xt−i−1)t = ψ̃t−i+1

(
ψ̃t−i(xt−i−1)t−i

)
t
.

We also used C0 = max{1, CG} in (27b) and (26) in (27c).

By (27) and the Cauchy-Schwarz Inequality, we see that

∥xt − x∗t ∥
2 ≤ C2

0

(
t∑

i=1

ρt−i
G ei

)2

≤ C2
0

(
t∑

i=1

ρt−i
G

)
·

(
t∑

i=1

ρt−i
G e2i

)
≤ C2

0

1− ρG
·

(
t∑

i=1

ρt−i
G e2i

)
.

Summing up over t gives that
H∑
t=1

∥xt − x∗t ∥
2 ≤ C2

0

(1− ρG)2
·

H∑
t=1

e2t .
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E.2. Proof of Lemma C.7

In this section, we show Lemma C.7 holds with following specific constants:

e2t :=
∥∥∥xt − x∗t|t−1

∥∥∥2
≤ 4C2

1C
2
0

(
h(r)2ρ2G

(1− ρT )(1− ρ2GρT )
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)∥∥xt−1 − x∗t−1

∥∥2
+

8C2
1

µ

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ ) + C3(r)

2 · ρ2(k−1)
T ft+k−1(x

∗
t+k−1)

)
(28)

Note that, by the principle of optimality, we have

xvt = ψ
(k,r)
(t,v)

(
{xut−1}, {θuτ }

)
(t,v)

,

(xvt|t−1)
∗ = ψ

(k,r)
(t,v)

(
{xut−1}, {(xuτ |t−1)

∗}
)
(t,v)

.

Recall that we define the quantity C3(r) :=
∑r

γ=0 h(γ) · ρ
γ
S to simplify the notation.

Since the exponentially decaying local perturbation bound holds in Definition 3.1, we see that

∥∥∥xvt − (xvt|t−1)
∗
∥∥∥ ≤ C1ρ

r
S

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥∥(xuτ |t−1)
∗ − θuτ

∥∥∥
+ C1ρ

k−1
T

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥∥, (29)

which implies that

∥∥∥xvt − (xvt|t−1)
∗
∥∥∥2 ≤ 2C2

1ρ
2r
S

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥∥(xuτ |t−1)
∗ − θuτ

∥∥∥
2

+ 2C2
1ρ

2(k−1)
T

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥∥
2

(30a)

≤ 2C2
1ρ

2r
S

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

1

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥∥(xuτ |t−1)
∗ − θuτ

∥∥∥2


+ 2C2
1ρ

2(k−1)
T

∑
u∈Nr

v

ρ
dG(u,v)
S

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥∥2
 (30b)

≤ 2C2
1h(r)

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥∥(xuτ |t−1)
∗ − θuτ

∥∥∥2


+ 2C2
1C3(r) · ρ2(k−1)

T

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥∥2
, (30c)

where we used the AM-GM Inequality in (30a); we used the Cauchy-Schwarz Inequality in (30b); we used the definitions of
functions h(r) and C3(r) in (30c).
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Summing up (30) over all v ∈ V and reorganizing terms gives∑
v∈V

∥∥∥xvt − (xvt|t−1)
∗
∥∥∥2

≤ 2C2
1h(r)

1− ρT
· ρ2rS

∑
v∈V

t+k−1∑
τ=t

ρτ−t
T

∑
u∈∂Nr

v

∥∥∥(xuτ |t−1)
∗ − θuτ

∥∥∥2


+ 2C2
1C3(r) · ρ2(k−1)

T

∑
v∈V

∑
u∈Nr

v

ρ
dG(u,v)
S

∥∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥∥2


≤ 2C2
1h(r)

2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T

∥∥∥x∗τ |t−1 − θτ

∥∥∥2 + 2C2
1C3(r)

2 · ρ2(k−1)
T

∥∥∥x∗t+k−1|t−1 − θt+k−1

∥∥∥2, (31)

where we used the facts that∑
v∈V

∑
u∈∂Nr

v

∥∥∥(xuτ |t−1)
∗ − θuτ

∥∥∥2 ≤ h(r)
∑
v∈V

∥∥∥(xvτ |t−1)
∗ − θvτ

∥∥∥2 = h(r) ·
∥∥∥x∗τ |t−1 − θτ

∥∥∥2,
and ∑

v∈V

∑
u∈∂Nr

v

ρ
dG(u,v)
S

∥∥∥(xut+k−1|t−1)
∗ − θut+k−1

∥∥∥2 ≤ C3(r)
∑
v∈V

∥∥∥(xvt+k−1|t−1)
∗ − θvt+k−1

∥∥∥2
= C3(r) ·

∥∥∥x∗t+k−1|t−1 − θt+k−1

∥∥∥2.
We also note that by the principle of optimality, the following equations hold for all τ ≥ t:

x∗τ |t−1 = ψ̃t(xt−1)τ ,

x∗τ = ψ̃t

(
x∗t−1

)
τ
.

Recall that C0 := max{1, CG}. By Theorem C.5, we see that∥∥∥x∗τ |t−1 − x∗τ

∥∥∥ ≤ C0ρ
τ−t+1
G

∥∥xt−1 − x∗t−1

∥∥, (32)

which implies ∥∥∥x∗τ |t−1 − θτ

∥∥∥2 ≤ 2
∥∥∥x∗τ |t−1 − x∗τ

∥∥∥2 + 2∥x∗τ − θτ∥2 (33a)

≤ 2C2
0ρ

2(τ−t+1)
G

∥∥xt−1 − x∗t−1

∥∥2 + 2∥x∗τ − θτ∥2, (33b)

where we used the triangle inequality and the AM-GM inequality in (33a); we used (32) in (33b).

Substituting (33) into (31) gives∑
v∈V

∥∥∥xvt − (xvt|t−1)
∗
∥∥∥2

≤ 4C2
1C

2
0

(
h(r)2ρ2G

(1− ρT )(1− ρ2GρT )
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)∥∥xt−1 − x∗t−1

∥∥2
+ 4C2

1

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T ∥x∗τ − θτ∥2 + C3(r)

2 · ρ2(k−1)
T

∥∥x∗t+k−1 − θt+k−1

∥∥2)

≤ 4C2
1C

2
0

(
h(r)2ρ2G

(1− ρT )(1− ρ2GρT )
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)∥∥xt−1 − x∗t−1

∥∥2
+

8C2
1

µ

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ ) + C3(r)

2 · ρ2(k−1)
T ft+k−1(x

∗
t+k−1)

)
, (34)
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where we used the fact that the node cost function fvτ is non-negative and µ-strongly convex for all τ, v, thus

fτ (x
∗
τ ) ≥

∑
v∈V

fvτ ((x
v
τ )

∗) ≥ µ

2

∑
v∈V

∥(xvτ )∗ − θvτ∥
2
=
µ

2
∥x∗τ − θτ∥2.

Note that
∑

v∈V

∥∥∥xvt − (xvt|t−1)
∗
∥∥∥2 =

∥∥∥xt − x∗t|t−1

∥∥∥2 = e2t . Thus we have finished the proof of (28).

E.3. Proof of Theorem 3.4

In this section, we show Theorem 3.4 holds with the following specific constants:

1 +

(
1 +

32C2
0C

2
1 (ℓf +∆ℓS + 2ℓT ) · h(r)2

µ(1− ρG)2(1− ρT )2

)
· ρrS +

(
1 +

32C2
0C

2
1 (ℓf +∆ℓS + 2ℓT )C3(r)

2

µ(1− ρG)2

)
ρk−1
T . (35)

under the assumption that

4C2
1C

4
0

(1− ρG)2

(
h(r)2ρ2G

(1− ρT )(1− ρ2GρT )
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)
≤ 1

2
. (36)

Recall that C0 is defined in Theorem C.8. Note that Theorem 3.2 and Theorem C.5 hold under Assumption 2.1. One can
check that C0, C1, (1− ρG)

−1, and (1− ρT )
−1 are bounded by polynomials of ℓf/µ, ℓT /µ, and (∆ℓS)/µ.

In the proof, we need to use Lemma F.2 in Lin et al. (2021) to bound LPC’s total cost by a weighted sum of the offline
optimal cost and the sum of squared distances between their trajectories. For completeness, we present Lemma F.2 in Lin
et al. (2021) below:

Lemma E.1. For a fixed dimension m ∈ Z+, assume a function h : Rm → R≥0 is convex, ℓ-smooth and continuously
differentiable. For all x, y ∈ Rm, for all η > 0, we have

h(x) ≤ (1 + η)h(y) +
ℓ

2

(
1 +

1

η

)
∥x− y∥2.

Now we come back to the proof of Theorem 3.4. We first bound the sum of squared distances between LPC’s trajectory and
the offline optimal trajectory:

H∑
t=1

∥xt − x∗t ∥
2 ≤ C2

0

(1− ρG)2

H∑
t=1

e2t (37a)

≤ 4C2
1C

4
0

(1− ρG)2

(
h(r)2ρ2G

(1− ρT )(1− ρ2GρT )
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

) H∑
t=1

∥∥xt−1 − x∗t−1

∥∥2
+

8C2
0C

2
1

µ(1− ρG)2

H∑
t=1

(
h(r)2

1− ρT
· ρ2rS

t+k−1∑
τ=t

ρτ−t
T fτ (x

∗
τ ) + C3(r)

2 · ρ2(k−1)
T ft+k−1(x

∗
t+k−1)

)
, (37b)

where we used Theorem C.8 in (37a); we used Lemma C.7 with the specific constants given in Appendix E.2 in (37b).

Recall that in (36), we assume r and k are sufficient large so that the coefficient of the first term in (37) satisfies

4C2
1C

4
0

(1− ρG)2

(
h(r)2ρ2G

(1− ρT )(1− ρ2GρT )
· ρ2rS + C3(r)

2 · ρ2(k−1)
T · ρ2kG

)
≤ 1

2
.

Substituting this bound into (37) gives that

H∑
t=1

∥xt − x∗t ∥
2 ≤ 16C2

0C
2
1

µ(1− ρG)2

(
h(r)2

(1− ρT )2
· ρ2rS + C3(r)

2 · ρ2(k−1)
T

)
·

H∑
t=1

ft(x
∗
t ). (38)
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By Lemma E.1, since ft is (ℓf + ∆ℓS)-smooth, convex, and non-negative on Rn, and ct is ℓT -smooth, convex, and
non-negative on Rn × Rn, we know that

ft(xt) ≤ (1 + η)ft(x
∗
t ) +

ℓf +∆ℓS
2

(
1 +

1

η

)
∥xt − x∗t ∥

2

ct(xt, xt−1) ≤ (1 + η)ct(x
∗
t , x

∗
t−1) +

ℓT
2

(
1 +

1

η

)(
∥xt − x∗t ∥

2
+
∥∥xt−1 − x∗t−1

∥∥2) (39)

holds for any η > 0. Summing the above inequality over t gives

H∑
t=1

(ft(xt) + ct(xt, xt−1))

≤ (1 + η)
H∑
t=1

(
ft(x

∗
t ) + ct(x

∗
t , x

∗
t−1)

)
+

(ℓf +∆ℓS + 2ℓT )

2

(
1 +

1

η

) H∑
t=1

∥xt − x∗t ∥
2

≤ (1 + η)cost(OPT ) +

(
1 +

1

η

)
16C2

0C
2
1 (ℓf +∆ℓS + 2ℓT )

µ(1− ρG)2

(
h(r)2

(1− ρT )2
· ρ2rS + C3(r)

2 · ρ2(k−1)
T

)
· cost(OPT ),

(40)

where we used (38) and
∑H

t=1 ft(x
∗
t ) ≤ cost(OPT ) in the last inequality. Setting η = ρrS + ρk−1

T in (40) finishes the proof
of (35).

As a remark, we require the local cost function (fvt , c
v
t , s

e
t ) to be non-negative, convex, and smooth in the whole Euclidean

spaces (Rn,Rn × Rn,Rn × Rn) in Assumption 2.1 because we want to apply Lemma E.1 in (39).

E.4. Proof of Corollary 3.5

We first show ∆2ρS ≤ √
ρS holds under Assumption 2.1 and the assumptions that ℓS

µ ≤ 1
∆7 ,

ℓT
µ ≤ 1

16 . To see this, note
that as we discussed in Section 3.2, by setting b1 = 2∆− 1 and b2 = 4∆2 − 2∆, Theorem 3.4 holds with

ρS =
4∆2(

√
1 + ∆ℓS/µ− 1)√

1 + ∆ℓS/µ+ 1
.

Hence we see that

∆2√ρS = 2∆3

(√
1 + (∆ℓS/µ)− 1√
1 + (∆ℓS/µ) + 1

) 1
2

≤ 2∆3

(√
1 + ∆−6 − 1

2

) 1
2

≤ 1,

which implies that

∆2ρS ≤ √
ρS . (41)

Recall that function C3(r) :=
∑r

γ=0 h(γ) · ρ
γ
S . Hence we see that

C3(r) ≤
r∑

γ=0

∆γ · ργS ≤
r∑

γ=0

(√
ρS

∆

)γ

≤ ∆

∆−√
ρS
. (42)

Substituting (41) and (42) into the competitive ratio bound in (35) shows that the competitive ratio of LPC is upper bound by

1 +

(
1 +

32C2
0C

2
1 (ℓf +∆ℓS + 2ℓc)

µ(1− ρG)2(1− ρT )2

)
· ρ

r
2

S +

(
1 +

32C2
0C

2
1 (ℓf +∆ℓS + 2ℓc)∆

2

µ(1− ρG)2(∆−√
ρS)2

)
ρk−1
T .

F. Proof of Theorem 3.6
In this appendix we prove a lower bound on the competitive ratio of any online algorithm. Our proof focuses on temporal
and spatial lower bounds separately first, and then combines them.
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STEP 1: TEMPORAL LOWER BOUNDS

We first show that the competitive ratio of any online algorithm with k steps of future predictions is lower bounded by
1 + Ω(λkT ). To show this, we consider the special case when there are no spatial interaction costs (i.e., set ≡ 0 for all t and
e). In this case, since all agents are independent with each other, it suffices to assume there is only one agent in the network
G. Thus we will drop the agent index in the following analysis. To further simplify the problem, we assume dimension
n = 1, ct(xt, xt−1) =

ℓT
2 (xt − xt−1)

2, and the feasible set is Dt ≡ D = [0, 1] for all t. Let R denote the diameter of D,
i.e., R = supx,y∈D|x− y| = 1.

By Theorem 2 in Li et al. (2020) and Case 1 in its proof, we know that for any online algorithm ALG with k steps of future
predictions and LT ∈ (2R,RH), there exists a problem instance with quadratic functions f1, f2, . . . , fH that have the form
ft(xt) =

µ
2 (xt − θt)

2, θt ∈ D such that

cost(ALG)− cost(OPT ) ≥ µ3(1−
√
λT )

2

96(µ+ 1)2
· λkT ·R · LH , (43)

where LH ≥
∑H

t=1|θt − θt−1|. Note that

R · LT ≥
H∑
t=1

|vt − vt−1|2

=
2

ℓT
·

H∑
t=1

(ft(vt) + ct(vt, vt−1))

≥ 2

ℓT
· cost(OPT ).

Substituting this into (43) gives

cost(ALG) ≥
(
1 +

µ3(1−
√
λT )

2

48(µ+ 1)2ℓT
· λkT

)
· cost(OPT ). (44)

Note that (43) implies cost(ALG) > 0, hence the competitive ratio can be unbounded if cost(OPT ) = 0.

STEP 2: SPATIAL LOWER BOUNDS

We next show that the competitive ratio of any online algorithm that can communicate within r-hop neighborhood according
to the scheme defined in Section 2.1 is lower bounded by 1 + Ω(λrS). To show this, consider the special case when there are
no temporal interaction costs (i.e., cvt ≡ 0 for all t and v). In this case, since xt and xt−1 are independent with each other, it
suffices to assume the horizon length H = 1. That means the game only has one round, and each agent v decides xv1 after
observing fv1 for v ∈ Nr

v and se1 for e ∈ E(Nr
v ). To further simplify the problem, we assume the graph G of agents is a line,

and all agents are labeled by 1, 2, . . . , |V| from left to right.

Suppose that there exists a one-step algorithm ALG that achieves a competitive ratio of c in the setting we mentioned above.
We can also use ALG as an online algorithm to solve the setting defined in Section F. Specifically, we assume H = |V| and
view each time step in the finite horizon H as an agent. When k = r + 1 and ℓT = ℓS , the prediction model defined in
Section F allows ALG to observe ft−r, ft−r+1, . . . , ft+r (which are the cost functions in r-hop neighborhood of “agent” t)
before picking decision point xt. The temporal interaction costs in Section F play the role of the spatial interaction costs for
ALG, and they are common knowledge according to the prediction model. Therefore, by the lower bound results we have
shown in Section F, we know that

c ≥ 1 +
µ3(1−

√
λS)

2

48(µ+ 1)2ℓS
· λr+1

S .

STEP 3: COMBINE TEMPORAL AND SPATIAL LOWER BOUNDS

Combining the results of Steps 1 and 2 together, we know that the competitive ratio of any decentralized online algorithm is
lower bounded by

max{1 + µ3(1−
√
λT )

2

48(µ+ 1)2ℓT
· λkT , 1 +

µ3(1−
√
λS)

2

48(µ+ 1)2ℓS
· λr+1

S } = 1 + Ω(λk) + Ω(λrS).
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G. Proof of Corollary 3.7
In this appendix we prove a resource augmentation bound for LPC. To simplify the notation, we define the shorthand
aT := ℓT /µ and aS := ℓS/µ. aT and aS are positive real numbers. We first show two lemmas about the relationships
between the decay factors ρT and λT , and ρS and λS .
Lemma G.1. Under the assumptions of Theorem 3.2, we have ρ4T ≤ λT ≤ ρ2T .

Proof of Lemma G.1. Recall that ρT is given by

ρT =

√
1− 2√

1 + 2aT + 1

in Theorem 3.2. Thus we see that

ρ4T =

(
1− 2√

1 + 2aT + 1

)2

≤
(
1− 2√

1 + 4aT + 1

)2

= λT .

On the other hand, we have that

λT − ρ2T =

(
1− 2√

1 + 4aT + 1

)2

− 1 +
2√

1 + 2aT + 1
=

4
√

(1 + 2aT )
(√

1 + 2aT −
√
1 + 4aT

)(√
1 + 2aT + 1

)(√
1 + 4aT + 1

)2 ≤ 0.

Lemma G.2. Under the assumptions of Theorem 3.2, we have ρ8∆ log∆
S ≤ λS .

Proof of Lemma G.2. Recall that ρT is given by

ρS =

√
1− 2√

1 + ∆aS + 1

in Theorem 3.2. We consider the following 3 cases separately.

Case 1: aS ≥ 16∆− 8.

We first show that the following inequality holds for any x ∈ [0, 1/(2∆)]:

(1− x)2∆ ≤ 1−∆x. (45)

To see this, define function g(x) = (1− x)2∆ +∆x− 1. Note that g is a convex function with g(0) = 0 and

g

(
1

2∆

)
=

(
1− 1

2∆

)2∆

− 1

2
≤ e−1 − 1

2
< 0.

Thus, we see that g(x) ≤ 0 holds for all x ∈ [0, 1/(2∆)]. Hence (45) holds.

Note that under the assumption aS ≥ 16∆− 8, we have

0 ≤ 2√
1 + ∆aS + 1

≤ 1

2∆
.

Thus substituting x = 2√
1+∆aS+1

≤ 1
2∆ gives

ρ4∆S =

(
1− 2√

1 + ∆aS + 1

)2∆

≤ 1− 2∆√
1 + ∆aS + 1

≤ 1− 2√
1 + 4aS + 1

= λS .

Case 2: aS ≤ ∆2

(∆2−1)2 . Recall that ∆ ≥ 2. Thus, in this case, we have aS < 1 and√
λS = 1− 2√

1 + 4aS + 1
≤ 1

∆2
.
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Note that

ρ2S =
(
√
1 + ∆aS − 1)2

∆aS
≤ ∆aS

4
= ∆ ·

(
√

1 + 2aS + a2S − 1)2

4aS
≤ ∆ · (

√
1 + 4aS − 1)2

4aS
= ∆

√
λS .

Thus we see that
ρ4S ≤ (∆2 · λS) · λS ≤ λS .

Case 3: ∆2

(∆2−1)2 < aS < 16∆− 8.

In this case, we have

λS =

(
1− 2√

1 + 4aS + 1

)2

≥ 1

∆4
,

ρS =

(
1− 2√

1 + ∆aS + 1

) 1
2

≤
√

1− 1

2∆
.

Since (1− 1/(2∆))2∆ < e−1, we see that ρ8∆ log(∆)
S ≤ λS .

Now we come back to the proof of Corollary 3.7. By Theorem 3.4 and Theorem 3.6, we know that the optimal competitive
ratio is lower bounded by

c(k∗, r∗) ≥ 1 + Cλ

(
λk

∗

T + λr
∗

S

)
and LPC’s competitive ratio is upper bounded by

cLPC(k, r) := 1 + Cρ

(
C3(r)

2 · ρkT + h(r)2 · ρrS
)
,

where Cλ and Cρ are some positive constants. To achieve cLPC(k, r) ≤ c(k∗, r∗), it suffices to guarantee that

Cρ · C3(r)
2 · ρkT ≤ Cλλ

k∗

T and Cρ · h(r)2 · ρrS ≤ Cλλ
r∗

S .

Note that C3(r) can be upper bounded by some constant and h(r)2 ≤ poly(r) · ρ−
r
2

S under our assumptions. Applying
Lemma G.1 and Lemma G.2 finishes the proof.


