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Abstract We investigate the theoretical complexity of branch-and-bound (BB)
and cutting plane (CP) algorithms for mixed-integer optimization. In partic-
ular, we study the relative efficiency of BB and CP, when both are based on
the same family of disjunctions. We extend a result of Dash (2002) to the
nonlinear setting which shows that for convex 0/1 problems, CP does at least
as well as BB, with variable disjunctions. We sharpen this by giving instances
of the stable set problem where we can provably establish that CP does expo-
nentially better than BB. We further show that if one moves away from 0/1
sets, this advantage of CP over BB disappears; there are examples where BB
finishes in O(1) time, but CP takes infinitely long to prove optimality, and
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exponentially long to get to arbitrarily close to the optimal value (for variable
disjunctions). We next show that if the dimension is considered a fixed con-
stant, then the situation reverses and BB does at least as well as CP (up to a
polynomial blow up factor), for quite general families of disjunctions. This is
also complemented by examples where this gap is exponential (in the size of
the input data).

Keywords complexity bounds · branch-and-bound · cutting planes ·
mixed-integer nonlinear optimization

Mathematics Subject Classification (2010) 90C11 · 90C57 · 90C60

1 Introduction

In this paper, we consider the following optimization problem:

sup
x∈Rn

〈c, x〉 (1a)

s.t. x ∈ C ∩ S (1b)

where C is a closed, convex subset of Rn and S is a closed, possibly non-convex,
subset of Rn. This model is a formal way to “decompose” the feasible region
into the “convex” constraints C and the “non-convexities” S of the problem
at hand. The bulk of this paper will be concerned with non-convexity coming
from integrality constraints, i.e., S := Z

n1 × R
n2 , where n1 + n2 = n; the

special case n2 = 0 will be referred to as a pure-integer lattice and the general
case as a mixed-integer lattice (n1 = 0 gives us standard continuous convex
optimization). However, some of the ideas put forward apply to other non-
convexities like sparsity or complementarity constraints as well (see Theorem
5 below, where the only assumption on S is closedness).

Cutting Planes and Branch-and-Bound. Cutting planes were first successfully
employed for solving combinatorial problems with special structure, such as
the traveling salesman problem [1, 16, 26–28, 30, 31, 48–51], the stable set
problem [17, 56, 58, 65], the knapsack problem [2, 66], amongst others. For
general mixed-integer problems, cutting plane ideas were introduced by Go-
mory [45, 46], but did not make any practical impact until the mid 1990s [3].
Since then, cutting planes have been cited as the most significant component
of modern solvers [10], where they are combined with a systematic enumera-
tion scheme called Branch-and-Bound. Both of these ideas are based on the
following notion.

Definition 1 Given a closed subset S ⊆ R
n, a disjunction covering S is a

finite union of closed convex sets D = Q1 ∪ . . . ∪Qk such that S ⊆ D. Such a
union is also called a valid disjunction.
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Observe that the feasible region of (1) is always contained in any valid
disjunction D. This leads to a fundamental algorithmic idea: one iteratively
refines the initial convex “relaxation” C by intersecting it with valid disjunc-
tions. More formally, a cutting plane for C derived from a disjunction D is any
halfspace H ⊆ R

n such that C ∩D ⊆ H. The point is that the feasible region
C ∩ S ⊆ C ∩D ⊆ C ∩H.

Thus, the convex region C is refined or updated to a smaller convex set
C∩H. The hope is that iterating this process with clever choices of disjunctions
and cutting planes derived from them will converge to the convex hull of C∩S,
where the problem can be solved with standard convex optimization tools.
Since the objective is linear, solving over the convex hull suffices.

C C

Fig. 1 Two examples of cutting planes based on split disjunctions for S = Z
n. The convex

region C is a polytope. The dashed line shows the bounding hyperplane of the cutting plane
H; the dark triangle in both cases is the part of C that is “shaved off”, i.e., C \H.

Example 1 Split disjunctions for the mixed-integer lattice were introduced by
Cook, Kannan and Schrijver [25]. These are disjunctions that are a union of
two rational halfspaces that cover the mixed-integer lattice. Note that this
implies the bounding hyperplanes of the two halfspaces have to be parallel.
See Figure 1 where the disjunctions are colored in light gray. The right figure
illustrates an example of Chvátal-Gomory cuts [15], which are cutting planes
derived from split disjunctions where one side of the disjunction does not inter-
sect the convex set C. Most cutting planes used in combinatorial optimization
are Chvátal-Gomory cuts. For example, in the maximum matching problem
the so-called odd set or blossom inequalities are an example of Chvátal-Gomory
cuts [15, 39, 40], where C is the fractional matching polytope for maximum
matching with 0/1 variables for the edges of the graph.

We will now formally define algorithms based on cutting planes and branch-
and-bound, assuming access to a continuous, convex optimization solver. Be-
low, when we use the word “solve” to process a continuous convex optimiza-
tion problem, we assume that such a solver will either (i) report infeasibility,
or (ii) report that a maximizer does not exist either because the problem is
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unbounded or because the supremum is not attained, or (iii) report an optimal
solution to the convex optimization problem.

Definition 2 Cutting plane (CP) algorithm based on a family D of disjunc-
tions:

1. Initialize C0 := C.
2. For i = 0, 1, . . .
(a) Solve xi ∈ argmax{〈c, x〉 : x ∈ Ci}. If Ci = ∅, report “INFEASIBLE”

and STOP. If no maximizer exists, report “EXCEPTION” and STOP.
(b) If xi ∈ S, report xi as OPTIMAL and STOP. Else, choose a disjunction

D ∈ D and a cutting plane H for Ci derived from D such that xi 6∈ H.
Set Ci+1 := Ci ∩ H. If no cutting plane can be derived, report “NO
CUTTING PLANE” and STOP.

The outputs “EXCEPTION” and “NO CUTTING PLANE” correspond to
situations in which the CP algorithm stops without finding an optimal solution
to the given problem. Note however that if, e.g., C is compact, then the output
“EXCEPTION” will never occur. Also, if S is the mixed-integer lattice and D
is the family of split disjunctions, the output “NO CUTTING PLANE” will
never occur if xi is an extreme point of Ci. We call the sequence of operations
in Definition 2 an “algorithm”, even though it may not terminate in finitely
many iterations.

In the framework above, at every iteration there are usually many possibil-
ities for the choice of the disjunction from D, and then many possibilities for
the choice of the cutting plane from the chosen disjunction. Specific strategies
for these two choices give a particular instance of a cutting plane algorithm
based on the family of disjunctions D.

Disjunctions can also be used to simply search, as opposed to convexifica-
tion by cutting planes. This leads to the idea of branching with pruning by
bounds.

Definition 3 Branch-and-bound (BB) algorithm based on a family D of dis-
junctions:

1. Initialize a list L := {C}, LB := −∞.
2. While L 6= ∅
(a) Choose N ∈ L and update L := L \ {N}. Solve x̄ ∈ argmax{〈c, x〉 :

x ∈ N}. If N = ∅, continue the loop. If no maximizer exists, report
“EXCEPTION” and STOP.

(b) If 〈c, x̄〉 > LB, then check if x̄ ∈ S. If yes, update LB := 〈c, x̄〉; if no,
choose a disjunction D = (Q1 ∪ . . . ∪ Qk) ∈ D such that x̄ 6∈ D ∩ N

and update L := L∪
⋃k

i=1(Qi∩N). If no such disjunction exists, report
“NO DISJUNCTION FOUND” and STOP.

3. If LB = −∞ report “INFEASIBLE”. Else, return x̄ ∈ S corresponding to
current LB as OPTIMAL and STOP.
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The idea is to maintain a list L of convex subsets of the initial convex set
C which are guaranteed to contain the optimal point. LB stores the objective
value of the best feasible solution found so far, which is a lower bound for the
optimal value. Note that when 〈c, x̄〉 ≤ LB, node N is simply discarded: this
is known as pruning by bound. In the worst case, one will go through each
integer point (or connected component of S) in C.

Cutting planes and branch-and-bound can be combined into a single algo-
rithm as well that generalizes Definitions 2 and 3.

Definition 4 A branch-and-cut (BC) algorithm is a version of the algorithm
defined in Definition 3, where there is an additional decision point in Step 2
(b), where one decides if one should add a cutting plane (locally, i.e., valid for
N ∩ S) or branch as described in the step.

The literature on the complexity of cutting plane methods has often focused
on the concepts of cutting plane proof and cutting plane rank, which are closely
related to the efficiency of a cutting plane algorithm (Definition 2).

Definition 5 Let C ⊆ R
n be a convex set, let S ⊆ R

n model the non-
convexity, and let D be a family of valid disjunctions for S (see Definition 1).

1. Suppose the inequality 〈c, x〉 ≤ γ is valid for all points in C ∩ S. A cutting
plane (CP) proof based on D with respect to C ∩S of length N ∈ N for this
inequality is a sequence of halfspaces H1, H2, . . . , HN such that 1) there
exists a sequence of disjunctions D1, D2, . . . , DN ∈ D such that for each
i = 0, . . . , N−1, Hi+1 is a cutting plane derived from the disjunction Di+1

applied to Ci := C ∩
⋂i

j=1 Hj ,
1 and 2) 〈c, x〉 ≤ γ is valid for all points in

CN .
2. The D-closure is defined as the intersection of C with all cutting planes that

can be derived from all disjunctions in D, which we denote by CPD(C). We
can iterate this operator N ≥ 1 times, which we will denote by CPN

D (C) =
CPD(CPD(. . . CPD
︸ ︷︷ ︸

Ntimes

(C) . . .)). The D-rank of a valid inequality 〈c, x〉 ≤ γ for

C ∩ S is the smallest N ∈ N such that this inequality is valid for CPN
D (C)

(the rank is ∞ if the inequality is invalid for all CPN
D (C), N ≥ 1).

The relation to the notion of a cutting plane algorithm (Definition 2) is
simple: Suppose an instance of (1) has optimal value OPT and a cutting plane
algorithm ends with this value in N iterations. Clearly, the cutting planes
generated during the algorithm give a cutting plane proof of length N for
the inequality 〈c, x〉 ≤ OPT . Thus, establishing lower bounds on the length
of cutting plane proofs are a way to derive lower bounds on the efficiency
of a cutting plane algorithm. Also, proving a lower bound on the rank of an
inequality gives a lower bound on the cutting plane proof length. See [11, 18–
20, 24, 32–34, 41, 62] for a sample of upper and lower bound results on rank
and proof length.

1 We make the standard notational convention that the trivial intersection
⋂

0

i=1
Xi = R

n.
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One can define analogous concepts for branch-and-bound. In fact, we will
now define a generalization of the notion of cutting plane proof to branch-and-
cut procedures.

Definition 6 Let C ⊆ R
n be a convex set, let S ⊆ R

n model the non-
convexity, and let D be a family of valid disjunctions for S (see Definition 1).
Suppose the inequality 〈c, x〉 ≤ γ is valid for all points in C ∩ S. A branch-
and-cut (BC) proof based on D with respect to C ∩ S for this inequality is a
rooted tree such that 1) every node represents a convex subset of C, 2) the root
node represents C itself, 3) every non-leaf node is labeled as a cutting node or
a branching node, 4) any cutting node representing C ′ ⊆ C has exactly one
child and there exists a disjunction D ∈ D and a cutting plane H for C ′ de-
rived from D such that the child represents C ′ ∩H, 5) for any branching node
representing C ′ ⊆ C, there exists a disjunction in D given by D = Q1∪. . .∪Qk

such that the children of this node represent the sets C ′∩Qi, i = 1, . . . , k, and
6) 〈c, x〉 ≤ γ is valid for all the subsets represented by the leaves of the tree.
The size of the BC proof is the total number of nodes in the tree minus 1 (we
exclude the root representing C).

Remark 1 Note that if all nodes in a branch-and-cut proof are cutting nodes,
then we have a cutting plane proof and notions of length and size coincide. If
all nodes are branching nodes, then we say we have a branch-and-bound (BB)
proof.

As with the case of cutting planes, a branch-and-bound/branch-and-cut al-
gorithm also provides a branch-and-bound/branch-and-cut proof of optimality
with size equal to the number of iterations of the algorithm. Also, note that
by just changing the stopping criterion in the algorithms, one can use them
to derive upper bounds on the objective function value, i.e., proving validity
of 〈c, x〉 ≤ γ, instead of stopping at optimality or infeasibility. Consequently,
CP/BB/BC proofs can be seen as a way to prove unsatisfiability in logic. This
led to a rich literature at the intersection of optimization and proof complex-
ity [12, 14, 21, 23, 29, 36, 37, 43, 44, 47, 52, 54, 59–61], to cite a few.

Proofs versus algorithms. A major difference between a CP/BB/BC al-
gorithm and a CP/BB/BC proof of optimality (or validity of an upper bound)
is that the algorithm is restricted to choose a disjunction (and a cutting plane
based on this disjunction) that “shaves off” the current optimal solution. There
is no such restriction on a proof. In fact, there are two-dimensional examples
where every CP algorithm based on a standard family of disjunctions con-
verges to a value that is 12.5% larger than the optimal value even after in-
finitely many iterations, while there are finite length CP proofs based on the
same family that can certify the validity of any upper bound strictly greater
than the optimal value [57].

There is another fundamental difference between a CP/BB/BC algorithm
and a CP/BB/BC proof. To see this, it is useful to consider CP/BB/BC proofs,
i.e., CP/BB/BC trees as defined before, but with the restriction that at every
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internal node, the disjunction or cutting plane used must cut off the optimal so-
lution with respect to the objective function of the instance. We term these as
restricted CP/BB/BC proofs. Such proofs would be a middle ground between
algorithms and proofs discussed above. The example from Owen and Mehro-
tra cited above [57] shows that there can be drastic differences between proofs
and restricted proofs. Comparing restricted proofs and algorithms is much
more tricky and subtle. It is a priori possible that a family of instances has
CP/BB/BC restricted proofs of optimality/upper bounds, yet no CP/BB/BC
algorithm exists whose iteration complexity is comparable to these proof sizes
for these instances. Note that the difference here is not coming from whether
one is allowed to cut off the optimal solution or not, because restricted proofs
are also constrained by this. The difference is similar to the difference between
P and NP , or P and co-NP in classical complexity theory, but in the nar-
rower setting of CP/BB/BC proofs and algorithms. In particular, it is possible
that for some family of instances, one has polynomial size restricted proofs but
any CP/BB/BC algorithm performs exponentially many iterations. Resolving
this question would obviously require proving lower bounds on algorithm com-
plexity without using lower bounds on sizes of (restricted) proofs. We are not
aware of any such techniques in the literature.

See also the discussion on proofs versus algorithms in [7] for some other
subtleties that arise in CP/BB/BC algorithms and proofs.

2 Main Results

We summarize our main results in Table 1 and the discussion below. Since
we wish to compare branch-and-bound against cutting planes, we believe it is
meaningful to use the same family of disjunctions for both procedures. This
ensures that both procedures use the same amount of information and the
comparison gives insight into the procedures themselves, and the analysis is
not influenced by some other compounding factor. Table 1 focuses on the
family of variable disjunctions and split disjunctions. However, the results in
the second row apply to more general disjunctions and the first row mainly
focuses on variable disjunctions in this paper.

0/1 convex sets and variable disjunctions. Consider the family of pure-integer
instances where S = Z

n and C is a convex set contained in the [0, 1]n hyper-
cube. This captures most combinatorial optimization problems, for instance.
We focus on the most commonly used disjunctions in practice: variable dis-
junctions, i.e., every disjunction is a union of two halfspaces of the form

Di,K := {x ∈ R
n : xi ≤ K} ∪ {x ∈ R

n : xi ≥ K + 1}, (2)

where i ∈ {1, . . . , n} and K ∈ Z. The following is a generalization of a result
by Dash [33, Lemma 5.2] who established the polyhedral case.
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Theorem 1 Let C ⊆ [0, 1]n be any closed, convex set. Let S = Z
n and D

be the family of variable disjunctions. Let 〈c, x〉 ≤ γ be a valid inequality for
C ∩ {0, 1}n (possibly c = 0, γ = −1 if C ∩ {0, 1}n = ∅). If there exists a
branch-and-cut proof of size N based on D that certifies 〈c, x〉 ≤ γ, then for
any ǫ > 0, there exists a cutting plane proof based on D of size at most N
certifying 〈c, x〉 ≤ γ + ǫ.

If C is a polytope, then the statement is also true with ǫ = 0.

0/1 convex sets,
variable
disjunctions

general convex
sets, variable
disjunctions

0/1 convex sets,
split disjunctions

general convex
sets, split
disjunctions

Variable
dim.

CP ≤ BB
(Thm. 1)

BB O(1) vs.
CP ∞ (Thm. 3)

Open question2 Open question2

CP poly(n) vs.
BB exp(n)
(Thm. 2)

CP poly(n) vs.
BB exp(n)
(Thm. 2)

Fixed
dim.

BB and CP O(1)
(Thm. 4)

BB ≤ poly(CP)
(Thm. 5)

BB and CP O(1)
(Thm. 4)

BB ≤ poly(CP)
(Thm. 5)

BB O(1) vs.
CP exp(data)
(Thm. 7)

BB O(1) vs.
CP poly(data)
(Remark 4)

Table 1 The two rows distinguish between the cases when the dimension n is considered
variable or a fixed constant in the bounds reported. The columns consider combinations of
different families of convex sets C – “0/1 convex sets” or “general convex sets” – and two
popular disjunction families in integer optimization. “BB”/“CP” denotes the smallest size
of a BB/CP proof or algorithm in the corresponding setting.

Thus, in this setting, cutting planes are always at least as good as branch-
and-bound (up to ǫ slack in the general convex case and exactly for the poly-
hedral case). The question arises if CP can be provably much better. We show
that this is indeed the case with an instance of the maximum stable set prob-
lem. Let P (G) denote the fractional stable set polytope on a graph G = (V,E):
P (G) := {x ∈ R

V : xu + xv ≤ 1 ∀(u, v) ∈ E, x ∈ [0, 1]V }; so the stable sets
are represented by P (G) ∩ Z

n. The objective is to maximize
∑

v∈V xv.

Theorem 2 Let G be the graph given by m disjoint copies of K3 (cliques
of size 3). Then for C = P (G) with objective

∑

v∈V xv, S = Z
3m and D

representing the family of all variable disjunctions, there is a cutting plane
algorithm which solves the maximum stable set problem in m iterations, but
any branch-and-bound proof certifying an upper bound of m on the optimal
value has size at least 2m+1 − 2 for all m ≥ 1.

2 These questions have been mostly cleared up in a subsequent paper [7]. See the discussion
in the first paragraph of Section 4.
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Theorems 1 and 2 are together represented in the first row and first column
of Table 1. Theorem 2 can be generalized to examples where the graph is
connected; see subsection 3.3.

Remark 2 Examples where BB based on variable disjunctions takes an expo-
nential number of iterations were already known: see, e.g., [53, 55]. However,
to the best of our knowledge, it is unknown whether CP based on the same
family of disjunctions can finish in polynomial time on those instances.

General polytopes and variable disjunctions. If one allows polytopes that are
not necessarily subsets of the n-hypercube, but sticks with S = Z

n and variable
disjunctions, then the advantage of CP over BB discussed above disappears.
We created examples of polytopes Pn in every dimension n such that there is
a BB algorithm that solves the problem in O(1) iterations, but any CP proof
will necessarily have infinite length (recall that only cutting planes based on
variable disjunctions are allowed).

Theorem 3 Let B ⊆ R
2 be the convex hull of {(0, 0), (1.5, 1), (2, 2), (1, 1.5)}.

For every n ∈ N, let Pn ⊆ R
n be the Cartesian product of B and the hypercube

[− 1
2 ,

1
2 ]

n−2, i.e., Pn := B × [− 1
2 ,

1
2 ]

n−2. Consider instances of (1) with the
objective x1 − x2, C = Pn and S = Z

n, and let D be the family of variable
disjunctions. The optimal value is 0 and there is a branch-and-bound algorithm
based on D which certifies x1 − x2 ≤ 0 in O(1) steps. However, any cutting
plane proof of x1 − x2 ≤ 0 has infinite length.

Remark 3 Owen and Mehrotra [57, Section 4.1] gave a two-dimensional exam-
ple where no cutting plane algorithm based on variable disjunctions converges
to the optimal integer solution; in fact, they show no restricted cutting plane
proofs can prove an upper bound on the objective better than 1.125 · OPT
(see the discussion at the end of Section 1). It can also be shown that for their
example, no finite cutting plane proof exists either for optimality, but there
are finite cutting plane proofs (based on the same family of cutting planes)
that can prove an upper bound of (1 + ǫ) · OPT for any ǫ > 0. The example
in Theorem 3 above shows a similar behaviour. In both examples, the proof
sizes are O(log(1/ǫ)) for ǫ-optimality.

Together with Theorem 2, this fills in the first row and second column of
Table 1.

Fixing the dimension. The following relatively straightforward result shows
that in fixed dimensions, one must go beyond the 0/1 setting for anything
interesting to happen.

Theorem 4 Let C ⊆ [0, 1]n be compact, convex and let 〈c, x〉 ≤ γ be valid
for C ∩Z

n. There exist BB and CP proofs based on variable disjunctions that
prove the validity of this inequality and whose size is bounded by a function
only of the dimension. Thus, if we consider instances in a fixed dimension,
there are O(1) size BB and CP proofs.
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The stable set example in Theorem 2 shows that if the dimension varies,
CP can be exponentially better than BB. One can ask if a family of polyhedral
instances can be constructed in some fixed dimension such that CP is better
than BB by a factor that is exponential in the size of the input data (i.e., bit
complexity of the numerical entries of the constraints). Interestingly, in fixed
dimensions, the situation is reversed; roughly speaking BB is always as good as
CP (at most polynomial blow-up), if the family of disjunctions has “bounded
complexity”. Moreover, we can establish such a result for quite general non-
convexities and convex relaxations.

Definition 7 The complexity of a disjunction D = Q1 ∪ . . .∪Qk is defined as
follows: if any of the Qi’s are non-polyhedral, then the complexity of D is ∞.
Else, the complexity of D is the sum of the number of facets of each Qi. The
complexity of a family D of disjunctions is the maximum complexity of any
disjunction in D (e.g., the complexity of the family of split disjunctions is 2).

Theorem 5 Fix n ∈ N. Let S ⊆ R
n be any closed set modeling the non-

convexity. Let D be a family of valid disjunctions for S with complexity bounded
by M and such that for any disjunction D = Q1 ∪ . . . ∪ Qk, the Qi’s are
disjoint. Then, for any convex set C ⊆ R

n and any inequality 〈c, x〉 ≤ γ valid
for C ∩ S, if there is a cutting plane proof of length K for its validity, then
there is a branch-and-bound algorithm which proves the validity and takes at
most O((MK)n+1) iterations.

A notion that becomes important in some branch-and-bound type algo-
rithms is the so-called flatness constant of a convex set. The flatness theo-
rem [4, 5, 63] states that there exists a function f : N → N, such that for
every n ∈ N, if C ⊆ R

n is a convex set with C ∩ Z
n = ∅, then there exists

w ∈ Z
n \ {0} such that maxx∈C〈w, x〉 − minx∈C〈w, x〉 ≤ f(n). The number

f(n) is usually referred to as the flatness constant (where the word “constant”
is justified by the fact that this function has its main use when the dimension
n is fixed). Combining the proof techniques that go behind Theorem 5 with
an idea from [23] that exploits the flatness theorem, we can also prove the
following related theorem for the pure-integer lattice.

Theorem 6 Fix n ∈ N. Let S = Z
n and let D be the family of split disjunc-

tions. For any convex set C ⊆ R
n and any inequality 〈c, x〉 ≤ γ valid for C∩S

with c ∈ Z
n, there is a branch-and-bound algorithm which proves the validity

of 〈c, x〉 ≤ γ and takes at most O((2f(n))n(n+1)) iterations, where f(n) is the
flatness constant.

Theorems 5 and 6 provide some mathematical reasons for why the best
complexity guarantees in fixed dimensions are for Lenstra-style algorithms,
which can be interpreted as branch-and-bound algorithms. To complement
this, the instances from Theorem 3 can be interpreted to be fixed dimension
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examples showing that BB can be infinitely better than CP. Nevertheless, in
that instance, there is an O(log(1/ǫ)) size CP proof for ǫ-optimality, i.e., to
prove x1 − x2 ≤ ǫ for any ǫ > 0. So the CP proof for approximate optimality
is polynomial size in terms of the approximation parameter. We present an-
other family of instances in fixed dimensions in Theorem 7 below where there
are CP algorithms that finish in finite time but any such algorithm will take
exponentially (in the data size) many steps (we state the result for exact CP
proofs, but the CP proofs remain exponential in size even when allowing for
ǫ-approximations).

Theorem 7 Given a rational h > 0, let Ph ⊆ R
3 be the convex hull of

{(0, 0, 0), (0, 2, 0), (2, 0, 0), (1− 1
h
, 1− 1

h
, h)}. Consider the instances of (1) with

the objective x3, C = Ph and S = Z
3. The optimal value is 0 and there is a

branch-and-bound algorithm with variable disjunctions which certifies the valid
inequality x3 ≤ 0 in O(1) steps. However, any cutting plane proof with vari-
able disjunctions of x3 ≤ 0 has Ω(h) length. The instances can be created in
any dimension by using the construction from Theorem 3 where one takes a
Cartesian product with a hypercube.

Remark 4 For the case of general polytopes and general split disjunctions in
fixed dimension, examples are known in which BB solves the problem in O(1)
iterations while any CP proof of optimality takes a number of iterations that is
at least polynomial in the size of the input data. An instance of this type can
be found in [22, Lemma 19]: if P ⊆ R

3 is the convex hull of the points (0, 0, 0),
(2, 0, 0), (0, 2, 0) and (0.5, 0.5, h), where h > 0, and S = Z

3, then the rank of
the inequality x3 ≤ 0 with respect to general split disjunctions is Ω(log h).

The above example was introduced by Cook, Kannan, and Schrijver [25]
to prove that when x3 is considered a continuous variable, then the inequality
x3 ≤ 0 (which is still valid in the mixed-integer case) cannot be obtained after
a finite number of split disjunctions.

The second row of Table 1 summarizes the results in fixed dimension.

3 Proofs of main results

3.1 Preliminaries

We first recall the following well-known result from LP sensitivity analysis.

Lemma 1 Let P = {x ∈ R
n : 〈ai, x〉 ≤ bi i = 1, . . . ,m} be a polyhedron given

as the intersection of m halfspaces, and let 〈d, x〉 ≤ δ be a valid inequality for
P . Then for any ǫ > 0, there exists ǫ′ > 0 such that 〈d, x〉 ≤ δ + ǫ is valid for
Pǫ′ := {x ∈ R

n : 〈ai, x〉 ≤ bi + ǫ′ i = 1, . . . ,m}.

Proof See, for example, equation (22) in [64, Chapter 10]. ⊓⊔

We will need the following version of the above result.
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Lemma 2 Let C ⊆ R
n be a compact, convex set. Let a1, . . . , am, c ∈ R

n,
and b1, . . . , bm, γ ∈ R be such that 〈c, x〉 ≤ γ is valid for C ∩

⋂m

i=1{x ∈ R
n :

〈ai, x〉 ≤ bi}. For any ǫ > 0, there exists ǫ′ > 0 such that 〈c, x〉 ≤ γ+ ǫ is valid
for C ∩

⋂m

i=1{x ∈ R
n : 〈ai, x〉 ≤ bi + ǫ′}.

Proof Let P := {x ∈ R
n : 〈ai, x〉 ≤ bi i = 1, . . . ,m}. Since 〈c, x〉 ≤ γ is

valid for C ∩ P , so is 〈c, x〉 ≤ γ + ǫ. Therefore, if we define C̃ := C ∩ {x ∈
R

n : 〈c, x〉 ≥ γ + ǫ}, we have that C̃ ∩ P = ∅. C̃ is a compact, convex set as
it is a closed, convex subset of a compact set. Thus, there exists a (strongly)
separating hyperplane given by d ∈ R

n, δ ∈ R such that 〈d, x〉 ≥ δ is valid for
C̃ and 〈d, x〉 < δ for all x ∈ P (see, for example, Problem 3 in Section III.1.3
in [6]). By appealing to Lemma 1, there exists ǫ′ > 0 such that 〈d, x〉 < δ is
valid for Pǫ′ , using the notation of Lemma 1. In particular, C̃ ∩ Pǫ′ = ∅, i.e.,
C ∩ {x ∈ R

n : 〈c, x〉 ≥ γ + ǫ} ∩ Pǫ′ = ∅. Therefore, 〈c, x〉 ≤ γ + ǫ is valid for
C ∩ Pǫ′ , which is what we wish to establish. ⊓⊔

Lemma 3 Let C ⊆ R
n be a compact, convex set. Let 〈a, x〉 ≤ b be a valid

inequality for C that defines the face F = C ∩ {x ∈ R
n : 〈a, x〉 = b}. Let

〈c, x〉 ≤ γ be a valid inequality for F . Then, for any ǫ > 0, there exists λ ≥ 0
such that 〈c′, x〉 ≤ γ′ is valid for C where c′ = c+ λa and γ′ = γ + ǫ+ λb.

Proof Define the set X = {x ∈ C : 〈c, x〉 ≥ γ+ǫ}. If X = ∅, then 〈c, x〉 ≤ γ+ǫ
is valid for C and therefore λ = 0 works. Otherwise, note that X is compact
and any x̄ ∈ X is not in F and therefore 〈a, x̄〉 < b. Define

λ = max
x∈X

〈c, x〉 − γ − ǫ

b− 〈a, x〉
,

which is a well-defined real number because we are maximizing a continuous
function (the function has strictly positive denominator for all x ∈ X by
the argument above) over a compact set. For any x̄ ∈ C, either x̄ ∈ X or
x̄ 6∈ X. If x̄ ∈ X, by definition of λ above, 〈c′, x̄〉 ≤ γ′. If x̄ 6∈ X, then
〈c′, x̄〉 = 〈c, x̄〉 + 〈λa, x̄〉 ≤ 〈c, x̄〉 + λb ≤ γ + ǫ + λb, where the first inequality
follows from the fact that 〈a, x〉 ≤ b is a valid inequality for C and the second
inequality follows from the fact that x̄ 6∈ X. ⊓⊔

Corollary 1 If C is a polytope, then the above theorem holds with ǫ = 0 as
well.

Proof In this case, λ can be defined by maximizing 〈c,x〉−γ

b−〈a,x〉 over all vertices x

of C not in F (λ should be defined as 0 if the maximum is negative). ⊓⊔

Motivated by Lemma 3 and Corollary 1, we make the following definition.

Definition 8 Let a, c ∈ R
n, b, γ ∈ R and ǫ > 0. An inequality 〈c′, x〉 ≤ γ′ is

said to be an ǫ−approximate rotation of 〈c, x〉 ≤ γ with respect to 〈a, x〉 = b if
there exists λ ∈ R such that c′ = c+ λa and γ′ ≤ γ + ǫ+ λb.
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Remark 5 If 〈c′, x〉 ≤ γ′ is an ǫ−approximate rotation of 〈c, x〉 ≤ γ with
respect to 〈a, x〉 = b, then {x ∈ R

n : 〈c′, x〉 ≤ γ′, 〈a, x〉 = b} ⊆ {x ∈ R
n :

〈c, x〉 ≤ γ + ǫ, 〈a, x〉 = b}.

Theorem 8 Let C ⊆ R
n be a compact, convex set. Let 〈a, x〉 ≤ b be a valid

inequality for C that defines the face F = C ∩ {x ∈ R
n : 〈a, x〉 = b}. Let

S be any non-convexity and D be some family of valid disjunctions. Suppose
〈c, x〉 ≤ γ is a valid inequality for F ∩S and 〈a1, x〉 ≤ b1, . . . , 〈aN , x〉 ≤ bN is a
cutting plane proof of 〈c, x〉 ≤ γ based on D (with respect to F ∩S). Then, for
any ǭ > 0, there exists a sequence of inequalities 〈a′1, x〉 ≤ b′1, . . . , 〈a

′
N , x〉 ≤ b′N

and an inequality 〈c′, x〉 ≤ γ′ such that all of the following hold.

1. For each i = 1, . . . , N , 〈a′i, x〉 ≤ b′i is an ǭ-approximate rotation of 〈ai, x〉 ≤
bi with respect to 〈a, x〉 = b.

2. 〈c′, x〉 ≤ γ′ is an ǭ-approximate rotation of 〈c, x〉 ≤ γ with respect to
〈a, x〉 = b.

3. 〈a′1, x〉 ≤ b′1, . . . , 〈a
′
N , x〉 ≤ b′N is a cutting plane proof of 〈c′, x〉 ≤ γ′ based

on D, with respect to C ∩ S.

Proof We prove the theorem by induction on the length N of the CP proof.
If N = 0, then 〈c, x〉 ≤ γ is a valid inequality for F itself and the result
follows from Lemma 3. Consider N ≥ 1. Fix an arbitrary ǭ > 0 as the “error
parameter”. Apply Lemma 2 with C = F , m = N , a1, . . . , aN , c, b1, . . . , bN , γ
and ǫ = 1

2 ǭ to get ǫ′ > 0. Set ǫ̂ = 1
2 min{ǫ′, ǭ}.

Let D = Q1 ∪ . . .∪Qk ∈ D be the disjunction used to derive 〈aN , x〉 ≤ bN
for F ∩

⋂N−1
i=1 {x ∈ R

n : 〈ai, x〉 ≤ bi}. For each j = 1, . . . , k, let ǫj > 0 be
defined by applying Lemma 2 with C = Qj ∩ F , m = N − 1, a1, . . . , aN−1,
c = aN , b1, . . . , bN−1, γ = bN and ǫ = ǫ̂. Define ǫ⋆ = min{ǫ̂,minkj=1 ǫj}.

By the induction hypothesis applied to the CP proof 〈a1, x〉 ≤ b1, . . . ,
〈aN−1, x〉 ≤ bN−1, viewed as a proof of 〈aN−1, x〉 ≤ bN−1, with ǫ = ǫ⋆, there
exists a sequence of inequalities 〈a′1, x〉 ≤ b′1, . . . , 〈a

′
N−1, x〉 ≤ b′N−1 such that

〈a′i, x〉 ≤ b′i is an ǫ⋆-approximate rotation of 〈ai, x〉 ≤ bi for each i = 1, . . . , N−
1 and 〈a′1, x〉 ≤ b′1, . . . , 〈a

′
N−1, x〉 ≤ b′N−1 is a CP proof of 〈a′N−1, x〉 ≤ b′N−1

based on D, with respect to C ∩ S (if N = 1, then we consider the trivial CP
proof of length 0 for the trivial inequality 〈0, x〉 ≤ 1.)

By Remark 5, F ∩{x ∈ R
n : 〈a′i, x〉 ≤ b′i} ⊆ F ∩{x ∈ R

n : 〈ai, x〉 ≤ bi+ǫ⋆}.

Since 〈aN , x〉 ≤ bN is valid for D ∩ F ∩
⋂N−1

i=1 {x ∈ R
n : 〈ai, x〉 ≤ bi}, it is

valid for Qj ∩ F ∩
⋂N−1

i=1 {x ∈ R
n : 〈ai, x〉 ≤ bi} for every j = 1, . . . , k. By

Lemma 2 and the choice of ǫ⋆, 〈aN , x〉 ≤ bN + ǫ̂ is valid for Qj ∩F ∩
⋂N−1

i=1 {x ∈
R

n : 〈a′i, x〉 ≤ b′i} for every j = 1, . . . , k. Since F is a face of C induced by

〈a, x〉 ≤ b, we have that Qj ∩ F ∩
⋂N−1

i=1 {x ∈ R
n : 〈a′i, x〉 ≤ b′i} is a face of

Qj ∩ C ∩
⋂N−1

i=1 {x ∈ R
n : 〈a′i, x〉 ≤ b′i} induced by the same inequality. By

Lemma 3, there exists an ǫ̂-approximate rotation of 〈aN , x〉 ≤ bN + ǫ̂ valid for

Qj ∩ C ∩
⋂N−1

i=1 {x ∈ R
n : 〈a′i, x〉 ≤ b′i} for every j = 1, . . . , k. In other words,

there exist λj ≥ 0, j = 1, . . . , k such that 〈aN + λja, x〉 ≤ (bN + ǫ̂) + ǫ̂ + λjb

is valid for Qj ∩ C ∩
⋂N−1

i=1 {x ∈ R
n : 〈a′i, x〉 ≤ b′i}. Set λ = maxnj=1 λj ,
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a′N = aN + λa and b′N = bN + 2ǫ̂ + λb. Thus, 〈a′N , x〉 ≤ b′N is valid for

Qj ∩ C ∩
⋂N−1

i=1 {x ∈ R
n : 〈a′i, x〉 ≤ b′i} for all j = 1, . . . , k, and therefore for

D ∩ C ∩
⋂N−1

i=1 {x ∈ R
n : 〈a′i, x〉 ≤ b′i}. Since 2ǫ̂ ≤ ǭ by choice, 〈a′N , x〉 ≤ b′N is

an ǭ-approximate rotation of 〈aN , x〉 ≤ bN , and thus condition 1. is satisfied
for i = 1, . . . , N .

From the hypothesis, 〈c, x〉 ≤ γ is valid for F ∩
⋂N

i=1{x ∈ R
n : 〈ai, x〉 ≤ bi}.

The definition of ǫ′ implies that 〈c, x〉 ≤ γ + ǭ
2 is valid for F ∩

⋂N

i=1{x ∈ R
n :

〈ai, x〉 ≤ bi + ǫ′}. Also, by choice ǫ⋆ ≤ ǫ̂ ≤ 2ǫ̂ ≤ ǫ′ and so F ∩
⋂N

i=1{x ∈ R
n :

〈ai, x〉 ≤ bi + ǫ′} ⊇ F ∩
⋂N

i=1{x ∈ R
n : 〈ai, x〉 ≤ bi + 2ǫ̂} ⊇ F ∩

⋂N

i=1{x ∈
R

n : 〈a′i, x〉 ≤ b′i}, where the second containment follows from Remark 5. Since

F ∩
⋂N

i=1{x ∈ R
n : 〈a′i, x〉 ≤ b′i} is a face of C ∩

⋂N

i=1{x ∈ R
n : 〈a′i, x〉 ≤ b′i}

induced by 〈a, x〉 ≤ b, by Lemma 3 with ǫ = ǭ
2 , there exists λ̂ ≥ 0 such that

〈c′, x〉 ≤ γ′ is valid for C ∩
⋂N

i=1{x ∈ R
n : 〈a′i, x〉 ≤ b′i}, with c′ = c + λ̂a and

γ′ = (γ + ǭ
2 ) +

ǭ
2 + λ̂b = γ + ǭ+ λ̂b. Thus, conditions 2. and 3. of the theorem

are satisfied. ⊓⊔

Corollary 2 If C is a polytope, the statement of Theorem 8 holds with ǭ = 0.

Proof This is handled by appealing to Corollary 1 instead of Lemma 3 in the
proof of Theorem 8. There will be no need for Lemma 2 anymore in this case.

⊓⊔

The above proof is inspired by ideas in Dash [32], where the polyhedral
case is analyzed. In the general convex case, faces may not be exposed and the
above proof deals with this issue.

3.2 Proofs of the main results

Proof (Proof of Theorem 1)
We prove this by induction on the number k of branching nodes in the BC

proof. If k = 0, then we have a CP proof and we are done. Now consider a BC
proof with k ≥ 1 branching nodes. Note that all nodes in the tree represent
subsets of C obtained by intersecting C with additional halfspaces (either
cutting planes or disjunction inequalities of the form xi ≤ 0 or xi ≥ 1), i.e.,
each node in the tree is a compact, convex subset of C. Consider any maximal
depth branching node, that is, all its descendants are cutting nodes or leaves.
Suppose this branching node represents a compact, convex subset C ′ ⊆ C and
uses the disjunction {x : xi ≤ 0} ∪ {x : xi ≥ 1}. Let the two children of C ′ be
C1 = C ′ ∩{x : xi ≤ 0} and C2 = C ′ ∩{x : xi ≥ 1}, which are both faces of C ′.

Let ǫ′ = ǫ
2 . Since C ′ corresponds to a maximal depth branching node, the

BC proof under consideration yields a CP proof of 〈c, x〉 ≤ γ with respect to
C1 ∩ S. Using Theorem 8 with ǭ = ǫ′, we can find a CP proof of 〈c1, x〉 ≤ γ1
with respect to C ′ ∩ S such that 〈c1, x〉 ≤ γ1 is an ǫ′-approximate rotation of
〈c, x〉 ≤ γ with respect to xi = 0. In other words, there exists λ1 ≥ 0 such
that c1 = c + λ1e

i and γ1 ≤ γ + ǫ′, where ei is the i-th standard unit vector.



Complexity of branch-and-bound and cutting planes 15

Similarly, applying Theorem 8 to the CP proof of 〈c, x〉 ≤ γ with respect to
C2 ∩ S (the other branch obtained from xi ≥ 1), we can find a CP proof of
〈c2, x〉 ≤ γ2 with respect to C ′ ∩ S such that 〈c2, x〉 ≤ γ2 is an ǫ′-approximate
rotation of 〈c, x〉 ≤ γ with respect to xi = 1. In other words, there exists
λ2 ≥ 0 such that c2 = c+ λ2(−ei) and γ2 ≤ γ + ǫ′ − λ2.

Consider the set C ′′ obtained by intersecting C ′ with the two inequalities
〈c1, x〉 ≤ γ1 and 〈c2, x〉 ≤ γ2. Now observe that if we consider the face F1 of
C ′′ defined by xi = 0, the inequality 〈c1, x〉 ≤ γ1 reduces to 〈c, x〉 ≤ γ + ǫ′,
i.e., F1 ∩ {x : 〈c1, x〉 ≤ γ1} = F1 ∩ {x : 〈c, x〉 ≤ γ + ǫ′}. Similarly, on the face
defined by xi = 1, the inequality 〈c2, x〉 ≤ γ2 also reduces to 〈c, x〉 ≤ γ + ǫ′.
Thus, 〈c, x〉 ≤ γ+ǫ′ is valid for both these faces of C ′′. Thus, we can derive this
inequality as a cutting plane for C ′′ using the disjunction {x : xi ≤ 0} ∪ {x :
xi ≥ 1}. Thus, by concatenating the CP proofs of 〈c1, x〉 ≤ γ1 and 〈c2, x〉 ≤ γ2
and then deriving 〈c, x〉 ≤ γ + ǫ′ using the disjunction {x : xi ≤ 0} ∪ {x :
xi ≥ 1}, we have replaced the entire tree below C ′ with a CP proof such that
〈c, x〉 ≤ γ + ǫ′ is valid for the leaf. Moreover, the length of this CP proof is
exactly one less than the number of nodes below C ′ in the original branch-
and-cut tree (since we do not have the two branching nodes, but have an extra
cutting plane derivation). Thus, this replacement gives us a new BC proof of
〈c, x〉 ≤ γ + ǫ′ with one less branching node. We now appeal to the induction
hypothesis with ǫ = ǫ′ for the new, modified BC proof of 〈c, x〉 ≤ γ+ ǫ′. Thus,
we obtain a CP proof of size at most the new BC proof (whose size is at most
N , the size of the original BC proof) for the inequality 〈c, x〉 ≤ (γ + ǫ′) + ǫ′.
By choice, 2ǫ′ = ǫ, we have thus produced a CP proof of 〈c, x〉 ≤ γ + ǫ with
size at most N .

The case when C is a polytope is handled by appealing to Corollary 2 in
the above proof. ⊓⊔

Proof (Proof of Theorem 2) We will use the fact that, for a clique with t ≥ 2
vertices, the optimal value of the LP relaxation of the stable set problem is
t/2 (and 1 if t = 1).

We first prove a lower bound on the size of any BB proof that establishes
the upper bound of m on the objective value.

Claim For m ≥ 1, any branch-and-bound proof of
∑

v xv ≤ m has size at least
2m+1 − 2.

Proof of claim. Consider first any feasible node of the branch-and-bound tree
at depth k < m. Consider the path from the root node to this node at depth k
and suppose that of k nodes on this path that were branched on, k1 were set
to 1 and k2 were set to 0 (so k1 + k2 = k). Feasibility implies that all the k1
vertices set to 1 are from different cliques. From the remainingm−k1 cliques, k2
vertices were set to 0, so the LP value at this node is at least k1+

3(m−k1)−k2

2 =
3m−(k1+k2)

2 = 3m−k
2 , where k1 is the contribution given by the cliques with

some vertex set to 1 and the term 3(m−k1)−k2

2 is the contribution from the
other cliques, some of which have vertices set to 0. Since we assumed k < m,
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Proof (Proof of Theorem 3) We argue the n = 2 case. The general n dimen-
sional case is similar. Consider applying cutting planes derived from variable
disjunctions on the convex hull of {(0, 0), (1.5, 1), (2, 2), (1, 1.5)}. By symmetry,
one can focus on the behavior of any one of the two fractional vertices. It can
be shown that the best one can do is to “move” the vertex (1.5, 1) = (1+ 1

2 , 1)
to (1 + 1

4 , 1) in two iterations; and after 2K iterations, the vertex moves to
(1 + 1

2+2K
, 1); see Figure 3. Thus, to maximize x1 − x2, any CP algorithm

takes infinitely many iterations to reach the optimal value of 0. However, after
just two BB steps based on the disjunctions D1,1 and D2,0 (recall the notation
from (2)), the leaves of the BB tree consist of the feasible integer points (2, 2)
and (0, 0), and a triangle over which the LP relaxation has (1, 1) as its unique
optimal solution. ⊓⊔

(1 + 1
2, 1)

(1 + 1
4, 1)

Fig. 3 Cutting plane proofs based on variable disjunctions can have infinite length.

Proof (Proof of Theorem 4) For a BB algorithm (see Definition 3), one simply
iterates through the disjunctions {x : xi ≤ 0}∪{x : xi ≥ 1}, i = 1, ..., n in order
and applies the disjunction that cuts off the optimal solution to max{〈c, x〉 :
x ∈ N} at every node N (the nodes can be selected arbitrarily in L). In the
worst case, one enumerates all integer points and so the algorithm takes at
most O(2n) iterations.

For a CP proof, one first observes that since C is compact, for every 0/1
point not in C, one can separate it from C by a separating hyperplane. Thus,
there exists a polytope P such that C ⊆ P and P ∩ Z

n = C ∩ Z
n. One can

now appeal to the polyhedral case in Theorem 1 and derive a CP proof with
the same length O(2n) as the branch-and-bound proof above. ⊓⊔

Proof (Proof of Theorem 5) Let us denote by D1, . . . , DK ∈ D the sequence
of disjunctions (with possible repetitions) used by the CP proof. Denote the
relaxation after applying the cuts based onD1, . . . , Di as Ci, i.e., the relaxation
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after the i-th step of the CP proof. Define zCP (i) := sup{〈c, x〉 : x ∈ Ci},
i = 1, . . . ,K. Thus, zCP (K) ≤ γ.

We “simulate” the CP proof with a BB procedure as follows.

1. Initialize L := {C}.
2. For i = 1, 2, . . . ,K, do
(a) Compute zBB := maxQ∈L {sup{〈c, x〉 : x ∈ Q}} (we use the convention

that sup{〈c, x〉 : x ∈ Q} = −∞ if Q = ∅).
(b) While zBB > zCP (i) do

– Let Q be a node in L that achieves the maximum in the definition
of zBB and let v ∈ Q be any point such that 〈c, v〉 > zCP (i).
Clearly, v 6∈ Ci and must be cut off by some inequality generated
by one of the disjunctions D1, . . . , Di. Let this disjunction be D⋆ =
(Q⋆

1 ∪ . . . ∪ Q⋆
l ). Apply this disjunction on Q, i.e., replace Q by

⋃l

i=1 Q
⋆
i ∩Q in L.

Observe that if the above algorithm stops in a finite number of steps, then
zBB ≤ zCP (K) ≤ γ. Thus we have a BB proof of 〈c, x〉 ≤ γ. Furthermore, the
above BB procedure is a BB algorithm in the sense of Definition 3 if at every
iteration v can be chosen to be a point attaining the supremum, i.e., a point
such that 〈c, v〉 = sup{〈c, x〉 : x ∈ Q}, where Q is the node selected in step
2(b).

We now show that the BB algorithm generates a BB proof tree of size at
most O((MK)n+1).

Consider the tree T at the end of the BB algorithm. First, observe that
infeasible nodes have to be leaves of T . This is because if a node in the tree
is infeasible, no disjunction is ever applied to it in any BB algorithm, and
certainly not in the above one. Let us remove the infeasible nodes from T to
obtain a new tree T ′. All the leaves of T ′ correspond to the nonempty sets in
the list L at the end of the above algorithm. Since in any disjunction the Qi’s
are disjoint, all the sets in L are disjoint during any iteration. Moreover, every
set in L is a union of cells in a hyperplane arrangement with at most MK
hyperplanes, as each Dj has complexity at most M . Thus, the total number of
nonempty sets in L during any iteration is at most the number of nonempty
cells in this hyperplane arrangement. By standard combinatorics of hyperplane
arrangements [13, 67], there can be at most O((MK)n) nonempty cells.

Observe also that on a path from the root to a leaf in T ′ (or T ), no dis-
junction is applied more than once. This is true of any BB algorithm be-
cause applying a disjunction twice in the same path is redundant. Thus, every
node in T ′ is at distance at most K from the root and so there are at most
O(K(MK)n) nodes in T ′. Since each feasible node of the original tree T has
at most M children because the complexity of each disjunction is at most M ,
the total number of nodes in T – including the infeasible leaves – is bounded
by O((MK)n+1). ⊓⊔

Proof (Proof of Theorem 6) Since 〈c, x〉 ≤ γ is valid for C ∩ Z
n, the set C ∩

{x ∈ R
n : 〈c, x〉 ≥ ⌈γ⌉} has no integer points. Consider a BB proof that first
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branches on 〈c, x〉 ≤ ⌊γ⌋ and 〈c, x〉 ≥ ⌈γ⌉. By the flatness theorem [4, 5, 63],
there is a BB proof based on split disjunctions that proves infeasibility of
the latter branch with size at most f(n)n – this is an insight that appeared
in [23] (see the proof of Theorem 1’ in that paper). Using arguments similar
to those used in the proof of Theorem 5, we can convert this BB proof into a
BB algorithm that takes at most O((2f(n))n(n+1)) iterations. ⊓⊔

Proof (Proof of Theorem 7) For any h′ > 1, let v1(h′) = (1 − 1
h
, 1 − 1

h
, h′)

and v2(h′) = (1− 1
h
, 1− 1

h
, h′ · h−1

h+1 ). Consider any polyhedron Q that contains

conv{(0, 0, 0), (0, 2, 0), (2, 0, 0), v1(h′)}.
We first claim that every split cut for Q based on variable disjunctions on

the variables x1 and x2 is valid for v2(h′). For any such disjunction other than
D1,0 and D2,0, v

2(h′) is contained in one of the halfspaces of the disjunction,
so the claim is true. Consider D1,0. Let v3(h′) := (1, h−1

h+1 , h
′ · h

h+1 ). Clearly

v3(h′) ∈ D1,0. Since v3(h′) lies on the segment between v1(h′) and (2, 0, 0),
we have v3(h′) ∈ Q. Thus v3(h′) ∈ Q ∩ D1,0. Since v2(h′) is in the segment

between v3(h′) and (0, 2(h−1)
h+1 , 0) ∈ Q ∩ D1,0, we have that v2(h′) is in the

convex hull of Q ∩ D1,0. With a symmetric argument, it can be proved that
a cutting plane derived from D2,0 cannot cut off v2(h′) from Q. Thus, the
statement follows.

It is also not hard to see that any split cut for Q based on a disjunction
on x3 is valid for (1− 1

h
, 1− 1

h
, h′ − 1).

We conclude that the closure of all split cuts based on variable disjunctions
for Q must contain the point (1− 1

h
, 1− 1

h
,min{h′ · h−1

h+1 , h
′ − 1}) = (1− 1

h
, 1−

1
h
,min{h′ − h′ · 2

h+1 , h
′ − 1}) = (1− 1

h
, 1− 1

h
, h′ −max{h′ · 2

h+1 , 1}).

Let k be the length of any CP proof based on variable disjunctions with
respect to P (h) to certify the validity of the inequality x3 ≤ (h+ 1)/2. When
h′ ≥ h+1

2 , we have h′ · ( 2
h+1 ) ≥ 1. So from the above arguments, k must satisfy

h ·
(

1− 2
h+1

)k

≤ h+1
2

⇒ 1− k 2
h+1 ≤ 1

2 + 1
2h

⇒ h+1
4 − h+1

4h ≤ k

where the second inequality follows from the fact that 1 − nx ≤ (1 − x)n,
assuming 0 < x < 1, i.e., assuming h > 1.Thus, for h > 1, to certify x3 ≤ 0
from x3 ≤ h, we need at least Ω(h) steps.

However, in just two BB steps based on the disjunctions D1,0 and D2,0, we
can obtain the optimal value. ⊓⊔

3.3 Some additional remarks

Theorem 1 that shows cutting planes do just as well as branch-and-bound for
0/1 problems can be generalized a little to the following scenario. We recall
that a face F of a convex set C is called exposed if there exists a halfspace H
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such that C ⊆ H, and F = C ∩H, where H is the affine hyperplane defined
by the boundary of H.

Theorem 9 Let C ⊆ R
n be a compact, convex set. Let D be a family of valid

disjunctions for some non-convexity S ⊆ R
n, such that each disjunction in D

is facial for C, i.e., C ∩D is a union of exposed faces of C Let 〈c, x〉 ≤ γ be a
valid inequality for C ∩S (possibly c = 0, γ = −1 if C ∩S = ∅). If there exists
a branch-and-cut proof of size N based on D that certifies 〈c, x〉 ≤ γ, then for
any ǫ > 0, there exists a cutting plane proof based on D of size at most N
certifying 〈c, x〉 ≤ γ + ǫ.

If C is a polytope, then the statement is also true with ǫ = 0.

Proof The above result can be established by simply observing that in the
proof of Theorem 1, instead of two faces arising out of a disjunction, one could
have possibly more than two, but finitely many, exposed faces coming from a
disjunction. The entire proof adapts easily to this minor change. ⊓⊔

Remark 6 The proofs of Theorems 1 and 9 imply the following. Let C be a
compact, convex set and let F be an exposed face of C defined by 〈a, x〉 = b.
Let D be any valid disjunction (not necessarily facial) for some non-convexity
S. Let 〈c, x〉 ≤ γ be a cutting plane derived from D for F . Then for any ǫ > 0,
there exists an ǫ-approximate rotation 〈c′, x〉 ≤ γ′ of 〈c, x〉 ≤ γ with respect
to 〈a, x〉 = b such that 〈c′, x〉 ≤ γ′ is a cutting plane for C derived from D.

It is an open question to decide whether Theorem 9 extends to the case
where C is not required to be compact.

Let us turn our attention to the stable set examples in Theorem 2 which
show that cutting planes can be potentially much better in the 0/1 setting.
These may seem a bit pathological because the disconnected components lead
to a cartesian product of congruent polytopes, which is well-known to be a
bad case for branch-and-bound. However, one can create other examples of
the stable set problem which have exponential BB proofs of optimality that
generalize these examples to connected graphs. We give two such constructions
below, but many others are possible.

Theorem 10 Given m disjoint copies of K3 (cliques of size 3) and an extra
vertex which is called the center, we arbitrarily add connections between the
center and the other vertices to form a graph G so that there is at most one
vertex from each clique is connected to the center. Then for C = P (G) with
objective

∑

v∈V xv, S = Z
3m+1 and D representing the family of all variable

disjunctions, there is a cutting plane algorithm which solves the maximum
stable set problem in at most m iterations, but any branch-and-bound proof
certifying an upper bound of m + 1 on the optimal value has size at least
2m+1 − 2 for all m ≥ 1.

Proof Observe that if the center is never branched on, then one can simply
use the same argument as in the proof of Theorem 2. Now suppose we have
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a BB tree where at some nodes, the center is branched upon. We can replace
the entire subtree at all such nodes with the subtree corresponding to the
branch where the center node is set to 0. This is a smaller binary BB tree
with no branchings on the center node. We can now again apply the proof of
Theorem 2.

The CP algorithm is the same as in Theorem 2. ⊓⊔

The following theorem adds edges between the copies of the cliques them-
selves to make the graph connected.

Theorem 11 Given m disjoint copies of Km (cliques of size m) and a con-
stant α, where 0 ≤ α < 1, we arbitrarily add connections between cliques to
form a graph G so that at most αm nodes of each clique are connected to
other cliques. Then for C = P (G) with objective

∑

v∈V xv, S = Z
m2

and
D representing the family of all variable disjunctions, any branch-and-bound
proof certifying an upper bound of m on the optimal value has size at least
2m+1 − 2 for all m ≥ 3/(1 − α). In contrast, there is a CP proof based on
variable disjunctions with O(m4) length.

Proof Consider first any feasible node of the branch-and-bound tree at depth
k < m. Consider the path from the root node to this node at depth k and
suppose that of k nodes on this path that were branched on, k1 were set to 1
and k2 were set to 0 (so k1+k2 = k). Feasibility implies that all the k1 vertices
set to 1 are from different cliques. From the remainingm−k1 cliques, k2 vertices
were set to 0. In addition, due to the connections between cliques, the vertices
from these m−k1 cliques connected to the k1 vertices can take value at most 0
in the LP at this node. There can be at most αm(m−k1) such vertices, so the

LP value is at least k1 +
(m−k1)m−k2

2 − αm(m−k1)
2 = (1−α)m2+(3−m+αm)k1−k

2 ,
which is a nonincreasing function of k1 and k, when m ≥ 3/(1 − α). Using
the fact that k1 ≤ k ≤ m − 1, this lower bound on the LP value is at least

m + (1−α)m−2
2 > m for m ≥ 3/(1 − α). Thus, if the branch-and-bound tree

has only feasible nodes, only nodes at depth m or more can have LP values at
most m. Since every branching node has at least two children, this means we
have at least 2m+1 − 1 nodes.

To deal with BB trees with infeasible nodes, we proceed as in the proof of
Theorem 2.

The CP reasoning is as follows. Define P0 to be the fractional stable set
polytope P (Km), and define recursively Pi = conv((Pi−1 ∩ {x ∈ R

m : xi =
0}) ∪ (Pi−1 ∩ {x ∈ R

m : xi = 1}), for i = 1, . . . ,m. As P0 ∩ {x ∈ R
m : x1 = 0}

is described by the constraints x1 = 0, xu + xv ≤ 1, ∀u, v > 1 and P0 ∩ {x ∈
R

m : x1 = 1} is the point x1 = 1, xu = 0, ∀u > 1, then P1 is described by the
inequalities x1 + xu + xv ≤ 1, ∀u, v > 1 (i.e., clique inequalities associated
to all the triangles containing 1). More generally, it can be shown that Pi is
described by the system:

(
∑i

j=1 xj) + xu + xv ≤ 1 ∀u, v > i

0 ≤ x ≤ 1
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Therefore, Pm−2 is the integer hull of P (Km) and each Pi has an O(m2)
sized description. The CP proof simply proceeds through each copy of P (Km),
convexifying sequentially to produce all the inequalities needed to describe
P0, P1, . . . , Pm−2. Since each Pi has an O(m2) description, and we do O(m)
steps of convexification, all the facets of the integer hull of P (Km) can be
derived with an O(m3) length proof. We repeat this for the m copies of Km,
giving a total length of O(m4). ⊓⊔

Note that in Theorems 2 and 10, we provide CP algorithms that solve the
problems in polynomially many iterations; whereas, for Theorem 11, we are
only able to obtain a CP proof and the question of obtaining a CP algorithm
for these instances that takes poly(m) iterations remains open.

4 Future avenues of research

When we wrote the first version of this paper, the situation with general
split disjunctions in variable dimensions was not clear, as highlighted in Table
1. These questions were mostly resolved in a subsequent paper [7]. In that
paper, it is shown that for general convex sets any CP proof based on split
disjunctions can be “simulated” by a BB proof based on split disjunctions
with at most a constant factor increase in the size of the proof. There are also
well-known examples which can be solved in O(1) time using BB based on split
disjunctions, but any split cut proof is of at least polynomial length (see [7]
for details). However, these examples are not 0/1 examples. It remains open if
there are 0/1 examples where BB based on split disjunctions can do provably
better than CP based on split cuts (ignoring constant factors). A good place
to start could be the examples constructed by Dash with exponential size CP
proofs of infeasibility based on general split disjunctions [34]. A partial result
showing that this is not possible if one bounds the coefficients appearing in
the split disjunctions was obtained in [42, Theorems 1.1 and 1.2] (see also [37,
Corollary 1]). We also mention related recent results by Dadush and Tiwari [29]
and Dey, Dubey and Molinaro [37] that show exponential lower bounds for
BB proofs based on general split disjunctions for important classes of 0/1
polytopes. Instances that are not 0/1 polytopes with exponential BB proofs
with general splits had previously been constructed by Dash et al.; see [35,
Theorem 4.11]. See also [9, 38] for related recent work on BB proofs with
general split disjunctions and connections to cutting planes.

When the dimension is fixed, a question that remains open is whether there
are examples in which BB based on general split disjunctions takes a constant
or polynomial number of iterations while CP based on the same disjunctions
requires a number of iterations that is exponential in the input size. (Note
that this is the case when only variable disjunctions are allowed: see Theorem
7.) In fact, nothing rules out the possibility of a CP algorithm based on split
disjunctions that takes polynomial number of iterations in fixed dimensions.
This would complement Lenstra style algorithms for integer optimization in
fixed dimensions. Such a CP algorithm has been found for 2 dimensions [8].
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We also suspect that a related conjecture is true: the split rank of any
rational polyhedron is bounded by a polynomial function of the input size,
even for variable dimension. A fixed dimension CP algorithm would prove this
latter conjecture for fixed dimensions. It is well-known that the split rank of
any two dimensional polyhedron is at most two; for instance, see [8]. To the
best of our knowledge, it is not known if the conjecture is true even for three
dimensional rational polyhedra.

Another open question is related to Theorem 1, which asserts that cutting
planes are always at least as good as branch-and-bound up to ǫ-slack. Since,
for any ǫ > 0, the CP proof has the same length as the BC proof, it is natural
to wonder whether one can get the same result with ǫ = 0.

An intriguing open question comes out of the discussion at the very end
of Section 1. Can we make the difference between a CP/BB algorithm and
CP/BB (restricted) proof sharper, extending the insight from [57]? We pose a
version of the problem below.

Let D be a family of disjunctions such that there are finite length CP
proofs of optimality (or infeasibility) for every instance. Is it true that for every
instance in dimension n ∈ N, the ratio of the smallest number of iterations of a
CP algorithm and the smallest length of a CP (restricted) proof is bounded by
poly(n), or is there a family of instances such that this ratio is lower bounded
by Ω(exp(n))? The same question goes for BB algorithms and (restricted)
proofs.

An answer to this question for algorithms and proofs (not restricted) would
give insight into the wisdom of the widespread practice of using cutting planes
or disjunctions that eliminate intermediate LP optimal solutions. Resolving
it for the comparison between algorithms and restricted proofs would give a
deep insight into the difference between proofs and algorithms, similar to the
question of P versus NP or co-NP , but in the narrower setting of CP/BB/BC
procedures.
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17. Chvátal, V.: On certain polytopes associated with graphs. Journal of
Combinatorial Theory, Series B 18(2), 138–154 (1975)
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