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Abstract

In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity
of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize no-
tions like “input”, “size” and “complexity” in the context of general mathematical optimization, avoiding
context dependent definitions which is one of the sources of difference in the treatment of complexity
within continuous and discrete optimization. In the second part of the paper, we employ the language
developed in the first part to study information theoretic and algorithmic complexity of mixed-integer
convex optimization, which contains as a special case continuous convex optimization on the one hand and
pure integer optimization on the other. We strive for the maximum possible generality in our exposition.

We hope that this paper contains material that both continuous optimizers and discrete optimizers
find new and interesting, even though almost all of the material presented is common knowledge in one
or the other community. We see the main merit of this paper as bringing together all of this information
under one unifying umbrella with the hope that this will act as yet another catalyst for more interaction
across the continuous-discrete divide. In fact, our motivation behind Part I of the paper is to provide a
common language for both communities.

Part I
A general framework for complexity in optimization

1 The setup

This paper deals with theoretical complexity analyses for optimization problems where some or all decision
variables are constrained to take integer values. This means that we will look at provable upper and lower
bounds on the efficiency of algorithms that solve these problems. We will consider the standard Turing
machine model of computation, and we will study algorithms that receive an optimization problem as
“input” and we wish to study the efficiency of the algorithm as a function of the “size” of the problem.
Moreover, we wish to develop a framework that can seamlessly handle discrete optimization and continuous
optimization. In particular, the focus of this paper will be on so-called mixed-integer convex optimization,
which includes as special cases continuous, nonlinear convex optimization on the one hand and integer linear
optimization on the other which can model problems with a combinatorial and discrete nature. Therefore,
it is imperative to have a general setup that can formally make sense of “writing down” an optimization
problem as “input” to an algorithm and the related “size” of the optimization problem, no matter whether
it is combinatorial or numerical in nature.

For instance, most optimization problems with a combinatorial or discrete nature have a well defined,
universally accepted notion of “encoding” and therefore of “size” (such as the Matching Problem or Traveling
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Salesperson Problem (TSP) on graphs, or linear programming (LP) over the rationals). Things are more
tricky with continuous optimization problems. What is the “size” of a general optimization problem of the
form min{f(x) : gi(x) ≤ 0, i = 1, . . . ,m}, where I and gi are smooth, nonlinear functions defined on Rn?
If these functions have a particular algebraic form (e.g., polynomial optimization), then there is usually no
controversy because one considers the encoding of the coefficients appearing in the polynomials. What if the
functions are given via evaluation and gradient oracles?

In fact, the question can be raised whether the Turing machine model is even appropriate in this setting,
because it only allows for computation over a finite set of symbols and numerical/scientific computation
problems may require a more general model of computation. Several proposals have been put forward to
address this issue; see [1, 24, 27, 70, 94, 101, 116, 126] as a representative list. It turns out that all of the
discussion in this Part I of this paper will hold true in any of these different models of computation. For
concreteness, we will assume a computational framework that works within the standard framework of the
Turing machine model of computation augmented with appropriate oracles [94, 101] and has its roots in the
constructive philosophy of mathematics [17, 21]. We include the formal definition here for completeness of
this article and the reader is referred to [94, 101] for a fuller discussion.

Definition 1.1. An oracle implementing a real number α ∈ R takes as input a rational number ε > 0 and
outputs a rational number r such that |r − α| ≤ ε. Moreover, there exists a constant k (independent of ε)
such that the bit encoding size of r is at most k times the encoding size of ε. The size of the oracle is k.

If the real number α implemented by an oracle is rational, then a second constant k′ is added to the size
of the oracle with the guarantee that the bit encoding size of α is at most k′.

A study of general optimization methods in the 70s and 80s led to the insight that all such procedures
(whether combinatorial or analytical in nature) can be understood in a unified framework which we present
now. Our exposition is a summary of ideas put forth in several works and giving a complete survey of this
literature is difficult. With apologies for our omissions, we list two references that we personally found to
be most illuminating [108, 125].

The overall idea, roughly speaking, is that one gathers information about an optimization problem
which tells the optimizer which instance needs to be solved within a problem class, and then computations
are performed on the information gathered to arrive at a solution (possibly approximate, with guaranteed
bounds on error). Let us formalize this idea in a way that encompasses both discrete and continuous
optimization [125].

Definition 1.2. [General optimization problem] An optimization problem class is given by a set I of in-
stances, a set G of possible solutions, and a solution operator

S : I × R+ → 2G ∪ {INFEAS} ∪ {UNBND},

where 2G denotes the power set of G and the operator S satisfies three properties:

1. S(I, 0) 6= ∅ for all I ∈ I, and

2. For any two nonnegative real numbers ε1 < ε2 and any I ∈ I, we have S(I, ε1) ⊆ S(I, ε2).

3. If INFEAS ∈ S(I, ε) (or UNBND ∈ S(I, ε)) for some I ∈ I and ε ≥ 0, then S(I, ε) = {INFEAS}
(or S(I, ε) = {UNBND} respectively).

4. If UNBND ∈ S(I, 0) for some I ∈ I, then S(I, ε) = {UNBND} for all ε ≥ 0.

The interpretation of the above definition is simple: I is the set of optimization problem instances we
wish to study, G is the space of solutions to the problems, and for any instance I ∈ I and ε ≥ 0, S(I, ε) is
the set of ε-approximate solutions with the understanding that S(I, ε) = {INFEAS} encodes the fact that
I is an infeasible instance (with respect to ε error; see examples below) and S(I, ε) = UNBND encodes the
fact that the objective value for I is unbounded. The advantage of this definition is that there is no need to
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assume any structure in the set G; for example, it could be some Euclidean space, or it could just as well be
some combinatorial set like the set of edges in a graph. Linear Programming in Rn would set G = Rn while
the Traveling Salesperson Problem on n cities corresponds to setting G to be all tours in the complete graph
Kn. It is also not hard to encode optimization problems in varying “dimensions” in this framework, e.g., G
is allowed to be

⋃
n∈N Rn. Also, the notion of “ε-approximate” does not require any kind of norm or distance

structure on G. Property 2 simply requires that as we allow more error, we obtain more solutions. Thus,
Definition 1.2 captures discrete and continuous optimization in a clean, unified framework while allowing for
a very flexible notion of an “ε-approximate” solution for ε > 0.

Example 1.3. We now present some concrete examples.

1. Traveling Salesperson Problem (TSP). For any natural number n ∈ N, the (symmetric) traveling
salesperson problem for n cities seeks to find a tour of minimum length that visits all cities, given
pairwise intercity distances. To model this in the above framework, one defines En, for any natural
number n ∈ N, to be the set of all unordered pairs in {1, . . . , n}. Let G = ∪n∈N2En , i.e., each element
of G is a subset of unordered pairs (these are edges in the tour). I is the family of all TSPs with given
intercity distances. We allow any number n of cities; of course, for a particular instance I there is a
fixed number of cities. S(I, ε) can be taken to be the set of all tours in the complete graph Kn that
are within an additive ε error or within a multiplicative (1 + ε) factor of the optimal tour length in I.
ε = 0 corresponds to the set of all optimal tours.

One could also fix a natural number n ∈ N and simply consider only the problems on n cities. In
this case, G = 2En and I would consist of all possible tours on n cities, i.e., where only the intercity
distances are changed, but the number of cities is fixed.

2. Mixed-integer linear programming (MILP).

• (Fixed dimension) Let n, d ∈ N be fixed. G = Rn × Rd, I is the set of all mixed-integer linear
programs defined by matrices A ∈ Rm×n, B ∈ Rm×d, and vectors b ∈ Rm, c1 ∈ Rn, c2 ∈ Rd, where
m ∈ N can be chosen as any natural number (thus, I contains all MILPs with any number of
constraints for m = 1, 2, . . ., but the total number of variables is fixed):

max{cT1 x+ cT2 y : Ax+By ≤ b, x ∈ Zn, y ∈ Rd}.

S(I, ε) may be defined to be all solutions (x, y) ∈ G to an MILP instance I such that cT1 x+ cT2 y is
within an additive ε error of the optimal value for I. Taking ε = 0 would mean we are considering
the exact optimal solution(s). Alternatively, one may define S(I, ε) to be the set of (x, y) ∈ G
such that there is an optimal solution to I within ε distance to (x, y).

• (Variable dimension) We can consider the family of all MILPs with a fixed number of integer
variables, but allowing for any number of continuous variables. Here n ∈ N is fixed and G =⋃
d∈N(Rn × Rd). Everything else is defined as above. Similarly, we may also allow the number of

integer variables to vary by letting G =
⋃
n∈N,d∈N(Rn × Rd).

Fixing n = 0 in the above settings would give us (pure) linear programming.

3. Nonlinear Optimization. In a similar fashion as above, we may model nonlinear optimization problems
of the form

min{f(x) : gi(x) ≤ 0 i = 1, . . . ,m}. (1.1)

The class I may restrict the structure of the objective and constraint functions (e.g., convex, twice
continuously differentiable, nonsmooth etc.). As before, S(I, ε) may correspond to all solutions that
are within an ε error of the true optimal value, or solutions within ε distance of the set of optimal
solutions, or the set of points where the norm of the gradient is at most ε in the unconstrained case, or
any other notion of ε-approximate solutions commonly studied in the nonlinear optimization literature.
One may also allow ε slack in the constraints, i.e., gi(x) ≤ ε for any x ∈ S(I, ε).
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Next, we discuss the notion of an oracle that permits us to figure out which problem instance we need
to solve.

Definition 1.4. An oracle for an optimization problem class I is given by a family Q of possible queries
and a set H of possible answers. Each query q ∈ Q is an operator q : I → H. We say that q(I) ∈ H is the
answer to the query q on the instance I ∈ I.

Example 1.5. We now consider some standard oracles for the settings considered in Example 1.3.

1. For the TSP, the typical oracle uses two types of queries. One is the dimension query qdim, which returns
the number qdim(I) of cities in the instance I, and the queries qij(I) which returns the intercity distance
between cities i, j (with appropriate error exceptions if i or j are not in the range {1, . . . , qdim(I)}).

2. For MILP, the typical oracle uses the following queries: the dimension queries for n and d (unless
one or both of them are fixed and known), a query qAij(I) that reports the entry of matrix A in row i

and column j for the instance I, and similar queries qBij , q
b
i , q

c
j for the matrix B, and vectors b, c (with

appropriate error exceptions if the queried index is out of bounds).

3. For Nonlinear Optimization, the most commonly used oracles return function values, gradient/subgradient
values, Hessian or higher order derivative values at a queried point. Thus, we have queries such as
qf,x0 (I) which returns f(x) for the objective function f in an instance of (1.1) where x is a point in

the appropriate domain of f , or the query qf,x1 (I) which returns the gradient ∇f(x). Similarly, one
has queries for the constraints. Often the set version of these oracles are assumed instead, specially in
convex optimization, where one is given a separation oracle for the feasible region and the epigraph of
the objective function; see [78, 101] for a well developed theory and applications in this setting.

If the problem class I has an algebraic form, e.g., polynomial optimization, then the oracle queries
may be set up to return the values of the coefficients appearing in the polynomial.

One can seamlessly accommodate oracles with error in the above set-up. For example, the weak separation
oracles in [78] can be modeled with no change in the definitions just like strong/exact separation oracles.
We will only work with deterministic oracles in this paper. See [28, 108] for a discussion of stochastic oracles
in the context of continuous convex optimization. We next recall the notion of an oracle Turing machine.

Definition 1.6. An oracle Turing machine with access to an oracle (Q, H) is a Turing machine that has the
enhanced ability to pose any query q ∈ Q and use the answer in H in its computations. The queries it poses
may depend on its internal states and computations, i.e., it can query adaptively during its processing.

We now have everything in place to define what we mean by an optimization algorithm/procedure. Since
we focus on the (oracle) Turing machine model and any algorithm will process elements of the solution set G
and set of answers H from an oracle, we assume that the elements of these sets can be represented by binary
strings or appropriate real number oracles (see Definition 1.1). If one wishes to adopt a different model of
computation, then these sets will need representations within that computing paradigm. This clearly affects
what class of problems and oracles are permissible. We will not delve into these subtle questions; rather
we will stick to our Turing machine model and assume that the class of problems we are dealing with has
appropriate representations for G and H.

Definition 1.7. Let (I, G, S) be an optimization problem class and let (Q, H) be an oracle for I. For any
ε ≥ 0, an ε-approximation algorithm for (I, G, S) using (Q, H) is an oracle Turing machine with access to
(Q, H) that starts its computations with the empty string as input and, for any I ∈ I, ends its computation
with an element of S(I, ε), when it receives the answer q(I) for any query q ∈ Q it poses to the oracle.

If A is such an ε-approximation algorithm, we define the total complexity compA(I) to be the number of
elementary operations performed by A during its run on an instance I (meaning that it receives q(I) as the
answers to any query q it poses to the oracle), where each oracle query counts as an elementary operation
(reading the answer of a query may require more than one elementary operation, depending on its length).
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If A makes queries q1, . . . , qk during its run on an instance I, we say the information complexity icompA(I)
is |q1(I)|+ . . .+ |qk(I)|, where |qi(I)| denotes the length of the binary string or size of the real number oracle
(see Definition 1.1) representing the answer qi(I).

Following standard conventions, the (worst case) complexity of the algorithm A for the problem class
(I, G, S) is defined as

compA := supI∈I compA(I),

and the (worst case) information complexity is defined as

icompA := supI∈I icompA(I),

Remark 1.8. One can assume that any algorithm that poses a query q reads the entire answer q(I) for
an instance I. Indeed, if it ignores some part of the answer, then one can instead consider the queries that
simply probe the corresponding bits that are used by the algorithm (and we may assume our oracles to have
this completeness property). We will assume this to be the case in the rest of the paper. Such an assumption
can also be made without loss of generality in any other reasonable model of computation.

This implies that the information complexity icompA(I) is less than or equal to the total complexity
compA(I) of any algorithm A running on any instance I.

An important notion of complexity that we will not discuss in depth in this paper is that of space
complexity. This is defined as the maximum amount of information (from the oracle queries) and auxiliary
computational memory that is maintained by the algorithm (oracle Turing machine) during its entire run.
As in Definition 1.7, one can define the total space complexity and the information space complexity. Both
notions can be quite different from compA and icompA respectively, since one keeps track of only the
amount of information and auxiliary data held in memory at any given stage of the computation, as opposed
to the overall amount of information or auxiliary memory used. In many optimization algorithms, it is not
necessary to maintain all of the answers to previous queries or computations in memory. A classic example
of this is the (sub)gradient descent algorithm where only the current function values and (sub)gradients are
stored in memory for computations, and they are not needed in subsequent iterations.

2 Oracle ambiguity and lower bounds on complexity

For many settings, especially problems in numerical optimization, a finite number of oracle queries may
not pin down the exact problem one is facing. For example, consider (I, G, S) to be the problem class of
the form (1.1) where f, g1, . . . , gm can be any convex, continuously differentiable functions, and suppose the
oracle (Q, H) allows function evaluation and gradient queries. Given any finite number of queries, there are
infinitely many instances that give the same answers to those queries.

Definition 2.1. Let (I, G, S) be an optimization problem class and let (Q, H) be an oracle for I. For any
subset Q ⊆ Q of queries, define an equivalence relation on I as follows: I ∼Q I ′ if q(I) = q(I ′) for all q ∈ Q.
For any instance I, let V (I,Q) denote the equivalence class that I falls in, i.e.,

V (I,Q) = {I ′ : q(I) = q(I ′) ∀q ∈ Q}.

The above definition formalizes the fact that if one only knows the answers to queries in Q, then one has a
course-grained view of I. This is why the notion of an ε-approximate solution becomes especially pertinent.
The following theorem gives a necessary condition on the nature of queries used by any ε-approximation
algorithm.

Theorem 2.2. Let (I, G, S) be an optimization problem class and let (Q, H) be an oracle for I. If A is an
ε-approximation algorithm for this optimization problem for some ε ≥ 0, then⋂

I′∈V (I,Q(I))

S(I ′, ε) 6= ∅ ∀I ∈ I,

where Q(I) is the set of queries used by A when processing instance I.
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Proof. If A is a correct ε-approximation algorithm, then suppose it returns x ∈ S(I, ε) for instance I. Since
the answers to its queries are the same for all I ′ ∈ V (I,Q(I)), it will also return x when the answers it
receives are q(I ′) for q ∈ Q(I) and I ′ ∈ V (I,Q(I)). Therefore, x ∈ S(I ′, ε) for all I ′ ∈ V (I,Q(I)).

This leads us to the following definition.

Definition 2.3. Let (I, G, S) be an optimization problem class and let (Q, H) be an oracle for I. Let
2(Q×H) denote the collection of all finite sets of pairs (q, h) ∈ Q×H.

An adaptive query strategy is a function D : 2(Q×H) → Q. The transcript Π(D, I) of a strategy D on
an instance I is the sequence of query and response pairs (qi, qi(I)), i = 1, 2, . . . obtained when one applies
D on I, i.e., q1 = D(∅) and qi = D({(q1, q1(I)), . . . , (qi−1, qi−1(I))}) for i ≥ 2. Πk(D, I) will denote the
truncation of Π(D, I) to the first k terms, k ∈ N. We will use Q(D, I) (and Qk(D, I)) to denote the set of
queries in the transcript Π(D, I) (and Πk(D, I)). Similarly, R(D, I) (and Rk(D, I)) will denote the set of
responses in the transcript.
The ε-information complexity of an instance I for an adaptive strategy D is defined as

icomp ε(D, I) := inf
{∑

r∈Rk(D,I) |r| : k ∈ N such that
⋂
I′∈V (I,Qk(D,I)) S(I ′, ε) 6= ∅

}
= inf

{∑
r∈Rk(D,I) |r| : k ∈ N such that

⋂
I′:Πk(D,I′)=Πk(D,I) S(I ′, ε) 6= ∅

}
The ε-information complexity of an adaptive strategy D for the problem class (I, G, S) is defined as

icomp ε(D) := supI∈I icomp ε(D, I)

The ε-information complexity of the problem class (I, G, S) with respect to oracle (Q, H) is defined as

icomp ε := infD icomp ε(D),

where the infimum is over all possible adaptive queries.

Remark 2.4. In the definitions above, one could restrict adaptive query strategies to be computable, or
even polynomial time computable (in the size of the previous query-response pairs). We are not aware
of any existing research where such restrictions have been studied to get a more refined analysis of ε-
information complexity. The typical lower bounding techniques directly lower bound icompε defined above.
One advantage of this is that one does not have to rely on any complexity theory assumptions such as
P 6= NP and the lower bounds are unconditional.

We can now formally state the results for lower bounding algorithmic complexity. Remark 1.8 and
Theorem 2.2 imply the following.

Corollary 2.5. Let (I, G, S) be an optimization problem class and let (Q, H) be an oracle for I. If A is an
ε-approximation algorithm for (I, G, S) using (Q, H) for some ε ≥ 0, then

icomp ε ≤ icompA ≤ compA .

Remark 2.6. If S, S′ are two different solution operators for I, G such that S(I, ε) ⊆ S′(I, ε) for all I ∈ I
and ε ≥ 0, i.e., the operator S is stricter than S′, then the complexity measures with respect to S are at
least as large as the corresponding measures with respect to S′.

Remark 2.7. In the literature, icompε is often referred to as the analytical complexity of the problem class
(see, e.g., [109]). We prefer the phrase information complexity since we wish to have a unified framework
for continuous and discrete optimization and “analytical” suggests problems that are numerical in nature or
involve the continuum. Another term that is used in the literature is oracle complexity. This is better, in
our opinion, but still has the possibility to suggest the complexity of implementing the oracle, rather than
the complexity of the queries. Since icompε is very much inspired by information theory ideas, we follow the
trend [28, 31, 107, 125, 129] of using the term information complexity (with respect to an oracle).

compA is sometimes referred to as arithmetic complexity [109] or combinatorial complexity [125] of A.
We prefer to stick to the more standard terminology of simply (worst case) complexity of the algorithm A.
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3 What is the size of an optimization problem?

3.1 Size hierarchies

The notions of complexity defined so far are either too fine or too course. At one extreme is the instance
dependent notions compA(I), icompA(I) and icompε(D, I), and at the other extreme are the worst case
notions compA, icompA and icompε. It is almost always impossible give a fine tuned analysis of the instance
based complexity notions; on the other hand, the worst case notions give too little information, at best as a
function of ε, and in the worst case, these values are actually∞ for most problem classes of interest. Typically,
a middle path is taken where a countable hierarchy of the problem class is defined and the complexity is
analyzed as a function of the levels in the hierarchy.

Definition 3.1. Let (I, G, S) be an optimization problem class. A size hierarchy is a countable, increasing
sequence I1 ⊆ I2 ⊆ I3 ⊆ . . . of subsets of I such that I =

⋃
k∈N Ik. The size of any instance I with respect

to a size hierarchy is the smallest k ∈ N such that I ∈ Ik.
The (worst case) complexity of any algorithm A for the problem, with respect to the size hierarchy, is

defined naturally as
compA(k) := supI∈Ik compA(I).

Similarly, the (worst case) information complexity of any algorithm A for the problem, with respect to
the size hierarchy, is defined as

icompA(k) := supI∈Ik icompA(I),

and the (worst case) ε-information complexity of the problem class, with respect to the size hierarchy, is
defined as

icomp ε(k) := infD supI∈Ik icomp ε(D, I),

where the infimum is taken over all adaptive strategies D.

Example 3.2. We review the standard size hierarchies for the problems considered in Example 1.3.

1. In the TSP problem class defined in Example 1.3, the standard “binary encoding” size hierarchy defines
Ik to be all instances such that

∑n
i,j=1dlog(dij)e ≤ k (so k must be at least n2), where dij ∈ Z+ are the

intercity distances. If one works with real numbers as distances, the size is defined using the sizes of the
real number oracles (see Definition 1.1). If one focuses on the so-called Euclidean TSP instances, then
one can define a different size hierarchy based on the number of bits needed to encode the coordinates
of the cities (or sizes of the real number oracles).

Another alternative is to simply define Ik to be all instances with at most k cities.

2. For MILPs, the standard “binary encoding” size hierarchy defines Ik to be all instances such that the
total number of bits (or sizes of real number oracles) needed to encode all the entries of A,B, b, c is
at most k. Another alternative is to simply define Ik as those instances where m(n+ d) ≤ k, or even
simply those instances with n+ d ≤ k.

3. For nonlinear optimization problems of the form (1.1), often the notion of “binary encoding” is not
meaningful. Consider, for example, the problem of minimizing a linear function f(x) = cTx over a
full-dimensional, compact convex body C given via a separation oracle. A size hierarchy that has been
commonly used in this setting defines Ik as follows: An instance I ∈ Ik if there exist rational numbers
R, r such that C is contained in the ball of radius R around the origin, C also contains a ball of radius
r inside it (the center may not be the origin), and the total number of bits needed to encode R, r and
the coordinates of c is at most k. See [78, 101] for a fuller discussion and other variants.

The idea of a size hierarchy is meant to formalize the notion that problems with larger size are “harder”
to solve in the sense that it should take an algorithm longer to solve them. This obviously is often a
subjective matter, and as discussed in the above examples, different size hierarchies may be defined for the
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same optimization problem class. The complexity measures as a function of size is very much dependent
on this choice (and also on the model of computation because different models measure complexity in ways
that are different from the oracle Turing machine model).

Even within the Turing machine model of computation, a classical example of where different size hier-
archies are considered is the optimization problem class of knapsack problems. Here, one is given n items
with weights w1, . . . , wn ∈ Z+ and values v1, . . . , vn ∈ Z+, and the goal is to find the subset of items with
maximum value with total weight bounded by a given budget W ∈ Z. The standard “binary encoding” size
hierarchy defines the level Ik to be all problems where

∑n
i=1(dlogwie + dlog vie) + dlogW e ≤ k. However,

one can also stratify the problems by defining Ik to be all problems where
∑n
i=1(dlogwie+dlog vie)+W ≤ k.

The well-known dynamic programming based algorithm has complexity compA(k) which is exponential in k
with respect to the first size hierarchy, while it is polynomial in k with respect to the second size hierarchy.

The standard “binary encoding” size hierarchies are the most commonly used ones, motivated by the
fact that one needs these many bits to “write down the problem” for the Turing machine to solve. As we
see above, if one develops a unified theory for discrete and continuous optimization based on oracle Turing
machines (or other more flexible models of computation), the “binary encoding” idea loses some of its appeal.
And even within the realm of discrete optimization on conventional Turing machines, there is no absolute
objective/mathematical principle that dictates the choice of a size hierarchy and, in our opinion, there is
subjectivity in this choice. Therefore, complexity measures as a function of the size hierarchy have this
subjectivity inherent in them.

3.2 More fine-grained parameterizations

The approach of a size hierarchy as discussed in the previous section parameterizes the instances in a one-
dimensional way using the natural numbers. One may choose to stratify instances using more than one
parameter and define the complexity measures as functions of these parameters. This is especially useful in
continuous, numerical optimization settings where the standard “binary encoding” is unavailable to define a
canonical size hierarchy as in the case of discrete optimization problems. For example, consider the problems
of the form (1.1) where the functions f, g1, . . . , gm are convex, with the solution operator S(I, ε) consisting of
those solutions that satisfy the constraints up to ε slack, i.e., gi(x) ≤ ε and have objective value f(x) within
ε of the optimal value. We also consider access to a first-order oracle for these functions (see Example 1.5,
part 3.). We now create a semi-smooth parameterization of the family of instances using three parameters
d ∈ N and R,M ∈ R: Id,R,M are those instances such that 1) the domains of the functions is Rd, 2)
the feasible region {x ∈ Rd : gi(x) ≤ 0 i = 1, . . . ,m} is contained in the box {x ∈ Rd : ‖x‖∞ ≤ R},
and 3) f, g1, . . . , gm are Lipschitz continuous with Lipschitz constant M on this box (a convex function is
Lipschitz continuous on any compact set). One can then define the complexity measures compA(d,R,M) and
icompA(d,R,M) for any ε-approximation algorithm A, and the algorithm independent complexity measure
icompε(d,R,M), as functions of these three parameters (as well as ε, of course). As an example one can
show icompε(d,M,R) ∈ Θ(d log(MR

ε )); see Section 4.
As in the case of size hierarchies, the goal is to tread a middle path between the two extremes of

very fine-grained instance dependent measures, or worst case values over all instances (as a function of ε).
Parameterizing the problem class with more than one parameter gives a little more information. Several
examples of such parameterizations for classes of convex optimization problems is presented in [108]. Our
discussion in the next part will involve similar parameterizations of mixed-integer optimization problems.
See also the related area of computational complexity theory of parameterized complexity and fixed-parameter
tractability (FPT) [63].
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Part II
Complexity of mixed-integer convex optimization

After setting up the framework in Part I, we now derive concrete results for the class of mixed-integer convex
optimization problems. More precisely, we will consider problems of the form

inf{f(x, y) : (x, y) ∈ C, (x, y) ∈ Zn × Rd}. (3.1)

where f : Rn ×Rd → R is a convex (possibly nonsmooth) function and C ⊆ Rn ×Rd is a closed, convex set,
i.e., an instance I is given by f, C. We will consider the solution operator S(I, ε) to be all feasible solutions
in C that have value at most ε more than the optimal value. One could allow solutions within ε distance
of C and all of the results given below can be modified accordingly, but we will consider only truly feasible
solutions.

The following definition will be useful in what follows.

Definition 3.3. A fiber box in Zn × Rd is a set of the form {x} × [`1, u1] × . . . [`d, ud] where x ∈ Zn and
`i, ui ∈ R for i = 1, . . . , d. The length of the box in coordinate j is uj − `j . The width of such a fiber box is
the minimum of uj − `j , j = 1, . . . , d. If n = 0, a fiber box is simply a hypercuboid in Rd. A fiber box is
the empty set if ui < `i for some i = 1, . . . , d. If all `i = −∞ and all ui =∞, then the set is simply called a
fiber over x.

4 ε-information complexity

In this section, we establish the best-known lower and upper bounds on the ε-information complexity of (3.1)
in the literature. To get the tightest bounds, we will restrict our attention to problems with bounded feasible
regions and therefore a minimum solution exists. Moreover, we will also focus on “strictly feasible” instances.

Definition 4.1. We parameterize the instances using five parameters n, d ∈ N and R,M, ρ ∈ R. In,d,R,M,ρ

are those instances such that

1. The domain of f and C are both subsets of Rn × Rd.

2. C is contained in the box {z ∈ Rn × Rd : ‖z‖∞ ≤ R}, and

3. f is Lipschitz continuous with respect to the ‖ · ‖∞-norm with Lipschitz constant M on any fiber box
of the form {x} × [−R,R]d with x ∈ [−R,R]n ∩ Zn, i.e., for any (x, y), (x, y′) with ‖y − y′‖∞ ≤ R,
|f(x, y)− f(x, y′)| ≤M‖y − y′‖∞.

4. If (x?, y?) is the optimum solution, then there exists ŷ ∈ Rd and 0 < ρ ≤ 1 such that {(x?, y) :
‖y − ŷ‖∞ ≤ ρ} ⊆ C, i.e., there is a “strictly feasible” point (x?, ŷ) in the same fiber as the optimum
(x?, y?) with a fiber box of width ρ in Rd (the continuous space) around (x?, ŷ) contained in C. Note
that if d = 0 (the pure integer case), then this requirement becomes vacuous; consequently, the bounds
below in Theorem 4.2 for the pure integer case do not involve ρ. Also, the assumption ρ ≤ 1 is not
restrictive in the sense that if the condition is satisfied for some ρ > 0, then it is also satisfied for
min{ρ, 1}. Thus, one could alternatively leave this condition out, and the stated bounds below will be
modified by replacing ρ with min{ρ, 1}.

Table 1 gives a synopsis.

In the statement of the result, we will ignore the sizes of the subgradients, function values and separating
hyperplanes reported in the answers to oracle queries (which is technically included in our definition of
icompε). Thus, we will give lower and upper bounds on the number of oracle queries only. Taking the sizes
of the subgradients and real numbers involved in the answers leads to several interesting questions which, to
the best of our knowledge, have not been fully worked out in detail. To keep the discussion aligned with the
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Parameter Meaning

n number of integer variables

d number of continuous variables

R Boundedness parameter for the feasible region

ρ Strict feasibility parameter for the feasible region

M Lipschitz constant for the objective function

Table 1: Parameters of the problem instance used to state the complexity bounds

focus in the literature, we leave these subtleties out of this presentation. This obviously has implications for
space information complexity as well.

The bounds below for the mixed-integer case n, d ≥ 1 are minor adaptations of arguments that first
appeared in [14, 111]. The main difference is that our presentation here uses the more general information
theoretic language developed in Part I, whereas the results in [14, 111] were stated for a certain class of
algorithms called cutting plane algorithms (see Section 5.3).

Theorem 4.2. Let the oracle access to an instance f, C of for (3.1) in In,d,R,M,ρ from Definition 4.1 be
through a separation oracle for C, and a first-order oracle for f , i.e., one can query the function value and
the subdifferential for f at any point. As a quick legend: n

Lower bounds

• If n, d ≥ 1,

icomp ε(n, d,R,M, ρ) ∈ Ω
(
d2n log

(
R
ρ

))
.

• If d = 0,
icomp ε(n, d,R,M, ρ) ∈ Ω (2n log (R)) .

• If n = 0,

icomp ε(n, d,R,M, ρ) ∈ Ω
(
d log

(
MR
ρε

))
.

Upper bounds

• If n, d ≥ 1

icomp ε(n, d,R,M, ρ) ∈ O
(

(n+ d)d2n log
(
MR
ρε

))
.

• If d = 0
icomp ε(n, d,R,M, ρ) ∈ O (n2n log(R)) .

• If n = 0
icomp ε(n, d,R,M, ρ) ∈ O

(
d log

(
MR
ρε

))
.
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Note that when n = 0, i.e., we consider continuous convex optimization with no integer variables, we

have icomp ε(n, d,R,M, ρ) = Θ
(
d log

(
MR
ρε

))
, giving a tight characterization of the complexity. In fact,

these results can be obtained for a much broader class of oracles that include first-order/separation oracles
as special cases; see [28, 107–109].

For pure integer optimization with d = 0, our upper and lower bounds are off by a linear factor in the
dimension, which is of much lower order compared to the dominating term of 2n log(R). Put another way,
both bounds are 2O(n) log(R). The lower bounds come from the feasibility question (see the proofs below).
Additionally, since the strict feasibility assumption is vacuous and for small enough ε > 0, S(I, ε) is the set
of exact optimum solutions, M, ε and ρ do not play a role in the upper and lower bounds; in particular, they
are the bounds for obtaining exact solutions (ε = 0) as well.

There seems to be scope for nontrivial improvement in the bounds presented for the mixed-integer case,
i.e., n, d ≥ 1:

1. It would be nice to unify the lower bound for n = 0 (the continuous case) and n ≥ 1 (the truly mixed-
integer case). The proof below for n, d ≥ 1 is based on the feasibility question, which is why M and
ε do not appear in the lower bound. This is inspired by the proof technique in [14]. We do not see a
similar way to incorporate the objective function parameters to match the upper bound. We suspect

that one should be able to prove the stronger lower bound of Ω
(
d2n log

(
MR
ρε

))
, but at present we do

not see how to do this and we are not aware of any existing literature that achieves this.

2. When one plugs in n = 0 in the mixed-integer upper bound (n, d ≥ 1), one does not recover the
tight upper bound for n = 0; instead, the bound is off by a factor of d. We believe this can likely be
improved, for example, if Conjecture 4.6 below is proved to be true in the future. Then one would have

an upper bound of O
(

(n+ d)2n log
(
MR
ρε

))
in the mixed-integer case that more accurately generalizes

both the pure continuous (n = 0) and pure integer (d = 0) upper bounds.

4.1 Proof of the lower bounds in Theorem 4.2

The general strategy is the following: Given any adaptive query sequence D, we will construct two instances
(f1, C1), (f2, C2) ∈ In,d,R,M,ρ such that the transcripts Πk(D, (f1, C1)) and Πk(D, (f2, C2)) are equal for any
k less than the lower bound, but S((f1, C1), ε) ∩ S((f2, C2), ε) = ∅.

The mixed-integer case (n, d ≥ 1). We will show that icomp ε(n, d,R,M, ρ) ≥ d2n log2

(
R
3ρ

)
. We

construct C1, C2 ⊆ Rn × Rd such that C1 ∩ C2 ∩ (Zn × Rd) = ∅, both sets satisfy the strict feasibility
condition dictated by ρ, and any separation oracle query from D on C1 and C2 has the same answer. Our
instances will consist of these two sets as feasible regions and f1 = f2 as constant functions, thus any first-
order oracle query in D will simply return this constant value and 0 as a subgradient. Since there is no
common feasible point, S((f1, C1), ε) ∩ S((f2, C2), ε) = ∅ as required.

The construction of C1 and C2 goes as follows. Since the function oracle calls are superfluous, we
may assume the k (adaptive) queries {q1, . . . , qk} to be all separation oracle queries. Begin with X0 =
[0, 1]n × [0, R]d. We create a nested sequence X0 ⊇ X1 ⊇ X2 ⊇ . . . ⊇ Xk such that Xi ∩ ({x} × Rd) is a
fiber box (possibly empty) for any x ∈ {0, 1}n. Xi is defined inductively from Xi−1, using the query qi. For
every x̃ ∈ {0, 1}n, we maintain a counter #x̃(i) which will keep track of how many qj , j ≤ i queried a point
of the form (x̃, y) inside Xj−1 for some y ∈ Rd.

If qi queries (xi, yi) 6∈ Xi−1, then we simply report any hyperplane separating (xi, yi) from Xi−1 as the
answer to qi and define Xi = Xi−1. If qi queries (xi, yi) ∈ Xi−1 \ (Zn × Rd) (i.e., xi 6∈ Zn), we define
Xi = Xi−1 and the answer to the query qi is that (xi, yi) is in the set.

Suppose now (xi, yi) ∈ Xi−1 ∩ (Zn × Rd). If #xi(i − 1) ≥ d log2

(
R
3ρ

)
then we report a halfspace H

that separates Xi−1 ∩ ({xi} × Rd) from the rest of the fibers Xi−1 ∩ ({x} × Rd) for x 6= xi, and define
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Xi = Xi−1∩H. If #xi(i−1) < d log2

(
R
3ρ

)
then select the coordinate j = (#xi(i−1) mod d)+1 and define

the hyperplane {(x, y) ∈ Rn × Rd : yj = yij}. Let B denote the fiber box Xi−1 ∩ ({xi} × Rd). Consider the

separation with a halfspace Ĥ with this hyperplane such that B∩ Ĥ has length in coordinate j to be at least
half of the length B in coordinate j. We now rotate this hyperplane and halfspace Ĥ to obtain a halfspace
H such that Xi−1 ∩ H has the same intersection as Xi−1 with ({x} × Rd) for x 6= xi. In other words, all
other mixed-integer fibers in Xi−1 are maintained. Define Xi = Xi−1∩H and H as the separating halfspace
for query qi. Update #xi(i) = #xi(i− 1) + 1. Note that the above construction ensures inductively that for
any i ∈ {1, . . . , k}, the set Xi ∩ ({x} × Rd) is a fiber box for x ∈ {0, 1}n.

Since
∑
x∈{0,1}n #x(k) ≤ k < 2n · d log2

(
R
3ρ

)
, we observe that Xk contains a fiber box B of width at

least 3ρ. Thus, we can select two fiber boxes B1, B2 ⊆ B such that B1 ∩B2 = ∅, and B1 and B2 have width
ρ. For i = 1, 2, define Ci to be the convex hull of Bi and all the points queried by D that were reported to
be in the set. We observe that Ci ∩ (Zn×Rd) = Bi for i = 1, 2 and thus we have no common feasible points
in C1, C2. This completes the proof for d ≥ 1.

The pure integer case (d = 0). The proof proceeds in a similar manner to the mixed-integer case
(n, d ≥ 1) with X0 = [0, 1]n−1× [0, bRc] ⊆ Rn. The “fibers” are now {x}×{0, 1, . . . , bRc}. If k < 2n log2(R),
one can again construct C1, C2 ⊆ X0 such that C1 ∩ C2 ∩ Zn = ∅ by an inductive argument based on the
queries from D, and take f1, f2 as constant functions.

The pure continuous case (n = 0). We omit the proof as this has appeared in many different places
in the literature [28, 107–109]. The idea is very similar to what was presented above for the general mixed-
integer case. One proves that

icomp ε(d,R,M, ρ) ≥ max
{
d log2

(
R
3ρ

)
, d log2

(
MR
8ε

)}
≥ d log2( R3ρ )+d log2(MR8ε )

2

∈ Ω
(
d log

(
MR
ρε

))
.

If k < d log2

(
R
3ρ

)
one can appeal to the mixed-integer case above. In fact, there is no rotation of halfspaces

necessary as there are no integer fibers. If k < d log2

(
MR
8ε

)
, one constructs two different convex functions

f1, f2 while the feasible region can be taken to be [0, R]d in both cases. The details are a little more
complicated than the separation oracle case, since the function values and the subgradients have to be more
carefully engineered. We refer the reader to the references cited above for the details.

4.2 Proof of the upper bounds in Theorem 4.2

The idea of the upper bound hinges on a geometric concept that has appeared in several different areas of
mathematics, including convex geometry, statistics and theoretical computer science.

Definition 4.3. For any S ⊆ Zn × Rd with d ≥ 1, ν(S) will denote the mixed-integer volume of S, i.e.,

ν(S) :=
∑
x∈Zn

µd(S ∩ ({x} × Rd)),

where µd is the standard Lebesgue measure (volume) in Rd. If d = 0, we overload notation and use ν(S) to
denote the number of integer points in S, i.e., the counting measure on Zn.

Note that if S = C ∩ (Zn × Rd) for a compact convex set C ⊆ Rn × Rd, then ν(S) is finite.
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Definition 4.4. For any S ⊆ Zn × Rd and x ∈ Rn × Rd, define

hS(x) := inf
halfspace H :

x ∈ H

ν(S ∩H).

The set of centerpoints of S is defined as C(S) := argmaxx∈S hS(x).

The above concept was first defined in Timm Oertel’s Ph.D. thesis [111] and extensions were introduced
in [14]. We refer the reader to the thesis and the cited paper, and the references therein for structural
properties of hS and C(S). For our purposes, we will simply need the following result.

Theorem 4.5. Let C ⊆ Rn × Rd be any compact, convex set and let S = C ∩ (Zn × Rd). Then C(S) is

nonempty and hS(x̂) ≥ 1
2n(d+1)ν(S) for any centerpoint x̂. If n = 0, then hS(x̂) ≥

(
d
d+1

)d
ν(S) ≥ 1

eν(S).

The first bound in Theorem 4.5 was first established in [111] and is a special case of a general result
involving Helly numbers [14, Theorem 3.3]. The second bound (n = 0) is due to Grünbaum [79]. There is
clearly a gap in the two cases and the following sharper lower bound is conjectured to be true [14, 111]; a
matching upper bound is given by S = {0, 1}n ×∆d, where ∆d is the standard d-dimensional simplex.

Conjecture 4.6. Under the hypothesis of Theorem 4.5, hS(x̂) ≥ 1
2n

(
d
d+1

)d
ν(S) ≥ 1

2n
1
eν(S) for any n, d ≥ 0

(both not both 0) for any centerpoint x̂.

The final piece we need is the following consequence of a “strict feasibility” type assumption.

Lemma 4.7. Let 1 ≤ p ≤ ∞. Let C ⊆ Rk be a closed, convex set such that {z ∈ Rk : ‖z − a‖p ≤ ρ} ⊆ C ⊆
{z ∈ Rk : ‖z‖p ≤ R}, for some R, ρ ∈ R+ and a ∈ Rk. Let f : Rk → R be a convex function that is Lipschitz
continuous over {z ∈ Rk : ‖z‖p ≤ R} with respect to the ‖ · ‖p-norm with Lipschitz constant M . For any
ε ≤ 2MR and for any z? ∈ C, the set {z ∈ C : f(z) ≤ f(z?) + ε} contains an ‖ · ‖p ball of radius ερ

2MR with
center lying on the line segment between z? and a.

Proof. Since C ⊆ {z : ‖z‖p ≤ R}, we must have C ⊆ {z : ‖z − z?‖p ≤ 2R}. By convexity of C and the fact
that ε

2MR ≤ 1, z? + ε
2MR (C − z?) ⊆ C. Hence,

z? +
ε

2MR
(C − z?) ⊆ {z ∈ C : ‖z − z?‖p ≤

ε

M
} ⊆ {z ∈ C : f(z) ≤ f? + ε},

where the second containment follows from the Lipschitz property of f . Since C contains an ‖ · ‖p ball of
radius ρ centered at a, the set z? + ε

2MR (C − z?) (i.e., the ε
2MR scaling of C about z?) must contain a ball

of radius ερ
2MR centered at a point on the line segment between z? and a.

We now proceed with the proof of the upper bounds in Theorem 4.2.

The mixed-integer case with n, d ≥ 1. We consider the following adaptive search strategy. For any finite
subset T ⊆ Q×H (possibly empty), where Q is the set of all possible first-order or separation oracle queries
in [−R,R]n+d and H is the set of possible responses to such queries, define D(T ) as follows. Let z1, . . . , zq
be the points queried in T where either a first-order oracle call to a function was made, or a separation oracle
call was made that returned a separating hyperplane (i.e., the point is not in the set queried). Let hj be the
subgradient or normal vector to the separating hyperplane returned at zj , j = 1, . . . , q. Define vmin to be
the minimum function value seen so far (+∞ if no first order query exists in T ).

The next query for D will be at the centerpoint ẑ of the set{
z ∈ Zn × Rd :

〈hi, z − zi〉 ≤ 0 i = 1, . . . , q,
‖x‖∞ ≤ R

}
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If T is the transcript on an instance f, C, then the “search space” polyhedron P defined by the above
inequalities contains C ∩ {z : f(z) ≤ vmin}. D now queries the centerpoint of P ∩ (Zn × Rd) so that
any separating hyperplane or subgradient inequality can remove a guaranteed fraction of the mixed-integer
volume of the current search space. More formally, D first queries the separation oracle for C at ẑ. If the
separation oracle says ẑ is in C, then D queries the first-order oracle for f at ẑ.

Consider any instance I = (f, C) ∈ In,d,R,M,ρ and any natural number

k ≥ 2 ·

(
logb

((
2R+ 1

ρ

)n+d
)

+ logb

((
M(2R+ 1)

ε

)n+d
))

,

where b = 2n(d+1)
2n(d+1)−1 . We claim that at least one first-order oracle query appears in the transcript Πk(D, I)

and zmin ∈ S(I ′, ε) for every instance I ′ such that Πk(D, I ′) = Πk(D, I), where zmin is a point queried in
the transcript Πk(D, I) with the minimum function value amongst all points queried with a first-order query
on f in Πk(D, I). In other words, for any instance I ′ = (f ′, C ′) such that Πk(D, I ′) = Πk(D, I), we have
zmin ∈ C ′ and f ′(zmin)−OPT ≤ ε where OPT is the minimum value of f ′ on C ′. This will prove the result
since

2 ·
(

logb

((
2R+1
ρ

)n+d
)

+ logb

((
M(2R+1)

ε

)n+d
))

= 2(n+ d) logb

(
M(2R+1)2

ρε

)
= 2(n+ d) ln

(
M(2R+1)2

ρε

)
/ ln(b)

≤ 2(n+ d)2n(d+ 1) ln
(
M(2R+1)2

ρε

)
∈ O

(
(n+ d)d2n log

(
MR
ρε

))
First, let k′ be the number of queries in Πk(D, I) that were either first-order oracle queries on f or

separation oracle queries on C that returned a separating hyperplane, i.e., we ignore the separation oracle

queries on points inside C. Observe that k′ ≥ k/2 ≥ logb

((
2R+1
ρ

)n+d
)

+ logb

((
M(2R+1)

ε

)n+d
)

since a

query on any point in C is immediately followed by a first order query on the same point. Theorem 4.5
implies that each of these k′ queries reduces the mixed-integer volume of the current search space by at least
1/b. Recall that we start with a mixed-integer volume of at most (2R + 1)n+d and C contains a fiber box

of mixed-integer volume at least ρd ≥ ρn+d (since ρ ≤ 1). Thus, at most logb

((
2R+1
ρ

)n+d
)

queries can be

separation oracle queries and we have at least logb

((
M(2R+1)

ε

)n+d
)

first-order queries to f at points inside

C∩(Zn×Rd). Let k′′ denote the number of such queries, queried at z1, . . . , zk′′ with responses h1, . . . , hk′′ as
the subgradients and v1, . . . , vk′′ as the function values. Let vmin be the minimum of these function values,
corresponding to the query point zmin. Since zmin is feasible to C, if f ′, C ′ is any other instance with the
same responses to all queries in Πk(D, I), then zmin is feasible to C ′ as well. In fact, all the points z1, . . . , zk′′

are in C ′. We now verify that f ′(zmin) ≤ OPT + ε where OPT is the minimum value of f ′ on C ′∩ (Zn×Rd)
attained at, say z? = (x?, y?).

Let C ′′ = C ′∩({x?}×Rd) be the intersection of C ′ with the fiber containing z?. Consider the polyhedron

P̃ := {z : 〈hj , z − zj〉 ≤ 0 j = 1, . . . , k′′}.

Since we have been reducing the mixed-integer volume at a rate of 1/b, C ′ ∩ P̃ has mixed-integer volume
at most (2R + 1)n+d/bk

′
and therefore C ′′ ∩ P̃ has d-dimensional volume at most (2R + 1)n+d/bk

′
. Since

k′ ≥ logb

((
2R+1
ρ

)n+d
)

+ logb

((
M(2R+1)

ε

)n+d
)

, we must have bk
′ ≥

(
2R+1
ρ

)n+d

·
(
M(2R+1)

ε

)n+d

. Thus,

C ′′ ∩ P̃ has d-dimensional volume at most
(

ρε
M(2R+1)

)n+d

. We may assume ε
2MR ≤ 1, otherwise any feasible

solution is an ε approximate solution, and so is zmin. Since ρ ≤ 1 as well, this means ρε
M(2R+1) ≤ 1. Therefore,
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(
ρε

M(2R+1)

)n+d

≤
(

ρε
M(2R+1)

)d
<
(

ρε
2MR

)d
. From Lemma 4.7, {z ∈ C ′′ : f ′(z) ≤ f ′(z?) + ε} has volume at

least
(

ρε
2MR

)d
. Thus, at least one point ẑ in {z ∈ C ′′ : f ′(z) ≤ OPT+ε} must be outside C ′′∩P̃ . Such a point

must violate one of the subgradient inequalities defining P̃ , say corresponding to index j̃. In other words,
〈hj̃ , ẑ−zj̃〉 > 0. This means f ′(ẑ) ≥ f ′(vj̃)+〈hj̃ , ẑ−zj̃〉 > f ′(vj̃). Thus, f ′(zmin) ≤ f ′(vj̃) < f ′(ẑ) ≤ OPT+ε.

The pure integer case with d = 0. The proof proceeds in a very similar manner except that one can
stop when we have at most one integer point left in the polyhedral search space. Thus, we start from the
box [−R,R]n containing (2R + 1)n integer points and end with at most a single integer point, removing at
least 1

2n fraction of integer points every time by Theorem 4.5.

The pure continuous case with n = 0. The proof is very similar and the only difference is that we can
use the stronger bound on the centerpoints due to Grünbaum from Theorem 4.5. In other words, b can be
taken to be the Euler’s constant while mimicking the proof of the n, d ≥ 1 case above.

Remark 4.8. The upper and lower bounds achieved above are roughly a consequence of the concept of Helly
numbers [7, 18, 62, 81, 85, 122]. For any subset S ⊆ Rk, we say K1, . . . ,Kt is a critical family of convex sets
with respect to S (of size t) if K1 ∩ . . . ∩Kt ∩ S = ∅, but for any i ∈ {1, . . . , t}, ∩j 6=iKj ∩ S 6= ∅. The Helly
number of S is the size of the largest critical family with respect to S (possibly +∞). It turns out that the
Helly number of Zn×Rd ⊆ Rn+d is 2n(d+1) and there exists a critical family of halfspaces H1, . . . ,H2n(d+1)

of this size [7, 85]. Now consider the family of 2n(d + 1) polyhedra ∩j 6=iHj for i = 1, . . . , 2n(d + 1), along

with the polyhedron ∩2n(d+1)
j=1 Hj . If one makes less than 2n(d+ 1) separation oracle queries, then every time

we can simply report the halfspace Hj that does not contain a mixed-integer query point (such a halfspace

exists since ∩2n(d+1)
j=1 Hj ∩ (Zn × Rd) = ∅), and if the query point is not in Zn × Rd, we truthfully report if

it is in ∩2n(d+1)
j=1 Hj or not. The intersection of these reported halfspaces still contains a point from Zn × Rd

since it is a critical family and we have less than 2n(d+ 1) queries. Therefore, we are unable to distinguish

between the case ∩2n(d+1)
j=1 Hj which has no point from Zn × Rd and the nonempty case. This gives a lower

bound of 2n(d+ 1). As we saw in the proof of the upper bound above, the key result is Theorem 4.5 which
is based on Helly numbers again [14, 79, 111].

5 Algorithmic complexity

The upper bounds on ε-information complexity presented in Section 4 do not immediately give upper bounds
on algorithmic complexity, unless we can provide an algorithm for computing centerpoints. This is computa-
tionally extremely challenging [14, 111]. The best known algorithms for mixed-integer convex optimization do
not match the ε-information complexity bounds presented, even in terms of the informational bound icompA
(see Definition 1.7). We will present an ε-approximation algorithm for mixed-integer convex optimization
in this section whose information complexity bound is the closest known to the algorithm independent ε-
information complexity bound from the previous section. In the case of pure continuous optimization, i.e.,
n = 0, the algorithm’s information complexity is larger than the corresponding ε-information complexity
bound in Theorem 4.2 by a factor that is linear1 in the dimension d. In the case of pure integer optimization,
i.e., d = 0, the algorithm’s information complexity bound is 2O(n logn) log(R). Compared to the ε-information
complexity bound of 2O(n) log(R) from Theorem 4.2, there seems to be a significant gap. It remains a major
open question in integer optimization whether the gap between 2O(n) and 2O(n logn) can be closed or not by
designing a better algorithm.

The overall complexity (including the computational complexity) of the algorithm (see Definition 1.7)
will be seen to be a low degree polynomial factor larger than its information complexity.

1There is also a factor of log(d) which shows up due to technical reasons of using ‖ · ‖2 instead of ‖ · ‖∞.

15



5.1 Enumeration and cutting planes

Algorithms for mixed-integer convex optimization are based on two main ideas. The first one, called branch-
ing, is a way to systematically explore different parts of the feasible region. The second aspect, that of
cutting planes, is useful when one is working with a relaxation (superset) of the feasible region and uses
separating hyperplanes to remove parts of the relaxation that do not contain feasible points.

Definition 5.1. A disjunction for Zn×Rd is a union of polyhedra D = Q1∪ . . .∪Qk such that Zn×Rd ⊆ D.
For any set X in some Euclidean space, a cutting plane for X is a halfspace H such that X ⊆ H. If X

is of the form C ∩ (Zn × Rd), then the cutting plane is trivial if C ⊆ H, while it is said to be nontrivial
otherwise.

The words “trivial” and “nontrivial” are used here in a purely technical sense. For a complicated convex
set C, we may have a simple polyhedral relaxation R ⊇ C such as those used in the proofs of upper bounds
in Theorem 4.2, and the separation oracle for C can return trivial cutting planes that shave off parts of
R. But if the oracle is difficult to implement, there may be nothing trivial about obtaining such a cutting
plane. Our terminology comes from settings where C has a simple description and separating from C is
not a big deal; rather, the interesting work is in removing parts of C that do not contain any point from
X = C ∩ (Zn × Rd). We hope the reader will indulge us in our purely technical use of the terms trivial and
nontrivial cutting planes.

Example 5.2. 1. A well-known example of disjunctions for Zn × Rd is the family of split disjunctions
that are of the form {x ∈ Rn+d : 〈π, x〉 ≤ π0} ∪ {x ∈ Rn+d : 〈π, x〉 ≥ π0 + 1}, where π ∈ Zn × {0}d
and π0 ∈ Z. When the first n coordinates of π correspond to a standard unit vector, we get variable
disjunctions, i.e., disjunctions of the form {x : xi ≤ π0} ∪ {x : xi ≥ π0 + 1}, for i = 1, . . . , n. Several
researchers in this area have also considered the intersection of t different split disjunctions to get a
disjunction [46, 47, 99]; these are known as t-branch split disjunctions.

2. As mentioned above, for any convex set C contained in a polyhedron P , the separation oracle for C
can return trivial cutting planes if a point from P \C is queried. Examples of nontrivial cutting planes
for sets of the form C ∩ (Zn × Rd) include Chvátal-Gomory cutting planes [123, Chapter 23] and split
cutting planes [39]. These will be discussed in more detail below.

5.2 The “Lenstra-style” algorithm

Cutting plane based algorithms were designed in continuous convex optimization quite early in the de-
velopment of the subject [109]. In the 80s, these ideas were combined with techniques from algorithmic
geometry of numbers and the idea of branching on split disjunctions to design algorithms for the mixed-
integer case as well [78, 90, 98]. There has been a steady line of work since then with sustained improvements;
see [41, 80, 83, 92] for a representative sample. We will present here an algorithm based on these ideas whose
complexity is close to the best known algorithmic complexity for the general mixed-integer case.

We first introduce some preliminary concepts and results.

Definition 5.3. Given a positive definite matrix A ∈ Rk×k, the norm defined by A on Rk is ‖x‖A :=√
xTA−1x. The unit ball of this norm EA := {x : xTA−1x ≤ 1} is called an ellipsoid defined by A. The

orthonormal eigenvectors of A are called the principal axes.

The following result, due to Yudin and Nemirovski [129], is a foundational building block for the algorithm.

Theorem 5.4. [78, Lemma 3.3.21] Let A ∈ Rk×k be a positive definite matrix. For any halfspace H and
any 0 ≤ β < 1

k such that H does not contain βEA, there exists another positive definite matrix A′ and
c ∈ Rk such that EA ∩H ⊆ c+ EA′ and

vol(EA′) ≤ e−
(1−βk)2

5k vol(EA),

where vol(·) denotes the k-dimensional volume. Moreover, c and A′ can be computed from A by an algorithm
with complexity O(k2).
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We will also need the following fundamental result in geometry of numbers.

Theorem 5.5. [Khinchine’s flatness theorem for ellipsoids][8, 9, 121] Let E ⊆ Rk be an ellipsoid and c ∈ Rk
such that (c+ E) ∩ Zk = ∅. Then there exists w ∈ Zk \ {0} such that

max
v∈E

〈w, v〉 −min
v∈E
〈w, v〉 ≤ k.

The final piece we will need is the following algorithmic breakthrough achieved at the beginning of the
previous decade [2, 3, 104, 105]. We state the result in a way that will be most convenient for us.

Theorem 5.6. Let A ∈ Rk×k be a positive definite matrix. Then there exist algorithms with worst case
complexity 2O(k) poly(size(A)) that solve the following optimization problems:

min
v∈Zk\{0}

‖v‖A (Shortest Vector Problem (SVP))

and for any given vector c ∈ Rk,

min
v∈Zk

‖v − c‖A (Closest Vector Problem (CVP))

We are now ready to describe our algorithm. We begin with a feasibility algorithm before discussing
optimization. Given a closed, convex set, the algorithm either correctly computes a mixed-integer point in
the convex set, or reports that there is no mixed-integer point “deep inside” the set. Thus, the algorithm is
not an exact feasibility algorithm. Nevertheless, this will suffice to design an ε-approximation algorithm for
the problem class (3.1) parameterized by n, d,M,R, ρ, as studied in Section 4. However, since we work with
ellipsoids, the parameters R, ρ and the Lipschitz constant M will all use the ‖ · ‖2 norm instead of the ‖ · ‖∞
norm as in Section 4. Moreover, M is defined with respect to the full space Rn ×Rd, as opposed to just Rd.

Theorem 5.7. Let R ≥ 0. There exists an algorithm A, i.e., oracle Turing machine, such that for any
closed, convex set C ⊆ {z ∈ Rn × Rd : ‖z‖2 ≤ R} equipped with a separation oracle that A can access, and
any δ > 0, either correctly computes a point in C ∩ (Zn × Rd), or correctly reports that there is no point
z ∈ C ∩ (Zn × Rd) such that the Euclidean ball of radius δ around z is contained in C.

Moreover,
icompA(n, d,R, δ) ≤ 2O(n log(n+d)) log

(
R
δ

)
and

compA(n, d,R, δ) ≤ 2O(n log(n+d)) poly
(

log
(
R(n+d)

δ

))
Proof. The algorithm uses recursion on the “integer dimension” n.

Let c0 = 0 and E0 = {z : ‖z‖2 ≤ R}. The algorithm will either iteratively compute ci ∈ Rn × Rd and
ellipsoid Ei ⊆ Rn ×Rd from ci−1, Ei−1 for i = 1, 2, . . . such that the invariant C ⊆ ci +Ei is maintained, or
the algorithm will recurse on lower dimensional problems.

If vol(Ei−1) less than the volume of a Euclidean ball of radius δ, then we report that there is no point
z ∈ C ∩ (Zn × Rd) such that the Euclidean ball of radius δ around z is contained in C.

Otherwise, we either compute a “test point” (x̂, ŷ) ∈ Zn × Rd and generate the new ci, Ei based on
properties of this point (Cases 1 and 2a below), or recurse on lower dimensional subproblems (Case 2b
below).

Case 1: n = 0. Define (x̂, ŷ) to be ci−1. We query the separation oracle of C at (x̂, ŷ). If this point is in C,
we are done. Else, we obtain a separating halfspace H. Applying Theorem 5.4 with k = n + d and β = 0,

we can construct ci and Ei such that (ci−1 + Ei−1) ∩H ⊆ ci + Ei and vol(Ei) ≤ e−
1

5(n+d) vol(Ei−1). Note
that this ensures C ⊆ ci + Ei since inductively we know C ⊆ (ci−1 + Ei−1) ∩H.

Case 2: n ≥ 1. We compute the projections c′, E′ of ci−1, Ei−1 onto the coordinates corresponding to the
integers, i.e., Rn. This is easy to do for ci−1 (simply drop the other coordinates) and given the matrix Ai−1
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defining Ei−1, the submatrix A′ of Ai−1 whose rows and columns correspond to the integer coordinates is
such that EA′ is the projection of Ei−1. We now solve the closest vector problem (CVP) for c′ ∈ Rn and the
norm given by A′ ∈ Rn×n using the algorithm in Theorem 5.6 to obtain x̂ ∈ Zn.

Case 2a: ‖x̂− c′‖A′ ≤ 1
n+d+1 . In other words, x̂ ∈ c′+ 1

n+d+1E
′. Since c′, E′ are projections of ci−1, Ei−1

respectively, c′ + 1
n+d+1E

′ is the projection of ci−1 + 1
n+d+1Ei−1 by linearity of the projection map. Hence,

there must be ŷ ∈ Rd such that (x̂, ŷ) ∈ ci−1 + 1
n+d+1Ei−1. Therefore, if we compute argminy∈Rd ‖(x̂, y) −

ci−1‖Ai−1 which amounts to computing the minimizer of an explicit convex quadratic function in Rd (which
can be done analytically or via methods like conjugate gradient), we can find a point (x̂, ŷ) in ci−1 +

1
n+d+1Ei−1.

We query the separation oracle of C at (x̂, ŷ). If this point is in C, we are done. Else, we obtain a
separating halfspace H. Since (x̂, ŷ) is in ci−1 + 1

n+d+1Ei−1, this means ci−1 + 1
n+d+1Ei−1 is not contained

in H. Applying Theorem 5.4 with k = n + d and β = 1
n+d+1 , we can construct ci and Ei such that

(ci−1 + Ei−1) ∩ H ⊆ ci + Ei and vol(Ei) ≤ e
− 1

5(n+d)(n+d+1)2 vol(Ei−1). Note that this ensures C ⊆ ci + Ei
since inductively we know C ⊆ (ci−1 + Ei−1) ∩H.

Case 2b: ‖x̂− c′‖A′ > 1
n+d+1 . In other words, x̂ 6∈ c′ + 1

n+d+1E
′ which implies that c′ + 1

n+d+1E
′ has

no integer points since x̂ is the closest integer point to c′ in the norm ‖ · ‖A′ . Theorem 5.5 implies that there
exists w ∈ Zn \ {0} such that maxx∈E′ 〈w, x〉 −minx∈E′ 〈w, x〉 ≤ n(n+ d+ 1). Rearranging, this says that
maxx,x′∈E′〈w, x− x′〉 ≤ n(n+ d+ 1) and therefore

max
p∈2E′

〈w, p〉 = max
p∈E′+E′

〈w, p〉 = max
p∈E′−E′

〈w, p〉 ≤ n(n+ d+ 1),

where the equalities follow from the fact that E′ is convex and centrally symmetric about the origin. Standard
results in convex analysis involving polarity imply that ‖w‖Ã = maxp∈2E′〈w, p〉 where Ã := 1

4A
′−1. We

therefore compute the shortest vector w? ∈ Zn \ {0} by the algorithm in Theorem 5.6 with respect to the
norm ‖ · ‖Ã and we are guaranteed that

max
x∈E′

〈w?, x〉 − min
x∈E′

〈w?, x〉 ≤ n(n+ d+ 1).

All mixed-integer points must lie on the hyperplanes {(x, y) ∈ Rn × Rd : 〈w?, x〉 ∈ Z}. Moreover, since
C ⊆ E and E′ is the projection of E, it suffices to search over the “slices” of C given by C∩{(x, y) ∈ Rn×Rd :
〈w?, x〉 = m} for m = d〈w?, c′〉−n(n+ d+ 1)e, d〈w?, c′〉−n(n+ d+ 1)e+ 1, . . . , b〈w?, c′〉+n(n+ d+ 1)c. By
a change of coordinates in the integer constrained variables, these slices involve n− 1 integer variables and
we recurse on these subproblems. We also note that if there exists z ∈ C ∩ (Zn ×Rd) with a ball of radius δ
around z contained in C, then the slice containing z will also have the same property. Thus, if the algorithm
fails on all the slices, then the algorithm will indeed report correctly that there is no such point in C.2

Number of oracle calls and overall complexity. Within any particular level of the recursion, the

algorithm makes at most 5(n+ d)(n+ d+ 1)2 ln
((

R
δ

)n+d
)

iterations of constructing new ellipsoids in Case

1 or Case 2a. This is because we start with a ball of radius R, stop after the volume of the ellipsoid gets

smaller than the volume of a ball of radius δ, and the volume is reduced by a factor of at least e
− 1

5(n+d)(n+d+1)2

every time. Thus, at most 5(n+ d)(n+ d+ 1)2 ln
((

R
δ

)n+d
)

oracle calls are made within every level of the

recursion. The recursion over 2n(n+ d+ 1) subproblems leads to at most (2n(n+ d+ 1))n = 2O(n log(n+d))

subproblems. Putting everything together we obtain the bound stated in the theorem on the number of
separation oracle calls.

2A subtlety here is to make sure that one has access to a separation oracle for the lower dimensional subproblems. This is
not hard to implement given access to a separation oracle for C: given a point in the new space, one maps back to Rn × Rd

and queries the separation oracle there.
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There are two computation intensive steps beyond the separation oracle calls: 1) Computing ci, Ei from
ci−1, Ei−1 based on Theorem 5.4, and 2) Solving closest vector and shortest vector problems using the
algorithm in Theorem 5.6. The first has complexity O(n+ d)2 and the second has complexity 2O(n) times a
polynomial factor of the sizes of the matrices involved. Both 1) and 2) above may result in irrational numbers
if we perform exact computations. Since we wish to remain in the Turing machine model of computation,
one has to make sure that we can round these to a polynomial number of bits and the sizes of the numbers do
not grow exponentially. We omit these technical details from this presentation and refer the reader to [78].
Once all of this is taken into account, we obtain the bound on the overall complexity of the algorithm stated
in the theorem. Using these careful approximation techniques, the space complexity of the algorithm can
in fact be bounded by a polynomial in the parameters of the problem (note that the computational (time)
complexity is not polynomial) [69, 78].

Theorem 5.8. Consider the family of problems of the form (3.1) such that if (x?, y?) ∈ Zn × Rd is the
optimum solution, then there exists ŷ ∈ Rd and ρ > 0 such that {(x, y) : ‖(x, y) − (x?, ŷ)‖2 ≤ ρ} ⊆ C, i.e.,
there is a “strictly feasible” point (x?, ŷ) in the same fiber as the optimum (x?, y?) with a Euclidean ball of
radius ρ in Rn ×Rd around (x?, ŷ) contained in C. Let In,d,R,M,ρ be defined as in Section 4 for this family,
except that ‖ · ‖2 is used instead of ‖ · ‖∞ in the definition of the parameters R,M, ρ, and M is defined with
respect to the full space Rn × Rd, as opposed to just Rd.

Let the oracle access to an instance f, C in In,d,R,M,ρ be through a separation oracle for C and a first-
order oracle for f . Then for every ε > 0, there exists an ε-approximation algorithm A for this problem class
with

icompA(n, d,R,M, ρ) ≤ 2O(n log(n+d))
(

log
(
MR
ρε

))2

and
compA(n, d,R,M, ρ) ≤ 2O(n log(n+d)) poly

(
log
(
MR(n+d)

ρε

))
Proof. If ε > 2MR, then any feasible solution is an ε-approximate solution, so we may simply run the
feasibility algorithm from Theorem 5.7 with δ := ρ. Thus, we assume that ε

2MR ≤ 1.
We use a standard binary search technique to reduce the problem to a feasibility problem. In particular,

we use the algorithm in Theorem 5.7 to test if C ∩ {z : f(z) ≤ γ} = ∅ for some guess γ of the optimum
value OPT . Lemma 4.7 implies that for γ ≥ OPT + ε

2 , the set C ∩ {z : f(z) ≤ γ} contains a Euclidean ball
of radius δ := ρε

4MR centered at a mixed-integer point in Zn × Rd (note that because of our strict feasbiility
assumption both z? and a can be taken as mixed-integer points in the same fiber when applying Lemma 4.7).
Thus, for γ ∈ [OPT + ε

2 , OPT + ε], the algorithm in Theorem 5.7 will compute ẑ ∈ C ∩ (Zn × Rd) with
f(ẑ) ≤ γ ≤ OPT + ε.

Since the difference between the maximum and the minimum values of f over the Euclidean ball of radius
R is at most 2MR, we need to make at most log

(
4MR
ε

)
guesses for γ in the binary search. The result now

follows from the complexity bounds in Theorem 5.7.

Remark 5.9. For ease of exposition, we first presented a feasibility algorithm in Theorem 5.7 and then
reduced the optimization problem to the feasibility problem using binary search in Theorem 5.8. One can do
away with the binary search in the following way. If ε > 2MR, then any feasible solution is an ε-approximate
solution, so we may simply run the feasibility algorithm from Theorem 5.7 with δ := ρ. Otherwise, we follow
the feasibility algorithm from Theorem 5.7 with δ := ρε

2MR . Since δ ≤ ρ, the algorithm is guaranteed to visit
feasible points in Case 1 or 2a of the proof of Theorem 5.7. Once we find a feasible point, we can query
the first-order oracle of the objective function f at this feasible point. Any subgradient inequality/halfspace
that shaves off this point satisfies the condition in Theorem 5.4, similar to the analysis of Case 1 or 2a in
Theorem 5.7. One appeals to Theorem 5.4 to obtain a new ellipsoid with reduced volume and the algorithm
continues with this new ellipsoid. At the end, the algorithm selects the feasible point with the smallest
objective value amongst all the feasible points it visits. This is similar to the idea in the proof of the upper
bound in Theorem 4.2. Since the binary search is eliminated, one obtains a slightly better information

complexity of icompA(n, d,R,M, ρ) ≤ 2O(n log(n+d)) log
(
MR
ρε

)
.
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Remark 5.10. [Pure continuous case] Stronger results can be obtained in the pure continuous case, i.e.,
n = 0. First, in Case 1 of the algorithm, we use β = 0 instead of β = 1

n+d+1 , reducing the volume of the

ellipsoid by a factor e−
1

5(n+d) every time. Thus we make a factor of (n+d+1)2 less number of iterations in Case
1 of the proof of Theorem 5.7. Moreover, there is no recursion needed and thus, the algorithm’s information

complexity is O
(
d2 log

(
MR
ρε

))
with an additional computational overhead of O(d2) for computing the

new ellipsoids. This is the classical ellipsoid algorithm for convex optimization. Thus, one obtains an
ε-approximation algorithm for the optimization problem that differs only by a factor of the dimension d
from the ε-information complexity bound given in Theorem 4.23. Vaidya [127] designed an algorithm whose

information complexity matches Theorem 4.2’s ε-information complexity bound of O
(
d log

(
MR
ρε

))
, with the

same overall complexity as the ellipsoid algorithm. See [4, 89, 97] for improvements on the overall complexity
of Vaidya’s algorithm. Lemma 5.4 with β > 0 is also used in continuous convex optimization under the name
of the shallow cut ellipsoid method; see [78] for details.

Remark 5.11. [Pure integer case] For the pure integer case, i.e., d = 0 one can strengthen both Theorems 5.7
and 5.8 by removing the “strict feasibility” type assumptions. In particular, one can prove a variant of
Theorem 5.7 with an exact feasibility algorithm that either reports a point in C ∩ Zn or correctly decides
that C∩Zn = ∅. One observes that if the volume of the ellipsoid in Case 2a falls below 1

n! , one can be sure that
all integer points in C lie on a single hyperplane. This is because otherwise there are affinely independent
points x1, . . . , xn+1 ∈ C ∩ Zn and the convex hull of these points has volume at least 1

n! . Thus, we can
recurse on the lower dimensional problem. For more details see [41]. Another approach is to simply stop the
iterations in Case 2a when the ellipsoid has volume less than 1. Then one can show that there is a translate
of this ellipsoid that does not intersect Zn. Applying Theorem 5.5, one can again find n lower dimensional
slices to recurse on. This idea was explored in [112] for polyhedral outer and inner approximations. We thus
obtain an exact optimization algorithm with information complexity 2O(n log(n)) log(R) and overall complexity
2O(n log(n)) poly(log(nR)).

Remark 5.12. The information or overall complexity bounds presented in Theorems 5.7 and 5.8 are not the
best possible ones. There is a general consensus in the discrete optimization community that the right bound

is 2O(n logn) poly
(
d, log

(
MR
ρε

))
. Thus, the dependence on the dimensions n (number of integer variables)

and d (number of continuous variables) is 2O(n logn) poly(d) instead of 2n log(n+d) = (n + d)O(n). In other
words, the degree of the polynomial function of d is independent of n in the new stated bound.

How can this be achieved? Observe that if one could work with simply the projection of the convex set
on to the space of the integer variables, then one can reduce the problem to the pure integer case discussed
in Remark 5.11 (assuming one has at least some integer constrained variables; otherwise, one defaults to
Remark 5.10 for the continuous case). Indeed, this was the idea originally presented for the mixed-integer
linear case in Lenstra’s paper [98]. In the general nonlinear setting, this can be achieved if one can design a
separation oracle for projections of convex sets, given access to separation oracles for the original set, that
runs in time polynomial in n, d. This can be done via a result that is colloquially called “equivalence of
separation and optimization”. This circle of ideas roughly says the following: given access to a separation
oracle to a convex set, one can optimize linear functions over it in time that is polynomial in the dimension
of the convex set (and the parameters R, ρ, ε and the objective vector size), and conversely, if one can
optimize over the set one can implement a separation oracle by making polynomially many calls to the
optimization oracle. The first part of this equivalence is simply a restatement of Theorems 5.7 and 5.8; in
fact, one is only concerned with the continuous case. We refer the reader to [78, 101] for details on the full
equivalence. Coming back to projections: using the separation oracle for the original set, one can implement
an optimization oracle for it. This optimization oracle gives an optimization oracle over the projection since
optimizing a linear function over the projection is the same as optimizing over the original set. Using the

3There is a slight discrepancy because of the use of the ‖ ·‖∞-norm for the information complexity bound (see Theorem 4.2),
and the use of ‖ · ‖2-norm here. This adds a log(d) factor to the complexity of the ellipsoid algorithm, compared to the
information complexity bound. We are not aware of any work that resolves this discrepancy.
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equivalence, this gives a separation oracle for the projection. Now one can appeal to the arguments in
Remark 5.11.

However, all of these arguments are quite delicate and necessarily require very careful approximations.
Thus, while these arguments should in principle work, the author is not aware of any source in the literature
where all the tedious details have been fully worked out, except in the rational, linear case from Lenstra’s
original paper [98]. Our exposition here is considerably simpler because it avoids these technicalities, but
this is at the expense of the weaker bounds stated in Theorems 5.7 and 5.8. In Lenstra’s original way of
doing this, the equivalence of separation and optimization is not needed since he works directly with an
optimization oracle for (rational) linear programming for which an exact polynomial time algorithm has
been known since Khachiyan’s work [91], which builds on the ellipsoid algorithm discussed in Remark 5.10.
See [98] for more details.

Brief historical comments. The ideas presented in this section are refinements and improvements over
seminal ideas of Lenstra [98], and hence our tribute in the title of this section. His original 1983 paper
investigated the mixed-integer linear case, i.e., when C is a polytope and f is a linear function [98]. His
insights were soon extended to handle the general nonlinear case in [78]. Kannan [90] achieved a breakthrough

in the complexity bounds – improving from 2O(n3) dependence on the number of integer variables to 2O(n logn)

– by modifying the algorithm to recurse over lower dimensional affine spaces, as opposed to hyperplanes as
discussed above. We refer to [41, 80, 83, 92] for a representative sample of important papers since then. See
also Fritz Eisenbrand’s excellent survey chapter in [64]. To the best of the author’s knowledge, in the pure
integer case the sharpest constant in the exponent of 2O(n logn) is derived in Daniel Dadush’s Ph.D. thesis.
This requires the use of highly original and technically deep ideas [41].

5.3 Pruning, nontrivial cutting planes and branch-and-cut

The algorithm presented in Section 5.2 utilizes only trivial cutting planes (see Definition 5.1) and solves the
optimization problem by reducing to the feasibility problem via binary search. Modern solvers for mixed-
integer optimization utilize nontrivial cutting planes and also use a crucial ingredient called pruning. We
now present the general framework of branch-and-cut methods which incorporate both these techniques. The
algorithms in Section 5.2 will then be seen to be essentially special instances of such methods.

Definition 5.13. A family D of disjunctions is called a branching scheme. A cutting plane paradigm is a map
CP that takes as input any closed, convex set C and CP(C) is a family of cutting planes for C ∩ (Zn ×Rd).
CP(C) may contain trivial and/or nontrivial cutting planes, and may even be empty for certain inputs C.

Example 5.14. 1. Chvátal-Gomory cutting plane paradigm: Given any convex set C ⊆ Rn × Rd, define

CP(C) := {H ′ : H ′ = conv(H ∩ (Zn × Rd)), H rational halfspace with H ⊇ C}.

H ′ ∈ CP(C) is nontrivial if and only if H is of the form {(x, y) ∈ Zn×Rd : 〈a, x〉 ≤ b} for some a ∈ Zn
with relatively prime coordinates and b 6∈ Z, in which case H ′ = {(x, y) ∈ Zn × Rd : 〈a, x〉 ≤ bbc}.

2. Disjunctive cuts: Given any family of disjunctions (branching scheme) D, the disjunctive cutting plane
paradigm based on D is defined as

CP(C) := {H ′ halfspace : H ′ ⊇ C ∩D, D ∈ D}.

The collection of halfspaces H ′ valid for C ∩ D are said to be the cutting planes derived from the
disjunction D. These are valid cutting planes since Zn × Rd ⊆ D by definition of a disjunction, and
therefore C ∩ (Zn × Rd) ⊆ C ∩ D ⊆ H ′. A disjunction D produces nontrivial cutting planes for a
compact, convex set C if and only if at least one extreme point of C is not contained in D.

Remark 5.15. We obtain a specific branch-and-cut procedure once we specify the following things in the
framework above.
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Branch-and-cut framework based on a branching scheme D and cutting plane paradigm CP

Input: A closed, convex set C ⊆ Rn × Rd, a convex function f : Rn × Rd → R, error guarantee ε > 0, and
a relaxation X ⊆ Rn × Rd which is closed, convex and contains C.
Output: A point z? ∈ C ∩ (Zn × Rd) such that f(z?) ≤ OPT + ε, where OPT = inf{f(z) : z ∈ C}.

1. Initialize a set L = {X}. Initialize UB = +∞.
2. While L 6= ∅ do:

a. [Node selection] Select an element N ∈ L and update L := L \ {N}.
b. [Pruning] If it can be verified that inf{f(z) : z ∈ C ∩N} ≥ UB − ε, then continue the While loop.

Else, select a test point ẑ in N .
c. If ẑ ∈ C ∩ (Zn × Rd), obtain a subgradient h ∈ ∂f(ẑ) and add the subgradient halfspace
H = {z : 〈h, z − ẑ〉 ≤ 0} to all the elements in L, i.e., update N := N ∩H for all N ∈ L.
Additionally, if f(ẑ) < UB, then update UB = f(ẑ) and z? = ẑ.

d. If ẑ 6∈ C ∩ (Zn × Rd), decide whether to BRANCH or CUT.

If BRANCH, then choose a disjunction D = Q1 ∪ . . . ∪Qk in D such that ẑ 6∈ D.
Select sets (relaxations) N1, . . . , N2 such that N ∩Qi ⊆ Ni.
Update L := L ∪ {N1, . . . , Nk}.

If CUT, then choose a cutting plane H ∈ CP(C ∩N) such that ẑ 6∈ H.
Select a set N ′ such that N ∩H ⊆ N ′. Update L := L ∪ {N ′}.

1. In Step 2a., we must decide on a strategy to select an element from L. In the case of the algorithms
presented in Section 5.2, this would be the choice of a “slice” to recurse on.

2. In Step 2b., we must decide on a strategy to verify the condition inf{f(z) : z ∈ N} ≥ UB + ε. In the
case of the algorithms presented in Section 5.2, this is determined by a volume condition on N (which
is an ellipsoid). Another common strategy is used in linear integer optimization, where C ∩ N is a
polyhedron and linear optimization methods like the simplex method or an interior-point algorithm
is used to determine inf{f(z) : z ∈ C ∩ N}. More generally, one could have a convex optimization
subroutine suitable for the class of problems under study.

3. In Step 2b., inf{f(z) : z ∈ C ∩ N} < UB + ε and one must select a test point ẑ ∈ N and one must
have a procedure/subroutine for this. In the algorithms presented in Section 5.2, this was chosen as
the center of the ellipsoid in Step I, and in Step II it was chosen using the CVP subroutine (and a
convex quadratic minimization over the corresponding fiber if the CVP returned a point in the inner
ellipsoid). In most solvers, this test point is taken as an optimal or ε-approximate solution to the
convex optimization problem inf{f(z) : z ∈ C ∩N} or inf{f(z) : z ∈ N}.

4. In Step 2d., one must have a strategy for deciding whether to branch or to cut, and in either case have
a strategy for selecting a disjunction or a cutting plane. The decision to branch might fail because
there is no disjunction D in the chosen branching scheme D that does not contain ẑ. In such a case, we
simply continue the While loop. In the algorithms from Section 5.2, the disjunction family used was
the split disjunctions defined in Example 5.2: the “slices” can be seen as branching on the disjunctions
{(x, y) : 〈w, x〉 ≤ j} ∪ {(x, y) : 〈w, x〉 ≥ j + 1}.
If the decision is to add a cutting plane, one may add a trivial cutting plane valid for C ∩N , as was
done in the algorithms in Section 5.2. One may also fail to find a cutting plane that removes ẑ, because
either the cutting plane paradigm can produce no such cutting plane, i.e., CP(C ∩N) = ∅, or because
the strategy chosen fails to find such a cutting plane in CP(C ∩N) even though one exists. In such a
case, we simply continue the While loop.
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Finally, in Step 2d., we must have a strategy to select the relaxations N1, . . . , Nk if the decision is to
branch, or we must have a strategy to select a relaxation N ′ if the decision is to cut. In the algorithms
in Section 5.2, these relaxations were taken as ellipsoids.

5. If an algorithm based on the branch-and-cut framework above decides never to branch in Step 2d., it
is called a pure cutting plane algorithm. If an algorithm decides never to use cutting planes in Step
2d., it is called a pure branch-and-bound algorithm.

Remark 5.16. In most solvers, the relaxations Ni are simply taken to be N ∩Qi in a decision to branch,
and the relaxation N ′ is simply taken to be N ∩H in a decision to cut. However, as mentioned above, in the
algorithms from Section 5.2 we consider ellipsoidal relaxations of the N ∩H after a (trivial) cutting plane is
added, and ellipsoidal relaxations of the “slices”.

Does this help? In practice, pruning and nontrivial cutting planes make a huge difference [22, 23, 100].
Turning these off will bring most of the solvers to a grinding halt on even small scale problems. Nevertheless,
from a theoretical perspective, researchers have not been able to improve on the 2O(n log(n+d)) algorithm from
Section 5.2 by utilizing pruning and nontrivial cutting planes for the general problem; see [12, 60, 106] for
examples of positive results in restricted settings. Another empirical fact is that if branching is completely
turned off and only cutting planes are used, then again the solvers’ performance degrades massively. Recently,
some results have been obtained that provide some theoretical basis to these empirical observations that the
combination of branching and cutting planes performs significantly better than branching alone or using
cutting planes alone. We present some of these results now.

The next definition is inspired by the following simple intuition. It has been established that certain
branching schemes can be simulated by certain cutting plane paradigms in the sense that for the problem
class under consideration, if we have a pure branch-and-bound algorithm based on the branching scheme,
then there exists a pure cutting plane algorithm for the same class that has complexity at most a polynomial
factor worse than the branch-and-bound algorithm. Similarly, there are results that establish the reverse.
See [10, 11, 16, 43, 44, 67], for example. In such situations, combining branching and cutting planes into
branch-and-cut is likely to give no substantial improvement since one method can always do the job of the
other, up to polynomial factors.

Definition 5.17. Let I be a family of mixed-integer convex optimization problems of the form (3.1), along
with a size hierarchy (see Definition 3.1). To make the following discussion easier, we assume that the
objective function is linear. This is without loss of generality since we can introduce an auxiliary variable v,
introduce the epigraph constraint f(z) ≤ v and use the linear objective “inf v”.

A cutting plane paradigm CP and a branching scheme D are complementary for I if there is a family of
instances ICP>D ⊆ I such that there is a pure cutting plane algorithm based on CP that has polynomial
(in the size of the instances) complexity and any branch-and-bound algorithm based on D is exponential
(in the size of the instances), and there is another family of instances ICP<D ⊆ I where D gives a polyno-
mial complexity pure branch-and-bound algorithm while any pure cutting plane algorithm based on CP is
exponential.

We wish to formalize the intuition that branch-and-cut is expected to be exponentially better than
branch-and-bound or cutting planes alone for complementary pairs of branching schemes and cutting plane
paradigms. But we need to make some mild assumptions about the branching schemes and cutting plane
paradigms. All known branching schemes and cutting plane methods from the literature satisfy the following
conditions.

Definition 5.18. A branching scheme is said to be regular if no disjunction involves a continuous variable,
i.e., each polyhedron in the disjunction is described using inequalities that involve only the integer constrained
variables.
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A branching scheme D is said to be embedding closed if disjunctions from higher dimensions can be
applied to lower dimensions. More formally, let n1, n2, d1, d2 ∈ N. If D ∈ D is a disjunction in Rn1 ×Rd1 ×
Rn2 × Rd2 with respect to Zn1 × Rd1 × Zn2 × Rd2 , then the disjunction D ∩ (Rn1 × Rd1 × {0}n2 × {0}d2),
interpreted as a set in Rn1 ×Rd1 , is also in D for the space Rn1 ×Rd1 with respect to Zn1 ×Rd1 (note that
D ∩ (Rn1 × Rd1 × {0}n2 × {0}d2), interpreted as a set in Rn1 × Rd1 , is certainly a disjunction with respect
to Zn1 × Rd1 ; we want D to be closed with respect to such restrictions).

A cutting plane paradigm CP is said to be regular if it has the following property, which says that
adding “dummy variables” to the formulation of the instance should not change the power of the paradigm.
Formally, let C ⊆ Rn×Rd be any closed, convex set and let C ′ = {(x, t) ∈ Rn×Rd×R : x ∈ C, t = 〈f, x〉}
for some f ∈ Rn. Then if a cutting plane 〈a, x〉 ≤ b is derived by CP applied to C, i.e., this inequality is in
CP(C), then it should also be in CP(C ′), and conversely, if 〈a, x〉+ µt ≤ b is in CP(C ′), then the equivalent
inequality 〈a+ µf, x〉 ≤ b should be in CP(C).

A cutting plane paradigm CP is said to be embedding closed if cutting planes from higher dimensions
can be applied to lower dimensions. More formally, let n1, n2, d1, d2 ∈ N. Let C ⊆ Rn1 ×Rd1 be any closed,
convex set. If the inequality 〈c1, x1〉+ 〈a1, y1〉+ 〈c2, x2〉+ 〈a2, y2〉 ≤ γ is a cutting plane for C×{0}n2×{0}d2
with respect to Zn1 × Rd1 × Zn2 × Rd2 that can be derived by applying CP to C × {0}n2 × {0}d2 , then the
cutting plane 〈c1, x1〉+ 〈a1, y1〉 ≤ γ that is valid for C ∩ (Zn1 × Rd1) should also belong to CP(C).

A cutting plane paradigm CP is said to be inclusion closed, if for any two closed convex sets C ⊆ C ′, we
have CP(C ′) ⊆ CP(C). In other words, any cutting plane derived for C ′ can also be derived for a subset C.

Theorem 5.19. [11, Theorem 1.12] Let D be a regular, embedding closed branching scheme and let CP be
a regular, embedding closed, and inclusion closed cutting plane paradigm such that D includes all variable
disjunctions and CP and D form a complementary pair for a mixed-integer convex optimization problem
class I. Then there exists a family of instances in I such that there exists a polynomial complexity branch-
and-cut algorithm, whereas any branch-and-bound algorithm based on D and any cutting plane algorithm
based on CP are of exponential complexity.

The rough idea of the proof of Theorem 5.19 is to embed pairs of instances from ICP>D and ICP<D as
faces of a convex set such that a single variable disjunction results in these instances as the subproblems
in a branch-and-cut algorithm. On one subproblem, one uses cutting planes and on the other subproblem
one uses branching. However, since CP and D are complementary, a pure cutting plane or pure branch-and-
bound algorithm takes exponential time in processing one or the other of the faces. The details get technical
and the reader is referred to [11].

Example 5.20. We now present a concrete example of a complementary pair that satisfies the other condi-
tions of Theorem 5.19. Let I be the family of mixed-integer linear optimization problems described in point
2. of Example 1.3, with standard “binary encoding” oracles described in point 2. of Example 1.5 and size
hierarchy as defined in point 2. of Example 3.2. Let CP to be the Chvátal-Gomory paradigm (point 1. in
Example 5.14) and D to be the family of variable disjunctions (point 1. in Example 5.2). They are both
regular and D is embedding closed. The Chvátal-Gomory paradigm is also embedding and inclusion closed.

Consider the so-called “Jeroslow instances”: For every n ∈ N, max{
∑n
i=1 xi :

∑n
i=1 xi ≤

n
2 , x ∈

[0, 1]n, x ∈ Zn}. The single Chvátal-Gomory cut
∑n
i=1 xi ≤ b

n
2 c proves optimality, whereas any branch-

and-bound algorithm based on variable disjunctions has complexity at least 2b
n
2 c [88]. On the other hand,

consider the set Th ∈ R2, where Th = conv{(0, 0), (1, 0), ( 1
2 , h)} and consider the family of problems for h ∈ N:

max{x2 : x ∈ T, x ∈ Z2}. Any Chvátal-Gomory paradigm based algorithm has exponential complexity in
the size of the input, i.e., every proof has length at least Ω(h) [123]. On the other hand, a single disjunction
on the variable x1 solves the problem.

Example 5.20 shows that the classical Chvátal-Gomory cuts and variable branching are complementary
and thus Theorem 5.19 implies that they give rise to a superior branch-and-cut routine when combined,
compared to their stand-alone use. The Chvátal-Gomory cutting plane paradigm and variable disjunctions
are the most widely used pairs in state-of-the-art branch-and-cut solvers. We thus have some theoretical
basis for explaining the success of this particular combination.
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In [10, 11], the authors explore whether certain widely used cutting plane paradigms and branching
schemes form complementary pairs. We summarize their results here in informal terms and refer the two
papers cited for precise statements and proofs.

1. Lift-and-project cutting planes (disjunctive cutting planes based on variable disjunctions – see point
2. in Example 5.14) and variable disjunctions are not a complementary pair for 0/1 pure integer
convex optimization problems, i.e., C ⊆ [0, 1]n. Any branch-and-bound algorithm based on variable
disjunctions can be simulated by a cutting plane algorithm with the same complexity4. Moreover, there
are instances of graph stable set problems where there is a lift-and-project cutting plane algorithm
with polynomial complexity, but any branch-and-bound algorithm based on variable disjunctions has
exponential complexity. See Theorems 2.1 and 2.2 in [10], and results in [43, 44].

2. Lift-and-project cutting planes and variable disjunctions do form a complementary pair for general
mixed-integer convex optimization problems, i.e., C is not restricted to be in the 0/1 hypercube5. See
Theorems 2.2 and 2.9 in [10].

3. Split cutting planes (disjunctive cutting planes based on split disjunctions – see point 2. in Exam-
ple 5.14) and split disjunctions are not a complementary pair for general pure integer convex problems.
Any cutting plane algorithm based on split cuts can be simulated by a branch-and-bound algorithm
based on split disjunctions with the same complexity (up to constant factors)6. See Theorem 1.8 in [11].

Connections to proof complexity. Obtaining concrete lower bounds for branch-and-cut algorithms
has a long history within the optimization, discrete mathematics and computer science communities. In
particular, there is a rich interplay of ideas between optimization and proof complexity arising from the fact
that branch-and-cut can be used to certify emptiness of sets of the form P ∩{0, 1}n, where P is a polyhedron.
This question is of fundamental importance in computer science because the satisfiability question in logic
can be modeled in this way. We provide here a necessarily incomplete but representative sample of references
for the interested reader [16, 25, 26, 30, 32–38, 42–45, 61, 66, 67, 72, 73, 77, 86, 96, 117–120].

6 Discussion and open questions

Our presentation above necessarily selected a small subset of results in the vast literature on the complexity
of optimization algorithms, even restricted to convex mixed-integer optimization. We briefly discuss three
major areas that were left out of the discussion above.

Mixed-integer linear optimization. If we consider the problem class discussed in point 2. of Exam-
ple 1.3, with algebraic oracles as described in point 2. of Example 1.5, then our ε-information complexity
bounds from Theorem 4.2 to do not apply anymore. Firstly, we have a much more restricted class of prob-
lems. Secondly, the algebraic oracles seem to be more powerful than separation oracles in the following
precise sense. Using the standard size hierarchy on this class based on “binary encodings” discussed in point
2. of Example 3.2, a separation/first-order oracle can be implemented easily with the standard algebraic
oracle from Example 1.5 in polynomial time, but it is not clear if a separation oracle can implement the al-
gebraic oracle in polynomial time (see point 4. under “Open Problems” below). Moreover, the ε-information
complexity with respect to the algebraic oracle is bounded by the size of the instance, because once we know
all the entries of A,B, b, c, there is no ambiguity in the problem anymore. Nevertheless, it is well-known

4There is a technical problem that arises here between the notions of algorithm and proof. We have omitted all discussions
of cutting plane and branch-and-bound proofs here, which are powerful tools to prove unconditional lower bounds on these
algorithms. The precise statement is that any branch-and-bound proof based on variable disjunctions can be replaced by a
lift-and-project cutting plane proof of the same size. See [10] for details.

5“Lift-and-project cuts” here mean disjunctive cutting planes based on the variable disjunctions (typically the phrase “lift-
and-project” is reserved for 0/1 problems).

6The same caveat as in point 1. regarding algorithms versus proofs applies.
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that the problem class is NP -hard [71]. Therefore, unless P = NP , the computational complexity of any
algorithm for this class is not polynomial and under the so-called exponential time hypothesis (ETH), it is
expected to be exponential.

Nevertheless, several rigorous complexity bounds have been obtained with respect to difference parame-
terizations of this problem class. We summarize them here with pointers to the references. We note here that
the algorithms presented in Section 5.2 are variants of an algorithm that was designed by Lenstra for this
problem class of mixed-integer linear optimization [98]. We discuss below approaches that are completely
different in nature.

1. Dynamic programming based algorithms. We restrict to pure integer instances, i.e., d = 0 and assume
all the entries of A, b, c are integer. We parameterize such instances by three parameters n,m,∆,W .
Im,n,∆,W are those instances with dimension is at most n, where A has at most m rows, the absolute
values of the entries of A are bounded by ∆, and the absolute values of b are bounded by W . In
this setting, Papadimitriou designed a dynamic programming based algorithm with complexity O((n+
m)2m+2(m · max{∆,W})(m+1)(2m+1)) [115]. This was improved recently to O((m∆)m · (n + m)3W )
by Eisenbrand and Weismantel by a clever use of the so-called Steinitz lemma [124]. Subsequent
improvements were achieved by Jansen and Rohwedder [87]. Matching lower bounds, subject to the
exponential time hypothesis, have been established in [68, 93].

2. Fixed subdeterminants. Restricting to pure integer instances with integer data as in the previous point,
another paramterization that has been considered is by n,m,∆, where Im,n,∆ are those instances with
dimension is at most n, where A has at most m rows, the absolute values of n× n subdeterminants of
A are bounded by ∆. When ∆ = 1, a classical result in integer optimization shows that one can simply
solve the linear optimization problem to obtain the optimal integer solution [123]. In 2009, Veselov
and Chirkov showed that the feasibility problem can be solved in polynomial time when ∆ = 2 [128],
and the optimization version was resolved using deep techniques from combinatorial optimization by
Artmann, Weismantel and Zenkulsen in [6]. See also related results for general ∆ in [5, 13, 74–76, 114].

3. Parameterizations based on the structure of A. Over the past 25 years, a steady line of research has
used algebraic and combinatorial techniques to design algorithms for pure integer optimization that
exploit the structure of the constraint matrix A. Several parameters of interest have been defined
based on different structural aspects of A. Listing all the literature here is impossible. Instead, we
point to [19, 40, 48, 65, 102, 113] and the references therein as excellent summaries and starting
points for exploring this diverse field of research activity. An especially intriguing aspect of these
algorithms is that they search for the optimal solution by iteratively moving from one feasible solution
to a better one. In contrast, the “Lenstra-style” algorithm presented in Section 5.2 approaches the
optimal solution “from outside” in a sense by constructing outer (ellipsoidal) approximations. Thus,
the newer algebraic and combinatorial algorithms are more in the spirit of interior point methods in
nonlinear optimization. Exploring the possibility of a unified “interior point style” algorithm for convex
mixed-integer optimization would contribute further to bridging the continuous and discrete sides of
mathematical optimization.

Mixed-integer polynomial optimization. Instead of linear constraints and objectives as in MILPs, one
can consider the problem with polynomial constraints and objective. The standard oracle is algebraic as well
in the sense that one can query for the value of a coefficient in a constraint or the objective. The literature
on this problem is vast and touches on classical fields like algebraic geometry and diophantine equations. In
fact, Hilbert’s 10th problem in his famous list of 23 problems presented before the International Congress of
Mathematicians in 1900 asks for the construction of an algorithm that solves polynomial equations in integer
variables [82]. This problem was proven to be undecidable in a line of work spanning several decades [103].
Thus, while the completely general mixed-integer polynomial optimization problem cannot be solved algo-
rithmically, an enormous literature exists on restricted versions of the problem. For example, with no integer
variables we enter the realm of real algebraic geometry or the existential theory of reals where the problem
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is decidable; see [15] with references to a rich literature. Thus, if one has or can infer finite bounds on the
integer constrained decision variables, then the undecidability issues go away since one can enumerate over
the integer variables and reduce to the existential theory of reals. The literature is too vast to summarize
here; instead, we point the reader to the excellent survey [95] and the textbook expositions in [19, 48, 113],
along with the references therein. Some recent progress has appeared in [20, 49–59, 84].

Continuous convex optimization. The information and algorithmic complexity of continuous convex
optimization presented in Sections 4 and 5 barely touch the vast literature in this area. For instance, instead
of parameterizing by d,M,R, ρ, modern day emphasis is placed on “dimension independent” complexity.
For instance, if one focuses on unconstrained minimization instances and parameterizes the class with only
two parameters: a parameter M that is usually related to the Lipschitz constant of the objective function
or its derivatives (if we further restrict to (twice) differentiable functions), and R is a parameter that says
the optimal solution is contained in a Euclidean ball of radius R. It is important to note that the dimension
is not part of the parameterization. In the nonsmooth case, one can establish matching upper and lower
bounds of O

(
MR
ε2

)
on the information complexity of a broad class of iterative ε-approximation algorithms.

These can be improved to O
(
MR√
ε

)
in the smooth case. We will fail to do justice to this enormous and active

area of research in this manuscript and instead point the reader to the excellent monographs [29, 110].

Nonconvex continuous optimization. The complexity landspace for nonconvex continuous optimiza-
tion has recently seen a lot of activity and has reached a level of development paralleling the corresponding
development in convex optimization complexity. Here the solution operator S(I, ε) typically is defined as
ε-approximate stationary points or local minima; for instance, in the smooth unconstrained case, S(I, ε) is
the set of all points where the gradient norm is at most ε. We recommend the recent thesis of Yair Carmon
for a fantastic survey, pointers to literature and several new breakthroughs [31].

Open Questions

1. As mentioned at the beginning of Section 5.2, a major open question in mixed-integer optimization is
to bridge the gap of 2O(n) log(R) tight bound on the information complexity and the 2O(n logn) log(R)
algorithmic complexity of Lenstra style algorithms presented in Section 5.2, for pure integer optimiza-
tion. It seems that radically new ideas are needed and Lenstra style algorithms cannot escape the
2O(n logn) barrier.

2. Closing the gap between the lower and the upper bounds for ε-information complexity in Theorem 4.2
for the truly mixed-integer case, i.e., n, d ≥ 1 seems to be a nontrivial problem. See the discussion after
the statement of Theorem 4.2 for the two different sources of discrepancy. In particular, Conjecture 4.6
seems to be a very interesting question in pure convex/discrete geometry. It was first stated in Timm
Oertel’s thesis [111], and the thesis and [14] contain some partial results towards resolving it. Further,
taking into account the sizes of the responses to oracle queries merits further study. To the best of our
knowledge, tight lower and upper bounds are not known when the size of the responses are taken into
account, i.e., when one uses the strict definition of ε-information complexity as in Definition 1.7 of this
paper. Finally, we believe that the study of ε-information complexity of optimization with respect to
oracles that are different from subgradient oracles is worth investigation.

3. The mixed-integer linear optimization problem class (point 2. in Example 1.3) can be accessed through
two different oracles: the standard algebraic one described in point 2. of Example 1.5, or a separation
oracle. Assuming the standard size hierarchy obtained from the binary encoding sizes, it is not hard to
implement a separation oracle using the algebraic oracle with polynomially many algebraic oracle calls.
However, it is not clear if the algebraic oracle can be implemented in polynomial time by a separation
oracle. Essentially, one has to enumerate the facets of the polyhedral feasible region P ⊆ Rk, which
is equivalent to enumerating the vertices of the polar P ? (after finding an appropriate center in P –
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see [101, Lemma 2.2.6]). This can be done if we have an optimization oracle for P ? since one can
iteratively enumerate the vertices by creating increasingly better inner polyhedral approximations.
Roughly speaking, one maintains the current list of enumerated vertices v1, . . . , vt of P ? and also
an inequality description of conv({v1, . . . , vt}). Now we optimize over P ? in the direction of all the
inequalities describing conv({v1, . . . , vt}). If conv({v1, . . . , vt}) ( P ?, then at least one new vertex will
be discovered and we can continue the process after reconvexifying. An optimization oracle for the polar
P ? can be implemented in polynomial time because we have a separation oracle for P [78, 101, 123]. The
only issue is that conv({v1, . . . , vt}) may need tk inequalities in its description, which is not polynomial
unless we consider the dimension k to be fixed. It would be good to resolve whether the separation
and algebraic oracles for mixed-integer linear optimization are polynomially equivalent.

4. Theorem 5.19 shows that a complementary pair of branching scheme and cutting plane paradigm
can lead to substantial gains when combined into a branch-and-cut algorithm, as opposed to a pure
branch-and-bound or pure cutting plane algorithm. Is this a characterization of when branch-and-cut
is provably better? In other words, if a branching scheme and cutting plane paradigm are such that
there exists a family of instances where branch-and-cut is exponentially better than branch-and-bound
or cutting planes alone, then is it true that the branching scheme and the cutting plane paradigm are
complementary? A result showing that branch-and-cut is superior if and only if the branching scheme
and cutting plane paradigm are complementary would be a tight theoretical characterization of this
important phenomenon. While this general question remains open, a partial converse to Theorem 5.19
was obtained in [11]:

Theorem 6.1. [11, Theorem 1.14] Let D be a branching scheme that includes all split disjunctions
and let CP be any cutting plane paradigm. Suppose that for every pure integer instance and any
cutting plane proof based on CP for this instance, there is a branch-and-bound proof based on D of
size at most a polynomial factor (in the size of the instance) larger. Then for any branch-and-cut proof
based on D and CP for a pure integer instance, there exists a pure branch-and-bound proof based on
D that has size at most polynomially larger than the branch-and-cut proof.
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