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ABSTRACT
Addressing the increasing demand for data exchange has led to the

development of data markets that facilitate transactional interac-

tions between data buyers and data sellers. Still, cost-effective and

distribution-aware query answering is a substantial challenge in

these environments. In this paper, while differentiating different

types of data markets, we take the initial steps towards addressing

this challenge. In particular, we envision a unified query answering

framework and discuss its functionalities. Our framework enables

integrating data from different sources in a data market into a

dataset that meets user-provided schema and distribution require-

ments cost-effectively. In order to facilitate consumers’ query an-

swering, our system discovers data views in the form of join-paths

on relevant data sources, defines a get-next operation to query

views, and estimates the cost of get-next on each view. The query

answering engine then selects the next views to sample sequen-

tially to collect the output data. Depending on the knowledge of

the system from the underlying data sources, the view selection

problem can be modeled as an instance of a multi-arm bandit or

coupon collector’s problem.
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1 INTRODUCTION
As big data technologies intermix with human life, the demand for

data exchange increases. On one side, different enterprises, busi-

nesses, and organizations may own (a lake of) data they generate

or collect. On the other side, various parties, such as data science

companies and news organizations, may look for the data they

are willing to buy for different data-driven tasks. This supply and

demand phenomenon has led to the rise of data marketplaces that

are becoming increasingly popular. Data markets facilitate trans-

actional interactions between data buyers and data sellers. Still,

cost-effective and distribution-aware query answering is a major

challenge in these environments. To better clarify this, let us con-

sider the following examples.

Example 1: (Breast Cancer Prediction)A healthcare data science

company would like to use Chicago health record data and build

an ML model for the early detection of breast cancer. Being aware
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of disparities in breast cancer research [11], the company wants to

make sure different demographic groups are suitably considered.

They establish a schema over the attributes they are interested in

and form the query “1,000 breast cancer monitoring data
in Chicago with at least 30% label=positive, and at
least 20% black patients”. On the other hand, data providers

such as CAPriCORN
1
have established partnerships with different

hospitals (such as University of Illinois Hospital & Health Sciences
System), have access to various data sources, and are willing to me-

diate the exchange of data from hospitals to the company. But, the

data in hospitals’ databases and data lakes may not readily satisfy

the schema and distribution requirements of the company. More-

over, a computation cost is associated with cleaning, integration,

standardization, etc. The data from different hospitals may have

different patient distributions; therefore, after integration, only a

portion of collected data may be useful, further increasing the com-

putation cost to collect the target data. Finally, the data provider

may be required to pay a monetary cost to the hospitals and human

workers to obtain their data. A data market can facilitate communi-

cation between the data science company and different providers.

However, a major challenge for data providers such as CAPriCORN

is to answer the query in a cost-effective manner, such that their

benefit is maximized. □

Example 2: (Journalism) Consider a news organization like Prop-

ublica, which wants to conduct data analysis for the purpose of

journalism, for their machine bias section
2
. In particular, the orga-

nization is interested in studying recidivism scores used for setting

bail in different jurisdictions across the US. Propublica wants to

see if the scores are racially biased
3
. To conduct the study, they

need the data described in the form of the query “500 defendant
after-release data collected after 2018, including at
least 200 black and at least 200 white individuals”.
Data providers in partnership with the Sherrif’s Offices of different

counties may have the underlying data sources
4
, and be willing

to sell it in a data market. Different offices, however, may have

various pricing policies. Besides, their data may not contain all

information required in the target data. As a result, in addition

to purchase costs, a human resource monetary cost is needed to

explore different sources, discover relevant data across different

providers, and integrate them to collect the data that follows the

target schema. Finally, different offices may have different success

chances (hence different costs) in collecting the data that follows

the target distribution. As a result, the challenge for Propublica is

to select providers and integrate available data sources to satisfy

the requirements in a cost-effective manner. □

1
www.capricorncdrn.org/

2
propublica.org/series/machine-bias

3
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

4
propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
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Our Vision: We propose a framework for cost-effective and

distribution-aware query answering over data markets, providing a

high-level vision of its functionalities. In particular, we differentiate

between two different types of data markets (passive-provider and

passive-consumer) with different interaction modes between their

users. Carefully discussing data markets and their data model, we

propose a unified framework that fits both data market models.

Modeling the available data as a collection of data sources, our

framework considers user queries as (i) a description of a relational

schema (called target schema), (ii) a set of query constraints, (iii) the
output data size, and (iv) a distribution requirement (e.g., indicated

by a set of count values). Populating a target schema with available

data sources requires discovering data with attributes relevant to

the description of target attributes. When attributes are scattered

across various sources, join is the only way to build the schema

that can be aligned with the target. Our framework consists of a

view discovery and curation component, which is responsible for

identifying a collection of projection-join (PJ) views over relevant

relational data sources; the views have schemas that can be aligned

with the target. We define a get-next operation for exploring and

sampling different views. Depending on factors such as the cost of

accessing each data source and the cost of integrating sources, the

get-next operation has different costs for different data views.

Our framework follows a sequential process for collecting the

target data. At each iteration, the query engine selects a view to

be queried next such that the overall query answering cost is glob-

ally minimized. Initially, when the engine’s information about the

underlying sources is minimal, the problem can be modeled as a

multi-arm bandit instance [37], where every view is considered

as an exploration arm. Over time, as the knowledge of the engine

about data sources increases, this knowledge can be used to answer

queries more cost-effectively, modeling the process as instances of

the coupon collector’s problem [24].

2 DISTRIBUTION-AWARE QUERY
ANSWERING

2.1 Data Market Model
We consider a data market [15, 21, 36, 38] as a two-sided mar-

ketplace [1, 10] that enables the transactional exchange of data

between two types of users: 1) Data providers (sellers), or simply

providers, are the individuals or organizations that own the data (in

form of a single dataset, a database, or a data lake) and are willing

to sell them. Data providers may provide a pricing model and an

access model, describing how to access their data; 2) Data consumers
(buyers), or simply consumers, are the individuals or organizations

that are willing to buy the data they are interested in. A user may

describe their needs based on a query model.
With recent advancements in data technologies and the demand

for accessing more data, data markets such as Dawex
5
, Xignite

6
,

and WorldQuant
7
are increasingly popular. In general, data mar-

kets can follow different models for enabling the interaction be-

tween data providers and data consumers. In particular, existing

5
dawex.com/en

6
aws.amazon.com/solutionspace/financialservices/solutions/xignite-market-data-

cloudplatform

7
data.worldquant.com

Figure 1: Data Market Illustration

data market models can be categorized as “passive-provider” and

“passive-consumer”.

Passive-Provider Model: Existing data markets such as Dawex

follow a passive-provider model under which the data providers

offer a description of their data, including its schema, specify an

access model, and provide pricing details. Then, it is the job of a data

consumer to discover the relevant data, find out if (and how) the

relevant data (possibly from multiple providers) can be integrated

to match their target schema, and finally, decide how to collect

the data such that their cost is minimized. In other words, the

passive-provider model feeds the consumers with available “raw

data” and the rest is on the data consumers. Nevertheless, the data

consumers often do not have the expertise, proper information, and

even enough attention span to effectively transform the raw data

into what they need.

Passive-Consumer Model: Unlike the passive-provider model

that puts the exploration burden on the consumer, in the passive-

consumer model, the user issues a query (as described in § 2.2), and

it is the job of the data providers to find a way to efficiently answer

the query [21]. It is worth noting that the similarity of this model

with the crowdsourcing marketplaces (such as Amazon Mechanical

Turk (AMT)
8
), where the jobs are posted and crowd-workers accept

them, or ride-share companies such as Uber and Lyft where ride

requests are posted and drivers may decide to accept them. The

pricing in a passive-consumer market can be fixed (specified by the

consumer (similar to AMT) or by the marketplace (similar to Uber),

which we shall further elaborate in § 2.2. In a passive-consumer

data market, finding relevant data, processing them, and satisfying

distribution requirements is on the data provider.

8
www.mturk.com
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2.2 Data and Query Model

Query Model: A consumer’s query contains a schema definition,

namely target schema, consisting of a collection of attributes or

features, a set of constraints, and a distribution requirement. At-

tributes can be described by keywords (e.g., employee salary) [32]

or example tuples [34]. Suppose the distribution requirement is

defined as the count requirements. A user query may only specify

the outcome size, e.g. “100 images with label = cat” or “500 em-

ployment records with the year in the range [2017, 2022]” [21].

Alternatively, the query may describe the count requirements on a

set of groups specified as the intersection of a subset of attributes.

For example, a query can be “200 images containing 100 label =

cat and 100 label = dog” or “500 employment records in year range

[2017, 2022] having at least 100 samples from each of the groups

white-male, white-female, black-male, black-female”. Similarly, “200

images with diverse labels on cat and dog” is satisfied by collecting

100 cat and 100 dog images. Without loss of generality, we use

{G1, . . . ,G𝑚} to show the set of groups and Q = {Q1, . . . ,Q𝑚}
to specify the count requirements. An alternative to the explicit

specification of count requirements is query-by-example, where

the user provides a small dataset as an example and requires to

“collect more data from the same distribution”.

Data Sources:We considerD = {𝐷1, · · · , 𝐷𝑚} as the collection of

the available data sources (relational datasets) for the query answer-

ing. In a passive-provider model, each data provider is considered

as a data source, while in a passive-consumer model, each source

is a dataset that is accessible to a data provider (in its external and

internal data lakes). When the schema of sources differs from the

target schema, the sources must be transformed into views with

schemas that can be aligned with the target.

2.3 Cost and Price

Pricing: Different data markets can provide different pricing mod-

els [8, 18]. In circumstances where a provider needs to integrate

data to answer a consumer’s query, the price may include the price

of raw data plus the cost of data integration and preparation. On the

other hand, in a passive-consumer model, the consumers may spec-

ify the amount they are willing to pay for their query, or the market

may enable specifying the price in an auction. Alternatively, the

market itself may (directly or indirectly) specify the pricing [22]. In

this work, we assume our algorithms operate in an agnostic manner

to pricing models and receive data prices and costs as input.

Cost-effective Query Answering: In the passive-provider model,

the consumers would like to collect their data at the minimum

cost. Similarly, in the passive-consumer model, each data-provider

would like to minimize their query answering cost to maximize

their profit margin or to be able to provide more competitive prices

in the data market auction. This involves minimizing the cost of

integration, pre-processing as well as data acquisition.

2.4 Challenges
We next describe challenges related to the cost-effective

distribution-aware query answering.

Fulfilling user’s schema requirements: A user query includes a

target schema, a description of the desired dataset represented with

a collection of attributes. The first step to fulfilling such a schema is

to identify relevant sources (i.e., data providers in a passive-provider

setting or internal (external) sources available to a provider in a

passive-consumer setting). Then, views must be fabricated and

queried to integrate relevant sources into a unified dataset.

Fulfilling user’s distribution requirements: A user query in-

cludes distribution requirements (e.g., count requirements) on cer-

tain groups in the schema. This requires devising distribution tai-

loring algorithms for selective data collection through sampling

sources cost-effectively.

Cost estimation: In a passive-provider model, providers may

directly specify the price of their data. However, in a passive-

consumer setting and in scenarios where a provider is a data arbiter

and needs to integrate data for query answering, the cost of a query

must be estimated based on the price of raw data sources plus the

cost of data integration and preparation. Moreover, to avoid costly

joins in views or for cost-optimality purposes, one may consider

sampling from views rather than full materialization. This requires

cost estimation models and mechanisms for i.i.d sampling from

views on the fly.

Cost-effective query answering: In the passive-provider model,

the consumers would like to collect their data at the minimum

cost. Similarly, in the passive-consumer model, each data provider

would like to minimize their query answering cost to maximize

their profit margin or to be able to provide more competitive prices

in the data market auction. To facilitate that, we need to devise

probing different data views effectively to minimize the cost of

satisfying consumer’s schema and distribution requirements.

Dealing with unknowns: When the available metadata about

sources is minimal, a query engine works on an unknown distribu-
tions model for scenarios when the distributions of attribute values

and query groups in each data view are unknown. The engine can

model query answering under unknown distributions as a stochastic
bandit problem [17].

Information reuse: In scenarios when sources’ metadata provides

distribution details or when the engine has gradually collected data

from sources and views, it is important to devise techniques that

leverage this hard-earned distribution knowledge.

Competition in data markets: In the consumer-passive setting,

the consumers may specify the amount they are willing to pay

for their query, or the market may enable specifying the price in

an auction. As a result, data providers are in competition to fulfill

consumers’ requests not only the most cost-effectively but also

efficiently to be able to make a bid.

System development and evaluation: To realize an open-source

platform that can be adapted by data consumers and data providers

to obtain and serve datasets, the platform should build upon the

existing data portals
9
and data engines [31]. For simulating and

evaluating the sampling algorithms, synthetic benchmarks have

9
https://ckan.org/



to be designed to perform controlled experiments for various data

distributions, cost models, and view discovery complexities. Ul-

timately, the query engine has to be evaluated in the context of

deployed applications through user studies.

3 UNIFIED QUERY ANSWERING MODEL
In addition to integration to bring the data into the consumer’s de-

sired schema, collecting data with certain distribution requirements,

in itself, is a challenging task. In passive-provider data markets, the

burden is on the consumers themselves to perform data discovery

in sources providers offer and to come up with a way to integrate

the data they need. On the other hand, in a passive-consumer model,

the query answering burden is on the data providers’ side. Data

providers that have access to their locally owned data lakes or other

data publishers need to explore in order to answer a query. Either

of these cases can be viewed as an efficient exploration of a set of

relevant data sources to answer a consumer’s query.

3.1 Unification
We propose a unified framework (Figure 2) for cost-effective query

answering on data markets. Our framework offers a unified model-

ing that encapsulates the lower-level details such as whether the

implementation is passive-provider or passive-consumer. This mod-

eling can be viewed as a multi-level structure where the layers’

details are transparent from each other and changes in one lower-

layer do not impact the semantic (unified model) layer. Besides, in-

stead of designing independent solutions for different data market

implementation, the unified modeling enables unifying the efforts,

standardizing the solutions, and reusing them across different data

markets. Note that both passive-provider and passive-consumer

models can be viewed as different instantiations of this framework,

i.e., proposed algorithms at the core are agnostic to the setting, and

the main differences between instantiations are in how sources are

described and priced.

Data Discovery: Each user query has a target schema, consisting

of a set of attributes that likely does not align with the existing

data sources. Therefore, the first step in the process of answering

consumer queries is to discover the relevant data sources (D =

{𝐷1, · · · , 𝐷𝑚}) and find mappings over relevant data sources that

can find tuples that match the target schema. In a provider-passive

setting, a consumer searches in the catalogs of existing providers,

and in a consumer-passive setting, a provider searches in internal

(or external) data lakes to find sources that may have schema/value

overlap or semantic similarity to the target schema. We rely on the

rich body of work on data discovery [3, 7, 13, 14, 29, 40, 42] to find

relevant sources for integration into views that can be aligned with

the consumer’s schema. However, the currently existing techniques

rely on the notions of relevance for discovery and are agnostic to

distribution requirements.We remark that data discoverymay assist

with collecting more relevant data until a subset of discovered data

fulfills the distribution requirements. However, the main objective

of our proposed framework is to fulfill the distribution requirements

in a cost-effective manner, which is out of the scope of current

discovery algorithms.

Data Views: The second layer of our unified query answering

model revolves around discovering and curating a collection of data
views in the form of projection-join queries that map existing data

sources to the target schema. Although selection-projection-join

queries, in the form of predicate queries, may provide more oppor-

tunities for selective data collection, in some cases, the groups for

which the distribution constraints are defined may not be readily

available as predicates, particularly when tuples are required to be

annotated with relevant groups after being sampled. We consider

L = {𝑣1, . . . , 𝑣𝑛} as the set of discovered and curated data views

over data sources in D, where every view has the same schema as

the target schema. We would like to discover projection-join views

𝑣𝑖 = Π𝐴𝑖1,...

(︁
𝐷𝑖1 ⊲⊳ · · · ⊲⊳ 𝐷𝑖𝑘

)︁
, where 𝐷𝑖 𝑗 ∈ D, and 𝐴𝑖 ’s indicate

one-one mappings with target schema attributes. Note that, in order

to generate views, the query engine may apply additional cleaning

and mapping operators, including entity matching, on sources in

D. Since every 𝑣𝑖 has the same schema as the user query, we can

associate each tuple in 𝑣𝑖 to at least one group.

Get-next Operation: To avoid the costly join of a view or to

adapt to scenarios where sources are not accessible in wholesome

(e.g., web databases), the engine may choose to work with random

samples from views. Collecting a sample tuple from a data view

requires probing the view for which we introduce a get-next opera-
tion. Upon calling get-next(𝑖) on a view 𝑣𝑖 , the system accesses

the underlying data sources in the view 𝑣𝑖 (performing lazy online

sampling over join paths without executing the full join) until it

finds a tuple that matches the join, returning it as the next sample.

Of course, the query engine must guarantee that the sample is a

uniform and independent sample from the view [39].

Cost of Get-next: In passive-provider data markets, a get-next on

a data source requires probing the data of a provider, i.e., paying

a monetary cost to buy the data. In these markets, a computation

cost may be needed for cleaning, entity resolution, normalization,

etc. On the other hand, in passive-consumer model, a get-next

requires accessing the data lakes of a data provider. In such cases,

obtaining a sample from a view 𝑣𝑖 requires following the join-path

and finding tuples that match across the joins. In § 4, we shall

discuss estimating the computational cost of obtaining a sample

from a data view without performing complete joins based on

parameters such as the number of sources in the join-path and

their joinablity, as well as the statistics of sources. The get-next

operation can be parameterized with the sample size to optimize

the cost. By choosing a dynamic and optimal sample size at each

iteration, a get-next operation can potentially choose to obtain the

complete source if it turns out to be the most cost-efficient decision.

Alternatively, sources may be accessible in a wholesome. When the

full dataset is obtained, the cost of the first get-next would be the

price of the source, and the future get-next operations on the same

source will be free. Therefore, for the optimality of cost, the engine

will definitely choose to perform the free get-next operations.

In summary, the cost of a get-next can be monetary and/or com-

putation cost. For computation cost, one should be able to translate

the cost in form of time, required resources, and human personnel

into a monetary cost. With this transformation, we assume a (mon-

etary) cost 𝐶𝑖 associated with each data view 𝑣𝑖 . Besides finding



Figure 2: Unified Query Answering Model.

relevant data sources and identifying the views, the second compo-

nent in the unified query answering model is also responsible for

estimating the distribution and the get-next cost of data views.

Cost-effective Distribution-aware Query Answering: The
“query answering engine” in the unified query answering model is

responsible for probing different data views effectively to minimize

the cost of query answering, subject to a user-specified budget 𝐵.

To do so, given a user query, the constraints, the output data set

size, and the distribution requirements, along with the data views

L = {𝑣1, . . . , 𝑣𝑛}, the get-next costs, and the distribution informa-

tion of the views (if existing), To fulfill these objectives, the goal

of the query answering engine is to find a sequence of data views

to sample from such that the consumer’s schema and distribution

requirements are satisfied while the expected total cost of the view

sequence is minimized.

4 VIEW DISCOVERY
In this section, we dive deeper into constructing and querying data

views. We mainly focus on PJ view construction from relevant

sources and view selection based on properties such as relevance,

sampling cost, data overlap, and data distribution. Algorithm 1

describes the steps of view discovery at a high level.

A date view 𝑣𝑖 = ⟨Π𝐴𝑖1,...

(︁
𝐷𝑖1 ⊲⊳ · · · ⊲⊳ 𝐷𝑖𝑘𝑖

)︁
,𝐶𝑖 ⟩ is constructed

on a collection of relevant sources 𝐷𝑖1, . . . , 𝐷𝑖𝑘𝑖 and has a get-next

cost of𝐶𝑖 . In a provider-passive setting, a consumer searches in the

catalogs of existing providers, and in a consumer-passive setting, a

provider searches in internal (or external) data lakes to find relevant

sources that may have schema/value overlap or semantic similarity

to the target schema. Our framework relies on the existing work on

data set discovery based on metadata and data values [5, 12, 29, 42].

Then, the query answering engine navigates a linkage graph on

relevant sources to enumerate join paths that have the same schema

as the target schema [13, 30]. These join paths define the space of

all possible views for the consumer’s query. Algorithm 1 presents

the pseudo-code for enumerating data views.

View Relevance: The relevance of a view is evaluated based on

the relevance of individual sources𝐷𝑖 𝑗 to the target schema and the

joinability of source pairs across the join path. Given a collection of

sources, data set discovery techniques often compute relevance to

be the similarity of the target schema to the metadata of discovered

data sets [12, 32] or the overlap size between the content of data

sets and the tuple examples of a target schema [28, 41, 42]. Based

on this, we can define correspondences that map attributes in a

source to attributes in the target schema and are weighed by their

relevance score. We can create the space of potential data views by

enumerating the join paths between relevant sources and applying

projections according to correspondences. Note that the generated

join paths for one query can be reused in other queries. Therefore,

the system maintains a catalog of discovered views to be consulted

for query answering.

Cost of Sampling a View: The get-next operation encapsulates

access to tuples of view 𝑣𝑖 . Obtaining a sample from 𝑣𝑖 requires

following a join path of 𝑘𝑖 sources, 𝐷𝑖1 to 𝐷𝑖𝑘 . Note that consumers

and providers most likely avoid executing the expensive full join;

thus, the cost of sampling a view may not be its join cost. In the

provider-passive model, a consumer would also prefer to avoid

paying for the full source as well. The cost of get-next from 𝑣𝑖
depends on the cost of sampling from sources and the expected

number of tuples needed to be sampled from each source to acquire

a non-empty tuple of 𝑣𝑖 . Since in a setting with heterogeneous

sources, joins are often not key-foreign key joins and indexes do

not exist, sampling likely has some rejection rate, i.e., wemay obtain

a sample from a source for which we cannot find a corresponding

joinable tuple in other sources. The cost of an i.i.d sample from

𝑣𝑖 is the expected number of tuples that need to be sampled from

𝐷𝑖1, · · · , 𝐷𝑖𝑘𝑖 such that matching those tuples along the join path

𝐷𝑖1 ⊲⊳ · · · ⊲⊳ 𝐷𝑖𝑘 incurs one sample of the view.

Distribution: Due to the scarcity of samples from certain groups,

it is cost-effective to discover views that have a higher probability

of returning samples for rare cases. Since our views are PJ queries,

the query engine needs to estimate the distribution of groups on

the result of the join, of course, without executing the full joins.

To obtain group distributions in views, we need to perform online

sampling over multiple join paths and perform approximateCOUNT
aggregates of groups in a join path [16, 19].

View Overlap: The main reason to integrate data from different

views is to find samples that we were not able to collect using a

specific view. In other words, we are interested in finding comple-

mentary data views and using them collectively to find enough

representative samples from different groups. It means we are in-

terested in views with diverse and novel data. Ideally, we would

like the views to form a data partition. But, this may often not be

practical unless views are naturally collected from different parti-

tions of data. For example, sources that include the information of

employees of different departments or different job titles do not

likely overlap, assuming that employees cannot belong to multiple

departments or hold multiple job titles. In general, views may over-

lap, but we would like to prioritize the ones with minimum overlap.

We also remark that entity resolution and duplicate detection are

relevant tasks when dealing with source overlap, as the goal is to

collect novel tuples. We rely on off-the-shelf data cleaning tech-

niques for entity matching techniques [20, 25]. More specifically,

at each iteration, it is essential to decide whether a sample is novel



Algorithm 1 DiscoverViews

Input: Data Sources D = {𝐷1, . . . , 𝐷𝑙 }; target schema 𝑆 = {𝐴1, . . . , 𝐴𝑝 }
Output: V , views with schema 𝑆

1: V ← {}; I ←Index(D); N ←LinkageGraph(D)
2: for 𝐴𝑖 ∈ 𝑆 do R𝑖 ←FindRelData(I)
3: V ←YieldViews(R𝑖 . . . R𝑝 , N)//discover, characterize, and rank

or is already included in the target dataset. To do so, we rely on

hashing techniques and Bloom filter for membership testing.

View Selection: Given a collection of views with the estimations

of objectives, the next step is to rank and identify promising views

that (a) contain relevant samples, (b) have a low query cost, (c) have

a high chance of returning samples from minorities, and (d) have

minimal overlap with each other. One idea is to use a weight vector

𝑊 and linearly combine the objectives into a “utility function” and

then select the top-𝑘 views. This, however, causes two issues: (i) the

final choice of views highly depends on the choices of𝑊 and (ii) it

may return views with similar properties. A collection of views with

similar properties such as similar distributions and similar get-next

costs does not necessarily lead to cost-effectively satisfying query

distribution requirements. In other words, if all options are similar,

it does not matter which one to query to obtain the next sample.

Therefore, our framework considers diversity as a key requirement

for the set of views returned by the discovery component.

Skyline (the set of non-dominated join-paths) [4] is well-known

for finding such a set. However, the skyline can be arbitrarily large.

To find a smaller subset, our query engine leverages (rank) regret

minimizing set [2], the minimal set that contains at least one of
the top-k data views, no matter what𝑊 is. One challenge is that

regret-minimizing problems assume the existence of the collection

of elements (views) to select from and that all objective values are

known apriori. Discovering a view and estimating its objectives

is costly. As a result, it is inefficient (if not infeasible) to explicitly

create the input to pass to the regret-minimizing problem. Instead,

we need an online approach that only identifies the promising

candidate views and computes rough estimations needed to decide

whether a candidate is promising.

5 QUERY ANSWERING ENGINE
The query answering engine is in charge of efficiently fusing data

from different data views with the same schema but with different
costs and distributions to obtain the results for the consumer query.

Depending on the meta-data associated with data sources, the

query answering engine may initially not know the views’ data

distribution for different attributes and the query groups. A key

observation, however, is that as the query answering model ap-

plies get-next on views, it can improve its knowledge about the

distributions of views and their underlying sources. In other words,

querying views and sources for answering prior queries can be

viewed as exploration steps for efficiently answering future queries.

Following this idea, we consider the query answering engine under

two cases where (1) data view distributions are unknown and (2) the

data view distributions are known. Our extensive research results

related to the two cases are published in [27].

Algorithm 2 Query Answering Engine

Input: Data Sources D = {𝐷1, . . . , 𝐷𝑙 }; target schema 𝑆 = {𝐴1, . . . , 𝐴𝑝 };
query constraints 𝜉 ; count requirements Q on groups G; budget 𝐵

Output: 𝑂 , target data set

1: 𝑂 ← {},𝐶 ← 0

2: (L,𝐶) ← DiscoverViews(D, 𝑆)//a sequence of views and their costs

3: while ∃Q𝑗 > 0, ∀1 ≤ 𝑗 ≤𝑚,𝐵 > 𝐶 do
4: 𝑣𝑖 ← SelectView(L,𝐶)//the next view to query

5: 𝑠, 𝑐𝑜𝑠𝑡 ← getnext(𝑣𝑖 ) //obtain a sample from 𝑣𝑖

6: 𝐶 ← 𝐶 + 𝑐𝑜𝑠𝑡
7: update-stats(𝑣𝑖 , 𝑠) //update the statistics about 𝑣𝑖

8: if 𝑠 does not satisfy the constraints 𝜉 then
9: continue //ignore the sample

10: 𝑗 ← G(𝑠) // the group of 𝑠

11: if (𝑠 ∉ 𝑂 AND Q𝑗 > 0) then
12: add 𝑠 to𝑂 ; Q𝑗 ← Q𝑗 − 1

Q𝑗 ← Q𝑗 − 1
13: return𝑂

Cost-effective query answering involves selecting and sequen-

tially sampling data views, using the get-next operations, until dis-

tribution requirements are satisfied. Algorithm 2 shows the steps of

the query engine. At each iteration, the algorithm chooses the next

view from which to take a sample based on the (partial) information

available about views, target distribution, and tuples collected so far.

The technical challenge here is to design algorithms that optimize

view selection such that the target data set is constructed with

minimum total cost. The algorithm terminates once all distribution

requirements are satisfied or the consumer’s budget is exhausted.

5.1 Unknown Distributions
Initially, the query answering engine may have minimal informa-

tion about sources and views. We study this case as the unknown
distributionsmodel for scenarios when the distributions of attribute

values and query groups in each data view are unknown.

Query answering under unknown distributions can be modeled

as a stochastic bandit problem [17], where every data view 𝑣𝑖 is an

arm 𝑣𝑖 . In a sequential manner, our goal is to select arms in order

to collect Q 𝑗 tuples from every group G𝑗 that satisfy the query

constraints. Every arm has an unknown distribution of different

groups. In particular, we can adapt well-known strategies such

as Upper Confidence Bound (UCB) [37] to balance exploration and

exploitation. At every iteration, for every arm, UCB computes con-

fidence intervals for the expected reward and selects the arm with

the maximum upper bound of reward to be explored next. This

requires a careful design of the reward function and analysis of the

bounds of the proposed reward function.

In order to compute the reward of collecting a valid tuple from a

group that satisfies query constraints, we raise the question of how

“hard” it is to collect such a tuple. One can argue that the reward of

obtaining a tuple from a group is proportional to how “rare” this

element is across different data views. In other words, what is the

expected cost one needs to pay in order to collect a valid tuple of

G𝑗 . In order to compute the expected cost, we assume we know

the overall distribution of groups from the available aggregates in

public forms such as Bureau reports or via sampling. Then, the

average reward of a data view at each iteration depends on how



many high-reward tuples we have seen so far from the data view

based on the statistics of collected data.

5.2 Known Distributions (Information Reuse)
Having queried different data sources and views for answering

prior queries, the query answering system can gradually improve

its knowledge about source distributions. In such a setting, we as-

sume that we (approximately) know the ratio of samples obtained

from each group while querying each view 𝑣𝑖 . More specifically,

the known distribution model assumes the number of samples we

can obtain from each data view and how many of those belonging

to each group are known apriori (or can be estimated). Query an-

swering under known distribution can be modeled as𝑚 instances

of the coupon collector’s problem [24], where every 𝑗-th instance

aims to collect samples from the group G𝑗 . The Coupon Collector’s

(CC) problem is motivated by the “collect all ten coupons and win”

contests. Given 𝑛 coupons, the question is, how many coupons do

we expect we need to draw with replacement before having drawn

each coupon at least once? To cast the 𝑗-th instance of our problem

to CC, we assume coupons are tuples of G𝑗 in a view and 𝑛 is Q 𝑗 .

For every group G𝑗 , the algorithm first identifies the data view

𝑣∗𝑗 , the most cost-effective data view for G𝑗 . The algorithm then

starts collecting tuples of different groups by querying the data

view 𝑣∗𝑗 for each group G𝑗 in a round-robin fashion. Casting the

problem to CC provides a framework for analyzing the upper bound

of the expected cost of the problem. An interesting observation is

that while collecting tuples for each group, the algorithm can also

maintain the tuples of other groups, enabling the piggybacking

opportunity. The algorithm queries corresponding data views for

different groups until the target distribution is satisfied. The pig-

gybacking phenomenon makes different orders of querying from

views lead to different expected total costs. Consequently, a goal is

to find the optimal ordering of view selection that minimizes the

cost following the CC instances.

5.3 Evaluation
To evaluate the algorithms, one can consider both real and synthetic

data. The real-world data can be obtained from open data published

by governments as well as web data portals such as Socrata and

Ckan
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[28, 42]. Synthetic benchmarks allow performing controlled

experiments for various data distributions, cost models, and view

discovery complexities. Given a user query containing count re-

quirements on different groups (as in Examples 1 and 2), the bench-

mark generates data following different distributions. To synthesize

data views, it simulates paths with various distributions (major-

ity, minority, etc.), join path lengths, join graph structure (simple

path or multi-way joins), and joinability scores. This allows us to

systematically evaluate our view discovery techniques from the

perspective of view distribution, view overlap, and view efficiency.

6 RELATEDWORK
Data Discovery: Data discovery techniques can be used to dis-

cover and augment data sets that fulfill the schema requirements.

Data discovery is normally formulated as a search problem. In one

version of the problem, the query is a set of keywords, and the

10
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goal is to find tables relevant to the keywords, in an IR-style of

search [5]. Alternatively, the query can be a table, while the prob-

lem is to find other tables that can be integrated with the query

table with union and join operations [3, 7, 13, 14, 29, 40, 42]. The

new generation of data discovery techniques focuses on feature

discovery to improve ML models, using distribution-aware mea-

sures such as join-correlation [35]. Given a target column and a join

column from a query table, the goal is to retrieve candidates from a

repository such that a candidate table is joinable with the query on

the join column and contains a correlated column with the target

column. We note that the state-of-the-art data discovery techniques

are agnostic to distribution and mostly focus on the notion of rele-

vance for discovery. Therefore, discovered datasets most likely have

distributions that may differ from the desired distribution. Hence,

as shown in [26], random sampling from discovered datasets would

not necessarily fulfills the distribution requirements.

To perform data augmentation, various research considers inte-

gration intertwined with discovery, where the goal is to identify

datasets that contain relevant attributes to the schema requirements

and perform join and union operations to integrate all query at-

tributes into one dataset [3, 6, 33]. Moreover, linkage graphs can

be applied to navigate relevant datasets through join paths [12, 31].

Discovery techniques optimize for relevance and coverage of link-

age between source and target datasets by using relevance scoring.

Data Markets: Fernandez et al. propose a platform for the design

and implementation of data markets focused on data sharing, dis-

covery, and integration [15]. This platform considers a market with

data providers, consumers, and an arbiter that facilitates transac-

tions between providers and consumers by combining datasets into

a unified dataset. In the passive-consumer setting, our proposed

platform is an instantiation of an arbiter platform.

In the context of data science in data markets, Li et al. study

the problem of acquiring data from providers to improve the ac-

curacy of ML models [21]. This work assumes consumers pose a

sequence of predicate queries to a provider. In this setting, the pro-

posed query engine can be applied on the provider side to fulfill

consumers’ queries. Liu et al. propose an end-to-end market around

models, where data providers are compensated for their data and a

broker collects data from data providers, builds and sells models to

model consumers [23]. For model marketplaces, Chen et al. propose

a model-based pricing framework that directly prices ML model

instances [9].

7 CONCLUSION
In this paper, we presented our vision of a unified query answer-

ing engine for distribution-aware cost-effective query answering

over data markets. The query engine integrates data from multiple

sources in a data market to form a target data set that meets the

user-specified schema and data distribution requirements in a cost-

effective manner. The ultimate goal of the engine is to automate

a pipeline of indexing and data enrichment, view discovery and

curation, and query answering in an efficient and scalable manner.
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