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Abstract. We show that one can enumerate the vertices of the convex hull of integer points in4
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1. Integer points in polytopes. Understanding the structure of integer points10

in polytopes is a central question in discrete mathematics and geometry of num-11

bers. In the last 50 years, several algorithmic breakthroughs have been made in three12

fundamental questions, listed in increasing order of difficulty: 1) testing if a given13

polytope contains an integer point, 2) finding the optimum integer point in a poly-14

tope with respect to a linear objective function, 3) enumerating or counting integer15

points in a polytope. It is well-known that even question 1) is NP-complete, without16

making further assumptions. Nevertheless, significant progress has been made in un-17

derstanding under what conditions polynomial time algorithms can be designed for18

these three tasks. Two prominent research directions have involved investigating the19

fixed dimension case and the bounded subdeterminant case. To make things precise,20

consider polytopes given by {x ∈ R
n : Ax ≤ b} where A ∈ Z

m×n and b ∈ Z
m. We21

have assumed integer data here as we will not be considering nonrational polytopes22

(nevertheless, there is some subtlety involved with integer data in the bounded subde-23

terminant analysis that we will point out below – see the discussion after Lemma 3.1).24

Two parameters that have received a lot of attention are the dimension n and the25

maximum absolute value of any n × n subdeterminant of A, denoted in this paper26

by ∆A (some authors have also worked with the maximum k × k subdeterminant of27

A over all possible k ∈ {1, . . . , n}). Other parameters have also been studied exten-28

sively [9, 10, 21] (this is a very small sample biased towards monographs and very29

recent work). We will focus on n and ∆A in this paper.30

1.1. Fixed dimension. Lenstra [20] sparked an active line of research by show-31

ing that the linear optimization problem over integer points in a polytope can be solved32

in polynomial time, if we focus on the family of polytopes in some fixed dimension33

n. The original running time obtained by Lenstra was 2O(n3) · poly(n, size(A, b, c)),34

where size(A, b, c) denotes the total binary encoding size of A, b and the objective vec-35

tor c ∈ R
n. For the definition of binary encoding sizes, see for example [25, Section36

2.1]. Subsequent refinements and improvements have steadily appeared [6–8, 15–19].37

The best dependence of the running time on n is currently 2O(n logn) and one of the38

outstanding open questions in the area is to decide if this can be improved to 2O(n).39
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2 H. JIANG, AND A. BASU

The counting problem was also shown to be polynomial time solvable in fixed40

dimension, starting with the seminal work of Barvinok [4]. Several improvements and41

variations on Barvinok’s insights have been obtained since then; see [9] for a survey.42

1.2. Bounded subdeterminants. A classical result in polyhedral combina-43

torics states that if ∆A = 1, then all vertices of the polytope are integral [5]. Thus,44

using linear programming algorithms, one can solve the integer optimization problem45

max{c · x : Ax ≤ b} in time polynomial in n and the encoding size of A, b and c.46

Veselov and Chirkov had the remarkable insight that if ∆A = 2, then the feasibility47

problem can be solved in polynomial time [27]. Artmann, Weismantel and Zenklusen48

used deep results from combinatorial optimization to establish that the linear opti-49

mization problem can also be solved in strongly polynomial time if ∆A = 2 [2]. The50

polynomial time solvability of the feasibility, optimization or counting questions for51

the family of polytopes with ∆A bounded by a constant has been another long stand-52

ing open question in discrete optimization. See [1, 13, 14] for some more recent work53

in this direction.54

2. Our contribution. Our main result is the following.1.55

Theorem 2.1. Let ∆ ∈ N be a fixed natural number. Consider the family of56

polytopes P := {x ∈ R
n : Ax ≤ b} where A ∈ Z

m×n is such that ∆A ≤ ∆ and all57

n × n subdeterminants of A are nonzero. One can enumerate all the vertices of the58

convex hull of integer points in P in time polynomial in n and encoding size of A and59

b.60

This result does not fully resolve the open question of solving integer optimization61

with bounded subdeterminants in polynomial time because of the nontrivial restriction62

that all n × n minors of A have to be nonzero. Nevertheless, Theorem 2.1 improves63

upon the result in [1] where the authors give a polynomial time algorithm for the64

integer optimization problem under the same hypothesis. We strengthen that result65

by showing that one can actually enumerate all the vertices of the integer hull, i.e.,66

the convex hull of integer points in the polytope, in polynomial time. This is in line67

with results cited above from [6] and [4], but in the bounded subdeterminant regime68

instead of the fixed dimension setting.69

Theorem 2.1 follows from the following three results established in this paper that70

we believe are of independent interest. We begin by recalling the notion of width.71

Definition 2.2. Given a set S ⊆ R
n and a vector v ∈ R

n, the width of S in the
direction v is defined as

w(v, S) := max
x∈S

v · x−min
x∈S

v · x.

If P := {x ∈ R
n : Ax ≤ b}, we use the notation w(v,A, b) to denote the width of P in72

the direction v. If v is a row of A defining a facet, then w(v,A, b) will be called the73

corresponding facet width.74

Theorem 2.3. Let S := {x ∈ R
n : Ax ≤ b} be a full-dimensional simplex, with75

A ∈ Z
(n+1)×n and b ∈ R

n+1 with the facet width of the first n facets bounded by W .76

Then the number of integer points in S is polynomial in n, if W is a fixed constant77

independent of n. Moreover, there is a polynomial time algorithm that enumerates all78

the integer points.79

1After this paper was posted on arxiv.org, Dr. Joseph Paat informed us through personal com-
munication of an alternate proof of this result that uses some recent results on mixed-integer refor-
mulations of integer programs [23, 24]. We give an outline of Dr. Paat’s arguments in Section 4.

This manuscript is for review purposes only.



ENUMERATING INTEGER POINTS IN POLYTOPES 3

Theorem 2.4. There exists a function f : N → N with the following property.80

For any full-dimensional simplex described by Ax ≤ b, where A ∈ Z
(n+1)×n, b ∈ R

n+181

with smallest facet width Wmin, all its facet widths are bounded by Wminf(∆A).82

Theorem 2.5. Let ∆ ∈ N be a fixed natural number. Consider the family of83

simplices S := {x ∈ R
n : Ax ≤ b} where A ∈ Z

m×n and b ∈ Z
m such that 1 ≤ ∆A ≤84

∆ and smallest facet width greater than or equal to ∆ − 1. There is an algorithm85

that enumerates all the vertices of the integer hull of S in time polynomial in n and86

encoding size of A and b.87

We now present a short proof of our main result.88

Proof of Theorem 2.1. We appeal to the following result from [1]: there exists a89

constant C(∆) such that if n > C(∆) then A has at most n+ 1 rows [1, Lemma 7]2.90

If n ≤ C(∆) then we use the result from [6] to enumerate the vertices of the91

integer hull. Else, we know that P is a simplex by the result cited above. If P is a92

single point or the empty set, then the result is easy. Else, P must be full-dimensional.93

If the smallest facet width is bounded by ∆−2, then Theorems 2.4 and 2.3 imply that94

all the integer points in P can be enumerated in polynomial time. If the smallest facet95

width is greater than or equal to ∆− 1, then we use the algorithm from Theorem 2.5.96

Let us put our results in some context. Several families of polytopes are known97

in the literature where the number of vertices of the integer hull grows exponen-98

tially in the dimension even with bounded subdeterminants, e.g., bipartite matching99

polytopes. As one sees in the proof of Theorem 2.1, the assumption of nonzero de-100

terminants rules out most of these classical examples because it helps to reduce to101

the case of the simplex. Nevertheless, in [3, Theorem 1], Bárány et al. construct a102

family of simplices with exponential lower bounds on the number of vertices of their103

integer hulls. Our work shows that with bounded facet width or bounded subdeter-104

minant assumptions (see Theorems 2.3, 2.4 and 2.5 above), one can get around these105

examples.106

Section 3 presents the proofs of Theorems 2.3, 2.4 and 2.5. We end in Section 4107

with some future directions.108

3. Proofs of Theorems 2.3, 2.4 and 2.5. We collect a few simple but useful109

facts about width.110

Lemma 3.1. The following are all true.111

(a) w(v, S) ≤ w(v, S′) for any v ∈ R
n and any two sets S, S′ ⊆ R

n such that112

S ⊆ S′.113

(b) w(v, S) = w(v, S + t) for any v, t ∈ R
n and any S ⊆ R

n.114

(c) w(v, αS) = |α|w(v, S) for any v ∈ R
n, any S ⊆ R

n and any α ∈ R.115

(d) Let A ∈ Z
m×n and b ∈ R

m. Let U ∈ Z
n×n be a unimodular matrix and116

define H = AU . Consider the two polyhedra {x :∈ R
n : Ax ≤ b} and117

{y ∈ R
n : Hy ≤ b} which are related by the unimodular transformation given118

by x = Uy. Then the width w(a,A, b) with respect to any row a of A is equal119

to the width w(h,H, b) given by the corresponding row h = UTa of H.120

Let us discuss the integer data assumption here. Typically this is justified by say-121

ing that the data is rational and we can scale inequalities to make all the data integer.122

However, if we wish to impose bounds on the subdeterminants as in this paper, one123

has to be careful with such scalings. Since the bound is on the subdeterminants of124

2This is the place where we need the assumption that all n× n minors are nonzero.
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4 H. JIANG, AND A. BASU

A, it is justified to assume that the entries of A are integer. Otherwise, any non-zero125

bound will be satisfied by every polytope simply by scaling the constraints. However,126

one may question why b is also assumed to be integer valued. See the final paragraph127

of Section 4 for some discussion of how this can make a concrete difference. Below,128

we are careful to impose the integrality assumption on b in our hypotheses only when129

needed.130

3.1. Proof of Theorem 2.3.131

Proposition 3.2. Let Q ⊆ R
n be a simplex with coefficient matrix A ∈ Z

m×n132

(not necessarily full-dimensional) and let a · x ≤ b be a facet defining inequality for133

Q, defining the facet S (also a simplex). Suppose Wa := w(a,Q) > 0. Consider134

the slice S′ := Q ∩ {x ∈ R
n : a · x = b′} for some b′ ∈ [b − Wa, b]. Then S′ is135

a translate of Wa−(b−b′)
Wa

S and consequently w(v, S′) = Wa−(b−b′)
Wa

· w(v, S) for any136

v ∈ R
n. Furthermore, if a′′ · x ≤ b′′ defines a facet S′′ of Q distinct from S, then137

w(a′′, S) = w(a′′, Q).138

Proof. Let v be the vertex of Q that does not lie on S (since Wa > 0). Let the139

other vertices of Q be given by v + r1, . . . , v + rk, for linearly independent vectors140

r1, . . . , rk. Thus, a · v = b−Wa and a · ri = Wa. Using these relations, one can check141

that {v + Wa−(b−b′)
Wa

ri : i = 1, . . . , k} satisfy the equation a · x = b′. Thus, they are142

the vertices of the slice S′ and the first part is established. Let a′′ · x ≤ b′′ define the143

facet S′′ distinct from S. Let v + r1 be the vertex of Q not on S′′. Then we have144

w(a′′, Q) = a′′ · (v + r2) − a′′ · (v + r1). Since v + r1 and v + r2 are vertices of Q145

on S, this implies w(a′′, S) ≥ w(a′′, Q). We already know that w(r, S) ≤ w(r,Q) by146

Lemma 3.1 (a). Thus we are done.147

Proof of Theorem 2.3. We consider a simple enumeration scheme that considers
all slices of S parallel to each of the first n facets. More precisely, for each i = 1, . . . , n
and w ∈ {0, . . . , ⌊W ⌋}, consider the slice Si

w := {x ∈ S : ai · x = ⌊bi⌋ − w}, where
ai · x ≤ bi is the i-th facet-defining inequality. Since A ∈ Z

(n+1)×n, all integer points
in S are obtained by considering the sets

n⋂

i=1

Si
wi
,

where we enumerate through the O(W ) choices for wi ∈ {0, . . . , ⌊W ⌋}. This gives148

O(Wn) sets, which is exponential in n. However, we will show that most of these sets149

are actually empty sets, except for a polynomial sized collection.150

To show this, we implement a simple breadth-first search in the style of standard151

branch-and-bound algorithms – see Algorithm 3.1.152

For any nonempty node N in the tree at depth i that is not a leaf, let N ∩ {x :153

ai+1 ·x = ⌊bi+1⌋} be called the principal child, i.e., w = 0 in Step 2. of the “for loop”154

in Algorithm 3.1. Note that any node N has at most W + 1 children since the width155

W ′ ≤ W in step 1. of the “for loop” in Algorithm 3.1 by Lemma 3.1 (a) (since N ⊆ S156

and the facet width of the first n facets of S is bounded by W ).157

Let M be a node at depth i that is not principal, and M ′ be its parent node. Then158

w(ai+1,M) ≤ w(ai+1,M
′)−1

w(ai+1,M ′) ·w(ai+1,M
′) ≤ W−1

W
·w(ai+1,M

′) by Proposition 3.2 and159

the fact that w(ai+1,M
′) ≤ W .160

Now let N be a node at depth i in the tree created by Algorithm 3.1. If the path161

from the root node to N has k nodes that are not principal, then the facet width162

w(ai+1, N) of N in the direction of the facet normal ai+1 is at most W ·
(
W−1
W

)k
,163
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Algorithm 3.1 Enumerating integer points in a simplex

Let the root node be S at depth 0.
for i = 0 : (n− 1) do
Step 1: for each nonempty node N at depth i, compute the width W ′ =
w(ai+1, N) of N in the direction of the facet normal ai+1 (which also defines
a facet for N).
Step 2: for all w ∈ {0, . . . , ⌊W ′⌋}, Define the children nodes of N at depth i+ 1
as the sets N ∩ {x : ai+1 · x = ⌊bi+1⌋ − w}.

end for

Report all the nonempty nodes without children, i.e. nonempty leaves, in the tree
constructed above, that are single integer points.

by the previous paragraph, Proposition 3.2, and Lemma 3.1 (b) and (c). If K =164

⌈ log2(W+1)
log2(W )−log2(W−1)⌉, then W ·

(
W−1
W

)K
< 1. This implies that for any nonempty node165

N at depth i ≥ K, there are at most K nodes on the path from the root to N that166

are not principal. Using this, we can bound the number of distinct paths from the167

root to nonempty nodes at depth i. Let us first partition the paths into different168

classes according to the levels at which we see nodes that are not principal. There169

are at most
∑K

j=0

(
i
j

)
classes. Within each class, the only variation comes from the170

branchings at the nodes that are not principal and we have at most W +1 children at171

any internal node. Thus, we have at most
∑K

j=0

(
i
j

)
·(W +1)j distinct such paths, and172

therefore, nonempty nodes at level i. Summing over i = 1, . . . , n levels, we get at most173

n
∑K

j=0

(
n
j

)
· (W +1)j nonempty nodes in the tree. Since we only branch at nonempty174

nodes, when we include the infeasible nodes we can increase the count by a factor of175

at most W + 1. Thus the overall bound on the number of nodes enumerated by the176

tree is n
∑K

j=0

(
n
j

)
· (W + 1)j+1. Since W is fixed, so is K and this is a polynomial177

bound (in n) as desired. Since linear programming can be used to test emptiness of178

any node in the tree, the overall algorithm is also polynomial time.179

We remark here that the idea of using hyperplanes parallel to the facets for180

enumeration is reminiscent of the proof technique in Cook et al. [6]. However, there181

are two important differences. Cook et al. use hyperplanes parallel to the facets182

for creating polyhedral regions that they search for vertices of the integer hull; we183

actually use these hyperplanes as “dual lattice vectors” and consider intersections184

of these hyperplanes to define single integer points for enumeration. Secondly, our185

enumeration above gives all the integer points in the simplex; Cook et al.’s technique186

produces only the vertices.187

3.2. Proof of Theorem 2.4.188

Lemma 3.3. Let H ∈ Z
n×n be a matrix in Hermite Normal Form with 1 <189

det(H) ≤ ∆. Further assume H is in the form:190




h11 0 0 . . . 0
h21 h22 0 . . . 0
...

. . .
. . . . . . 0

hn1 hn2 . . . . . . hnn


 .(3.1)191

192

Let 1 ≤ q ≤ n be such that hii = 1 for i ≤ n− q and hii > 1 for i ≥ n− q + 1, i.e., q193

of the diagonal entries are strictly bigger than 1. Also, let h′
ij be the entry on ith row194
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6 H. JIANG, AND A. BASU

and jth column of H−1. Then we have:195

(a) q ≤ log2(∆).196

(b) Any column of H−1 has at most q + 1 non zero entries.197

(c) h′
ij is an integer multiple of 1

det(H) .198

(d) |h′
ij | ≤ ∆log2(∆)−1(⌈log2(∆)⌉)!.199

Proof. Property (a) follows from the fact that the product of the diagonal entries200

is at most ∆ and thus 2q ≤
∏

i hii ≤ ∆.201

Since hii = 1 for i ≤ n − q and H is in Hermite Normal Form, hij = 0 for202

j < i ≤ n− q. Thus, we may write H in the following form203



I(n−q)×(n−q) 0

H̃ Ĥ


 ,(3.2)204

205

where Ĥ is a q × q lower triangular matrix, and I(n−q)×(n−q) is an (n− q) × (n − q)206

identity matrix. This implies the principal (n− q)× (n− q) minor of H−1 must also207

be I(n−q)×(n−q). Since H−1 must also be lower triangular, h′
ij = 0 for 1 ≤ i < j ≤ n.208

From these observations, property (b) follows.209

Property (c) follows from Cramer’s Rule or the Laplace expansion formula for the210

inverse and the fact that H is an integer matrix.211

We next consider Property (d) Since H−1H is an identity matrix, 1 ≥ h′
ii =212

1
hii

≥ 1
∆ for all i. We already observed above that h′

ij = 0 for 1 ≤ i < j ≤ n and for213

i, j ∈ {1, . . . , n− q} except when i = j.214

Now consider i, j ≥ n − q + 1. We remove the ith column and jth row of H to215

get a matrix Hji and write it as216



I(n−q)×(n−q) 0

H̃j Ĥji


 .(3.3)217

218

By Cramer’s rule, |h′
ij | =

| det(Hji)|
∆ . Also we have det(Hji) is equal to the determinant219

of the following matrix220



I(n−q)×(n−q) 0

0(n−q)×q Ĥji


 .(3.4)221

222

By the definition of the Hermite Normal Form, we have 0 ≤ hij ≤ ∆ for i > n − q.223

Since q ≤ log2(∆), | det(Ĥji)| ≤ ∆log2(∆)−1(⌊log2(∆)⌋)! by the Laplace expansion for-224

mula of the determinant. Thus |h′
ij | =

| det(Hji)|
∆ ≤ | det(Ĥji)|

∆ ≤ ∆log2(∆)−2(⌊log2(∆)⌋)!225

for i, j ≥ n− q + 1.226

Finally, consider i ≥ n− q + 1 and j ≤ n− q. Since H−1H is an identity matrix,227

the inner product of the i-th row of H−1 and the j-th column of H must be 0. In228

other words, we have h′
ij +

∑n

k=n−q+1 h
′
ikhkj = 0. Thus |h′

ij | = |
∑n

k=n−q+1 h
′
ikhkj | ≤229

∆log2(∆)−1(⌈log2(∆)⌉)!.230

We will also need the following Lemma from [1].231

Lemma 3.4. Given a simplex described by Ax ≤ b, where A ∈ Z
(n+1)×n is in232

Hermite Normal Form, b ∈ R
n+1, and ∆A ≤ ∆, then the absolute values of the233

entries in A are bounded by a function g(∆) which only depends on ∆.234
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Proposition 3.5. Let A ∈ R
(n+1)×n and b ∈ R

n+1, such that {x : Ax ≤ b} is a235

full dimensional simplex. Let Â be the first n rows of A, ai be the i-th column of AT236

and a′i be the i-th column of Â−1. Then we have w(ai,A,b)
w(aj ,A,b) =

aT
n+1a

′

j

aT
n+1a

′

i

for i, j ≤ n.237

Proof. Let b′ be the first n elements of b. Consider the vertex Â−1b′ of the simplex.238

By definition of w(ai, A, b), Â−1b′ − w(ai, A, b) · a′i is the vertex of the simplex that239

does not lie on the facet given by ai · x = bi. This vertex must lie on the facet given240

by an+1 ·x = bn+1. Thus, we have a
T
n+1(Â

−1b′−w(ai, A, b) ·a′i) = bn+1, which implies241

w(ai, A, b) =
bn+1−aT

n+1Â
−1b′

−aT
n+1a

′

i

. Similarly, we have w(aj , A, b) =
bn+1−aT

n+1Â
−1b′

−aT
n+1a

′

j

. Thus242

w(ai,A,b)
w(aj ,A,b) =

aT
n+1a

′

j

aT
n+1a

′

i

.243

Theorem 3.6. Given a full-dimensional simplex described by Ax ≤ b, where A ∈244

Z
(n+1)×n, b ∈ R

n+1, and ∆A ≤ ∆, then w(ai,A,b)
w(aj ,A,b) ≤ g(∆)∆log2(∆)(⌈log2(∆)⌉ + 1)!,245

where g is the function from Lemma 3.4.246

Proof. By Lemma 3.1 (d), it suffices to prove the result for the simplex {y :247

Hy ≤ b} where H is the Hermite Normal Form of A. By permuting rows of A while248

computing the Hermite Normal Form, we may assume there exists 1 ≤ q ≤ n such249

that hii = 1 for i ≤ n − q and hii > 1 for n − q < i ≤ n, and so, we are in the250

setting of Lemma 3.3. Thus, q ≤ log2(∆) by Lemma 3.3 (a). Let Ĥ be the first n251

rows of H. Let h′
i be the ith column of Ĥ−1 and hi be the ith column of HT . Then252

by Proposition 3.5, we have that w(hi,H,b)
w(hj ,H,b) =

hT
n+1h

′

j

hT
n+1h

′

i

. By Lemma 3.3 (b), we know253

that h′
i and h′

j only has at most q + 1 non-zero elements. Also, by Lemma 3.4, the254

entries of hn+1 is bounded by g(∆). Combined with Lemma 3.3 (d), this implies255

hT
n+1h

′
j ≤ g(∆)∆log2(∆)−1(⌈log2(∆)⌉+ 1)!. Since hT

n+1h
′
i > 0 and all entries of h′

i are256

integer multiples of det(Ĥ) by Lemma 3.3 (c), we must have hT
n+1h

′
i ≥

1

det(Ĥ)
≥ 1

∆ .257

Therefore, w(hi,H,b)
w(hj ,H,b) ≤ g(∆)∆log2(∆)(⌈log2(∆)⌉+ 1)!258

Proof of Theorem 2.4. Theorem 3.6 implies Theorem 2.4.259

3.3. Proof of Theorem 2.5. We first give a lemma that links the inner and260

outer descriptions of a simplicial cone and the integers points in it.261

Lemma 3.7. Let C be a translation of a simplicial cone defined by Ax ≤ b where262

A ∈ Z
n×n and b ∈ Z

n. Also, let a′1, a
′
2, . . . , a

′
n be the columns of A−1, and u := A−1b263

be the vertex of C. Then for any v ∈ C ∩ Z
n, there exists µ := (µ1, . . . , µn), where264

µi ∈ Z and µi ≥ 0 for 1 ≤ i ≤ n, such that v = u−
∑n

i=1 µia
′
i.265

Proof. Let C ′ := {x : x = u−
∑n

i=1 µ
′
ia

′
i, where µ′

i ≥ 0 for 1 ≤ i ≤ n}. Consider266

any x = u−
∑n

i=1 µ
′
ia

′
i, where µ′

i ∈ R for 1 ≤ i ≤ n ∈ C ′. We have267

Ax = A(u−
n∑

i=1

µ′
ia

′
i) = b−




µ′
1

µ′
2

. . .
µ′
n


 .(3.5)268

269

Thus, x ∈ C, i.e., Ax ≤ b if and only if µ′ ≥ 0. Therefore, C = C ′. For any v ∈ C∩Zn,270

express v = u −
∑n

i=1 µia
′
i, where µi ≥ 0 for 1 ≤ i ≤ n. Then the same calculation271

as above yields Av = b− µ. Av ∈ Z
n since v ∈ Z

n and A ∈ Z
n×n. Since b ∈ Z

n, this272

implies that µ ∈ Z
n, and the proof is finished.273
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Lemma 3.8. With the same notation as Lemma 3.7, let det(A) = ∆, and X be274

the convex hull of the set C ∩ Z
n. If v = u −

∑n

i=1 µia
′
i, where µi ≥ 0 for 1 ≤ i ≤ n275

is a vertex of X, then we have
∏n

i=1(µi + 1) ≤ ∆.276

Proof. We will prove this by contradiction. Assume there exists a vertex v of X277

such that v = u−
∑n

i=1 µia
′
i, where µi ≥ 0 for 1 ≤ i ≤ n and

∏n

i=1(µi +1) > ∆. Due278

to the fact that det(A−1) = ∆−1, the columns of A−1 define a lattice L such that279

Z
n ⊆ L, and |L/Zn| = ∆, i.e., there are ∆ cosets with respect to the sublattice Z

n280

of L. Also, u ∈ L since u = A−1b and b ∈ Z
n. Then since

∏n

i=1(µi + 1) > ∆, by the281

pigeon hole principle, there exists x1 = u−
∑n

i=1 µ
′
ia

′
i and x2 = u−

∑n

i=1 µ
′′
i a

′
i, such282

that 0 ≤ µ′
i ≤ µi, 0 ≤ µ′′

i ≤ µi for 1 ≤ i ≤ n, x1 ̸= x2, and x1 − x2 ∈ Z
n. Then,283

v + (x1 − x2) and v − (x1 − x2) are both in C ∩Z
n and therefore in X, contradicting284

the fact that v is a vertex of X.285

Theorem 3.9. With the same notation as in Lemma 3.7 and Lemma 3.8, let S286

be the simplex given by the convex hull of {u, u − (∆ − 1)a′1, u − (∆ − 1)a′2, . . . , u −287

(∆− 1)a′n}. If v = u−
∑n

i=1 µia
′
i is a vertex of X, then v ∈ S.288

Proof. By Lemma 3.8, we have
∏n

i=1(µi + 1) ≤ ∆. Without loss of generality let289

1 ≤ µ1 ≤ µ2 ≤ . . . ≤ µK , and the others are 0.290

Claim K · µK ≤ ∆− 1.291

Proof. We will prove the claim by induction. When K = 1, this is trivial. Assume292

it is true forK = K0 ≥ 1. ConsiderK = K0+1. Let ∆′ =
∏K

i=2(µi+1). Then we have293

∆−1 = ∆′ ·(µ1+1)−1 ≥ (µK ·(K−1)+1)(µ1+1)−1 ≥ 2µK ·(K−1)+2−1 ≥ µK ·K,294

where the first inequality follows from the induction hypothesis, the second inequality295

follows from the fact that µ1 ≥ 1 and the final inequality follows from the fact that296

K ≥ 2.297

This claim implies that v = 1
K

∑K

i=1(u− µiKa′i) ∈ S, which finishes the proof.298

The conclusions and techniques of Lemma 3.8 and Theorem 3.9 have appeared in299

the literature before, although in slightly different language; see, e.g., [5, 11, 26, 28].300

We include our particular versions and proofs to keep the paper self-contained.301

We now have all the pieces together to design an algorithm that enumerates a302

polynomial sized superset of all the vertices of the integer hull.303

Algorithm 3.2 Vertices of the integer hull

Input: A simplex S = {x ∈ R
n : Ax ≤ b} with ∆A ≤ ∆, and smallest facet width

greater than or equal to ∆− 1.
Output: A set V of cardinality polynomial in n that includes all the vertices of
the integer hull of S.
Let A1x ≤ b(1), A2x ≤ b(2) . . . , An+1x ≤ b(n+1) be all the combinations of n
inequalities of Ax ≤ b.
Initialize V as an empty set.
for i = 1 : (n+ 1) do
Compute u = A−1

i b(i). Let a′j denote the j-th the column of A−1
i .

Let Si be the convex hull of the set {u, u− (∆−1)a′1, u− (∆−1)a′2, . . . , u− (∆−
1)a′n}
Apply Algorithm 3.1 to get all the integer points in Si and include them in V .

end for

Theorem 3.10. The set V computed in Algorithm 3.2 includes all vertices of the304
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convex hull of S ∩ Z
n.305

Proof. We use the same notation as in Algorithm 3.2. Consider a vertex v of the
convex hull of S ∩ Z

n. Let c ∈ R
n be an objective vector such that v is the unique

solution to
argmax
x∈S∩Zn

cTx.

There exists an i such that A−1
i b(i) is the solution to

argmax
x : Aix≤b(i)

cTx.

Since the facet width of S is at least ∆− 1, we have Si ⊆ S ⊆ {x ∈ R
n : Aix ≤ b(i)}.306

Thus,307

(3.6) max
x∈Si∩Zn

cTx ≤ max
x∈S∩Zn

cTx ≤ max
Aix≤b(i)

x∈Z
n

cTx.308

On the other hand, by Theorem 3.9, Si contains all the vertices of convex hull of309

{x ∈ Z
n : Aix ≤ b(i)}. Thus, all three inequalities in (3.6) are actually equalities.310

Since v is the unique solution to argmax{cTx : x ∈ S ∩ Z
n} and Si ⊆ S, we see that311

v ∈ Si.312

Proof of Theorem 2.5. Let V = {v1, v2, . . . , vα} be the set computed by Algo-313

rithm 3.2 with α := |V |. The number of integer points in each Si in Algorithm 3.2314

is polynomial in n by Theorem 2.4 since the facet widths of the first n facets of each315

Si are at most ∆ − 1. Thus, α is a function of n and ∆, and polynomial in n. To316

check whether for a given i ∈ {1, . . . , α}, vi is a vertex of the convex hull of V (which317

is the same as the convex hull of S ∩ Z
n), we just need to check the feasibility of the318

following polynomially many constraints on µ1, . . . , µα:319

vi =
α∑

j=1
j ̸=i

µjvj ,
α∑

j=1
j ̸=i

µj = 1, µj ≥ 0 for j ̸= i320

321

Solving these polynomially many linear programs, one can filter out the vertices of322

the integer hull of S from V .323

4. Concluding Remarks. A similar argument as the proof of Theorem 3.10324

gives the following result which we believe to be interesting because it shows a con-325

nection between the integer hull of a simplex and the corner polyhedra associated326

with it [12].327

Corollary 4.1. Let S be a simplex described by Ax ≤ b where A ∈ Z
(n+1)×n328

and b ∈ Z
n+1 such that ∆A ≤ ∆, and all its facet widths are greater than or equal329

to ∆− 1. Then the integer hull of S is the intersection of all the integer hulls of the330

simplicial cones derived by Ax ≤ b.331

Proof. Let P be the intersection of all the integer hulls of the n simplicial cones332

derived by selecting n inequalites from the system Ax ≤ b. Consider a vertex v of P .333

It suffices to prove that v ∈ Z
n. Let c ∈ R

n be an objective vector such that v is the334

unique solution to335

(4.1) argmax
x∈P

cTx,336
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With the similar argument as in Theorem 3.10, we can prove that337

(4.2) max
x∈Si∩Zn

cTx = max
x∈P

cTx = max
Aix≤b(i)

x∈Z
n

cTx338

for some i. Since Si ∩ Z
n ⊆ P , and v is the unique solution to (4.1), so v ∈ Si ∩ Z

n.339

In general, there exist simplices such that intersection of the corner polyhedra is340

a strict superset of the integer hull. Corollary 4.1 says that for “fat” simplices the341

intersection is indeed the integer hull (this is also easily seen to hold for simplices with342

at most one integer point).343

The idea from Algorithm 3.1 of enumerating along the facet directions leads us to344

the following conjecture which we believe is an interesting discrete geometry question.345

The conjecture is an attempt to generalize the following facts. When ∆A = 1, the346

polyhedron defined by P := {x ∈ R
n : Ax ≤ b} has integral vertices if it is nonempty.347

When ∆A = 2, it was shown in [27] that if P is full dimensional, then P must contain348

an integer point. One can summarize both these statements by saying that P ∩Zn = ∅349

implies the facet width of P is at most ∆A − 2.350

Conjecture 4.2. There is a function g : N → N such that for any A ∈ Z
m×n

and b ∈ Z
m, if {x ∈ Z

n : Ax ≤ b} = ∅, then there is a constraint ⟨ai, x⟩ ≤ bi for some
i ∈ {1, . . . ,m} such that

w(ai, P ) ≤ g(∆A),

where P = {x ∈ R
n : Ax ≤ b}.351

In other words, if a polytope has no integer point, then one of its facet widths352

is bounded by an explicit function of the maximum subdeterminant ∆A. If this con-353

jecture is true, then by enumerating all the “slices” in the direction of this facet and354

recursing on dimension (like in Lenstra-style algorithms), one would obtain an algo-355

rithm that decides integer feasibility in time 2O(nh(∆A)) poly(n, size(A, b)) for some356

explicit function h. Well-known calculations show that if {x ∈ Z
n : Ax ≤ b} ≠ ∅,357

then there is a vector x⋆ ∈ Z
n such that Ax⋆ ≤ b and each coordinate of x⋆ has358

absolute value at most n(n + 1)∆A. Thus, a brute force enumeration over the box359

[−n(n + 1)∆A, n(n + 1)∆A]
n could work and has complexity 2O(n log2 n log2 ∆A). But360

there does not seem to be an obvious way to improve the O(n log2 n) factor to O(n) in361

the exponent. Thus, Conjecture 4.2 seems to be an intermediate step towards resolv-362

ing the major open question of designing a 2O(n) algorithm for integer optimization.363

Even without this motivation, we find Conjecture 4.2 to be an intriguing geometric364

question and worthy of study. Its resolution will give us more insight into how the365

geometry of a polytope is dictated by its algebraic description.366

We emphasize that one needs to impose integrality of the right hand side b in367

the hypothesis of Conjecture 4.2; otherwise, the conjecture is false as is shown by the368

following example.369

Example 4.3. Let In be an n×n identity matrix, a = (1, 1, 1, . . . , 1)T ∈ R
n, and370

b = (− 1
2 ,−

1
2 , . . . ,−

1
2 , n+ 1

2 )
T ∈ R

n+1. Then let P be described by371

[
−In
aT

]
x ≤ b.(4.3)372

373

P is a full-dimensional simplex with subdeterminants bounded by 1 and its smallest374

facet width is Ω(n), but it does not contain any integer points.375
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An alternate proof of Theorem 2.1. As mentioned in Section 2, our main re-
sult can be obtained using completely different tools, as discovered by Dr. Joseph
Paat [22]. We sketch these arguments here. In [23, 24], the authors show that under
the assumptions of Theorem 2.1, the convex hull of integer points in the polyhe-
dron {x ∈ R

n : Ax ≤ b} is exactly the same as the convex hull of a mixed-integer
reformulation: i.e.,

conv{x ∈ Z
n : Ax ≤ b} = conv{x ∈ R

n : Ax ≤ b,Wx ∈ Z
k},

where W ∈ Z
n×k and k is a constant depending on ∆. Thus, the vertices of the376

integer hull of {x ∈ R
n : Ax ≤ b} can be enumerated by enumerating the vertices of377

conv{x ∈ R
n : Ax ≤ b,Wx ∈ Z

k}. The vertices of this latter set can be obtained378

by enumerating the k dimensional faces of the polyhedron {x ∈ R
n : Ax ≤ b}, and379

then enumerating the vertices of the integer hull (in R
n) of these k-dimensional faces.380

In [24, Lemma 8], the authors also show the number of rows of A is upper bounded by381

n+∆2 under the hypotheses of Theorem 2.1. Thus, the number of these k dimensional382

faces is upper bounded by
(
n+∆2

n−k

)
=

(
n+∆2

∆2+k

)
which is polynomial in n. The vertices383

of the integer hull of these k dimensional faces can be enumerated in time polynomial384

in the encoding sizes of A and b, using the algorithm in [6], since the dimension k is385

a constant independent of n.386

In contrast, our proof is based on different ideas and we believe that the main387

appeal of our approach is in the three results stated in Theorems 2.3, 2.4, 2.5.388

Based on this proof, we can also derive an explicit upper bound of the vertices389

of the integer hull. Let F (∆) := [4∆
1
2 + log2(∆)] · [∆6+log2 log2(∆) + 1]. By [23,390

Corollary 2], k ≤ F (∆). Since ∆ is a constant independent of n, we can assume391

∆2 + F (∆) ≤ n
2 . Therefore, the number of the k dimensional faces is no greater392

than
(

n+∆2

∆2+F (∆)

)
. Furthermore, from [6, Theorem 2.1], we know that the number of393

vertices of a k-dimensional face is no greater than 2mk(6k2φ)k−1, where φ is the394

maximum encoding size of any inequality in the system Ax ≤ b, and m is the number395

of inequalities of Ax ≤ b. Combining all of these together yields the upper bound as396

2
(

n+∆2

∆2+F (∆)

)
mF (∆)(6F (∆)2φ)F (∆)−1.397
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