(G2

N o

16

ENUMERATING INTEGER POINTS IN POLYTOPES WITH
BOUNDED SUBDETERMINANTS*

HONGYI JIANGT AND AMITABH BASUT

Abstract. We show that one can enumerate the vertices of the convex hull of integer points in
polytopes whose constraint matrices have bounded and nonzero subdeterminants, in time polynomial
in the dimension and encoding size of the polytope. This improves upon a previous result by Artmann
et al. who showed that integer linear optimization in such polytopes can be done in polynomial time.
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1. Integer points in polytopes. Understanding the structure of integer points
in polytopes is a central question in discrete mathematics and geometry of num-
bers. In the last 50 years, several algorithmic breakthroughs have been made in three
fundamental questions, listed in increasing order of difficulty: 1) testing if a given
polytope contains an integer point, 2) finding the optimum integer point in a poly-
tope with respect to a linear objective function, 3) enumerating or counting integer
points in a polytope. It is well-known that even question 1) is NP-complete, without
making further assumptions. Nevertheless, significant progress has been made in un-
derstanding under what conditions polynomial time algorithms can be designed for
these three tasks. Two prominent research directions have involved investigating the
fixed dimension case and the bounded subdeterminant case. To make things precise,
consider polytopes given by {z € R™ : Az < b} where A € Z™*™ and b € Z™. We
have assumed integer data here as we will not be considering nonrational polytopes
(nevertheless, there is some subtlety involved with integer data in the bounded subde-
terminant analysis that we will point out below — see the discussion after Lemma 3.1).
Two parameters that have received a lot of attention are the dimension n and the
maximum absolute value of any n x n subdeterminant of A, denoted in this paper
by A4 (some authors have also worked with the maximum k& x &k subdeterminant of
A over all possible k € {1,...,n}). Other parameters have also been studied exten-
sively [9, 10, 21] (this is a very small sample biased towards monographs and very
recent work). We will focus on n and A4 in this paper.

1.1. Fixed dimension. Lenstra [20] sparked an active line of research by show-
ing that the linear optimization problem over integer points in a polytope can be solved
in polynomial time, if we focus on the family of polytopes in some fixed dimension
n. The original running time obtained by Lenstra was 20(n%) . poly(n, size(A, b, c)),
where size(A, b, ¢) denotes the total binary encoding size of A, b and the objective vec-
tor ¢ € R™. For the definition of binary encoding sizes, see for example [25, Section
2.1]. Subsequent refinements and improvements have steadily appeared [6-8, 15-19].
The best dependence of the running time on n is currently 2°(*1°87) and one of the
outstanding open questions in the area is to decide if this can be improved to 2°0(™).
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2 H. JIANG, AND A. BASU

The counting problem was also shown to be polynomial time solvable in fixed
dimension, starting with the seminal work of Barvinok [4]. Several improvements and
variations on Barvinok’s insights have been obtained since then; see [9] for a survey.

1.2. Bounded subdeterminants. A classical result in polyhedral combina-
torics states that if A4 = 1, then all vertices of the polytope are integral [5]. Thus,
using linear programming algorithms, one can solve the integer optimization problem
max{c-z : Az < b} in time polynomial in n and the encoding size of A,b and c.
Veselov and Chirkov had the remarkable insight that if A4 = 2, then the feasibility
problem can be solved in polynomial time [27]. Artmann, Weismantel and Zenklusen
used deep results from combinatorial optimization to establish that the linear opti-
mization problem can also be solved in strongly polynomial time if A4 = 2 [2]. The
polynomial time solvability of the feasibility, optimization or counting questions for
the family of polytopes with A 4 bounded by a constant has been another long stand-
ing open question in discrete optimization. See [1, 13, 14] for some more recent work
in this direction.

2. Our contribution. Our main result is the following.'.

THEOREM 2.1. Let A € N be a fired natural number. Consider the family of
polytopes P := {x € R"™ : Az < b} where A € Z™*™ is such that Ay < A and all
n X n subdeterminants of A are nonzero. One can enumerate all the vertices of the
convex hull of integer points in P in time polynomial in n and encoding size of A and

b.

This result does not fully resolve the open question of solving integer optimization
with bounded subdeterminants in polynomial time because of the nontrivial restriction
that all n X n minors of A have to be nonzero. Nevertheless, Theorem 2.1 improves
upon the result in [1] where the authors give a polynomial time algorithm for the
integer optimization problem under the same hypothesis. We strengthen that result
by showing that one can actually enumerate all the vertices of the integer hull, i.e.,
the convex hull of integer points in the polytope, in polynomial time. This is in line
with results cited above from [6] and [4], but in the bounded subdeterminant regime
instead of the fixed dimension setting.

Theorem 2.1 follows from the following three results established in this paper that
we believe are of independent interest. We begin by recalling the notion of width.

DEFINITION 2.2. Given a set S CR"™ and a vector v € R"™, the width of S in the
direction v is defined as
w(v, S) ;= maxv-x —minv - .
€S zeS
If P:={z € R": Ax < b}, we use the notation w(v, A,b) to denote the width of P in
the direction v. If v is a row of A defining a facet, then w(v, A,b) will be called the
corresponding facet width.

THEOREM 2.3. Let S := {z € R" : Az < b} be a full-dimensional simplex, with
A e Z20HDXn gnd b € R™Y with the facet width of the first n facets bounded by W .
Then the number of integer points in S is polynomial in n, if W is a fixed constant
independent of n. Moreover, there is a polynomial time algorithm that enumerates all
the integer points.

L After this paper was posted on arxiv.org, Dr. Joseph Paat informed us through personal com-

munication of an alternate proof of this result that uses some recent results on mixed-integer refor-
mulations of integer programs [23, 24]. We give an outline of Dr. Paat’s arguments in Section 4.

This manuscript is for review purposes only.
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ENUMERATING INTEGER POINTS IN POLYTOPES 3

THEOREM 2.4. There exists a function f : N — N with the following property.
For any full-dimensional simplex described by Az < b, where A € Z(+tDxn p ¢ R+l
with smallest facet width W.r, all its facet widths are bounded by Winf(A4).

THEOREM 2.5. Let A € N be a fized natural number. Consider the family of
simplices S := {x € R™ : Ax < b} where A € Z™*™ and b € Z™ such that 1 < Ay <
A and smallest facet width greater than or equal to A — 1. There is an algorithm
that enumerates all the vertices of the integer hull of S in time polynomial in n and
encoding size of A and b.

We now present a short proof of our main result.

Proof of Theorem 2.1. We appeal to the following result from [1]: there exists a
constant C(A) such that if n > C(A) then A has at most n + 1 rows [1, Lemma 7).

If n < C(A) then we use the result from [6] to enumerate the vertices of the
integer hull. Else, we know that P is a simplex by the result cited above. If P is a
single point or the empty set, then the result is easy. Else, P must be full-dimensional.
If the smallest facet width is bounded by A — 2, then Theorems 2.4 and 2.3 imply that
all the integer points in P can be enumerated in polynomial time. If the smallest facet
width is greater than or equal to A — 1, then we use the algorithm from Theorem 2.5.

Let us put our results in some context. Several families of polytopes are known
in the literature where the number of vertices of the integer hull grows exponen-
tially in the dimension even with bounded subdeterminants, e.g., bipartite matching
polytopes. As one sees in the proof of Theorem 2.1, the assumption of nonzero de-
terminants rules out most of these classical examples because it helps to reduce to
the case of the simplex. Nevertheless, in [3, Theorem 1], Barany et al. construct a
family of simplices with exponential lower bounds on the number of vertices of their
integer hulls. Our work shows that with bounded facet width or bounded subdeter-
minant assumptions (see Theorems 2.3, 2.4 and 2.5 above), one can get around these
examples.

Section 3 presents the proofs of Theorems 2.3, 2.4 and 2.5. We end in Section 4
with some future directions.

3. Proofs of Theorems 2.3, 2.4 and 2.5. We collect a few simple but useful
facts about width.

LEMMA 3.1. The following are all true.

(a) w(v,S) < w(v,S") for any v € R™ and any two sets S,S" C R™ such that
SCJS.

(b) w(v,S) =w(v,S+1t) for any v,t € R" and any S C R™.

(c) w(v,aS) = |a|w(v,S) for any v € R™, any S CR™ and any o € R.

(d) Let A € Z™*" and b € R™. Let U € Z™*" be a unimodular matriz and
define H = AU. Consider the two polyhedra {x :€ R™ : Az < b} and
{y € R" : Hy < b} which are related by the unimodular transformation given
by = Uy. Then the width w(a, A,b) with respect to any row a of A is equal
to the width w(h, H,b) given by the corresponding row h = UTa of H.

Let us discuss the integer data assumption here. Typically this is justified by say-
ing that the data is rational and we can scale inequalities to make all the data integer.
However, if we wish to impose bounds on the subdeterminants as in this paper, one
has to be careful with such scalings. Since the bound is on the subdeterminants of

2This is the place where we need the assumption that all n X n minors are nonzero.
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4 H. JIANG, AND A. BASU

A, it is justified to assume that the entries of A are integer. Otherwise, any non-zero
bound will be satisfied by every polytope simply by scaling the constraints. However,
one may question why b is also assumed to be integer valued. See the final paragraph
of Section 4 for some discussion of how this can make a concrete difference. Below,
we are careful to impose the integrality assumption on b in our hypotheses only when
needed.

3.1. Proof of Theorem 2.3.

PROPOSITION 3.2. Let Q C R"™ be a simplex with coefficient matriz A € Z™*"
(not necessarily full-dimensional) and let a - x < b be a facet defining inequality for
Q, defining the facet S (also a simplex). Suppose W, = w(a,Q) > 0. Consider
the slice " := QN{x € R" : a-x = b} for some b € [b— W,,b]. Then S’ is
a translate of %”*b’)s and consequently w(v,S") = %b*b/) cw(v,S) for any
v € R™. Furthermore, if a’ - x < V' defines a facet S” of Q" distinct from S, then
w(a”,S) =w(d",Q).

Proof. Let v be the vertex of () that does not lie on S (since W, > 0). Let the
other vertices of @) be given by v + 71,...,v + 7, for linearly independent vectors
71,...,7%. Thus, a-v=0b—W, and a-r; = W,. Using these relations, one can check
that {v + %’j_b/)ri :4=1,...,k} satisfy the equation a -z = . Thus, they are
the vertices of the slice S’ and the first part is established. Let a” -z < b” define the
facet S distinct from S. Let v + r; be the vertex of @ not on S”. Then we have
w(d”,Q) = a" - (v+mre) —a” - (v+r). Since v+ 7y and v + ry are vertices of Q
on S, this implies w(a”,S) > w(a”, Q). We already know that w(r,S) < w(r,Q) by
Lemma 3.1 (a). Thus we are done. d

Proof of Theorem 2.3. We consider a simple enumeration scheme that considers
all slices of S parallel to each of the first n facets. More precisely, for each i =1,...,n
and w € {0,...,|W]}, consider the slice S! := {z € S :a; - = |b;] — w}, where
a; -« < b; is the i-th facet-defining inequality. Since A € Z("tD*" all integer points
in S are obtained by considering the sets

n

i
ﬂ Swi’
i=1

where we enumerate through the O(W) choices for w; € {0,...,[W|}. This gives
O(W™) sets, which is exponential in n. However, we will show that most of these sets
are actually empty sets, except for a polynomial sized collection.

To show this, we implement a simple breadth-first search in the style of standard
branch-and-bound algorithms — see Algorithm 3.1.

For any nonempty node N in the tree at depth ¢ that is not a leaf, let N N {z :
ai+1 -« = |bir1]} be called the principal child, i.e., w = 0 in Step 2. of the “for loop”
in Algorithm 3.1. Note that any node N has at most W + 1 children since the width
W’ < W in step 1. of the “for loop” in Algorithm 3.1 by Lemma 3.1 (a) (since N C S
and the facet width of the first n facets of S is bounded by W).

Let M be a node at depth 7 that is not principal, and M’ be its parent node. Then

w(ai41, M) < % cw(agpr, M') < %=L w(agq1, M') by Proposition 3.2 and
the fact that w(a;+1, M) < W.

Now let N be a node at depth 7 in the tree created by Algorithm 3.1. If the path
from the root node to N has k nodes that are not principal, then the facet Widtkh
M) ,

w(a;+1,N) of N in the direction of the facet normal a;41 is at most W - ( T

This manuscript is for review purposes only.
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ENUMERATING INTEGER POINTS IN POLYTOPES 5

Algorithm 3.1 Enumerating integer points in a simplex

Let the root node be S at depth 0.

fori=0:(n—1) do
Step 1: for each nonempty node N at depth i, compute the width W' =
w(a;+1,N) of N in the direction of the facet normal a;y; (which also defines
a facet for N).
Step 2: for all w € {0, ..., [W’]|}, Define the children nodes of N at depth ¢ + 1
as the sets N N{x: aj41 -z = |biy1| — w}.

end for

Report all the nonempty nodes without children, i.e. nonempty leaves, in the tree

constructed above, that are single integer points.

by the previous paragraph, Proposition 3.2, and Lemma 3.1 (b) and (¢). If K =

flogz(;?,g)"’f(rggt(l‘)/vflﬂ, then W - (%)K < 1. This implies that for any nonempty node

N at depth ¢ > K, there are at most K nodes on the path from the root to N that
are not principal. Using this, we can bound the number of distinct paths from the
root to nonempty nodes at depth i. Let us first partition the paths into different
classes accordi% to the levels at which we see nodes that are not principal. There
are at most »_ =0 (;) classes. Within each class, the only variation comes from the
branchings at the nodes that are not principal and we have at most W 41 children at
any internal node. Thus, we have at most Z;K:o (;) -(W +1)7 distinct such paths, and
therefore, nonempty nodes at level ;. Summing over ¢ = 1,...,n levels, we get at most
n ZJK:Q (;’) - (W +1)7 nonempty nodes in the tree. Since we only branch at nonempty
nodes, when we include the infeasible nodes we can increase the count by a factor of
at most W + 1. Thus the overall bound on the number of nodes enumerated by the
tree is nZ]K:O (?) (W +1)7+1 Since W is fixed, so is K and this is a polynomial
bound (in n) as desired. Since linear programming can be used to test emptiness of
any node in the tree, the overall algorithm is also polynomial time. ]

We remark here that the idea of using hyperplanes parallel to the facets for
enumeration is reminiscent of the proof technique in Cook et al. [6]. However, there
are two important differences. Cook et al. use hyperplanes parallel to the facets
for creating polyhedral regions that they search for vertices of the integer hull; we
actually use these hyperplanes as “dual lattice vectors” and consider intersections
of these hyperplanes to define single integer points for enumeration. Secondly, our
enumeration above gives all the integer points in the simplex; Cook et al.’s technique
produces only the vertices.

3.2. Proof of Theorem 2.4.

LEMMA 3.3. Let H € Z"™"*"™ be a matriz in Hermite Normal Form with 1 <
det(H) < A. Further assume H is in the form:

hi1 0 0o ... 0

( ) hor  hoo 0 0
3.1 . .

: . IR 0

hpi hpa oo .. hpn

Let 1 < g <n be such that hy; =1 fori <n—q and hy; > 1 fori >n—q+1, ie., g
of the diagonal entries are strictly bigger than 1. Also, let hgj be the entry on ith row

This manuscript is for review purposes only.
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and jth column of H='. Then we have:

(a) q <logy(A).
(b) Any column of H=! has at most ¢+ 1 non zero entries.
1

(c) hi; is an integer multiple of Tor(m -

(d) |hi;| < Als=2(371 ([logy (A))L.

Proof. Property (a) follows from the fact that the product of the diagonal entries
is at most A and thus 29 <[], hy < A.

Since h;; = 1 for i < n — ¢ and H is in Hermite Normal Form, h;; = 0 for
j <i<mn—gq. Thus, we may write H in the following form

In—q)x(n—q) O
(3.2) :

~ ~

H H

where H is a q % q lower triangular matrix, and I(,_g)x (n—q) is an (n —¢q) x (n —q)
identity matrix. This implies the principal (n — ¢) x (n — ¢) minor of H~' must also
be I(y_q)x(n—q)- Since H~' must also be lower triangular, h;j =0forl <i<j<n.
From these observations, property (b) follows.

Property (c) follows from Cramer’s Rule or the Laplace expansion formula for the
inverse and the fact that H is an integer matrix.

We next consider Property (d) Since H~'H is an identity matrix, 1 > h}, =
hl > % for all .. We already observed above that h;j =0for 1 <i<j<mn and for
i,7 €{1,...,n — q} except when i = j.

Now consider i, > n — g+ 1. We remove the ith column and jth row of H to
get a matrix H;; and write it as

In—g)x(n-p 0
(3.3) R R
By Cramer’s rule, |h;;| = %AH”)' Also we have det(H;) is equal to the determinant

of the following matrix

Tn—gqyx(n—q) 0
(3.4) ~

0 Hj,

n—q)Xxq

By the definition of the Hermite Normal Form, we have 0 < h;; < A for ¢ > n —gq.
Since ¢ < logy(A), |det(Hj;)| < Al82(A)=1({log,(A)|)! by the Laplace expansion for-
mula of the determinant. Thus |h};| = ldet(AHj'i)‘ < ‘det(AH”)l < Alg2(A)=2(|log, (A)])!
fori,j >n—q+1.

Finally, consider i > n —q+1 and j <n —q. Since H ' H is an identity matrix,
the inner product of the i-th row of H~! and the j-th column of H must be 0. In
other words, we have hj; +370_, ) hiphyy = 0. Thus |hi;[ = |30, 1 higheg| <
Aloz=(3) =1 (logy (A)])!. O

We will also need the following Lemma from [1].

LEMMA 3.4. Given a simplex described by Az < b, where A € ZtDxn s in
Hermite Normal Form, b € R™, and Ay < A, then the absolute values of the
entries in A are bounded by a function g(A) which only depends on A.
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ENUMERATING INTEGER POINTS IN POLYTOPES 7

PROPOSITION 3.5. Let A € ROHDX gnd b € R™1 such that {x : Az < b} is a
full dimensional simplex. Let A be the first n rows of A, a; be the i-th column of AT

. 2 ) ol . a ..
and @ be the i-th column of A~'. Then we have wlapAb) _ Gnnrd gy j<n.
% w(a;,A,b) gy 105 ’

i

Proof. Let b be the first n elements of b. Consider the vertex A=Y of the simplex.
By definition of w(a;, 4,b), A=' — w(a;, A,b) - d/ is the vertex of the simplex that
does not lie on the facet given by a; - * = b;. This vertex must lie on the facet given
by apt1-2 = bpt1. Thus, we have a,TLH(/l_lb’ —w(a;, A, b)-a}) = bpt1, which implies
bag1—al AT

bpr1—al AT . .
w(a;, A,b) = “=—p+——— Similarly, we have w(a;, 4,b) = =i . Thus
—An41a; Q4195
w(as,Ab) _ Gns19 0
w(aj,Ab) — al jal”

THEOREM 3.6. Given a full-dimensional simplex described by Ax < b, where A €
2O b e RUL and Ay < A, then G < g(A)AEA) ([logy(A)] + 1)1,
where g is the function from Lemma 3.4.

Proof. By Lemma 3.1 (d), it suffices to prove the result for the simplex {y :
Hy < b} where H is the Hermite Normal Form of A. By permuting rows of A while
computing the Hermite Normal Form, we may assume there exists 1 < ¢ < n such
that h;; = 1fori <nm—qand h;; > 1forn—qg < i< n, and so, we are in the
setting of Lemma 3.3. Thus, ¢ < logy(A) by Lemma 3.3 (a). Let H be the first n

rows of H. Let h/ be the ith column of H~! and h; be the ith column of H”. Then

w(hi,Hb) _ hniah)
w(hy, Hb) — hI ki

that h; and A’ only has at most g + 1 non-zero elements. Also, by Lemma 3.4, the
entries of hy41 is bounded by g(A). Combined with Lemma 3.3 (d), this implies
hl b < g(A)Ale2(2)=1(Tlog, (A)] + 1)!. Since ALk} > 0 and all entries of h/ are

by Proposition 3.5, we have that By Lemma 3.3 (b), we know

integer multiples of det(f]) by Lemma 3.3 (c), we must have hl  hl > detl(ﬁ) >+
Therefore, % < g(A)A"e2(2) (Tlog, (A)] + 1)! 0
Proof of Theorem 2.4. Theorem 3.6 implies Theorem 2.4. ]

3.3. Proof of Theorem 2.5. We first give a lemma that links the inner and
outer descriptions of a simplicial cone and the integers points in it.

LEMMA 3.7. Let C be a translation of a simplicial cone defined by Az < b where
A €7 and b€ Z™. Also, let ay, ab, ..., al, be the columns of A=Y, and u = A~'b
be the vertex of C. Then for any v € C NZ™, there exists p := (Y1, ..., tn), where
wi € Z and p; > 0 for 1 <i<n, such thatv=u—> ", pa;.

Proof. Let C":={x:x =u— Y ., pla}, where p; >0 for 1 <i < n}. Consider
any © =u— ., pal, where ) € R for 1 <i <n € C’. We have

!/

n i

(3.5) Az = Alu — Z,u;»a;) =b— |12
i=1 ,u'

Thus, z € C, i.e., Ax < bif and only if / > 0. Therefore, C = C’. For any v € CNZ",
express v = u — Z?:l wial, where p; > 0 for 1 < 4 < n. Then the same calculation
as above yields Av =b— pu. Av € Z since v € Z™ and A € Z"*™. Since b € Z", this
implies that p € Z™, and the proof is finished. 0
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8 H. JIANG, AND A. BASU

LEMMA 3.8. With the same notation as Lemma 3.7, let det(A) = A, and X be
the convex hull of the set CNZ"™. If v =u — Z?Zl pial, where p; >0 for 1 <i<n
is a vertex of X, then we have [, (u; +1) < A.

Proof. We will prove this by contradiction. Assume there exists a vertex v of X
such that v =u— Y| w;a}, where p; > 0 for 1 <i <nand [[;—,(u; +1) > A. Due
to the fact that det(A=1) = A~ the columns of A=! define a lattice L such that
Z" C L, and |L/Z™| = A, i.e., there are A cosets with respect to the sublattice Z"
of L. Also, u € L since u = A~'b and b € Z". Then since []"_,(u; + 1) > A, by the
pigeon hole principle, there exists z1 = u— Y ., pia; and 2o = u— >, pfa}, such
that 0 < pl < gy, 0 < plf <y, for 1 <4 < n, z1 # x2, and 1 — x2 € Z". Then,
v+ (z1 —x2) and v — (21 — x2) are both in C NZ"™ and therefore in X, contradicting
the fact that v is a vertex of X. |

THEOREM 3.9. With the same notation as in Lemma 3.7 and Lemma 5.8, let S
be the simplex given by the convex hull of {u,u — (A — 1)aj,u— (A —1)ab,...,u—
(A=1)al,}. Ifv=u—>"", pal is a vertez of X, thenv € S.

Proof. By Lemma 3.8, we have [T/, (u; +1) < A. Without loss of generality let
1< <ps <... < ug, and the others are 0.
Claim K - px < A —1.

Proof. We will prove the claim by induction. When K = 1, this is trivial. Assume
it is true for K = Ky > 1. Consider K = Ky+1. Let A’ = Hfiz(ui—i—l). Then we have
A—1=A(m+1)—1 > (ug-(K—1)+1)( +1) =1 > 2 (K ~1)+2-1 > pc - K,
where the first inequality follows from the induction hypothesis, the second inequality
follows from the fact that p; > 1 and the final inequality follows from the fact that
K > 2. d

This claim implies that v = + Zfil(u — piKa}) € S, which finishes the proof. O

The conclusions and techniques of Lemma 3.8 and Theorem 3.9 have appeared in
the literature before, although in slightly different language; see, e.g., [5, 11, 26, 28].
We include our particular versions and proofs to keep the paper self-contained.

We now have all the pieces together to design an algorithm that enumerates a
polynomial sized superset of all the vertices of the integer hull.

Algorithm 3.2 Vertices of the integer hull

Input: A simplex S = {x € R": Az < b} with Ay < A, and smallest facet width
greater than or equal to A — 1.
Output: A set V of cardinality polynomial in n that includes all the vertices of
the integer hull of S.
Let Aiz < b, Aoz < b .. A, 1z < bt be all the combinations of n
inequalities of Az < b.
Initialize V as an empty set.
fori=1:(n+1)do
Compute u = Ai_lb(i). Let a; denote the j-th the column of Ai_l.
Let S; be the convex hull of the set {u,u — (A —1)a},u—(A—1)ah,...,u—(A—
Dal,}
Apply Algorithm 3.1 to get all the integer points in S; and include them in V.
end for

THEOREM 3.10. The set V' computed in Algorithm 3.2 includes all vertices of the

This manuscript is for review purposes only.
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convez hull of SNZ"™.

Proof. We use the same notation as in Algorithm 3.2. Consider a vertex v of the
convex hull of SN Z". Let ¢ € R” be an objective vector such that v is the unique
solution to

argmax CT Z.

reESNZ™
There exists an i such that A; (% is the solution to

argmax CT.’IJ .

z: Ajz<b®)

Since the facet width of S is at least A — 1, we have S; C S C {z € R": 4,2 < b(i)}.
Thus,

(3.6) max c'z< max ¢’z < max
z€S;NZn zeSNzZn Asw<p®
zeZ™

On the other hand, by Theorem 3.9, S; contains all the vertices of convex hull of
{x € Z" : Ajz < b}, Thus, all three inequalities in (3.6) are actually equalities.
Since v is the unique solution to argmax{c’z : z € SNZ"} and S; C S, we see that
v ES;. 0

Proof of Theorem 2.5. Let V. = {v1,va,...,0,} be the set computed by Algo-
rithm 3.2 with « := |V|. The number of integer points in each S; in Algorithm 3.2
is polynomial in n by Theorem 2.4 since the facet widths of the first n facets of each
S; are at most A — 1. Thus, « is a function of n and A, and polynomial in n. To
check whether for a given 7 € {1,...,a}, v; is a vertex of the convex hull of V' (which
is the same as the convex hull of S NZ™), we just need to check the feasibility of the
following polynomially many constraints on g1, ..., fia:

(03 [}
vi:Zujvj, Zﬂjzl» p; >0 for j #1¢
j=1 j=1
J#i J#i
Solving these polynomially many linear programs, one can filter out the vertices of
the integer hull of S from V. |

4. Concluding Remarks. A similar argument as the proof of Theorem 3.10
gives the following result which we believe to be interesting because it shows a con-
nection between the integer hull of a simplex and the corner polyhedra associated
with it [12].

COROLLARY 4.1. Let S be a simplex described by Ax < b where A € Z(n+1)xn
and b € Z™! such that Ay < A, and all its facet widths are greater than or equal
to A — 1. Then the integer hull of S is the intersection of all the integer hulls of the
simplicial cones derived by Ax < b.

Proof. Let P be the intersection of all the integer hulls of the n simplicial cones
derived by selecting n inequalites from the system Ax < b. Consider a vertex v of P.
It suffices to prove that v € Z™. Let ¢ € R™ be an objective vector such that v is the
unique solution to

(4.1) argmax ¢’ ,
zeP

This manuscript is for review purposes only.
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With the similar argument as in Theorem 3.10, we can prove that

(4.2) max c’z=maxclz= max 'z
T€S;NL™ zeP A;z<b®
zeL™

for some ¢. Since S; NZ" C P, and v is the unique solution to (4.1), so v € S; NZ".0O

In general, there exist simplices such that intersection of the corner polyhedra is
a strict superset of the integer hull. Corollary 4.1 says that for “fat” simplices the
intersection is indeed the integer hull (this is also easily seen to hold for simplices with
at most one integer point).

The idea from Algorithm 3.1 of enumerating along the facet directions leads us to
the following conjecture which we believe is an interesting discrete geometry question.
The conjecture is an attempt to generalize the following facts. When A4 = 1, the
polyhedron defined by P := {z € R" : Az < b} has integral vertices if it is nonempty.
When A 4 = 2, it was shown in [27] that if P is full dimensional, then P must contain
an integer point. One can summarize both these statements by saying that PNZ"™ = ()
implies the facet width of P is at most Ay — 2.

CONJECTURE 4.2. There is a function g : N — N such that for any A € 7Z™*"
and b e Z™, if {x € Z™ : Ax < b} =0, then there is a constraint (a;,x) < b; for some
ie{l,...,m} such that

w(ai, P) < g(Aa),

where P = {x € R" : Az < b}.

In other words, if a polytope has no integer point, then one of its facet widths
is bounded by an explicit function of the maximum subdeterminant A 4. If this con-
jecture is true, then by enumerating all the “slices” in the direction of this facet and
recursing on dimension (like in Lenstra-style algorithms), one would obtain an algo-
rithm that decides integer feasibility in time 2°0(""24)) poly(n, size(A,b)) for some
explicit function h. Well-known calculations show that if {z € Z™ : Az < b} # 0,
then there is a vector z* € Z" such that Az* < b and each coordinate of z* has
absolute value at most n(n 4+ 1)A 4. Thus, a brute force enumeration over the box
[—n(n + 1)A 4, n(n 4+ 1)A )" could work and has complexity 20("108z 71082 A4) - Byt
there does not seem to be an obvious way to improve the O(nlog, n) factor to O(n) in
the exponent. Thus, Conjecture 4.2 seems to be an intermediate step towards resolv-
ing the major open question of designing a 2°(™ algorithm for integer optimization.
Even without this motivation, we find Conjecture 4.2 to be an intriguing geometric
question and worthy of study. Its resolution will give us more insight into how the
geometry of a polytope is dictated by its algebraic description.

We emphasize that one needs to impose integrality of the right hand side b in
the hypothesis of Conjecture 4.2; otherwise, the conjecture is false as is shown by the
following example.

EXAMPLE 4.3. Let I,, be an n x n identity matriz, a = (1,1,1,...,1)T € R", and
b= (—3,-3,....=3.n+ 35T € R Then let P be described by
(4.3) {aﬂ x <b.

P is a full-dimensional simplex with subdeterminants bounded by 1 and its smallest
facet width is Q(n), but it does not contain any integer points.

This manuscript is for review purposes only.
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An alternate proof of Theorem 2.1. As mentioned in Section 2, our main re-
sult can be obtained using completely different tools, as discovered by Dr. Joseph
Paat [22]. We sketch these arguments here. In [23, 24|, the authors show that under
the assumptions of Theorem 2.1, the convex hull of integer points in the polyhe-
dron {x € R" : Az < b} is exactly the same as the convex hull of a mixed-integer
reformulation: i.e.,

conv{z € Z" : Az < b} = conv{z € R" : Az < b,Wx € ZF},

where W € Z"** and k is a constant depending on A. Thus, the vertices of the
integer hull of {x € R™ : Az < b} can be enumerated by enumerating the vertices of
conv{z € R" : Az < bWz € ZF}. The vertices of this latter set can be obtained
by enumerating the k dimensional faces of the polyhedron {z € R™ : Az < b}, and
then enumerating the vertices of the integer hull (in R™) of these k-dimensional faces.
In [24, Lemma 8], the authors also show the number of rows of A is upper bounded by
n+A? under the hypotheses of Theorem 2.1. Thus, the number of these k dimensional
faces is upper bounded by (":ﬁ:) = (Ztﬁ;) which is polynomial in n. The vertices
of the integer hull of these k dimensional faces can be enumerated in time polynomial
in the encoding sizes of A and b, using the algorithm in [6], since the dimension & is
a constant independent of n.

In contrast, our proof is based on different ideas and we believe that the main
appeal of our approach is in the three results stated in Theorems 2.3, 2.4, 2.5.

Based on this proof, we can also derive an explicit upper bound of the vertices
of the integer hull. Let F(A) := [4A2 + logy(A)] - [AStleszlog2(2) 4 1] By [23,
Corollary 2], k < F(A). Since A is a constant independent of n, we can assume

A% + F(A) < 2. Therefore, the number of the k dimensional faces is no greater

than ( Agjﬁ&)). Furthermore, from [6, Theorem 2.1], we know that the number of
vertices of a k-dimensional face is no greater than 2m*(6k%¢)*~1, where ¢ is the
maximum encoding size of any inequality in the system Az < b, and m is the number

of inequalities of Az < b. Combining all of these together yields the upper bound as

2(\2 i) M (6F(A)2¢) ()1,

Acknowledgments. The authors are very grateful for insights from Joseph Paat
mentioned in the paper. Comments and suggestions from two anonymous referees also
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