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ABSTRACT

Addressing the increasing demand for data exchange has led to the
development of data markets that facilitate transactional interac-
tions between data buyers and data sellers. Still, cost-effective and
distribution-aware query answering is a substantial challenge in
these environments. In this paper, while differentiating different
types of data markets, we take the initial steps towards addressing
this challenge. In particular, we envision a unified query answering
framework and discuss its functionalities. Our framework enables
integrating data from different sources in a data market into a
dataset that meets user-provided schema and distribution require-
ments cost-effectively. In order to facilitate consumers’ query an-
swering, our system discovers data views in the form of join-paths
on relevant data sources, defines a get-next operation to query
views, and estimates the cost of get-next on each view. The query
answering engine then selects the next views to sample sequen-
tially to collect the output data. Depending on the knowledge of
the system from the underlying data sources, the view selection
problem can be modeled as an instance of a multi-arm bandit or
coupon collector’s problem.
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1 INTRODUCTION

As big data technologies intermix with human life, the demand for
data exchange increases. On one side, different enterprises, busi-
nesses, and organizations may own (a lake of) data they generate
or collect. On the other side, various parties, such as data science
companies and news organizations, may look for the data they
are willing to buy for different data-driven tasks. This supply and
demand phenomenon has led to the rise of data marketplaces that
are becoming increasingly popular. Data markets facilitate trans-
actional interactions between data buyers and data sellers. Still,
cost-effective and distribution-aware query answering is a major
challenge in these environments. To better clarify this, let us con-
sider the following examples.

Example 1: (Breast Cancer Prediction) A healthcare data science
company would like to use Chicago health record data and build
an ML model for the early detection of breast cancer. Being aware
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of disparities in breast cancer research [11], the company wants to
make sure different demographic groups are suitably considered.
They establish a schema over the attributes they are interested in
and form the query “1,000 breast cancer monitoring data
in Chicago with at least 30% label=positive, and at
least 20% black patients” On the other hand, data providers
such as CAPriCORN! have established partnerships with different
hospitals (such as University of Illinois Hospital & Health Sciences
System), have access to various data sources, and are willing to me-
diate the exchange of data from hospitals to the company. But, the
data in hospitals’ databases and data lakes may not readily satisfy
the schema and distribution requirements of the company. More-
over, a computation cost is associated with cleaning, integration,
standardization, etc. The data from different hospitals may have
different patient distributions; therefore, after integration, only a
portion of collected data may be useful, further increasing the com-
putation cost to collect the target data. Finally, the data provider
may be required to pay a monetary cost to the hospitals and human
workers to obtain their data. A data market can facilitate communi-
cation between the data science company and different providers.
However, a major challenge for data providers such as CAPriCORN
is to answer the query in a cost-effective manner, such that their
benefit is maximized. O

Example 2: (Journalism) Consider a news organization like Prop-
ublica, which wants to conduct data analysis for the purpose of
journalism, for their machine bias section?. In particular, the orga-
nization is interested in studying recidivism scores used for setting
bail in different jurisdictions across the US. Propublica wants to
see if the scores are racially biased®. To conduct the study, they
need the data described in the form of the query “500 defendant
after-release data collected after 2018, including at
least 200 black and at least 200 white individuals”.
Data providers in partnership with the Sherrif’s Offices of different
counties may have the underlying data sources?®, and be willing
to sell it in a data market. Different offices, however, may have
various pricing policies. Besides, their data may not contain all
information required in the target data. As a result, in addition
to purchase costs, a human resource monetary cost is needed to
explore different sources, discover relevant data across different
providers, and integrate them to collect the data that follows the
target schema. Finally, different offices may have different success
chances (hence different costs) in collecting the data that follows
the target distribution. As a result, the challenge for Propublica is
to select providers and integrate available data sources to satisfy
the requirements in a cost-effective manner. O
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Our Vision: We propose a framework for cost-effective and
distribution-aware query answering over data markets, providing a
high-level vision of its functionalities. In particular, we differentiate
between two different types of data markets (passive-provider and
passive-consumer) with different interaction modes between their
users. Carefully discussing data markets and their data model, we
propose a unified framework that fits both data market models.
Modeling the available data as a collection of data sources, our
framework considers user queries as (i) a description of a relational
schema (called target schema), (ii) a set of query constraints, (iii) the
output data size, and (iv) a distribution requirement (e.g., indicated
by a set of count values). Populating a target schema with available
data sources requires discovering data with attributes relevant to
the description of target attributes. When attributes are scattered
across various sources, join is the only way to build the schema
that can be aligned with the target. Our framework consists of a
view discovery and curation component, which is responsible for
identifying a collection of projection-join (PJ) views over relevant
relational data sources; the views have schemas that can be aligned
with the target. We define a get-next operation for exploring and
sampling different views. Depending on factors such as the cost of
accessing each data source and the cost of integrating sources, the
get-next operation has different costs for different data views.

Our framework follows a sequential process for collecting the
target data. At each iteration, the query engine selects a view to
be queried next such that the overall query answering cost is glob-
ally minimized. Initially, when the engine’s information about the
underlying sources is minimal, the problem can be modeled as a
multi-arm bandit instance [37], where every view is considered
as an exploration arm. Over time, as the knowledge of the engine
about data sources increases, this knowledge can be used to answer
queries more cost-effectively, modeling the process as instances of
the coupon collector’s problem [24].

2 DISTRIBUTION-AWARE QUERY
ANSWERING

2.1 Data Market Model

We consider a data market [15, 21, 36, 38] as a two-sided mar-
ketplace [1, 10] that enables the transactional exchange of data
between two types of users: 1) Data providers (sellers), or simply
providers, are the individuals or organizations that own the data (in
form of a single dataset, a database, or a data lake) and are willing
to sell them. Data providers may provide a pricing model and an
access model, describing how to access their data; 2) Data consumers
(buyers), or simply consumers, are the individuals or organizations
that are willing to buy the data they are interested in. A user may
describe their needs based on a query model.

With recent advancements in data technologies and the demand
for accessing more data, data markets such as Dawex®, Xigniteﬁ,
and WorldQuant’ are increasingly popular. In general, data mar-
kets can follow different models for enabling the interaction be-
tween data providers and data consumers. In particular, existing
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Figure 1: Data Market Illustration

data market models can be categorized as “passive-provider” and
“passive-consumer”.

Passive-Provider Model: Existing data markets such as Dawex
follow a passive-provider model under which the data providers
offer a description of their data, including its schema, specify an
access model, and provide pricing details. Then, it is the job of a data
consumer to discover the relevant data, find out if (and how) the
relevant data (possibly from multiple providers) can be integrated
to match their target schema, and finally, decide how to collect
the data such that their cost is minimized. In other words, the
passive-provider model feeds the consumers with available “raw
data” and the rest is on the data consumers. Nevertheless, the data
consumers often do not have the expertise, proper information, and
even enough attention span to effectively transform the raw data
into what they need.

Passive-Consumer Model: Unlike the passive-provider model
that puts the exploration burden on the consumer, in the passive-
consumer model, the user issues a query (as described in § 2.2), and
it is the job of the data providers to find a way to efficiently answer
the query [21]. It is worth noting that the similarity of this model
with the crowdsourcing marketplaces (such as Amazon Mechanical
Turk (AMT)®), where the jobs are posted and crowd-workers accept
them, or ride-share companies such as Uber and Lyft where ride
requests are posted and drivers may decide to accept them. The
pricing in a passive-consumer market can be fixed (specified by the
consumer (similar to AMT) or by the marketplace (similar to Uber),
which we shall further elaborate in § 2.2. In a passive-consumer
data market, finding relevant data, processing them, and satisfying
distribution requirements is on the data provider.

8 www.mturk.com
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2.2 Data and Query Model

Query Model: A consumer’s query contains a schema definition,
namely target schema, consisting of a collection of attributes or
features, a set of constraints, and a distribution requirement. At-
tributes can be described by keywords (e.g., employee salary) [32]
or example tuples [34]. Suppose the distribution requirement is
defined as the count requirements. A user query may only specify
the outcome size, e.g. “100 images with label = cat” or “500 em-
ployment records with the year in the range [2017, 2022]” [21].
Alternatively, the query may describe the count requirements on a
set of groups specified as the intersection of a subset of attributes.
For example, a query can be “200 images containing 100 label =
cat and 100 label = dog” or “500 employment records in year range
[2017, 2022] having at least 100 samples from each of the groups
white-male, white-female, black-male, black-female”. Similarly, “200
images with diverse labels on cat and dog” is satisfied by collecting
100 cat and 100 dog images. Without loss of generality, we use
{G1,...,Gm} to show the set of groups and Q = {Q,...,Qm}
to specify the count requirements. An alternative to the explicit
specification of count requirements is query-by-example, where
the user provides a small dataset as an example and requires to
“collect more data from the same distribution”.

Data Sources: We consider D = {Dy, -+, Dy, } as the collection of
the available data sources (relational datasets) for the query answer-
ing. In a passive-provider model, each data provider is considered
as a data source, while in a passive-consumer model, each source
is a dataset that is accessible to a data provider (in its external and
internal data lakes). When the schema of sources differs from the
target schema, the sources must be transformed into views with
schemas that can be aligned with the target.

2.3 Cost and Price

Pricing: Different data markets can provide different pricing mod-
els [8, 18]. In circumstances where a provider needs to integrate
data to answer a consumer’s query, the price may include the price
of raw data plus the cost of data integration and preparation. On the
other hand, in a passive-consumer model, the consumers may spec-
ify the amount they are willing to pay for their query, or the market
may enable specifying the price in an auction. Alternatively, the
market itself may (directly or indirectly) specify the pricing [22]. In
this work, we assume our algorithms operate in an agnostic manner
to pricing models and receive data prices and costs as input.

Cost-effective Query Answering: In the passive-provider model,
the consumers would like to collect their data at the minimum
cost. Similarly, in the passive-consumer model, each data-provider
would like to minimize their query answering cost to maximize
their profit margin or to be able to provide more competitive prices
in the data market auction. This involves minimizing the cost of
integration, pre-processing as well as data acquisition.

2.4 Challenges

We next describe challenges related to the cost-effective
distribution-aware query answering.

Fulfilling user’s schema requirements: A user query includes a
target schema, a description of the desired dataset represented with
a collection of attributes. The first step to fulfilling such a schema is
to identify relevant sources (i.e., data providers in a passive-provider
setting or internal (external) sources available to a provider in a
passive-consumer setting). Then, views must be fabricated and
queried to integrate relevant sources into a unified dataset.

Fulfilling user’s distribution requirements: A user query in-
cludes distribution requirements (e.g., count requirements) on cer-
tain groups in the schema. This requires devising distribution tai-
loring algorithms for selective data collection through sampling
sources cost-effectively.

Cost estimation: In a passive-provider model, providers may
directly specify the price of their data. However, in a passive-
consumer setting and in scenarios where a provider is a data arbiter
and needs to integrate data for query answering, the cost of a query
must be estimated based on the price of raw data sources plus the
cost of data integration and preparation. Moreover, to avoid costly
joins in views or for cost-optimality purposes, one may consider
sampling from views rather than full materialization. This requires
cost estimation models and mechanisms for i.i.d sampling from
views on the fly.

Cost-effective query answering: In the passive-provider model,
the consumers would like to collect their data at the minimum
cost. Similarly, in the passive-consumer model, each data provider
would like to minimize their query answering cost to maximize
their profit margin or to be able to provide more competitive prices
in the data market auction. To facilitate that, we need to devise
probing different data views effectively to minimize the cost of
satisfying consumer’s schema and distribution requirements.

Dealing with unknowns: When the available metadata about
sources is minimal, a query engine works on an unknown distribu-
tions model for scenarios when the distributions of attribute values
and query groups in each data view are unknown. The engine can
model query answering under unknown distributions as a stochastic
bandit problem [17].

Information reuse: In scenarios when sources’ metadata provides
distribution details or when the engine has gradually collected data
from sources and views, it is important to devise techniques that
leverage this hard-earned distribution knowledge.

Competition in data markets: In the consumer-passive setting,
the consumers may specify the amount they are willing to pay
for their query, or the market may enable specifying the price in
an auction. As a result, data providers are in competition to fulfill
consumers’ requests not only the most cost-effectively but also
efficiently to be able to make a bid.

System development and evaluation: To realize an open-source
platform that can be adapted by data consumers and data providers
to obtain and serve datasets, the platform should build upon the
existing data portals’ and data engines [31]. For simulating and
evaluating the sampling algorithms, synthetic benchmarks have
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to be designed to perform controlled experiments for various data
distributions, cost models, and view discovery complexities. Ul-
timately, the query engine has to be evaluated in the context of
deployed applications through user studies.

3 UNIFIED QUERY ANSWERING MODEL

In addition to integration to bring the data into the consumer’s de-
sired schema, collecting data with certain distribution requirements,
in itself, is a challenging task. In passive-provider data markets, the
burden is on the consumers themselves to perform data discovery
in sources providers offer and to come up with a way to integrate
the data they need. On the other hand, in a passive-consumer model,
the query answering burden is on the data providers’ side. Data
providers that have access to their locally owned data lakes or other
data publishers need to explore in order to answer a query. Either
of these cases can be viewed as an efficient exploration of a set of
relevant data sources to answer a consumer’s query.

3.1 Unification

We propose a unified framework (Figure 2) for cost-effective query
answering on data markets. Our framework offers a unified model-
ing that encapsulates the lower-level details such as whether the
implementation is passive-provider or passive-consumer. This mod-
eling can be viewed as a multi-level structure where the layers’
details are transparent from each other and changes in one lower-
layer do not impact the semantic (unified model) layer. Besides, in-
stead of designing independent solutions for different data market
implementation, the unified modeling enables unifying the efforts,
standardizing the solutions, and reusing them across different data
markets. Note that both passive-provider and passive-consumer
models can be viewed as different instantiations of this framework,
i.e., proposed algorithms at the core are agnostic to the setting, and
the main differences between instantiations are in how sources are
described and priced.

Data Discovery: Each user query has a target schema, consisting
of a set of attributes that likely does not align with the existing
data sources. Therefore, the first step in the process of answering
consumer queries is to discover the relevant data sources (D =
{D1,---,Dp}) and find mappings over relevant data sources that
can find tuples that match the target schema. In a provider-passive
setting, a consumer searches in the catalogs of existing providers,
and in a consumer-passive setting, a provider searches in internal
(or external) data lakes to find sources that may have schema/value
overlap or semantic similarity to the target schema. We rely on the
rich body of work on data discovery [3, 7, 13, 14, 29, 40, 42] to find
relevant sources for integration into views that can be aligned with
the consumer’s schema. However, the currently existing techniques
rely on the notions of relevance for discovery and are agnostic to
distribution requirements. We remark that data discovery may assist
with collecting more relevant data until a subset of discovered data
fulfills the distribution requirements. However, the main objective
of our proposed framework is to fulfill the distribution requirements
in a cost-effective manner, which is out of the scope of current
discovery algorithms.

Data Views: The second layer of our unified query answering
model revolves around discovering and curating a collection of data
views in the form of projection-join queries that map existing data
sources to the target schema. Although selection-projection-join
queries, in the form of predicate queries, may provide more oppor-
tunities for selective data collection, in some cases, the groups for
which the distribution constraints are defined may not be readily
available as predicates, particularly when tuples are required to be
annotated with relevant groups after being sampled. We consider
L ={v1,...,0,} as the set of discovered and curated data views
over data sources in O, where every view has the same schema as
the target schema. We would like to discover projection-join views
v;i =4, (Di1 > --- < D), where D;j € D, and A;’s indicate
one-one mappings with target schema attributes. Note that, in order
to generate views, the query engine may apply additional cleaning
and mapping operators, including entity matching, on sources in
D. Since every v; has the same schema as the user query, we can
associate each tuple in v; to at least one group.

Get-next Operation: To avoid the costly join of a view or to
adapt to scenarios where sources are not accessible in wholesome
(e.g., web databases), the engine may choose to work with random
samples from views. Collecting a sample tuple from a data view
requires probing the view for which we introduce a get-next opera-
tion. Upon calling GET-NEXT(i) on a view v;, the system accesses
the underlying data sources in the view v; (performing lazy online
sampling over join paths without executing the full join) until it
finds a tuple that matches the join, returning it as the next sample.
Of course, the query engine must guarantee that the sample is a
uniform and independent sample from the view [39].

Cost of Get-next: In passive-provider data markets, a get-next on
a data source requires probing the data of a provider, i.e., paying
a monetary cost to buy the data. In these markets, a computation
cost may be needed for cleaning, entity resolution, normalization,
etc. On the other hand, in passive-consumer model, a get-next
requires accessing the data lakes of a data provider. In such cases,
obtaining a sample from a view v; requires following the join-path
and finding tuples that match across the joins. In § 4, we shall
discuss estimating the computational cost of obtaining a sample
from a data view without performing complete joins based on
parameters such as the number of sources in the join-path and
their joinablity, as well as the statistics of sources. The get-next
operation can be parameterized with the sample size to optimize
the cost. By choosing a dynamic and optimal sample size at each
iteration, a get-next operation can potentially choose to obtain the
complete source if it turns out to be the most cost-efficient decision.
Alternatively, sources may be accessible in a wholesome. When the
full dataset is obtained, the cost of the first get-next would be the
price of the source, and the future get-next operations on the same
source will be free. Therefore, for the optimality of cost, the engine
will definitely choose to perform the free get-next operations.

In summary, the cost of a get-next can be monetary and/or com-
putation cost. For computation cost, one should be able to translate
the cost in form of time, required resources, and human personnel
into a monetary cost. With this transformation, we assume a (mon-
etary) cost C; associated with each data view v;. Besides finding
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Figure 2: Unified Query Answering Model.

relevant data sources and identifying the views, the second compo-
nent in the unified query answering model is also responsible for
estimating the distribution and the get-next cost of data views.

Cost-effective Distribution-aware Query Answering: The
“query answering engine” in the unified query answering model is
responsible for probing different data views effectively to minimize
the cost of query answering, subject to a user-specified budget B.
To do so, given a user query, the constraints, the output data set
size, and the distribution requirements, along with the data views
L ={v1,...,0n}, the get-next costs, and the distribution informa-
tion of the views (if existing), To fulfill these objectives, the goal
of the query answering engine is to find a sequence of data views
to sample from such that the consumer’s schema and distribution
requirements are satisfied while the expected total cost of the view
sequence is minimized.

4 VIEW DISCOVERY

In this section, we dive deeper into constructing and querying data
views. We mainly focus on PJ view construction from relevant
sources and view selection based on properties such as relevance,
sampling cost, data overlap, and data distribution. Algorithm 1
describes the steps of view discovery at a high level.

A date view v; = (T a,,, (Dj1 < - - - < D,-ki),Ci) is constructed
on a collection of relevant sources Dj, ..., Djk, and has a get-next
cost of C;. In a provider-passive setting, a consumer searches in the
catalogs of existing providers, and in a consumer-passive setting, a
provider searches in internal (or external) data lakes to find relevant
sources that may have schema/value overlap or semantic similarity
to the target schema. Our framework relies on the existing work on
data set discovery based on metadata and data values [5, 12, 29, 42].
Then, the query answering engine navigates a linkage graph on
relevant sources to enumerate join paths that have the same schema
as the target schema [13, 30]. These join paths define the space of
all possible views for the consumer’s query. Algorithm 1 presents
the pseudo-code for enumerating data views.

View Relevance: The relevance of a view is evaluated based on
the relevance of individual sources D;; to the target schema and the
joinability of source pairs across the join path. Given a collection of

sources, data set discovery techniques often compute relevance to
be the similarity of the target schema to the metadata of discovered
data sets [12, 32] or the overlap size between the content of data
sets and the tuple examples of a target schema [28, 41, 42]. Based
on this, we can define correspondences that map attributes in a
source to attributes in the target schema and are weighed by their
relevance score. We can create the space of potential data views by
enumerating the join paths between relevant sources and applying
projections according to correspondences. Note that the generated
join paths for one query can be reused in other queries. Therefore,
the system maintains a catalog of discovered views to be consulted
for query answering.

Cost of Sampling a View: The get-next operation encapsulates
access to tuples of view v;. Obtaining a sample from v; requires
following a join path of k; sources, Djj to D;i. Note that consumers
and providers most likely avoid executing the expensive full join;
thus, the cost of sampling a view may not be its join cost. In the
provider-passive model, a consumer would also prefer to avoid
paying for the full source as well. The cost of get-next from v;
depends on the cost of sampling from sources and the expected
number of tuples needed to be sampled from each source to acquire
a non-empty tuple of v;. Since in a setting with heterogeneous
sources, joins are often not key-foreign key joins and indexes do
not exist, sampling likely has some rejection rate, i.e., we may obtain
a sample from a source for which we cannot find a corresponding
joinable tuple in other sources. The cost of an i.i.d sample from
v; is the expected number of tuples that need to be sampled from
Di1, - -+, D, such that matching those tuples along the join path
Dj1 »< - - - »a Dy incurs one sample of the view.

Distribution: Due to the scarcity of samples from certain groups,
it is cost-effective to discover views that have a higher probability
of returning samples for rare cases. Since our views are PJ queries,
the query engine needs to estimate the distribution of groups on
the result of the join, of course, without executing the full joins.
To obtain group distributions in views, we need to perform online
sampling over multiple join paths and perform approximate COUNT
aggregates of groups in a join path [16, 19].

View Overlap: The main reason to integrate data from different
views is to find samples that we were not able to collect using a
specific view. In other words, we are interested in finding comple-
mentary data views and using them collectively to find enough
representative samples from different groups. It means we are in-
terested in views with diverse and novel data. Ideally, we would
like the views to form a data partition. But, this may often not be
practical unless views are naturally collected from different parti-
tions of data. For example, sources that include the information of
employees of different departments or different job titles do not
likely overlap, assuming that employees cannot belong to multiple
departments or hold multiple job titles. In general, views may over-
lap, but we would like to prioritize the ones with minimum overlap.
We also remark that entity resolution and duplicate detection are
relevant tasks when dealing with source overlap, as the goal is to
collect novel tuples. We rely on off-the-shelf data cleaning tech-
niques for entity matching techniques [20, 25]. More specifically,
at each iteration, it is essential to decide whether a sample is novel



Algorithm 1 DiscoverViews

Algorithm 2 Query Answering Engine

Input: Data Sources D = {Dy,...,D;}; target schema S = {A;,...,Ap}
Output: V, views with schema S

1: V « {}; I «Index(D); N «—LinkageGraph(D)

2: for A; € S do R; «—FindRelData(J)

3V <—YieldViews(R,~ cen Rp, N)//discover, characterize, and rank

or is already included in the target dataset. To do so, we rely on
hashing techniques and Bloom filter for membership testing.

View Selection: Given a collection of views with the estimations
of objectives, the next step is to rank and identify promising views
that (a) contain relevant samples, (b) have a low query cost, (c) have
a high chance of returning samples from minorities, and (d) have
minimal overlap with each other. One idea is to use a weight vector
W and linearly combine the objectives into a “utility function” and
then select the top-k views. This, however, causes two issues: (i) the
final choice of views highly depends on the choices of W and (ii) it
may return views with similar properties. A collection of views with
similar properties such as similar distributions and similar get-next
costs does not necessarily lead to cost-effectively satisfying query
distribution requirements. In other words, if all options are similar,
it does not matter which one to query to obtain the next sample.
Therefore, our framework considers diversity as a key requirement
for the set of views returned by the discovery component.

Skyline (the set of non-dominated join-paths) [4] is well-known
for finding such a set. However, the skyline can be arbitrarily large.
To find a smaller subset, our query engine leverages (rank) regret
minimizing set [2], the minimal set that contains at least one of
the top-k data views, no matter what W is. One challenge is that
regret-minimizing problems assume the existence of the collection
of elements (views) to select from and that all objective values are
known apriori. Discovering a view and estimating its objectives
is costly. As a result, it is inefficient (if not infeasible) to explicitly
create the input to pass to the regret-minimizing problem. Instead,
we need an online approach that only identifies the promising
candidate views and computes rough estimations needed to decide
whether a candidate is promising.

5 QUERY ANSWERING ENGINE

The query answering engine is in charge of efficiently fusing data
from different data views with the same schema but with different
costs and distributions to obtain the results for the consumer query.

Depending on the meta-data associated with data sources, the
query answering engine may initially not know the views’ data
distribution for different attributes and the query groups. A key
observation, however, is that as the query answering model ap-
plies get-next on views, it can improve its knowledge about the
distributions of views and their underlying sources. In other words,
querying views and sources for answering prior queries can be
viewed as exploration steps for efficiently answering future queries.
Following this idea, we consider the query answering engine under
two cases where (1) data view distributions are unknown and (2) the
data view distributions are known. Our extensive research results
related to the two cases are published in [27].

Input: Data Sources D = {Dy,...,D;}; target schema S = {Ay,...,Ap};
query constraints &; count requirements Q on groups G; budget B
Output: O, target data set
1: O {},C«<0
2: (L,C) « DiscoverViews(D, S)//a sequence of views and their costs
3: while 3Q; > 0,V1 < j <m,B> Cdo
0 — SelectView(L, C)//the next view to query
S, COSt GETNEXT(Z)i) //obtain a sample from v;
C < C+cost
update-stats(v;, s) //update the statistics about v;
if s does not satisfy the constraints £ then

0 ® N

continue //ignore the sample
10: Jj — G(s) // the group of s

11: if (s ¢ O AND Q; > 0) then
12: addstOO;Qj<—Qj—l
Qi —Qj-1

13: return O

Cost-effective query answering involves selecting and sequen-
tially sampling data views, using the get-next operations, until dis-
tribution requirements are satisfied. Algorithm 2 shows the steps of
the query engine. At each iteration, the algorithm chooses the next
view from which to take a sample based on the (partial) information
available about views, target distribution, and tuples collected so far.
The technical challenge here is to design algorithms that optimize
view selection such that the target data set is constructed with
minimum total cost. The algorithm terminates once all distribution
requirements are satisfied or the consumer’s budget is exhausted.

5.1 Unknown Distributions

Initially, the query answering engine may have minimal informa-
tion about sources and views. We study this case as the unknown
distributions model for scenarios when the distributions of attribute
values and query groups in each data view are unknown.

Query answering under unknown distributions can be modeled
as a stochastic bandit problem [17], where every data view v; is an
arm ;. In a sequential manner, our goal is to select arms in order
to collect Q; tuples from every group G; that satisfy the query
constraints. Every arm has an unknown distribution of different
groups. In particular, we can adapt well-known strategies such
as Upper Confidence Bound (UCB) [37] to balance exploration and
exploitation. At every iteration, for every arm, UCB computes con-
fidence intervals for the expected reward and selects the arm with
the maximum upper bound of reward to be explored next. This
requires a careful design of the reward function and analysis of the
bounds of the proposed reward function.

In order to compute the reward of collecting a valid tuple from a
group that satisfies query constraints, we raise the question of how
“hard” it is to collect such a tuple. One can argue that the reward of
obtaining a tuple from a group is proportional to how “rare” this
element is across different data views. In other words, what is the
expected cost one needs to pay in order to collect a valid tuple of
Gj. In order to compute the expected cost, we assume we know
the overall distribution of groups from the available aggregates in
public forms such as Bureau reports or via sampling. Then, the
average reward of a data view at each iteration depends on how



many high-reward tuples we have seen so far from the data view
based on the statistics of collected data.

5.2 Known Distributions (Information Reuse)

Having queried different data sources and views for answering
prior queries, the query answering system can gradually improve
its knowledge about source distributions. In such a setting, we as-
sume that we (approximately) know the ratio of samples obtained
from each group while querying each view v;. More specifically,
the known distribution model assumes the number of samples we
can obtain from each data view and how many of those belonging
to each group are known apriori (or can be estimated). Query an-
swering under known distribution can be modeled as m instances
of the coupon collector’s problem [24], where every j-th instance
aims to collect samples from the group G;. The Coupon Collector’s
(CC) problem is motivated by the “collect all ten coupons and win”
contests. Given n coupons, the question is, how many coupons do
we expect we need to draw with replacement before having drawn
each coupon at least once? To cast the j-th instance of our problem
to CC, we assume coupons are tuples of G; in a view and n is Q;.
For every group G;, the algorithm first identifies the data view
04}, the most cost-effective data view for G;. The algorithm then
starts collecting tuples of different groups by querying the data
view v.j for each group G; in a round-robin fashion. Casting the
problem to CC provides a framework for analyzing the upper bound
of the expected cost of the problem. An interesting observation is
that while collecting tuples for each group, the algorithm can also
maintain the tuples of other groups, enabling the piggybacking
opportunity. The algorithm queries corresponding data views for
different groups until the target distribution is satisfied. The pig-
gybacking phenomenon makes different orders of querying from
views lead to different expected total costs. Consequently, a goal is
to find the optimal ordering of view selection that minimizes the
cost following the CC instances.

5.3 Evaluation

To evaluate the algorithms, one can consider both real and synthetic
data. The real-world data can be obtained from open data published
by governments as well as web data portals such as Socrata and
Ckan'? [28, 42]. Synthetic benchmarks allow performing controlled
experiments for various data distributions, cost models, and view
discovery complexities. Given a user query containing count re-
quirements on different groups (as in Examples 1 and 2), the bench-
mark generates data following different distributions. To synthesize
data views, it simulates paths with various distributions (major-
ity, minority, etc.), join path lengths, join graph structure (simple
path or multi-way joins), and joinability scores. This allows us to
systematically evaluate our view discovery techniques from the
perspective of view distribution, view overlap, and view efficiency.

6 RELATED WORK

Data Discovery: Data discovery techniques can be used to dis-
cover and augment data sets that fulfill the schema requirements.
Data discovery is normally formulated as a search problem. In one
version of the problem, the query is a set of keywords, and the

yrww.socrata.com, www.ckan.org

goal is to find tables relevant to the keywords, in an IR-style of
search [5]. Alternatively, the query can be a table, while the prob-
lem is to find other tables that can be integrated with the query
table with union and join operations [3, 7, 13, 14, 29, 40, 42]. The
new generation of data discovery techniques focuses on feature
discovery to improve ML models, using distribution-aware mea-
sures such as join-correlation [35]. Given a target column and a join
column from a query table, the goal is to retrieve candidates from a
repository such that a candidate table is joinable with the query on
the join column and contains a correlated column with the target
column. We note that the state-of-the-art data discovery techniques
are agnostic to distribution and mostly focus on the notion of rele-
vance for discovery. Therefore, discovered datasets most likely have
distributions that may differ from the desired distribution. Hence,
as shown in [26], random sampling from discovered datasets would
not necessarily fulfills the distribution requirements.

To perform data augmentation, various research considers inte-
gration intertwined with discovery, where the goal is to identify
datasets that contain relevant attributes to the schema requirements
and perform join and union operations to integrate all query at-
tributes into one dataset [3, 6, 33]. Moreover, linkage graphs can
be applied to navigate relevant datasets through join paths [12, 31].
Discovery techniques optimize for relevance and coverage of link-
age between source and target datasets by using relevance scoring.

Data Markets: Fernandez et al. propose a platform for the design
and implementation of data markets focused on data sharing, dis-
covery, and integration [15]. This platform considers a market with
data providers, consumers, and an arbiter that facilitates transac-
tions between providers and consumers by combining datasets into
a unified dataset. In the passive-consumer setting, our proposed
platform is an instantiation of an arbiter platform.

In the context of data science in data markets, Li et al. study
the problem of acquiring data from providers to improve the ac-
curacy of ML models [21]. This work assumes consumers pose a
sequence of predicate queries to a provider. In this setting, the pro-
posed query engine can be applied on the provider side to fulfill
consumers’ queries. Liu et al. propose an end-to-end market around
models, where data providers are compensated for their data and a
broker collects data from data providers, builds and sells models to
model consumers [23]. For model marketplaces, Chen et al. propose
a model-based pricing framework that directly prices ML model
instances [9].

7 CONCLUSION

In this paper, we presented our vision of a unified query answer-
ing engine for distribution-aware cost-effective query answering
over data markets. The query engine integrates data from multiple
sources in a data market to form a target data set that meets the
user-specified schema and data distribution requirements in a cost-
effective manner. The ultimate goal of the engine is to automate
a pipeline of indexing and data enrichment, view discovery and
curation, and query answering in an efficient and scalable manner.
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