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Abstract We define a new cutting plane closure for pure integer programs
called the two-halfspace closure. It is a natural generalization of the well-known
Chvátal-Gomory closure. We prove that the two-halfspace closure is polyhe-
dral. We also study the corresponding two-halfspace rank of any valid inequality
and show that it is at most the split rank of the inequality. Moreover, while
the split rank can be strictly larger than the two-halfspace rank, the split rank
is at most twice the two-halfspace rank. A key step of our analysis shows that
the split closure of a rational polyhedron can be obtained by considering the
split closures of all k-dimensional (rational) projections of the polyhedron, for
any fixed k ≥ 2. This result may be of independent interest.
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1 Cutting planes and closures

A central question in discrete geometry and integer programming is under-
standing the convex hull of integer points in a polyhedron, both structurally
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and algorithmically. Motivated by Edmonds’ early groundbreaking work in
polyhedral combinatorics and combinatorial optimization, Chvátal [11] pro-
posed a very general method that provides insight into this question1. Short-
cutting the historical development, the main idea is as follows. Let P ⊆ R

n be
a rational polyhedron (allowing irrationality leads to some pathologies which
we will avoid in this paper). Then for any rational halfspace H containing P ,
we have conv(H ∩Z

n) ⊇ conv(P ∩Z
n). It is easy to verify that conv(H ∩Z

n)
is again a halfspace called a Chvátal-Gomory (CG) cutting plane for P . It was
shown by Chvátal [11] that repeated applications of this operation can obtain
any valid inequality for conv(P ∩ Z

n) (we will often use the notation PI to
denote conv(P ∩ Z

n) for any polyhedron P ⊆ R
n). To make this precise, for

any polyhedron P define the Chvátal-Gomory (CG) closure of P to be

C(P ) :=
⋂

H rational halfspace
such that P⊆H

HI .

It is well-known that if P ⊆ R
n is a rational polyhedron, then C(P ) is also a

rational polyhedron even though it is defined by the intersection of infinitely
many halfspaces (this is summarized below in Theorem 1). Thus, one can
recursively define C0(P ) := P and Ck(P ) = C(Ck−1(P )) for k ≥ 1. Ck(P ) is
called the k-th Chvátal-Gomory (CG) closure or the rank k Chvátal-Gomory
(CG) closure. The main power of this operation is summarized in the following
theorem.

Theorem 1 [[12, Lemma 5.13],[31, Theorem 23.4]] There exists a computable
function t : Zm×n → N such that for any rational polyhedron P = {x ∈ R

n :
Ax ≤ b} given by A ∈ Z

m×n and b ∈ Z
m,

C(P ) =
⋂

u∈[0,1)n:

uTA∈Z
n

{x ∈ R
n : 〈uTA, x〉 ≤ ⌊uT b⌋}

and
Ct(A)(P ) = conv(P ∩ Z

n).

Thus, if one enumerates the finitely many points in {u ∈ [0, 1)n : uTA ∈
Z
n}, then one can compute the Chvátal-Gomory closure, and repeating this

process t(A) number of times, one can compute conv(P ∩Z
n), which is called

the integer hull of P .

Two-halfspace closure. One can view the above discussion as follows. One
wishes to compute conv(P ∩ Z

n) which seems complicated. However, if P
is a rational halfspace, then computing the integer hull is easy: simply ex-
press H = {x ∈ R

n : 〈a, x〉 ≤ b}, where a ∈ Z
n has relatively prime

coordinates (this can be done because H is a rational halfspace) and then

1 While we emphasize the perspective that Chvátal took, Gomory had developed a closely
related approach in the late 50s and early 60s [22–24].



Two-halfspace closure 3

HI = {x ∈ R
n : 〈a, x〉 ≤ ⌊b⌋}. One next observes that if one has a rational

halfspace relaxation H ⊇ P , then clearly HI ⊇ PI . The deep insight from
Theorem 1 is that with a finite choice of these halfspace relaxations and a
finite repetition of this operation, one can completely describe the integer hull
of P .

Thus, the main idea is to find a “simple” relaxation of P whose integer
hull is easier to compute. But then why stop at halfspace relaxations? What
about relaxations of P obtained by the intersection of two rational halfspaces
and computing the integer hull of such relaxations? Surprisingly, to the best
of our knowledge, this particular question has not been posed or investigated
in the literature. In this paper, we initiate this discussion.

Definition 1 Given a polyhedron P , the two-halfspace closure of P , which is
denoted by T (P ), is defined as

T (P ) =
⋂

H1,H2 rational halfspaces
such that P⊆H1∩H2

(H1 ∩H2)I (1)

To make this useful computationally, one revisits the following questions
that come up for the Chvátal-Gomory cutting planes. Affirmative answers are
needed to make this definition interesting from an algorithmic perspective.

1. Is it easier to compute (H1 ∩H2)I compared to PI itself?
2. Is T (P ) a rational polyhedron when P is a rational polyhedron?
3. If we take the two-halfspace closure repeatedly, then do we arrive at the

convex hull in a finite number of steps?

The answer to Question 1. above is YES, in the following sense. It is not
hard to argue that computing (H1 ∩ H2)I is equivalent to computing a two-
dimensional integer hull. This is done by projecting H1 ∩H2 and Z

n onto the
two-dimensional orthogonal complement of the lineality space of H1 ∩H2 (see
Proposition 3). Computing a basis for the lattice obtained by projecting Z

n

onto a linear subspace of Rn can be achieved in polynomial time using Hermite
Normal Form computations [31, Chapters 4 and 5]. This reduces the problem
to computing the integer hull of a simplicial cone in two dimensions. Since there
are explicit polynomial time algorithms for computing two-dimensional integer
hulls [13, 26], this makes the problem of computing (H1∩H2)I computationally
easier than computing PI , at least theoretically speaking.

The answer to Question 3. is YES, somewhat trivially: T (P ) ⊆ C(P ) since
one may take H1 = H2. Thus, by Theorem 1, a finite number of applications of
the two-halfspace closure operation gives the convex hull; in fact, the number
of steps needed for the two-halfspace closure can be much smaller compared
to the Chvátal-Gomory procedure. We make this precise below in Corollary 1.

The main result of this paper is an affirmative answer to Question 2. above.

Theorem 2 Let P be a rational polyhedron. Then T (P ) is a rational polyhe-
dron.
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The idea of considering “simple” relaxations of P other than halfspaces and
computing their integer hulls as a means to make progress towards PI is not
new to this paper. Gomory [25], in an influential paper, considers relaxations of
P that are simplicial cones obtained from n linearly independent defining con-
straints of P ; he termed the integer hulls of these cones corner polyhedra. This
idea has resulted in decades long research into corner polyhedra. More recently,
aggregation closures were defined for covering and packing polyhedra [10], with
follow up work extending and generalizing this idea [15, 16, 20, 29]. In these
works, a halfspace relaxation is strengthened with variable bounds.

A comparison with the split closure. The preceding discussion approaches the
integer hull question by considering the integer hulls of “simple” relaxations.
Another approach to cutting planes comes from the idea of a disjunction,
which is a finite collection of polyhedra whose union contains all of Zn. Given
a disjunction D = Q1 ∪ . . . ∪ Qk such that Z

n ⊆ D, a cutting plane for P
derived from D is defined to be any halfspace H such that P ∩D ⊆ H. Since
Z
n ⊆ D, we have that P ∩Z

n ⊆ H and so conv(P ∩Z
n) ⊆ H. The idea again

is that convexifying P ∩ D is easier than convexifying P ∩ Z
n. This is made

more precise by appealing to Balas’ work on concrete descriptions of the union
of polyhedra and disjunctive programming [3]; see also [12, Sections 4.9 and
5.5].

Cook, Kannan and Schrijver [14] introduced and studied the simplest form
of disjunctions: union of two disjoint halfspaces, i.e., disjunctions of the form
Da,K = {x ∈ R

n : 〈a, x〉 ≤ K} ∪ {x ∈ R
n : 〈a, x〉 ≥ K + 1}, where a ∈ Z

n

and K ∈ Z. The closure of the complement of such disjunctions are called
split sets, i.e., sets of the form {x ∈ R

n : K ≤ 〈a, x〉 ≤ K + 1}. Define
P a,K := conv(P ∩Da,K). The split closure of P is defined to be

S(P ) :=
⋂

a∈Zn,K∈Z

P a,K . (2)

In the spirit of the preceding discussions, a natural question is whether the
split closure is a polyhedron. In [14], the authors establish that this is indeed
the case for any rational polyhedron P . Moreover, one can then repeat this
operation and define the k-th split closure analogous to how the k-th Chvátal-
Gomory closure was defined. The question as to whether a finite application
of the split closure ends in the integer hull2 is also answered affirmatively
by observing that S(P ) ⊆ C(P ) because any Chvátal-Gomory cutting plane
〈a, x〉 ≤ δ is valid for P a,δ.

We wish to compare the strength of the two-halfspace closure and the split
closure (recall that both are subsets of the Chvátal-Gomory closure). To make
this precise, define T k(P ) to be the polyhedron obtained by k repetitions of
the two-halfspace closure operation and rankT (P ) to be the smallest natural

2 For any family of disjunctions, one can pose similar questions about the closure with
respect to this family; such discussions are outside the scope of this paper.
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number k ∈ N such that T k(P ) = PI . Similarly, define Sk(P ) to be the poly-
hderon obtained by k repetitions of the split closure operation and rankS(P )
to be the smallest natural number k ∈ N such that Sk(P ) = PI . Then, our
proof of Theorem 2 gives the following result as a byproduct.

Corollary 1 For all k ≥ 0,

S2k(P ) ⊆ T k(P ) ⊆ Sk(P ).

Consequently,
1

2
rankS(P ) ≤ rankT (P ) ≤ rankS(P ).

Moreover, in Section 3 we give an example showing that the containment
T (P ) ⊆ S(P ) can be strict.

Multi-row cuts. In the past 15 years or so, there has been a lot of research in
the area of multi-row cuts where the general idea is similar to the philosophy
of this paper. One wishes to derive valid inequalities for mixed-integer sets
in the form min{x ∈ Z

n
+ × R

d
+ : Ax = b}. Then one takes a relaxation by

considering two or more aggregated constraints from Ax = b, along with the
nonnegativity constraints, and attempts to construct the (mixed)-integer hull
of these relaxations. This approach has a computational advantage because
the aggregations are taken from the optimal simplex tableaux and the valid
inequalities for these relaxations can be derived from simple formulas that ex-
ploit gauge and support function duality or use the Gomory-Johnson approach
of subadditive functions; see [4] for a survey. Several polyhedrality results have
been proven for this and related settings [2, 6, 17–19], but we do not see an
immediate connection with the polyhedrality result of this paper.

2 Proofs of Theorem 2 and Corollary 1

We begin with some preliminary definitions and simple observations.

Definition 2 A linear subspace L ⊆ R
n is called a lattice subspace if conv(L∩

Z
n) = L. For any X ⊆ L, intL(X) will denote the interior of X with respect

to the relative topology of L. Given a lattice subspace L, ΛL will denote the
lattice in L obtained by the orthogonal projection of Zn onto L. A subset of
L of the form H ∩ L, where H ⊆ R

n is a halfspace, will be called a halfspace
in L (note that this definition allows L itself to be a halfspace).

Definition 3 Let L be a lattice subspace of Rn. Let P ⊆ L be a polyhedron.
A halfspace H in L is a Chvátal-Gomory (CG) cut for P with respect to
ΛL if there exists another halfspace H ′ in L such that P ⊆ H ′ and H =
conv(H ′ ∩ ΛL).

A split set in L with respect to ΛL is a subset S ⊆ L such that intL(S) ∩
ΛL = ∅, S is the intersection of two halfspaces in L, and the dimension of S
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is the same as the dimension of L. In other words, it is a proper subset of L
that is the intersection of L with some split set in R

n. A halfspace H in L
such that P \ intL(S) ⊆ H is called a split cut for P with respect to ΛL.

Definition 4 For any polyhedron P in R
n and lattice subspace L ⊆ R

n, PL

will denote the image of P orthogonally projected from R
n to L, lin(P ) will

denote the lineality space of P , and L⊥ will denote the orthogonal complement
of L. Define

PI,L = conv(PL ∩ ΛL) (3)

SL(P ) =
⋂

split set S on L

with respect to ΛL

conv(PL\intL(S)), (4)

CL(P ) =
⋂

CG cut H for PL

with respect to ΛL

H, (5)

which will be called the lattice hull, split closure and CG closure of P in L
with respect to ΛL, respectively. With a little bit of abuse of notation, we let
PI = PI,Rn , S(P ) denote SRn(P ), and C(P ) denote CRn(P ).

Proposition 3 Let H1, H2 be two rational halfspaces in R
n such that H1∩H2

is not ∅ or R
n. Let L be the linear subspace lin(H1 ∩ H2)

⊥; thus L is two
dimensional if H1 and H2 are not parallel and L is one-dimensional otherwise.
Then (H1 ∩H2)I = (H1 ∩H2)I,L + L⊥ = (H1 ∩H2)I,L + lin(H1 ∩H2).

Proof For z ∈ (H1 ∩ H2) ∩ Z
n, by definition z ∈ (H1 ∩ H2)I,L + L⊥, and so

(H1 ∩H2)I ⊆ (H1 ∩H2)I,L + L⊥.
For z′ ∈ (H1∩H2)L∩ΛL, there exists z1 ∈ Z

n, s.t. z′ is the projection of z1.
In other words, there exists v1 ∈ L⊥ such that z′ = z1+v1. Similarly, there exist
z2 ∈ H1 ∩H2 and v2 ∈ L⊥ such that z′ = z2 + v2. Therefore, z1 = z2 + v2 − v1
and so z1 ∈ H1 ∩ H2 as well. This shows that z1 ∈ (H1 ∩ H2) ∩ Z

n. Finally,
observe that z′ + L⊥ = z1 + L⊥ since z′ − z1 ∈ L⊥.

Since H1, H2 are both rational halfspaces, (H1∩H2)I has the same lineality
space L⊥ as H1 ∩ H2. Therefore, since z1 ∈ (H1 ∩ H2) ∩ Z

n, we must have
z1 + L⊥ ⊆ (H1 ∩H2)I and therefore z′ + L⊥ ⊆ (H1 ∩H2)I .

Thus, we conclude that for any z′ ∈ (H1 ∩ H2)L ∩ ΛL, z
′ + L⊥ ⊆ (H1 ∩

H2)I . Since (H1 ∩H2)I is convex and has lineality space L⊥, this shows that
(H1 ∩H2)I,L + L⊥ ⊆ (H1 ∩H2)I . ⊓⊔

Proposition 4 Let P ⊆ R
n be a polyhedron and let L be a lattice subspace of

R
n. Then the following are all true.

1. Let H be a halfspace in L. Then PL ⊆ H implies P ⊆ H + L⊥.
2. Let H be a halfspace in L. Then if PL∩ΛL ⊆ H we have P ∩Z

n ⊆ H+L⊥.
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3. Let S be a split set in L with respect to ΛL, then S+L⊥ is a split set in R
n.

Consequently, if H is a split cut for PL with respect to ΛL then H +L⊥ is
a split cut for P .

4. If H is a CG cut for PL with respect to ΛL, then H + L⊥ is a CG cut for
P with respect to Z

n.

Proof 1. This is because P ⊆ (PL + L⊥) ⊆ H + L⊥.
2. Given a halfspace H in L, suppose PL ∩ΛL ⊆ H. Since P ∩Z

n projects to
PL ∩ ΛL, we have P ∩ Z

n ⊆ (PL ∩ ΛL) + L⊥ ⊆ H + L⊥.
3. For an integer point z ∈ Z

n, it is orthogonally projected onto some lattice
point z′ ∈ ΛL. Then z′ /∈ S implies that (z′ + L⊥) ∩ (S + L⊥) = ∅. Since
z ∈ z′ + L⊥, so we obtain z /∈ S + L⊥, and thus S + L⊥ is a split set (we
use the fact that for any halfspace H ⊆ L, H + L⊥ is a halfspace in R

n).
Then by part 1, we can prove the rest of part 3.

4. Since H is a CG cut for PL with respect to ΛL, we have P ∩Z
n ⊆ H +L⊥

by part 2. Let Da,K be the split disjunction in L that derives the CG
cut H. By part 3, Da,K + L⊥ is a split disjunction in R

n. Let H1 and
H2 be the two halfspaces in L such that Da,K = H1 ∪ H2. Since H is a
CG cut, we can assume PL ∩ ΛL ⊆ H1 = H, and PL ∩ H2 = ∅. Then
P ∩ Z

n ⊆ H1 + L⊥ = H + L⊥ by part 2, and P ∩ (H2 + L⊥) = ∅ by part
1, which finishes the proof. ⊓⊔

Definition 5 For k ∈ {1, . . . , n}, let Lk denote the set of all k dimensional
lattice subspaces in R

n.

The next result says that the two-halfspace closure can be obtained by in-
tersecting all Chvátal-Gomory cuts for the split closures of the two-dimensional
projections of a polyhedron. This essentially follows from the fact that the in-
teger hull of a two-dimensional simplicial cone can be obtained by taking the
split closure of the simplicial cone, and then taking the Chvátal-Gomory clo-
sure. This fact was first observed in [5] but we include a proof for completeness
in the Appendix; see Theorem 7.

Lemma 1 Given a polyhedron P ⊆ R
n, for L ∈ L2, we define

K(P,L) = {H is a halfspace in R
n : P ⊆ H, L⊥ ⊆ lin(H)}.

For H1, H2 ∈ K(P,L), we define

GL,H1,H2
={H ⊆ R

n : H = H ′ + L⊥

for H ′ which is a CG cut for SL(H1 ∩H2) in L}. (6)

Let GL =
⋃

H1,H2∈K(P,L) GL,H1,H2
. Let G = ∪L∈L2

GL. Let P
1 :=

⋂

L∈L2
(SL(P )+

L⊥). Then we have

T (P ) =
⋂

H∈G

P 1 ∩H. (7)

Moreover, each H ∈ G is a CG cut for P 1.
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Proof We have

T (P ) =
⋂

L∈L2

⋂

H1,H2∈K(P,L)

(H1 ∩H2)I,L + L⊥
)

(8)

=
⋂

L∈L2

⋂

H1,H2∈K(P,L)

(CL(SL(H1 ∩H2)) + L⊥
)

(9)

=
⋂

L∈L2

⋂

H1,H2∈K(P,L)



(SL(H1 ∩H2) + L⊥
)

⋂

H∈GL,H1,H2

H



 (10)

=
⋂

L∈L2













⋂

H1,H2∈K(P,L)

SL(H1 ∩H2)



+ L⊥





⋂

H1,H2∈K(P,L)

⋂

H∈GL,H1,H2

H



 (11)

=
⋂

L∈L2

(

(

SL(P ) + L⊥
)

⋂

H∈GL

H

)

(12)

=
⋂

H∈G

P 1 ∩H (13)

Equation (8) is due to Proposition 3.

Equation (9) is based on the fact that the integer hull of a simplicial cone
Q ∈ R

2 can be derived by taking split closure of Q, and then taking the CG
closure of this split closure [5]. We include a proof of this fact for completeness
in Theorem 7 in the Appendix.

Equation (10) follows from the definition of GL,H1,H2
and Equation (11)

simply distributes the intersection operator.

For equation (12), consider L ∈ L2, let H ′
1 and H ′

2 be two halfspaces in
L that define a simplicial cone containing PL. Then by Proposition 4, H ′

1 +
L⊥, H ′

2 + L⊥ ∈ K(P,L). It is well known that the intersection of the split
closures of all the simplicial cones containing a rational polyhedron Q is the
split closure of Q (see [1]). Thus, we have

⋂

H1,H2∈K(P,L)

SL(H1 ∩H2) = SL(P ),

which finally leads to Equation (12). Distributing the intersection over L ∈ L2

yields equation (13).

For each H ∈ G, by definition, there exists L ∈ L2 and halfspaces H1, H2 ∈
K(P,L), such that H = H ′ + L⊥, where H ′ is a CG cut with respect to
SL(H1 ∩H2). By Proposition 4, part 4., H is a CG cut for SL(H1 ∩H2)+L⊥.
Since P 1 ⊆ SL(H1 ∩ H2) + L⊥, so H is a CG cut for P 1, which finishes the
proof. ⊓⊔
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Now we will show that P 1 = S(P ). In fact, we will show a more general
theorem, which says that one can obtain the split closure of a polyhedron P
by considering the split closures of all k-dimensional projections of P , for any
k ≥ 2.

Theorem 5 Fix any k ∈ {2, . . . , n}. For any polyhedron P ∈ R
n, we have

S(P ) =
⋂

L∈Lk

(SL(P ) + L⊥) (14)

By Proposition 4 part 3., if H is a split cut for PL with respect to ΛL for
some L ∈ Lk, thenH+L⊥ is a split cut for P . This means S(P ) ⊆ SL(P )+L⊥.
Therefore, S(P ) ⊆

⋂

L∈Lk
(SL(P ) + L⊥). The other direction is established in

the next theorem.

Theorem 6 Fix any k ∈ {2, . . . , n}. Let P ∈ R
n be a polyhedron, S be a split

set in R
n which is described by δ1 ≤ 〈a1, x〉 ≤ δ1 + 1, where a1 ∈ Z

n and
δ1 ∈ Z. Assume H ∈ R

n is a halfspace represented by 〈a2, x〉 ≤ δ2 such that
H ⊇ P\ int(S). Let L ∈ Lk be any k dimensional lattice subspace containing
a1 and a2 (such an L always exists because k ≥ 2). Then the following are
both true, where T (·) is the orthogonal projection operator from R

n to L.

1. T (H) + L⊥ = H, and T (H) = H ∩ L and is therefore a halfspace in L.
2. T (S) is a split set in L with respect to ΛL and T (H) ⊇ T (P )\ intL(T (S)).

In other words, T (H) is a valid halfspace in L for SL(P ).

Proof For any convex set C ⊆ R
n and any subspace V ⊆ R

n such that
lin(C)⊥ ⊆ V , then C = (C ∩ V ) + V ⊥. Since C ∩ V ⊆ C and V ⊥ ⊆ lin(C),
we have (C ∩ V ) + V ⊥ ⊆ C + lin(C) = C. Consider any x ∈ C and so
x + V ⊥ ⊆ x + lin(C) ⊆ C. Let y ∈ (x + V ⊥) ∩ V and therefore y ∈ C ∩ V .
Since V ⊥ is a linear subspace, x ∈ y + V ⊥, so we get x ∈ (C ∩ V ) + V ⊥. This
also shows that the orthogonal projection of C on to V is simply C ∩ V .

Note that lin(H)⊥ is the line spanned by a2 which is contained in L. So
the above observations can be applied with C = H and V = L, giving us
H = (H ∩ L) + L⊥ = T (H) + L⊥. This establishes 1.

Let H1 = {x ∈ R
n : 〈a1, x〉 ≥ δ1} and H2 = {x ∈ R

n : 〈a1, x〉 ≤ δ1 + 1}
be the halfspaces. lin(H1)

⊥ = lin(H2)
⊥ is the line spanned by a1 which is

contained in L. Applying the observation with C = H1, H2 and V = L, we
obtain T (Hi) = Hi ∩L for i = 1, 2. Thus, T (Hi) are halfspaces in L. Applying
the observation to C = S and V = L, we obtain T (S) = S∩L = H1∩H2∩L =
(H1 ∩ L) ∩ (H2 ∩ L) = T (H1) ∩ T (H2). Thus, T (S) is the intersection of two
halfspaces in L. A similar argument as above shows that int(S) = (int(S) ∩
L)+L⊥ = intL(S∩L)+L⊥ = intL(T (S))+L⊥. Since Zn∩ int(S) = ∅, we have
that Zn ∩ (intL(T (S)) + L⊥) = ∅. This implies ΛL ∩ intL(T (S)) = ∅ showing
that T (S) is a split set in L with respect to ΛL.

Finally, let x ∈ T (P ) \ intL(T (S)). This implies there exists y ∈ L⊥ such
that x+y ∈ P . We will show in the next paragraph that x+y 6∈ intL(T (S))+L⊥

which implies that x + y 6∈ int(S). Thus, x + y ∈ P \ int(S), and therefore
x+ y ∈ H. This implies that x ∈ T (H) as desired.
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Suppose to the contrary that v = x + y ∈ intL(T (S)) + L⊥. Therefore,
v = x′ + y′ with x′ ∈ intL(T (S)) and y′ ∈ L⊥. However, v has a unique
decomposition as a sum of a vector in L and a vector in L⊥. Since x ∈ T (P ) ⊆
L and y ∈ L⊥, this implies that x = x′ and y = y′. Thus, x ∈ intL(T (S))
contradicting our assumption. This finishes the proof. ⊓⊔

By taking k = 2 in Theorem 5, we obtain

Corollary 2 Given a polyhedron P in R
n, we have P 1 = S(P ), where P 1 is

as defined in Lemma 1.

We have finally collected all the tools to prove Theorem 2 and Corollary 1.

Proof (Proof of Theorem 2) By Corollary 2 and the fact that the split closure
is a polyhedron [14], we have that P 1 is a polyhedron. By Lemma 1, T (P )
is obtained from P 1 by adding a subset of Chvátal-Gomory cuts for P 1. By
Theorem 1.1 in [2], such a subset of CG cuts is dominated by a finite subset
of CG cuts3. This completes the proof. ⊓⊔

Proof (Proof of Corollary 1) One observes that S2(P ) ⊆ T (P ) ⊆ S(P ) by
Lemma 1, Corollary 2, and the fact that any CG cut is a split cut. Applying
this observation iteratively proves the corollary. ⊓⊔

3 Example that shows the containment T (P ) ⊆ S(P ) can be strict

Example 1 Consider a simplicial cone P = H1 ∩ H2 ⊆ R
2, where H1 =

{(x1, x2) ∈ R
2 : x2 ≤ 2x1+1/2} and H2 = {(x1, x2) ∈ R

2 : x2 ≤ −2x1+5/2}.

Claim: Then the point z :=
(

1
2 ,

1
99

)

is in S(P ) but not in T (P ).

Proof It is clear that T (P ) = PI , so z /∈ T (P ) since PI ⊆ {(x1, x2) ∈ R
2 :

x2 ≤ 0}.
Let I1, I2, I3, and I4 denote four segments: conv({(0, 0), (1, 0)}), conv({(1, 0), (1, 1)}),

conv({(1, 1), (0, 1)}), and conv({(0, 1), (0, 0)}). Then for any split set S such
that z ∈ S, S has to intersect with int(conv(I1 ∪ I2 ∪ I3 ∪ I4). Thus the
split set has to intersect with the relative interior of exactly two of I1, . . . , I4.
To produce a split cut that cuts off the apex of P , it can only intersect
with the relative interior of I1 and I3, I2 and I3, or I3 and I4. Also, since
z /∈ conv(I3 ∪ I4) ∪ conv(I3 ∪ I2), so any split set that intersects with interior
of I2 and I3, or I3 and I4, it does not contain z. Thus we only need to consider
the split sets that intersect with the relative interior of I1 and I3. It is clear
that any split cut produced by such split sets is valid to P (1,0),0, using the no-
tation from (2). Then by simple calculation, z ∈ P (1,0),0. Thus z ∈ S(P ). ⊓⊔

3 In fact, Theorem 1.1 in [2] shows that any collection of CG cuts contains a finite sub-
collection of cuts that dominates the entire collection. This is also proved in [1].
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generalize this idea by considering all possible k-dimensional projections: de-
fine

Pk(P ) :=
⋂

L∈Lk

(

PI,L + L⊥
)

.

It is not hard to see that C(P ) = P1(P )= H1(P ). Thus, this can be considered
a natural generalization of the Chvátal-Gomory closure as well.

For k ≥ 3, it is not clear if Hk(P ) = Pk(P ), like the case of k = 1, 2. We
strongly suspect this is not the case, because the k = 2 case crucially uses the
fact that for a polyhedron in two-dimensions, the integer hull is precisely the
the intersection of integer hulls of all two-halfspace relaxations, and one may
restrict one’s attention to two-halfspace relaxations coming from the defining
inequalities of the polyhedron itself (see Theorem 8). Firstly, it is not clear
if one can restrict one’s attention to corner polyhedra in the projection to
describe Hk(P ), for three and higher dimensions. Secondly, it is known that,
in general, the intersection of all corner polyhedra does not give the integer
hull for dimensions three and higher [7, 9]. Thus, we are led to believe

Conjecture 2 For any fixed natural number k ≥ 3, and any n ≥ k, there are
instances of rational polyhedra P ⊆ R

n such that Hk(P ) 6= Pk(P ).

The discussion above shows that Conjecture 2 is true for n = k since Pk(P )
is simply the integer hull of P . Finally, one wonders if Pk(P ) is polyhedral for
any fixed k.

Conjecture 3 For any fixed natural number k ∈ N, and any rational polyhe-
dron P , Pk(P ) is a rational polyhedron.

We feel these questions in discrete geometry are worth pursuing in the
future. Finally, we would like to mention that the Ph.D. thesis of Wolfgang
Keller addresses similar issues and defines various closely related cutting plane
closures [28]. This thesis and the closures defined in this paper open up a
number of questions regarding the relationship and relative strengths of these
various cutting plane strategies.

Acknowledgements We are very grateful to two anonymous referees for very insightful
comments. Their suggestions and pointers helped to improve the paper from its initial
versions. In particular, one of the referees suggested a shorter and more elegant proof for
Theorem 6 which we adopted.
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A Integer hull of two dimensional simplicial cones

Definition 6 Given a simplicial cone C⊆R
2, let F 1, . . . , Fn be the facets of CI . For every

i ∈ {1, . . . , n} we denote by Hi the halfspace defining F i, which can be described as {x ∈
R
2 : 〈ai, x〉 ≤ δi}, for some ai ∈ Z

2 of which the two entries are coprime and δi ∈ Z.

Furthermore, we define ℓ̂i as {x ∈ R
2 : 〈ai, x〉 = δi + 1}. Also, let Ĥi denote the halfspace

described by {x ∈ R
2 : 〈ai, x〉 ≤ δi + 1}.

Definition 7 Given a line ℓ ⊆ R
2 containing integer points, we call each closed segment

whose endpoints are two consecutive integer points of ℓ as a unit interval of ℓ.

Theorem 7 Given a simplicial cone C ∈ R
2, the integer hull of C can be derived by taking

the split closure of C, and then taking the CG closure of this split closure.

Proof We use the same notations as in Definition 6. We first verify that S(C) ⊆ Ĥi for

every i = 1, . . . , n. Given i ∈ {1, . . . , n}, if l̂i does not intersect with C, then C is contained

in Ĥi and we are done. If l̂i intersects with C. Then there exists a unique unit interval U
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of l̂i intersecting C. By definition of l̂i, the two integer points of U are outside of C. Also,
there exists at least one unit interval on F i. Let U ′ be one of them. Then we take the unique
split set S containing the apex of C and conv(U ∪U ′). The two intersection points between
the boundaries of S and the boundaries of C determine a split cut H produced by S, which

cuts off U ∩ C. Thus S(C) ⊆ H ∩ C ⊆ Ĥi\l̂i.

Thus by the definition of Ĥi, the facet defining halfspace Hi of F i is a CG cut for S(C),
for i ∈ {1, . . . , n}. This finishes the proof. ⊓⊔

B General integer hulls in two dimensions

We give a new proof of the following result.

Theorem 8 [7, 9] Let P ⊆ R
2 be any two-dimensional rational polyhedron. Then PI is

equal to the intersection of the integer hulls of all the simplicial cones (or split sets) con-
structed from pairs of facets of P .

We break the proof into two cases: PI is nonempty or empty. These are dealt with in
Theorems 11 and 12 below.

Definition 8 A convex set B ⊆ R
n is a lattice-free convex set if there is no integer point

in its interior, and it is maximal if for any lattice-free set B′ ⊇ B, we have B′ = B.

Theorem 9 In R
2, a convex set B is a maximal lattice-free convex set if and only if it

satisfies one of the following properties.

1. B is a split set, and each of its facets contains integer points.
2. B is a triangle such that each of its facets contains at least one integer point in its

relative interior.
3. B is a four-facet lattice-free set and each of its facet contains exactly one integer point

in its relative interior. Moreover, the convex hull of the union of these four integer
points is a parallelogram with area 1.

Lemma 2 Let Q ∈ R
2 be a rational polyhedron such that int(Q) ∩ Z

2 = ∅, and Q has
four facets F1, F2, F3 and F4 in clockwise order. Let Hi and li denote the corresponding
facet-defining halfspace and hyperplane for i = 1, 2, 3, 4. Assume F1 contains at least one
integer point in its relative interior, and li ∩ Z

2 = ∅ for i = 2, 3, 4. Let the corresponding
facet defining halfspace Hi be {x ∈ R

2 : 〈ai, x〉 ≤ δi} for i = 1, 2, 3, 4. Then H := {x ∈ R
2 :

〈a1, x〉 ≥ δ1} ⊇ (H2 ∩H3)I ∩ (H2 ∩H4)I ∩ (H3 ∩H4)I .

Proof We will attempt to construct a maximal lattice-free set containing Q by “pushing its
facets out”. More formally, we do the following.

If (H1 ∩ H2 ∩ H4) ∩ Z
2 = (H1 ∩ H2 ∩ H3 ∩ H4) ∩ Z

2, i.e., removing H3 does not
change the set of integer points, then H ⊇ (H2 ∩H4)I and we are done. Suppose then that
(H1∩H2∩H4)∩Z

2 contains integer points that are not in (H1∩H2∩H3∩H4)∩Z
2. All such

integer points must be in the interior of H1∩H2∩H4, since ℓ2 and ℓ4 do not contain integer
points. Therefore, there exists δ′

3
> δ3 such that if one defines H′

3
= {x ∈ R

2 : 〈a3, x〉 ≤ δ′
3
},

then H1∩H2∩H′
3
∩H4 is also lattice free, but the facet corresponding to H′

3
contains integer

points in its relative interior. One now checks if removing H2 introduces new integer points
in H1 ∩H2 ∩H′

3
∩H4. If not, then we observe that H ⊇ (H3 ∩H4)I since δ′

3
> δ3 and we

are done. Otherwise, we find δ′
2
> δ2 such that if one defines H′

2
= {x ∈ R

2 : 〈a2, x〉 ≤ δ′
2
},

then H1 ∩ H′
2
∩ H′

3
∩ H4 is also lattice free, but the facet corresponding to H′

2
contains

integer points in its relative interior. Finally, we “push out” H4 and either realize that
H ⊇ (H2 ∩ H3)I , or end up with a maximal lattice-free quadrilateral satisfying Case 3. in
Theorem 9.

Let us make the notation uniform and use H′
k
and ℓ′

k
denote the corresponding facet

defining halfspace and hyperplane, and vj be the integer point located on the corresponding
facet, for j = 1, 2, 3, 4. By assumption, ℓk 6= ℓ′

k
for k = 2, 3, 4. Let ℓ5, ℓ′5 and ℓ6 be the
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lines such that {v1, v2} ⊆ ℓ5, {v3, v4} ⊆ ℓ′
5
, and {v1, v4} ⊆ ℓ6. Furthermore, let H5 be the

halfspace defined by ℓ5 such that v4 /∈ H5. Similarly H6 be the halfspace defined by ℓ6 such
that v2 /∈ H6. Since there are no integer points between ℓ5 and ℓ′

5
(because v1, v2, v3, v4

form a fundmanetal parallelopiped of the integer lattice), all integer points in H′
3
∩H′

4
are

contained in H5, except for the points v3 and v4. Since these points are not contained in
H3 ∩H4, we must have (H3 ∩H4)I ⊆ H5. Similarly, we have (H2 ∩H3)I ⊆ H6.Therefore,
(H2 ∩H3)I ∩ (H4 ∩H3)I ⊆ H5 ∩H6 ⊆ H. ⊓⊔

Theorem 10 (Integer Helly’s Theorem [8, 21, 27, 30]) Let I be a finite family of convex
sets in R

n such that
⋂

C∈I
C∩Z

n = ∅, then there exists I′ ⊆ I such that
⋂

C∈I′ C∩Z
n = ∅

and |I′| ≤ 2n.

Corollary 3 Given a full dimensional polyhedron P ∈ R
2 with at least four facets, assume

only one of its facets F contains integer points in its relative interior. Let H be the facet
defining halfspace of F . Furthermore, we assume int(H) ∩ P ∩ Z

2 = ∅. Then there exists
three facet defining halfspaces for P denoted by H1, H2 and H3 other than H, such that
int(H) ∩H1 ∩H2 ∩H3 ∩ Z

2 = ∅ and H is irredundant to int(H) ∩H1 ∩H2 ∩H3.

Theorem 11 Given a polyhedron P ∈ R
2 such that P ∩Z

2 6= ∅. Then PI is the intersection
of the integer hulls of all the simplicial cones (or split sets) constructed from pairs of facets
of P .

Proof Let H be a halfspace containing PI and described by {x ∈ R
2 : 〈a, x〉 ≥ δ}. We wish

to show that H is valid for the intersection of the integer hulls of all the simplicial cones
(or split sets) constructed from pairs of facets of P . For this purpose, we may strengthen
H such that its bounding hyperplane has a nonempty intersection with PI , and show that
this strengthening has the desired property. Let H′ be the halfspace {x ∈ R

2 : 〈a, x〉 ≤ δ}.
Let P be the intersection of halfspaces Hi := {x ∈ R

2 : 〈ai, x〉 ≤ δi}, and the two entries of
ai be coprime for i = 1, . . . ,m. If δi ∈ Z, then let H′

i be the halfspace {x ∈ R
2 : 〈ai, x〉 ≤

δi +
1

2
}. Otherwise, H′

i = Hi. Let P ′ be the intersection of H′
i for i = 1, . . . ,m. Note that

PI = P ′
I ⊆ int(P ′), and there is no integer point on any facet defining line of P ′.

Claim: H is valid for the intersection of the integer hulls of all the simplicial cones (or split
sets) constructed from pairs of facets of P ′.

Proof By our assumption, the bounding hyperplane of H contains integer points from PI .
Thus, H′ ∩ PI 6= ∅. Then P ′ ∩ H′ is a lattice-free set with one facet defined by H′ and
containing at least one integer point in its relative interior since P ′

I = PI ⊆ int(P ). If P ′∩H′

has only two or three facets, the proof is trivial. Otherwise, by Corollary 3, there exist three
facet defining halfspaces of P ′, say H′

1
, H′

2
and H′

3
, such that Q := H′

1
∩ H′

2
∩ H′

3
∩ H′ is

lattice free and nonempty since H′ ∩ PI 6= ∅, and H′ is irredundant to Q. Moreover, the
facet of Q defined by H′ contains a integer point in its relative interior since PI ⊆ int(P ). If
Q only has two or three facets, then the proof is trivial. If Q has four facets, then by Lemma
2, we can finish the proof. ⊓⊔

The claim immediately implies that PI is the intersection of the integer hulls of all
the simplicial cones (or split sets) constructed from pairs of facets of P ′. The proof can be
finished by the fact that Hi ⊆ H′

i for i = 1, . . . ,m. ⊓⊔

Theorem 12 Given a polyhedron P such that P ∩ Z
2 = ∅, we have that the intersection,

denoted by U , of the integer hulls of all the simplicial cones (or split sets) constructed from
pairs of facets of P , is empty.

Proof By Theorem 10, we can assume P has at most four facets. If P has two or three facets,
then the proof is trivial. Therefore, assume P has four facets and let Hi for i = 1, . . . , 4
denote the facet defining halfspaces in clockwise order. If H1 ∩H3 or H2 ∩H4 forms a split
set, then the proof is trivial. So we assume both H1∩H3 and H2∩H4 contain integer points.
Since H1 ∩H3 ∩ Z

2 6= ∅, (H1 ∩H3 ∩H2)I or (H1 ∩H3 ∩H4)I is not empty. Without loss
of generality, assume (H1 ∩ H3 ∩ H2)I 6= ∅. By Theorem 11, we have (H1 ∩ H3 ∩ H2)I =
(H3∩H2)I∩(H1∩H2)I∩(H1∩H3)I . Therefore U ⊆ (H1∩H3∩H2)I . Similarly, using the fact
that H2 ∩H4 ∩Z

2 6= ∅, we can assume (H2 ∩H4 ∩H1)I 6= ∅ and have U ⊆ (H2 ∩H4 ∩H1)I .
Hence U ⊆ (H1 ∩H3 ∩H2)I ∩ (H2 ∩H4 ∩H1)I ⊆ (H1 ∩H2 ∩H3)I ∩H4 = ∅. ⊓⊔


