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With the proliferation of low-cost sensors and the Internet of Things, the rate of producing data far exceeds the compute and
storage capabilities of today’s infrastructure. Much of this data takes the form of time series, and in response, there has been
increasing interest in the creation of time series archives in the last decade, along with the development and deployment of
novel analysis methods to process the data. The general strategy has been to apply a plurality of similarity search mechanisms
to various subsets and subsequences of time series data in order to identify repeated patterns and anomalies; however, the
computational demands of these approaches renders them incompatible with today’s power-constrained embedded CPUs.

To address this challenge, we present FA-LAMP, an FPGA-accelerated implementation of the Learned Approximate Matrix
Profile (LAMP) algorithm, which predicts the correlation between streaming data sampled in real-time and a representative
time series dataset used for training. FA-LAMP lends itself as a real-time solution for time series analysis problems such as
classification. We present the implementation of FA-LAMP on both edge- and cloud-based prototypes. On the edge devices,
FA-LAMP integrates accelerated computation as close as possible to IoT sensors, thereby eliminating the need to transmit and
store data in the cloud for posterior analysis. On the cloud-based accelerators, FA-LAMP can execute multiple LAMP models
on the same board, allowing simultaneous processing of incoming data from multiple data sources across a network.

LAMP employs a Convolutional Neural Network (CNN) for prediction. This work investigates the challenges and limitations
of deploying CNNs on FPGAs using the Xilinx Deep Learning Processor Unit (DPU) and the Vitis AI development environment.
We expose several technical limitations of the DPU, while providing a mechanism to overcome them by attaching custom IP
block accelerators to the architecture. We evaluate FA-LAMP using a low-cost Xilinx Ultra96-V2 FPGA as well as a cloud-based
Xilinx Alveo U280 accelerator card and measure their performance against a prototypical LAMP deployment running on
a Raspberry Pi 3, an Edge TPU, a GPU, a desktop CPU, and a server-class CPU. In the edge scenario, the Ultra96-V2 FPGA
improved performance and energy consumption compared to the Raspberry Pi; in the cloud scenario, the server CPU and GPU
outperformed the Alveo U280 accelerator card, while the desktop CPU achieved comparable performance; however, the Alveo
card offered an order of magnitude lower energy consumption compared to the other four platforms. Our implementation is
publicly available at https://github.com/aminiok1/lamp-alveo.

1 INTRODUCTION
The proliferation of IoT sensors and the volume of data that they generate creates unique challenges in edge
computing [27]. One motivating application, among many, is real-time seismic event prediction, which can inform
hazard response strategies and enhance early warning systems [3, 25, 35]. In this case, the relevant question is
whether or not the most recent seismic measurements strongly correlate to the relatively short window of time
leading up to a previously observed seismic event. Such a system could benefit from increasing the throughput of
the near-sensor raw data processing, and acceleration using an FPGA represents one potential avenue to do so.
This article describes an FPGA-based accelerator for a streaming time series prediction scheme called the

Learned Approximate Matrix Profile (LAMP) [54]. Given the most recent window of data points, LAMP uses a
Convolutional Neural Network (CNN) to predict whether or not a similarly correlated pattern occurred in the time
series used to train the model. Exact methods to compute these correlations are impractical due to the requirement
that the streaming time series be archived, and the fact that computing the correlations entails execution of an
𝑂 (𝑛2) algorithm on a time series of ever-increasing length [53]. It is certainly more practical to perform inference
on a moderately sized CNN; nonetheless, the overhead of CNN inference remains a computational bottleneck that
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limits the achievable sampling rate. Embedded CPU-based solutions are state-of-the-art, but higher performance
and lower energy consumption could be achieved through FPGA acceleration.
We call our approach FPGA-Accelerated LAMP, or FA-LAMP, for short. We implemented our design on both

edge- and cloud-based accelerators. We compiled the LAMP model to run on a Xilinx Deep Learning Processing
Unit (DPU) using the Vitis AI development environment and executed it on a Xilinx Zynq UltraScale+ MPSoC edge
device as well as Xilinx Alveo U280 cloud-based accelerator card. Several layers of the CNN were not compatible
with the DPU; to complete the system, we implemented these layers as custom hardwrae IP blocks. One challenge
involved the output layer, which computes a sigmoid activation function; we considered two approximations and
evaluated them in terms of accuracy, performance (latency and throughput), resource utilization, and energy
consumption on three time series datasets from the domains of seismology, entomology, and poultry farming. Our
highest-performing FA-LAMP system configuration on the Zynq device achieved throughput of 453.5 GOPS with
an inference rate 10.7× faster and an 15.8× improvement in energy consumption compared to running LAMP
on a Raspberry Pi. Our highest-performing design on the Alveo U280 accelerator card achieved throughput of
5.53 TOPS and demonstrates a 12.3% higher inference rate in comparison to a high-end CPU, while consuming
one order of magnitude less energy. Using a dataset obtained from the entomology domain, we show how
FA-LAMP can be combined with a post-processing classifier to better understand insect feeding behavior. We
also demonstrate how DPU on the Alveo U280 accelerator can be connected to an Ethernet module to process
the incoming network data while bypassing the host CPU; this capability allows FA-LAMP to process streaming
data coming from external sources across the network.
This article is an extension of our prior work [17], which presented results for the edge-based FA-LAMP

implementation on the Xilinx Zynq UltraScale+ MPSoC. This article makes the following contributions as
extensions: (1) We extend the evaluation of edge-class devices to include a comparison with a Google Edge TPU.
(2) We deploy and evaluate FA-LAMP on an Xilinx Alveo U280 accelerator card, representative of a cloud-based
deployment, and we compare FA-LAMP’s performance and energy consumption to desktop and server-class
CPUs as well as a GPU. (3) We integrate the DPU with a 100G Ethernet module on the Alveo card and describe
steps taken to optimize throughput accounting for both computational and network performance factors. As
a methodological difference, we employ quantization-aware training for our edge scenario, whereas our prior
work [17] trained the FA-LAMP CNN in a quantization-oblivious manner.

2 RELATED WORK
We classify previous FPGA-based Deep Neural Network (DNN) studies along three axes: (a) techniques to
optimize accelerator design from the perspective of computing engine or memory system; (b) user-accessible
frameworks that deploy DNNs on FPGAs; and (c) overlays for DNN acceleration. With respect these axes, our
work: (1) leverages the Xilinx DPU in conjunction with a custom HLS kernel to enable efficient whole-network
acceleration on-chip; (2) evaluates the impact of different DPU configurations on throughput, latency and resource
utilization on both edge- and cloud-scale FPGAs; (3) analyzes inherent tradeoffs between different approximate
implementations of the sigmoid activation function; and (4) co-optimizes computational and network performance
by integrating the Xilinx DPU with a 100Gigabit Ethernet module.

2.1 Optimizing Accelerator Design
Zhang et al. proposed a novel CNN accelerator architecture that performs loop tiling and transformation to
explore the design space and balance computation and memory bandwidth [50]. Another recent accelerator
architecture [44] implements a large-scale matrix multiplication algorithm that statically allocates constant
weights to physical multipliers, allowing the design to operate at a near-peak FPGA clock rate. A similar, yet
effective, strategy for FPGA-based edge acceleration is to pack parameter memories into groups that optimize
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BRAM usage, enabling the accelerator to be synthesized onto a smaller FPGA while maintaining throughput
compared to a larger device [29].

Colangelo et al. extended Intel’s FPGA Deep Learning Acceleration (DLA) Suite [4] to accelerate networks with
8-bit and sub 8-bit activations and weights [8]. Similar techniques achieve high throughput in FPGA-based CNN
inference by either quantizing the model’s weights or training the model with lower bit precision [31, 33, 47].

We take inspiration from these studies in implementing our handcrafted kernels. We employ loop tiling [50],
data reuse [7, 14, 15], and quantization [8] to improve their efficiency.

2.2 Automated Frameworks for DNN Compilation
A number of domain-specific DNN compilers translate a high-level description of a model into synthesizable
RTL coupled with an execution schedule. They facilitate DNN deployment on FPGAs but limit opportunities for
further optimization, as the generated HLS/RTL code is hard to interpret.

HeteroCL [20] is a Python-based domain-specific language (DSL) extended from TVM [6] that maps high-level
specifications of designs to hardware implementations, targeting systolic arrays and stencil architectures. It has
been reported that deeply pipelined kernels designed in this framework result in routing congestion in large
FPGAs [18]. DNNWEAVER [36] generates target-specific Verilog code for FPGA-based DNN accelerators using
hand-optimized design templates; however, the framework can only handle conventional CNNs and does not
support quantization. Other automatic DNN generation frameworks include: HLS4ML [10], which targets low-
power applications; fpgaConvNet [40] which achieved the best throughput per DSP unit in a recent survey [41];
VTA [6], which uses a TVM-based compiler stack; and FINN [39] which is developed and maintained by Xilinx.

2.3 Xilinx DPU
Recently, Xilinx introduced the Deep Learning Processor Unit (DPU), a programmable engine optimized for
CNNs [45]. The DPU supports a variety of deep learning models, including, but not limited to ResNet [51],
VGG [37], YOLO [34]. Programmable parameters allow the FPGA designer to control the degree of parallelism
and resource utilization of the DPU IP, as we have done in this study. Operations not supported by the DPU can
be offloaded to a CPU or to custom IP kernels.

Project Brainwave [11] translates a pre-trained DNN model specified in a graph-baed intermediate representa-
tion and partitions it for execution on multiple FPGAs in a datacenter. The tool compiles the FPGA sub-graph to
Neural Processing Unit (NPU) instruction set architecture (ISA) binary. The NPU ISA supports matrix-vector and
vector-vector operations. Intel DLA [1] applies theWinograd transformation [21] to optimize the performance and
bandwidth of convolutional and fully connected layers. Lastly, Light-OPU [49] uses a single uniform computation
engine to accelerate light-weight convolutional neural networks.
One key challenge that we faced was that the Xilinx DPU could not execute the three final stages of our

FA-LAMP CNN. This required us to design custom kernels to accelerate those functions. It remains an open
question as to whether the cost of extending the DPU architecture and ISA to support these functions would be
justifiable.

3 FA-LAMP SYSTEM OVERVIEW

3.1 Background: Time Series and the Matrix Profile
A Time series 𝑇 = ⟨𝑡1, 𝑡2, . . . , 𝑡𝑛⟩ is an ordered sequence of 𝑛 scalar data points. A subsequence of length 𝑚

starting at position 𝑖 is denoted 𝑇𝑖,𝑚 (or just 𝑇𝑖 if𝑚 is known from context, an assumption that we make here).
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Fig. 1. Matrix Profile (MP) computation for subsequences of length𝑚: 𝑐𝑖, 𝑗 denotes the Pearson Correlation between the
𝑖𝑡ℎ and 𝑗𝑡ℎ subsequences, 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 for all 𝑗 , excluding an exclusion zone surrounding 𝑇𝑖,𝑚 . The maximum Pearson
Correlation value 𝑐𝑚𝑎𝑥

𝑖
is stored as the 𝑖𝑡ℎ entry in the MP.

The Pearson correlation1 between subsequences 𝑇𝑖 and 𝑇𝑗 , which measures their similarity, is denoted 𝑐𝑖, 𝑗 (𝑐𝑖, 𝑗
values closer to 1 indicate strong correlation; values closer to 0 indicate no relationship; values closer to -1
indicate negative correlation). Once we obtain all of the 𝑐𝑖, 𝑗 values, we can extract the nearest neighbor of 𝑇𝑖 in 𝑇 .
Subsequence 𝑇𝑗 is defined to be the nearest neighbor of subsequence 𝑇𝑖 if 𝑐𝑖, 𝑗 ≥ 𝑐𝑖,𝑘 ,∀𝑘 ≠ 𝑗 . The Matrix Profile
(MP) [53] (Figure 1) is a vector that contains the correlations of the nearest neighbors of each subsequence in 𝑇 :
𝑃 (𝑇 ) = ⟨𝑐𝑚𝑎𝑥

𝑖 | 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1⟩, where 𝑐𝑚𝑎𝑥
𝑖 is the maximum correlation between𝑇𝑖 and any other subsequence

𝑇𝑗 ∈ 𝑇 , excluding subsequences in an exclusion zone surrounding 𝑇𝑖 . Once we compute the MP (correlation to
the nearest neighbor of every subsequence), determining time series motifs (repeated patterns) and time series
discords (anomalies) becomes trivial [52].

3.2 Background: LAMP
The MP is itself a time series; while the MP can be computed efficiently with GPUs [53], doing so is not amenable
to streaming data. While the time complexity to compute the MP is 𝑂 (𝑛2𝑙𝑜𝑔𝑛) [48], in the streaming context,
the time complexity of updating the MP for each newly sampled data point is 𝑂 (𝑛𝑙𝑜𝑔𝑛) as 𝑛 → ∞. In other
words, not only is it necessary to store the entire time series as it grows over time, but each new data point
requires a super-linear pass over all of the data points that have been stored. To sidestep this issue, the Learned
Approximate Matrix Profile (LAMP) [54] predicts the maximum correlation between the mostly recently-sampled
length-𝑚 window of streaming data points to a representative time series used to train the model. This enables
real-time analytics, such as anomaly detection and classification, using predicted MP values. The objective of this
article is to accelerate LAMP inference using an FPGA.
Figure 2 illustrates the LAMP inference process. Each input consists of J z-normalized (zero mean and unit

variance) subsequences of lengthM, extracted with stride S. This scheme defines an extraction window in the
1Historically, Euclidean distance between z-normalized subsequences is used as the distance function for time series data mining tasks [48];
the use of Pearson correlation, which limits the range of correlation values to [-1, +1], is more recent [53, 54] and is arguably more intuitive
as the maximum Euclidean distance value is unbounded.
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Fig. 2. Illustration of the parameters used for LAMP inference on a streaming time series.
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Fig. 3. The CNN used for LAMP inference. Batch normalization layers are omitted to simplify the presentation.

data, W, where | |W| | = J · S +M − 1. We slide W across the time series and extract a new input for the model
for each position of W. This procedure generates vectors of length M with J channels as inputs to LAMP’s
neural network (a CNN), shown in Figure 3. For each input, the model predicts J · S LAMP values, one for each
subsequence in W.
LAMP’s CNN is a simplified version of ResNet [51] for time series classification [42, 54]. Model inputs and

outputs are modified to support concurrent predictions. The first layer in the LAMP CNN is batch normalization
(omitted from Figure 3 for simplicity); each convolutional layer in the model is followed by a batch normalization
layer (also omitted from Figure 3), which are aggregated by Addition layers followed by ReLU activation functions.
The final three layers are Global Average Pool (GAP), a fully-connected layer, and a sigmoid activation function.
Figure 3 reports the kernel dimensions and number of filters used below each convolution layer.

3.3 Xilinx DPU: Objective and Technical Challenges
The Xilinx DPU is a programmable architecture that accelerates many common CNN operations, such as
convolution, deconvolution, max pooling, and fully connected layers [45]. The objective of this work to accelerate
LAMP neural network inference on the Xilinx Ultra96-V2 and Alveo U280 FPGA boards, leveraging the DPU
to achieve a balance between performance and programmability. The on-board Xilinx Zynq UltraScale+ FPGA
features two Arm CPUs, and has sufficient capacity to realize at most one DPU, with additional logic remaining
to implement custom IP block accelerators; the larger capacity UltraScale+ FPGA in the Alveo U280 card can fit
multiple DPU instances.
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Fig. 4. Zynq DPU architecture.

We ran into several technical challenges. First, the DPU does not support the Global Average Pooling (GAP)
and sigmoid layers, shown on the right-hand-side of Figure 3; these layers must be implemented in software
running on one of the Arm CPU cores (UltraScale) or as custom hardware IP block accelerators (Ultrascale or
Alveo). Second, implementing the fully connected layer, which sits between the GAP and sigmoid layers, would
entail significant data transfer overhead between the DPU and the Arm CPU / IP block. Third, the DPU for
Ultra96-V2 board uses different configurations to perform the convolutional layer (including accumulation and
ReLUs); with space for just one DPU, dynamic reconfiguration during inference would be needed to support the
fully connected layer; the alternative, which we adopted, is to implement the fully connected layer externally on
the CPU or as an IP block. This approach worked well for both platforms.

3.4 DPU for Edge Processing
Figure 4 depicts the DPU architecture for Zynq devices. The DPU features user-configurable parameters to
optimize resource utilization and to select which features are needed for a given deployment scenario. For
example, our implementation does not use softmax, channel augmentation, or depthwise convolution. Seven
DPU variants exist, which differ in the amount of parallelism provided by the convolution units, with IDs ranging
from B512 (smallest, 512 operations per clock cycle) to B4096 (largest, 4096 operations per clock cycle); the largest
variant that fits onto the Ultra96-V2 board is the B2304. The DPU compiler translates a neural network model
into a sequence of DPU instructions. After start-up, the DPU fetches these instructions from off-chip memory to
control the compute engine’s operations. The compute engine employs deep pipelining and comprises one or
more processing elements (PEs), each consisting of multipliers, adders, and accumulators. DSP blocks can be
clocked at twice the frequency of general logic.
The DPU buffers input, output, and intermediate values in BRAM to reduce external memory bandwidth. It

directly connects to the Processing System (PS) through the Advanced eXtensible Interface 4 (AXI4) to transfer
data. The host program uses the Xilinx Deep Neural Network Development Kit (DNNDK) to control the DPU,
service interrupts, and coordinate data transfers. In our design, data transfers were necessary as the final three
layers of the CNN (GAP, fully connected, and sigmoid) were performed outside the DPU.
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Fig. 6. Low-latency DPUCAHX8L architecture, comprising two DPU instances with one convolution engine, scheduler, and
code FIFO units.

3.5 DPU for Cloud Acceleration
Two different DPU architectures are currently available that support the High Bandwidth Memory (HBM)2 on the
Alveo FPGA card, one is high-throughput (Figure 5) and the other is low-latency (Figure 6). The Alveo DPUs are
named DPUCAHX8 as they are targeted towards CNN applications (C) for the Alveo platform with HBM (AH)
using 8-bit quantization (X8). The two variants are named DPUCAHX8H (high-throughput) and DPUCAHX8L
(low-latency) respectively. Both architectures are provided as device binary files and cannot be further configured.
The high-throughput architecture is configured with three DPUCAHX8H DPUs; the low latency architecture is
configured with two DPUCAHX8L DPUs. The DPU compiler for Alveo allows the user to partition the inference
model (a graph) between the FPGA and the host. We use the default partitioning option which divides the model
between the layers that are supported by the DPU and those that are not.

Figure 5 depicts high-throughput DPUCAHX8H DPU microarchitecture. The DPUCAHX8H consists of shared
weights control logic, an instruction scheduler to fetch, decode and dispatch jobs, a control register bank that
provides a control interface between the DPU and host CPU, and can be configured with four or five batch engines

2While FA-LAMP is optimized for streaming time series generated by external sensors, we evaluate FA-LAMP by loading the time series into
the HBM and streaming it directly into the FPGA.
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that allow the DPU to process multiple input data streams simultaneously. The DPU requires all of the batch
engines in a kernel to execute the same neural network; the weight buffer, the instruction scheduler, and the control
register bank can serve all of the batch engines. The batch engine contains a compute engine which comprises
two sub-engines: a convolution engine and a MISC engine, along with a local memory pool that stores trained
model parameters (weights). The convolution engine executes regular convolution/deconvolution operations,
and the MISC engine handles other operations such as ReLU, pooling, etc. Each batch engine communicates with
the device memory through AXI read/write master interfaces.

Figure 6 depicts the low-latency DPUCAHX8Lmicroarchitecture. This microarchitecture comprises convolution
and MISC engines and control bank registers, but omits the batch engine and local memory pool. The low-latency
architecture is compatible with compiler optimizations such as kernel fusion, which can achieve higher throughput
via pipeline-level parallelism.

3.6 HLS Kernel
This subsection summarizes the steps taken to design an IP accelerator that performs the GAP, fully connected,
and sigmoid layers using High-Level Synthesis (HLS).
(1) Global Average Pool (GAP): The output of the final convolutional layer in Figure 3 is an array of feature

maps 𝐷 ∈ R𝑀×𝑁 corresponding to each of the 𝑁 channels. The GAP generates an 𝑁 -dimensional vector 𝑞 ∈ R𝑁
consisting of the average value of each feature map. In other words,

𝑞 𝑗 ←−
1
𝑀

𝑀∑
𝑖=1

𝐷𝑖, 𝑗 , 1 ≤ 𝑗 ≤ 𝑁 . (1)

The vector 𝑞 is then passed to the fully connected layer.
(2) Fully Connected Layer: The input to the fully connected layer is a feature vector 𝑞 ∈ R𝑁 . The fully

connected layer left-multiplies a weight matrix𝑊 ∈ R𝑁×𝑀 by 𝑞 and adds a bias vector 𝑏 ∈ R𝑀 , to the result,
yielding a new feature vector 𝑧 ∈ R𝑀 .

𝑧 ←− 𝑞𝑊 + 𝑏. (2)

Initially, we set 𝑧 ←− 𝑏 in BRAM. We then process each feature 𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝑁 and multiply it by the element in
the 𝑖𝑡ℎ row of the weight matrix,𝑊𝑖, 𝑗=1...𝑀 , adding each scalar product term to 𝑧 𝑗 , i.e., 𝑧 𝑗 ←− 𝑞𝑖𝑊𝑖, 𝑗 , once again,
storing the accumulated sum in BRAM (We store the weights, biases, and accumulated sum in UltraRAM in our
Alveo implementation). This scheme allows the execution of the fully connected layer to start as soon as the
first element 𝑞1 produced by the GAP layer arrives; likewise, each feature 𝑞𝑖 can be discarded as soon as all of its
intermediate products are computed.
We use row-wise vector-matrix multiplication and tiling [32] to optimize performance. We tile the weight

matrix𝑊 into small 𝑛𝑐 ×𝑛𝑟 blocks as shown in Figure 7; each vector element is multiplied by 𝑛𝑟 matrix elements,
allowing the accelerator to perform 𝑛𝑐 × 𝑛𝑟 scalar multiplication operations per cycle. Parameter 𝑛𝑐 must be
chosen to make sure that the latency of GAP layer is greater than the number of cycles required to process
𝑛𝑐 vector elements; 𝑛𝑟 is chosen to be as large as possible to increase system parallelism, subject to resource
constraints. We set 𝑛𝑐 = 8 and 𝑛𝑟 = 4 for the Ultra96-V2 implementation and set 𝑛𝑐 = 16 and 𝑛𝑟 = 16 for the
Alveo card in our experiments.

Figure 8 depicts the hardware architecture for the fully connected layer. The design starts by reading 𝑛𝑐
elements from the previous layer (GAP) and inserting them into 𝑛𝑟 FIFOs. During each iteration, a tile of size
𝑛𝑐 × 𝑛𝑟 of the weights is read from the BRAM and is multiplied by the corresponding vector, which is provided
by the GAP layer. The vector is reused until the final column of the weight matrix is processed; then the next 𝑛𝑐
elements are read from the GAP layer and the process repeats. The Multiply-Accumulate (MAC) module executes
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𝑛𝑐 × 𝑛𝑟 parallel multiplications per clock cycle3, storing the accumulated sums in a BRAM. The MAC module
outputs a vector of length 𝑛𝑟 which is added to the bias values stored in a separate BRAM; the resulting sum is
then transmitted to the Sigmoid layer.
(3) Sigmoid Activation: The LAMP CNN applies the sigmoid activation function to each scalar element of

the feature vector 𝑧 produced by the fully connected layer. To simplify notation, we present the sigmoid function
of a scalar input 𝑥 which can represent any of the scalars 𝑧𝑖 ∈ 𝑧:

𝑓 (𝑥) = 1
1 + 𝑒−𝑥 (3)

Computing the sigmoid function directly on an FPGA is impractical due to the cost of division and exponentiation.
Informed by extensive studies regarding sigmoid approximations [13], we chose two variants to evaluate:
ultra_fast_sigmoid, a piece-wise approximation used in the Theano library [5]; and sigm_fastexp_512, which
expands the exponential function for an infinite limit [38].

There are inherent tradeoffs among these approximations in terms of accuracy, throughput/latency, area, and
energy consumption; additionally, their implementation differs radically, depending on the chosen precision and
3A single-cycle multiplier is acceptable for our design because we use an 8-bit fixed-point data format; increasing the precision or switching
to a floating-point data format may necessitate multi-cycle or pipelined multipliers.
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whether they are implemented using fixed- or floating-point arithmetic4. A thorough survey of the tradeoffs
involved is beyond the scope of this article. The final design, which we evaluate in the following section, uses
8-bit fixed-point arithmetic.
The ultra_fast_sigmoid approximation is defined as follows:

𝑓 (𝑥) =



0.5(
1.5𝑥
2

1+ 𝑥2
+ 1) 0 ≤ 𝑥

2 < 1.7

0.5(1 + 0.935 + 0.045( 𝑥2 − 1.7)) 1.7 ≤ 𝑥
2 < 3

0.5(1 + 0.995) 𝑥
2 ≥ 3

0.5(−
−1.5𝑥

2
1− 𝑥

2
+ 1) −1.7 ≤ 𝑥

2 ≤ 0

0.5(1 − (0.935 + 0.045(−𝑥2 − 1.7))) −3 < 𝑥
2 ≤ −1.7

0.5(1 − 0.995) 𝑥
2 ≤ −3

(4)

Due to the relative simplicity of the operations compared to directly computing the sigmoid function, ultra_fast_sigmoid
can be implemented as a low-latency kernel.

The sigm_fastexp_512 approximation expands the exponential function in terms of an infinite limit (𝑛 −→ ∞),
using a value of 𝑛 = 512 to render the approximation computable [38]:

exp(𝑥) =
𝑙𝑔 (𝑛)∏
𝑘=1
(1 + 𝑥

𝑘
)𝑘 , 𝑛 = 512 (5)

sigm(𝑥) = 1
1 + exp(−𝑥) (6)

We implemented our sigmoid layer in HLS using a loop that takes 𝑥 as an input from the fully connected layer
and approximates the sigmoid using either Eq. (4) or Eq. (6). In both scenarios, we pipelined the loop with an
Initiation Interval (II) of 1; the latency of the loop for sigm_fastexp_512 is higher due to the complexity of the
operations.
Figure 9 shows the sigm_fastexp_512 and ultra_fast_sigmoid approximations, along with their associated

errors, defined as the squared difference between them and an exactly-computed sigmoid function. Neither is
uniformly more accurate than the other for all reported values of 𝑥 , but ultra_fast_sigmoid has noticeably higher
error closer to zero. This error is tolerable for classification problems [9], where results are normally determined
through comparison, not exact values. The error has a greater impact for regression systems that subsequently
process the neural network’s calculated output.
(4) HLS Optimizations: We optimized our design using directives provided by Vivado HLS and through

manual redesign of the fully connected layer. As shown in Figure 10, we achieved a 20× speedup over our baseline
implementation, while increasing resource usage by 1.5×:
• Baseline : our starting point design using a 32-bit floating-point data format.
• Unroll : unrolls the inner loops of the GAP and fully connected layers.
• Pipeline : pipelines the outer computation loops and I/O interface loops to infer burst reads/writes; the
three layers execute as a pipeline to maximally overlap computation.
• Fixed-Point: is the design implemented in an 8-bit fixed-point (ap_fixed<8, 3>) data format which reduces
the resource utilization by 3× [12].

4Alternative implementations, such as logarithmic number systems or Posits, are also possible, but are neither discussed nor evaluated here.



FPGA-Based Acceleration of Time Series Similarity Prediction: From Cloud to Edge • 11

6 4 2 0 2 4 6
Input

0.0

0.2

0.4

0.6

0.8

1.0

O
u
tp
u
t

sigmoid
ultra_fast_sigmoid
sigmoid_fastexp_512

(a)

6 4 2 0 2 4 6
Input

0.000

0.002

0.004

0.006

0.008

0.010

E
rr
o
r

(b)

Fig. 9. (a) Approximation functions for sigmoid and (b) their error. Both charts were computed using an 8-bit fixed-point
data type.

• Loop-Tiling-𝑛𝑟 tiling the fully connected layer (see Figure 7), while retaining the 8-bit data format.
The average resource axis in Figure 10 is the average percentage of BRAMs, LUTs, DSP blocks, and registers used
for each design. Most of the speedup arises from pipelining and unrolling loops, which increases the number of
DSP blocks and registers used in a design.
Figure 11 shows the overall design on the Ultra96-V2 board. The HLS kernel implements the GAP, fully

connected, and sigmoid layers while the rest of the neural network runs on the DPU. The DPU and HLS kernel
connect to the processing system via AXI4 ports to allow access to the DDR memory space. The Zynq UltraScale+
processing system in our platform has four High-Performance (HP) ports and two High-Performance Cache
coherent (HPC) ports. The DPU I/O interfaces and HLS kernel connect to the HP ports, which provide lower
latency than the HPC ports; the DPU instruction fetch port connects to an HPC port.

Figure 12 shows the Alveo U280 FPGA configured to run the high throughput DPUCAHX8H architecture. The
host CPU, which pre-processes the input time series, communicates with the Alveo card via the PCIe bus. The
FPGA is partitioned into static and dynamic regions. The static region is a fixed logic partition that contains the
board interface logic and cannot be programmed by the user. The dynamic region contains memories, memory
interfaces and user kernels compiled using the Xilinx Vitis compiler. The resources in the dynamic region are
further divided into three Super Logic Regions (SLR0-2). The DPU architecture consists of three DPUCAHX8H
instances, each of which is mapped to a separate logic region. The DPUs in SLR1 and SLR2 are configured with
five batch engines for maximum parallelism; the DPU in SLR0 contains four batch engines, in order to leave
space for our custom kernel, which implements the GAP, fully connected, and sigmoid layers, and the AXI switch
network and HBM controller to connect the device memory. The switch network connects to all three DPU
instances, providing 7, 7, and 6 HBM AXI ports respectively, and provides two additional ports to the custom
kernel in SLR0.
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Fig. 10. Improvements in custom kernel latency and resource utilization due to HLS optimizations.
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Fig. 11. The FA-LAMP edge implementation comprises a Zynq UltraScale+ processing system, DPU IP, and custom HLS
kernel; the HLS kernel implements the GAP, fully connected, and sigmoid layers.

4 EXPERIMENTAL SETUP
Figure 13 depicts the LAMP model training process and DPU deployment workflow; a detailed explanation
follows.

4.1 Model Training
FA-LAMP deployment on an FPGA begins by training the model. We set the number of subsequences J to 32 [54],
the length of window M to 100, and the stride S to 8. We used the Adam [19] optimizer to train the model
using stochastic gradient descent with a learning rate of 1e-3 and a batch size of 128. The training objective
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Fig. 13. Overview of deploying a LAMP model on a DPU.

is to minimize the mean squared error loss between the predicted and exact MP values for the training data
set. We removed the first batch normalization layer from the LAMP CNN [54]: the Vitis compiler merges each
convolutional layer followed by a batch normalization layer followed by a ReLU layer; a CNN with a batch
normalization layer preceding the first convolutional layer caused an error, because the Vitis compiler interpreted
the CNN as consisting of a sequence of batch normalization layers followed by convolutional layers. Removing
the initial convolutional layer was the most straightforward way to rectify the problem.

We rearranged the layers in the original LAMP CNN design [54] so that each convolutional layer is followed
by a batch normalization layer followed by a ReLU layer; this enables batch normalization to merge with the
convolution layer in the DPU.
We trained a LAMP model for each dataset offline using the TensorFlow quantization-aware training API on

an Nvidia Tesla P100 GPU. This API improves the accuracy of the model prior to quantization to INT8, which
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Table 1. Comparison between Ultra96-V2 and Alveo U280 FPGA specifications.

Alveo U280 Ultra96V2
INT8 Peak Throughput 24.5 TOPS 691GOPS

HBM2 Capacity 8GB N/A
HBM2 Bandwidth 460GB/s N/A

DDR Capacity 32GB 2GB
DDR Bandwidth 38GB/s 25GB/s
Look-Up Tables 1,304k 70,560

DSP Slices 9,024 360
Block RAMs 2,016 432
UltraRAMs 960 N/A

Price $7,500 $250

is performed post-hoc by downstream tools (Vitis AI Quantizer in our case). The model is then calibrated and
partitioned in two using Vitis AI: (i) the layers to be executed on a custom kernel (GAP, fully connected, and
sigmoid), and (ii) the rest of the model, which runs on the DPU. The custom kernel code includes a header that
contains the weights and activations of the fully connected layer for high-level synthesis; the GAP and sigmoid
layers do not feature any trained parameters. The second sub-graph of the model is stored in the h5 format file.

4.2 Model Inference
4.2.1 DPU Deployment. We use Vitis AI 1.3 to quantize and compile the trained LAMP model. AI Quantizer
converts all of the model weights and activations into a fixed-point INT8 format. The Xilinx Intermediate
Representation (XIR)-based Compiler then maps the model to the DPU instruction set and data flow. We specified
the custom kernel (fully connected, GAP, and sigmoid layers) in Vitis HLS using C++ and the ap_fixed<8, 3> data
type. We synthesized the custom kernel using Vivado HLS 2019.2 and integrated the resulting IP block with the
DPU using Vitis 2019.2.
We evaluated the LAMP CNNs on a Xilinx Ultra96-V2 development board and Alveo U280 card. Table 1

compares the resources provided by the two platforms. The Alveo card is 30×more expensive than the Ultra96-V2
board, while providing considerably more logic, memory, and DSP resources and higher off-chip memory capacity
and bandwidth.
The Ultra96-V2 integrates two Arm CPUs (an 1.5GHz Arm Cortex A-53 and a 600MHz Cortex-R5) with a

Xilinx Zynq UltraScale+ MPSoC featuring 70,560 LUTs, 360 DSP slices and 7.5MB of BRAM. We used a 16GB SD
card to store an embedded Linux image created with PetaLinux 2019.2 along with the input time series datasets
for the design that we will use for inference. We wrote a host program in C++ that uses the DNNDK API (VART
for Alveo) to communicate with the DPU IP core.

We inserted the Alveo FPGA card into a Dell PowerEdge R730 Rack Server which contains a 6-core 2.60GHz
Intel Xeon E5-2640 processor. The host connects to the FPGA through a PCI Express 4.0 interface. The server
features 32GB of DDR and 8GB of HBM with 460GB/s of bandwidth.
In the standard DPU flow, unsupported layers can be offloaded to a host CPU as an alternative to utilizing

custom IP blocks. The Zynq FPGA on the Ultra96-V2 development board features two integrated Arm Cores: a
Cortex-A53 and a Cortex-R5. As a baseline for comparison for the edge deployment scenario, we implemented
the custom kernel layers on the Cortex-A53, which supports a higher clock frequency than the Cortex-R5. The
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source code running on the Cortex-A53 employs the same 8-bit fixed-point data type as we used on the FPGA.
We use the C++ built-in exp() function (from the <cmath> library) to compute the sigmoid and a for-loop to
compute the global average pool layer. For the cloud deployment, we evaluated the software performance of the
custom kernel on the Intel Xeon E5-2640 CPU, noting that the latency over the PCIe communication channel is
significant.

4.2.2 LAMP Deployment on CPU and GPU. In order to quantify FA-LAMP’s performance in the cloud scenario,
we implemented LAMP inference on a server CPU, a desktop CPU, and a GPU. The GPU platform comprises
two NVIDIA GeForce RTX 2080 cards inserted into a Rack Server containing 16 Intel Core i9-9900 processors
operating at 3.1 GHz; the Server CPU includes the 6-core Intel Xeon E5-2640 server described earlier; and the
Desktop CPU is an Intel Core i7-8750 CPU with six cores running at 2.2 GHz. All the platforms mentioned above
execute CNN inference in Python 3.7 using Keras’ Predict Generator class with multiprocessing enabled.

4.2.3 Raspberry Pi3 and Edge TPU. We also ported the LAMP inference engine to run on a Raspberry Pi 3 board,
which provides a 100% software baseline that is representative of edge computing. We wrote a short Python
script that converts the pre-trained LAMP model saved in the Keras format to TensorFlow Lite with 8-bit full
integer quantization and we configured the optimizer to minimize latency. We performed inference using the
trained model on the Raspberry Pi using the TensorFlow Lite Interpreter. The Raspberry Pi 3 features a Quad
Core 1.2GHz Broadcom BCM2837 CPU. Ideally, we would have run the full LAMP model in software on either of
the two Arm cores on the Ultra96-V2 board; however, it was not possible to do so, as Keras does not support the
Ultra96-V2 board at the time of writing.
We also executed LAMP inference on a Coral USB Accelerator [22] which contains a Google Edge TPU

coprocessor [23], an ASIC optimized for AI inference. We first quantized the LAMP model to an 8-bit format using
TensorFlow quantization-aware training; we then exported the quantized model as a frozen graph, converted it
to a TensorFlow Lite model, and used the Edge TPU compiler to convert it to the supported format for the USB
accelerator. The Edge TPU allows pipelining to decompose a large model into segments spread across multiple
Edge TPUs; this is particularly important for models whose data segments exceeds the Edge TPU cache capacity.
Our LAMP model fits within the Edge TPU on-chip memory (8MB), allowing us to run two models on two Coral
USB accelerators concurrently. We inserted the two Coral USB accelerators into two USB 3.0 ports on a desktop
PC running Ubuntu 18.04 Linux. We installed the Edge TPU runtime version 13 on Ubuntu and used the increased
frequency option, which is known to increase power consumption. We loaded the model and data onto the Edge
TPUs using the PyCoral API with Python 3.7.

4.2.4 Comparison to Recent CNN-to-FPGA Compilation Frameworks. In order to quantify DPU’s performance,
we deployed our LAMP model on several state-of-the-art FPGA edge-based and cloud-based CNN frameworks:
HLS4ML [10], fpgaConvNet [40], VTA [6], and FINN [39]. All of these frameworks can target the Ultra96-V2
development board, but only fpgaConvNet and FINN can target the Alveo card.

HLS4ML is a Python package that converts a trained neural network in the ONNX format into an HLS project
for synthesis onto an FPGA; layers are implemented by choosing and configuring HLS modules from a template
library. We trained and quantized the LAMP model using Tensorflow, and then converted it to ONNX using
tf2onnx [24]. HLS4ML performs integer scaling during quantization and can be configured on a per-layer basis.
To ensure that the model was synthesizable, we limited the amount of loop unrolling. We also corrected some
compilation errors that occurred because HLS4ML did not define the correct AXI Stream interface between
modules. We set the precision of all weights as biases to 8-bit fixed-point and used the default resuse factor value.
While HLS4ML supports the sigmoid layer using a lookup table implementation, we replaced the last three of the
CNN with our own custom layers to ensure a fair comparison.
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Similar toHLS4ML, fpgaConvNet converts a trainedmodel in theONNX format into anHLS project, propagating
model quantization settings into its internal representation. samo [26], a design space exploration tool, can
optimize the model implementation on the FPGA using simulated annealing; we used samo’s rule-based optimizer
and selected the latency performance objective.
VTA uses a template deep learning accelerator consisting of load, store, and compute (RISC processor) units.

We used TVM to translate a trained LAMP model into a Relay module (TVM’s front end compiler) and applied
8-bit quantization (VTA exclusively supports the int-8 format). We then applied constant folding to reduce the
number operators and created an object file to load onto the FPGA. The last three layers of the LAMP model are
executed in fp32 on the CPU, as VTA’s front end compiler is not compatible with custom kernel IP accelerators.

For the FINN framework, we defined our LAMP model in PyTorch and quantized it using Brevitas [28], which
exports the model to the FINN-ONNX format. FINN’s compiler then converts the model to one or more more FPGA
accelerators; the network must be redefined with Brevitas layers, which correspond to standard PyTorch layers,
e.g., there is aQuantLinearlayer type. FINN’s non-standard use of ONNX restricted our ability to quantize the
LAMPmodel. To target the the Ultra96-V2 board, we quantized weights and activations into a 4-bit representation;
to target the Alveo card, we quantized weights and activations into 1-bit and 4-bit representations respectively.
FINN was unable to support our custom IP kernels, so we implemented them using the fp32 format on the host
CPU.

4.3 Measurements
We report the throughput and the energy consumption of FA-LAMP CNN inference by direct execution of the
model on the aforementioned platforms using three time series datasets, which are summarized in the next
subsection. The throughput is reported as the total number of multiply-accumulation operations in the model
(7.71GOPs) executed per second. We also report the inference rate of each platform, which we define to be the
number of Matrix Profile values predicted per second. We measure the Ultra96-V2 and Raspberry Pi power
consumption using a commercially available Kuman power meter, which provides power measurements for the
entire board.
We estimated the power consumption of the FPGA on the Alveo card by periodically transmitting queries

through the xbutil tool. xbutil measures FPGA power consumption, but does not report the current of the HBM
power rails, whichwe omit from our estimation. We estimated the power consumption of the host Intel Xeon
CPU using the PyRAPL software toolkit [30], while eliminating all other application programs running under
Windows; we could not eliminate any variability arising from the operating system. We report the GPU’s power
consumption using the NVIDIA System Management Interface (nvidia-smi). We estimate energy consumption by
multiplying the power measurement by the time required to perform inference on a batch of size 128. Every batch
of data predicts 256 MP values based on the configured LAMP parameters, for a total of 128×256 predictions per
inference. Batch sizes larger than 128 led to degraded results on the Raspberry Pi. We report resource utilization
results from Vivado’s post-implementation reports.

We evaluated the efficiency of all DPU variants that we could fit onto the Ultra96-V2 UltraScale+ Zynq FPGA,
which can fit no more than one DPU core. We set the DPU’s BRAM and DSP usage to low and disabled the
average pool and softmax instructions since the LAMP neural network does not perform these operations. For the
Alveo card, we evaluated the efficiency of high-throughput and low-latency DPU kernels. The DPU IP provides
two distinct clock inputs: we set the input clock for DSP blocks to 300MHz and the input clock for general logic
to 150MHz in both evaluated platforms. We set the HBM clock on the Alveo card to 450MHz.
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Fig. 14. A snippet of chicken accelerometer data with corresponding labels (Preening: label height = 3, dustbathing: label
height = 4, and pecking: label height = 6).

4.4 Benchmarks
We trained neural networks for three time series datasets and measured the error of the model’s predictions; this
methodology is similar in principle to prior work on LAMP [54].
(1) Seismology Domain: The Earthquake dataset is obtained from a seismic station [53]. Real-time event

prediction impacts seismic hazard assessment, response, and early warning systems [3, 25, 35]. We split the time
series into 120 million and 30 million data points for training and inference.
(2) Entomology Domain: The Insect EPG dataset is obtained from an Electrical Penetration Graph (EPG) that

records insect behavior [53]. This time series is the record of an insect feeding on a plant and observed behaviors
were classified by an entomologist as Xylem Ingestion, Phloem Ingestion, or Phloem Salivation. Understanding
feeding behavior of insects can help farmers identify vector-bearing pests that may decimate crops. We split the
time series into 2.55 million and 5 million data points for training and inference.
(3) Poultry Farming Domain: The Chicken Accelerometer dataset was collected by placing a tracking sensor

on the back of a chicken [2]. The sensor outputs acceleration measurements along the x-, y-, and z-axes at a
100Hz sampling rate. The data was labeled to classify the chicken’s behavior into one of three categories: Pecking,
Preening, or Dustbathing. This is relevant to disease detection because infected chickens exhibit a marked increase
in preening and dustbathing behavior compared to uninfected chickens. Figure 14 depicts a snippet of the dataset
corresponding to the x-, y-, and z-axes and behavioral labels. Using only the x-axis measurements, we split the
time series into 6 million and 2 million data points for training and inference.

4.5 Source code and Data Availability
We have publicly released all of code, data, code, and LAMP inference models used to produce the results in this
article [16].

5 RESULTS

5.1 Edge: Throughput and Resource Utilization
Table 2 summarizes the resource utilization and the measured throughput of FA-LAMP inference using various
system configurations on the Ultra96-V2 FPGA board. The DPU + Arm columns report results when the custom
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Table 2. Edge Prototype: Throughput (GOPS) and resource utilization comparison between different DPU architectures;
(DPU + IP) uses a B2304 DPU.

DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + IP DPU + IP
(B512) (B800) (B1024) (B1152) (B1600) (B2304) (ultra_fast) (fastexp_512)

Logic Usage 39K (56%) 42K (59%) 46K (65%) 44K (62%) 49K (70%) 52K (75%) 57K (82%) 60K (86%)
Register Usage 50K (36%) 57K (40%) 65K (46%) 64K (45%) 77K (54%) 87K (62%) 95K (67%) 100K (71%)

DSP Usage 78 (21%) 117 (32%) 154 (42%) 164 (45%) 232 (64%) 289 (79%) 290 (80%) 326 (90%)
On-chip RAM Usage 77 (35%) 95 (44%) 109 (50%) 127 (58%) 131 (60%) 171 (79%) 174 (81%) 174 (81%)
Throughput (GOPS) 70.4 107.0 154.2 167.6 220.2 367.1 453.5 428.3

Peak Throughput (GOPS) 153 240 307 345 480 691 691 691

kernel (fully connected, GAP, and sigmoid layers) run on the Arm CPU, while the DPU + IP columns report
results for the custom kernel implemented as FPGA IP blocks that connect directly to the DPU; the largest and
best-performing B2304 DPU is used when reporting results for DPU + IP. Results are reported for the custom
kernel implemented using two sigmoid approximations: ultra_fast_sigmoid (ultra_fast) and sigmoid_fastexp_512
(fastexp_512) to approximate the sigmoid function.

The DPU + Arm results in Table 2 show that system throughput increases as DPU size and complexity increases,
from B512 to B2304. The highest overall throughput is achieved for the DPU + IP configurations, as the three
custom kernel layers that the DPU cannot execute are moved from the Arm CPU to a custom accelerator. Data
transfer overhead remains present in both cases between the DPU and Arm CPU / IP block: each read for an input
batch of data takes around 0.12 ms and each write takes around 0.1 ms; the port throughput is around 850 MB/s.

Table 2 also reports the peak (achievable) DPU throughput for each system configuration; this does not include
the throughput of the Arm CPU or IP block because the inference procedure, at present, does not lend itself
to concurrent execution. The percentage of achievable throughput ranges from 43.6% to 53.1% for the DPU +
Arm configurations, and jumps to 65.6% and 62.0% for the two DPU + IP configurations. Even if a hypothetical
next-generation DPU could support the three custom kernel operations, the overhead of DPU reconfiguration,
which we avoided in the design(s) evaluated here, would also limit the achievable throughput.

DPU resource utilization depends on the degree of parallelism in the chosen configuration; on-chip RAM
buffers the weights, bias, and intermediate features. As DPU I/O channel parallelism increases, more on-chip
RAM is needed to store more intermediate data and more DSP slices are needed to process that data. When
the low DSP usage option is chosen, the DPU uses DSP slices exclusively for multiplication in the convolution
layers and offloads accumulation to LUTs. This explains the observed increase in LUT usage as DPU throughput
increases.
The custom IP kernels consume additional resources. sigmoid_fastexp_512 performs more multiplication

operations and constant division operations than ultra_fast_sigmoid, noting that the latter performs mostly
constant multiplications. As a consequence, ultra_fast_sigmoid achieves higher throughput and lower resource
utilization compared to sigmoid_fastexp_512; however, as we will see in the next subsection, these benefits come
at the cost of lower accuracy.

5.2 Edge: Comparison to a Raspberry Pi 3 and Edge TPU
Next we compare the performance and energy consumption of FA-LAMP neural network inference running
on the Ultra96-V2 FPGA board to a Raspberry Pi 3 and the Edge TPU device, being representative of a purely
CPU-based edge computing systems.
Table 3 reports the throughput (inference rate), energy consumption (in Joules), and performance per power

(GOPs/Watt) of processing a single batch of size 128 on each platform. The runtime of FA-LAMP neural network
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Table 3. Edge Prototype: Inference rate and energy consumption of LAMP neural network inference on an Edge TPU,
Raspberry Pi 3 and Ultra96-V2 board.

Edge Raspberry DPU + DPU + IP DPU + IP
TPU Pi 3 Arm ultra_fast fastexp_512

Inf. Rate (Hz) 824 2.6K 12.1K 15.0K 14.2K
Energy (J) 161.4 58.8 7.2 6.7 9.1
GOPs/Watt 5.8 10.4 107.9 146.1 135.8

Table 4. Cloud prototype: throughput, latency, inference rate and energy consumption: LL=Alveo low-latency, HT=Alveo
high-throughput.

GPU Server Desktop LL + CPU LL + IP LL + IP HT + CPU HT + IP HT + IP
CPU CPU (ultra_fast) (fastexp_512) (ultra_fast) (fastexp_512)

Throughput (TOPS) 92.52 69.57 4.91 2.26 3.04 2.53 4.27 5.53 4.83
Latency (ms) 356 227 296 5.68 3.25 3.49 6.29 3.85 4.09

Inference Rate (KHz) 3079 2298 163 75 101 84 142 184 160
Energy (J) 118.32 72.20 38.43 9.15 6.81 8.20 4.86 3.75 4.29
GOPs/Watt 1210 740 68 44 57 46 77 98 89

inference does not depend on the size of the representative dataset used for training; thus, the inference rate and
energy consumption is identical across all datasets.

Both the inference rate and energy consumption of all three Ultra96-V2 FPGAs improve by 1 order of magnitude
compared to the Edge TPU and ∼6× compared to the Raspberry Pi ; according to our power measurements,
the Ultra96-V2 FPGA board consumed ∼3W of power compared to ∼4W for the Raspberry Pi. We consider the
nominal power consumption of 4.5W for the Edge TPU devices as reported in the datasheet. As expected, the
DPU + IP options achieve a higher inference rate than the reported DPU + Arm configuration. Notably, the DPU
+ IP option using sigmoid_fastexp_512 consumes more energy than both the DPU + Arm and DPU + IP using
ultra_fast_sigmoid; referring back to Table 2, this occurs due to the higher demand for DSP blocks (36 more
than ultra_fast_sigmoid) which are clocked twice as fast as the FPGA general logic. All of the evaluated edge
platforms exhibit comparable power consumption; however, performance per Watt corresponds, linearly to the
inference rate with Ultra96-V2 outperforming the Edge TPU by 1 order of magnitude and the Raspberry Pi by
∼6×. The Edge TPU has the lowest performance among all the edge platforms due to its limited RAM capacity,
and its inability to support batch processing; we conclude that it is not a good option for streaming applications.

5.3 Cloud Prototype: Throughput and Energy
Table 4 details the measured performance and energy consumption of FA-LAMP in different scenarios. The
columns starting with LL and HT report measurements for the low-latency and high-throughput DPU on the
Alveo card. Similar to Table 2, in LL (HT) + CPU columns, the custom kernel (fully connected, GAP, and sigmoid
functions) are offloaded to the CPU, while in LL (HT) + IP columns the custom kernel is implemented as FPGA
kernel that runs on programmable logic. The FA-LAMP program in all Alveo implementations is multi-threaded
to maximize DPU utilization.
Throughput: The server CPU and GPU achieved an order of magnitude higher throughput than the other

systems tested, due to their high core count and parallel processing capabilities; the desktop CPU achieves
comparable performance to the high-throughput DPU configurations. The high-throughput DPU achieves higher
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Table 5. FA-LAMP neural network inference accuracy; qa=quantization-aware training, edge=Ultra96, cloud=Alveo.

Time Series Dataset FA-LAMP Inference Accuracy

Name
Train / Test

Split

32-bit

float

edge:

ultra_fast

edge:

fastexp

qa_edge:

ultra_fast

qa_edge:

fastexp

qa_cloud:

ultra_fast

qa_cloud:

fastexp

Earthquake 120M / 30M 97.4% 91.4% 92.5% 93.8% 94.7% 94.3% 95.1%

Insect EPG 2.5M / 5M 97.2% 90.8% 93.2% 91.9% 94.4% 92.5% 94.8%

Chicken Accel. 6M / 2M 95.8% 86.9% 91.1% 89.5% 93.1% 90.2% 93.7%

throughput than the low-latency DPU. Referring back to Figures 5 and 6, the high-throughput architecture has
three DPUs, each with multiple batch engines, while the low-latency architecture has two DPUs with a single
compute engine and no local memory pool; the low-latency DPU’s fusion engine improves latency, but not
throughput.
Latency: We report the latency on each platform as the inference time for a single input. The FPGA-based

platforms achieved two orders of magnitude lower-latency compared to the two CPUs and the GPU. The low-
latency DPU performs inference approximately 1ms faster than the high throughput DPU, benefiting from
compiler optimizations such as layer fusion, as supported by its fusion engine (Figure 6). The hardware IP kernel
implemented using the ultra_fast_sigmoid approximation runs around 0.2ms faster than the sigmoid_fastexp_512
implementation. The FPGA + CPU systems incur the latency associated transferring data between the FPGA and
server CPU, and reprogramming the DPU at runtime to execute the fully connected layer on the FPGA.
Inference Rate: The inference rate is the number of predictions per second, which correlates to throughput:

the GPU and the Server CPU have the highest inference rate, while the inference rate of the Desktop CPU
is comparable to those of the FPGA with high-throughput DPU configurations. The high-throughput DPU
connected to the custom kernel with the ultra_fast_sigmoid has the highest overall inference rate among all
DPU implementations; this results from the greater arithmetic parallelism provided by the high-throughput DPU
compared to the low-latency DPU.
EnergyConsumption: The Energy row in Table 4 reports the energy consumption of processing a single batch

of size 128 on each platform. The FPGAs are an order of magnitude more energy efficient than the GPU or CPUs.
The lowest overall power consumption was achieved using the high throughput DPU and the custom IP kernel
with the ultra_fast_sigmoid approximation, which requires far fewer arithmetic operators than sigm_fastexp_512.
In terms of performance per Watt, the GPU outperforms all the other platforms while the high throughput DPU
with sigm_fastexp_512 improves CPU’s performance per Watt by 44%.

5.4 Inference Accuracy
Table 5 summarizes the accuracy of the FA-LAMP neural network models that we evaluated in the preceding
section. Columns starting with the label “edge” present the results from our previous implementation [17] and
columns labeled with with “qa_edge” and “qa_cloud” detail the results obtained using quantization-aware training.
We include results for a 32-bit floating-point CPU-only implementation of the FA-LAMP models as a baseline to
quantify the loss in accuracy due to quantization, which is 2.1–2.8 percentage points (pp) for sigmoid_fastexp_512,
and 3.1–6.3 pp for ultra_fast_sigmoid. The 6.3 pp accuracy loss for the Chicken Accelerometer dataset for
ultra_fast_sigmoid can be attributed to the range of values in the input numbers to the sigmoid kernel. Referring
back to Table 3, we note that sigmoid layer’s input values line in the range [-0.12 1.85], where ultra_fast_sigmoid
has the largest error, when inference is performed on this dataset.
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Table 6. Performance comparison with other FPGA-based edge and cloud DNN deployment frameworks.

HLS4ML [10] fpgaConvNet [40] VTA [6] FINN [39] DPU fpgaConvNet [40] FINN [39] DPU
FPGA Platform Ultra96 Ultra96 Ultra96 Ultra96 Ultra96 Alveo U280 Alveo U280 Alveo U280
Precision fix-8 fix-8 int-8 fix-4 int-8 fix-8 mix int-8
DSPs 256 220 186 220 326 451 1865 2600
BRAMs 132 164 152 101 174 230 412 628
Throughput 156GOPS 198GOPS 101GOPS 471GOPS 453GOPS 2.37 TOPS 6.12 TOPS 5.53 TOPS

Compared to our previous work [17], the results reported in Table 5 achieved 1.6–2.6 pp improvement in
sigmoid_fastexp_512 accuracy and 1.7–3.3 pp improvement in ultra_fast_sigmoid, which are due to the use of
quantization-aware training in this study. The differences in accuracy reported for the Ultra96-V2 and Alveo
implementations is due to differentmodel compilation flows for the two platforms, and potential microarchitectural
differences, noting that neither fixed-point nor floating-point addition and multiplication are associative.

5.5 Comparison to Recent CNN-to-FPGA Compilation Frameworks
We deployed our LAMP model on several state-of-the-art FPGA edge-based and cloud-based CNN frameworks

and compared their performance; Table 6 reports the resource utilization and throughput of each framework.
For the Ultra96-V2 board, the DPU column represents the results for the DPU integrated with our custom

kernsl using ultra_fast_sigmoid; for the Alveo card we picked the high-throughput DPU with ultra_fast_sigmoid
as this combination yielded the best performance in our prior experiments. FpgaConvNet achieved a throughput
of 164GOPS, outperforming both HLS4ML and VTA by 1.26× and 1.96× respectively. fpgaConvNet’s higher
throughput seems to be due to its streaming architecture, which outperforms single computation engine frame-
works for large batch sizes. fpgaConvNet also benefits from the design space exploration performed by the samo
optimizer. While FINN outperforms fpgaConvNet and the DPU by 2.37× and 1.03×, its low-precision architecture
degrades accuracy by more than 30%, which we consider to be unacceptable from the application perspective.
On the Alveo card, the DPU outperforms fpgaConvNet by 2.33×; upon inspection fpgaConvNet was unable

to fully utilize the resources provided by the larger FPGA (in comparison to the Ultra96-V2). FINN achieved
throughput 1.10× higher than the DPU, while implementing an (almost) binary neural network, whose accuracy
was around 55%, which is non-competitive for our purposes.

5.6 Case Study: Interpreting the FA-LAMP Output
The Matrix Profile can be computed using existing methods in an offline context [53], whereas LAMP is used to
predict it on streaming data [54]. Regardless of how the Matrix Profile is obtained, subsequent post-processing
steps are needed to extract actionable information from it.

As a representative example, we explain how FA-LAMP neural network inference can help a scientist to classify
the behavior of an insect in real-time. First, we take the training data (2.5M data points, collected over 7 hours)
from an insect feeding on a plant. We then create two classes [43]:
Class A: Xylem Ingestion/Stylet Passage
Class B: Non-Probing
We take a representative dataset from each class (RA and RB) and train two distinct FA-LAMP models, which

we respectively denote as MA andMB. Let S be a subsequence of streaming data. IfMA(S) > MB(S), we predict
that behaviorA is occurring; ifMA(S) < MB(S), we predict that behavior B is occurring; otherwise, the prediction
is inconclusive.

For evaluation data we consider the inference data (2.5M data points, collected over the next 5 hours from the
same insect), whose behavior has also been labeled by an entomologist to provide ground truth. We observed
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Class A

Class B

Insect Data Predicted Label Actual Label

Fig. 15. A snippet of insect EPG time series dataset along with the actual and predicted behavior (Class A: label height=1;
Class B: label height=0).
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Fig. 16. The SLR0 in the Alveo card configured with the Ethernet subsystem and the custom kernel IPs.

98.2% accuracy in the results of classification using FA-LAMP. Figure 15 shows the time series and the actual and
predicted labels reported by the FA-LAMP model for a snippet of test data. To simplify the representation, the
time series is rearranged so that the first half represents class A and the second half represents class B. Figure 15
shows a snippet of the first half.

6 DPU INTEGRATION WITH ETHERNET
In a real world cloud-scale deployment, a plurality of Alveo cards in a server would be connected through a
network switch, allowing them to receive data from external sources. For example, multiple edge devices may
transmit sensor data to the server in real time over the Internet. To address the needs of such a deployment, this
section describes the integration of a high-throughput DPU with a 100G Ethernet IP allowing an Alveo-based
deployment to receive and process data.

We built our design on top of the Xilinx TCP stack IP repository [46], which comprises an UltraScale+ Integrated
100 Gb/s Ethernet (CMAC) and a network layer kernel. The CMAC kernel is connected to the Alveo’s GT pins
exposed by the Vitis shell and it runs at the frequency of a 100G Ethernet Subsystem clock, i.e., 322MHz. It
exposes two 512-bit AXI4-Stream interfaces (𝑆_𝐴𝑋𝐼𝑆 and 𝑀_𝐴𝑋𝐼𝑆) to the user logic, which run at the same
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frequency as the kernel. Internally it has clock domain crossing logic to convert from kernel clock to the 100G
Ethernet Subsystem clock. The network kernel is a collection of HLS IP cores that provide TCP/IP network
functionality, consisting of TCP, ICMP, and ARP modules clocked at 250 MHz. The network kernel exposes
AXI4-Stream interfaces to enable the user kernel to open and close TCP/IP connections and to send and receive
network data.
Figure 16 depicts the Ethernet subsystem and custom kernel IPs implemented in SLR0 in the Alveo card; due

to resource constraints, we had to remove the DPU kernel with four batch engines in SLR0 to fit the CMAC and
network layer kernels. As mentioned in Section 3.6, the DPUCAHX8H can be configured to have multiple batch
engines which execute model inference in parallel. Each batch engine connects to the global HBM memory using
a AXI4 memory mapped interface. The DPU also has a 𝑠_𝑎𝑥𝑖_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 interface is used to start running a task on
a DPU core, wait for the task to finish and clear the DPU’s status. Since the network kernel provided by Xilinx
has AXI4-Stream interfaces, we cannot directly connect the kernel to the DPU input ports. One solution would
be to transmit the network data to the host and then to the DPU using the VART API; however, this would lead
to sub-optimal performance.

To address this bottleneck, we added a memory arbiter module to the network kernel that writes the incoming
network data to the memory address used by DPU batch engines. This frees up HBM memory channels 14-18
which the memory arbiter uses to divide the incoming network data into equally sized batches and writes the
data to memory channels 0-6 for DPU kernel 2 and memory channels 7-13 for DPU kernel 1. The memory arbiter
also provides two memory mapped AXI master interfaces that connect to the 𝑠_𝑎𝑥𝑖_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 interfaces of the two
DPU kernels.
After writing the input data to the corresponding addresses of the five batch engines for each DPU, the

memory arbiter starts the execution of that DPU kernel by setting the 𝑟𝑒𝑔_𝑎𝑝_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 register to 1 through the
𝑠_𝑎𝑥𝑖_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 interface. This allows the Alveo card to process incoming network data without CPU involvement.
The memory arbiter waits for DPU’s interrupt before it signals the start of a new batch.

We tested the DPU integrated with Ethernet system by directly connecting two Alveo U280 cards through
their Quad Small Form-Factor Pluggable (QSFP) ports. We programmed one of the Alveo cards as a producer of
data, combining the CMAC and network layer kernel with a custom user TCP kernel. The TCP kernel opens a
TCP connection to provide the IP and TCP port of the destination and to transmit the data over the network. To
transmit data, a Tx control handshake is required before each payload transfer. The user kernel first transmits the
session ID and the payload size and, upon receiving a positive acknowledgment from the TCP module, transmits
the data. The second Alveo card is programmed as a consumer, with two DPU kernels, CMAC, and the modified
network kernel which includes the aforementioned memory arbiter module.

In order to achieve 100 Gbps, we pipelined the control handshake and payload transfer between the user kernel
and the network kernel in the producer FPGA. Since the control handshake is required for each payload transfer
and requires 10 to 30 clock cycles, a sequential control handshake-payload transfer may stall. To pipeline the
process, we established 32 concurrent connections and pinned them to different threads using the OpenMP API;
further increasing the number of concurrent connections yielded no further improvements in our experiments.
Next, we transmitted packets whose sizes were a positive integer multiple of 64 bytes. The transmission process
buffers portions of the payload in the global memory for retransmission in the event that packet loss and/or
memory accesses with unaligned addresses decreases the bandwidth.

Figure 17 shows that the 100Gigabit QSFP port saturates the available bandwidth at a sufficiently large payload
size. We achieved a peak throughput of 86 Gbit/s for payloads larger than 4KiB, which is feasible because the DPU
and our custom kernel can achieve an initiation interval of 1, meaning that no stall cycles occur in the design
pipeline. At smaller payloads, the control handshake required for each payload transfer impedes throughput. To
maximize the Ethernet throughput, optimizations on both the producer and consumer sides are required: in the
producer’s software code, we leveraged concurrent TCP connections to hide the control handshake latency, and
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Fig. 17. Ethernet module throughput on the Alveo card as a function of payload size.

in the consumer’s hardware deployment, we implemented a memory arbiter module to initiate execution of DPU
kernels as soon as network data is received.

7 CONCLUSION AND FUTURE WORK
This article explored FPGA accelerator architectures for time series similarity prediction using CNNs. We
integrated a custom IP accelerator block using different Xilinx DPUs to enable whole-model acceleration of
the FA-LAMP CNN on two platforms: a Xilinx Ultra96-V2, which is representative of FPGA-accelerated edge
computing, and Alveo U280 FPGA, which is representative of a cloud-based system. Compared to a Raspberry Pi
3 and an Edge TPU, our edge design achieved 5.7× and 18.2× higher inference rate and improved the energy
efficiency by 8.7× and 24× respectively. We compared the cloud-based accelerator performance with LAMP
running on a high-end desktop CPU as well as server CPU processors and a GPU. While the FPGAs could not
compete with the server CPU in terms of throughput or inference rate, they reduced latency by two orders
of magnitude and energy consumption by one order of magnitude. We also compared the performance of the
DPU running FA-LAMP to four state-of-the-art frameworks for CNN compilation onto FPGAs; the result of this
experiment showed that the DPU achieves the highest overall performance, with the exception of one framework
(FINN) that uses much lower precision and therefore suffers from significant degradation in inference accuracy.
Lastly, we integrated the DPU with a Xilinx 100Gb/s Ethernet module on the Alveo card, demonstrating the
ability process streaming data obtained directly from the network without the involvement of a host CPU.

We envision several avenues of future work to improve FA-LAMP. We would like to more thoroughly explore
the space of sigmoid approximation functions, including piecewise alternatives to ultra_fast_sigmoid, which
might be able to reduce its error, and variants of sigmoid_fastexp_N for values of 𝑁 other than 512; there is
also considerable opportunity to explore the internal architecture and precision of sigmoid_fastexp_N. We also
would like to demonstrate that DPU-like overlays can efficiently implement global average pooling and sigmoid
approximation functions, which would alleviate the need transfer data out of the overlay. Long-term, we would
like to harden the FA-LAMP inference engine so that it can be integrated into a system-on-chip (SoC), creating a
near-sensor CNN inference system that can process streaming data.
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