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Abstract—Microfluidic platforms have recently emerged as an
invaluable component for studying synthetic biology as they are
capable of emulating complex molecular networks of biological
pathways (biocircuits) on a chip. A special type of biochemical
assays, known as biocircuit-regulatory scanning (BRS) assays, are
employed to regulate gene expression, enabling comprehensive
exploration of related biocircuit parameters. Prior work has
provided high-level design methodologies for implementing BRS;
however, most of these methods are abstract and cannot be
used in practice as they overlook the dynamics of interactions
between the samples and the biochip. In this paper, we address
this limitation by providing a comprehensive framework that
implements BRS assays. The proposed framework, named BioScan,
includes: (1) a statistical method that selects suitable volumetric
ratios of biochemicals used to execute a BRS assay; (2) a high-
level synthesis method that generates the specifications of the target
BRS assay; (3) a translation technique enabling implementation
of BRS on a microelectrode dot-array (MEDA) biochip; (4) a
Dirichlet-regressor that constructs the parameter space of the
associated biocircuit. Simulation results show that the proposed
framework can efficiently perform parameter-space exploration
while significantly reducing completion time and reagent cost.

Keywords—Sample Preparation, MEDA Biochip, Synthesis Bi-
ology, Droplet Aliquoting, Microfluidics

I. INTRODUCTION

Synthetic biology has emerged over the past decade with
the goal of creating biological parts that can perform new
and useful functions. Applications of synthetic biology include
environmental monitoring, production of therapeutics, creation
of new material, etc [1]. Such applications can be implemented
via synthetic biocircuits [2]. Several biocircuits have been
developed in the laboratories, including but not limited to bio-
logic gates [3], bio oscillators [4] and genetic memory [5].

An example of a biocircuit is shown in Fig. 1, which is used
to maintain certain bacterial cell density lower than the limits
imposed by the environment (i.e., nutrient supply). Protein “I”
(from the LuxI transcriptional regulator) synthesizes a small,
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Fig. 1: A population-control circuit based on cell-cell commu-
nication (adapted from [6]).

diffusible acyl-homoserine lactone (AHL) signalling molecule.
When the bacterial cell density increases, AHL accumulates in
the experimental medium. At a sufficiently high concentration,
AHL molecules will bind and activate the LuxR transcriptional
regulator. The outcome protein “R” will activate the expression
of a “Killer” gene to produce protein “K”. A sufficiently high
level of protein “K” causes the death of a bacterial cell.

In order to fully understand the relationship between circuit
function and the regulatory parameters, biologists need to
carry out parameter-space exploration (PSE) [2] by checking
all possible combinations of biocircuit parameters. While im-
plementing PSE, a large number of mixtures with different
proportions of components (denoted as Mi) are generated. A
mixture consists of multiple reagents with a predefined ratio of
concentration factors (CFs). The CF of a reagent Rj in mixture
Mi is defined as cf(i,j) = V (Rj)/V (Mi), in which V (Mi) is
the volume of Mi, and V (Rj) is the volume of Rj in Mi. The
combination of CF values for all reagent in a mixture is referred
to as a CF profile.

The generation of mixtures with certain CF-profiles that
exhausts possible combinations under certain constraints (i.e.,
finite sampling of an infinite space), is referred to as biocircuit-
regulatory scanning (BRS). For example, to study the parameter
space of the biocircuit in Fig. 1, we can generate three mixtures
M1, M2, and M3, as shown in Fig. 2. Each mixture consists
of four types of reagents: (i) R1 that modulates the cell density
(P1), (ii) R2 that modulates the medium pH value (P2), (iii) R3

that modulates the concentration of hydrolytic enzymes (P3),
and (iv) distilled water R4 that is added to keep the droplet
volume constant. The CF profiles of three mixtures are shown
in Fig. 2. For simplicity, let R1 have a fixed CF value of 0.2
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Fig. 2: CF profiles of three mixtures M1, M2 and M3, and the
corresponding CF space.

for all mixtures (i.e., CF (i, 1) = 0.2, ∀i), but the CF values of
R2, R3, and R4 are different. In this case, the CF profiles of
three mixtures are mapped to three points in a 2D CF space;
see Fig. 2. These mixtures are incubated and then analyzed
using fluorescence detectors to detect fluorescent protein (i.e.,
examine the performance of the biocircuit).

A mixture can be represented by a point in CF space, and
by generating numerous mixtures, we are able to explore CF
space and find the optimal range that yields good performance
for the biocircuit. However, this approach is cost-prohibitive,
especially with the exponential growth in the number of pa-
rameters. Therefore, a major challenge is the development of
a systematic methodology that enables dense scanning of CF
space. This methodology, moreover, requires an experimental
framework that offers fine-grained mixing capabilities to enable
biochemical composition of CFs. Recently, a framework based
on a flow-based microfluidic biochip has enabled PSE for the
biocircuit [7]. Despite the novelty of this design, it suffers from
the following drawbacks:
(1) The flow-based solution performs passive mixing, which is
much slower than other active mixing schemes [8], [9].
(2) As the number of reagents is varied, new sets of configu-
ration parameters must be computed. Such a process is time-
consuming, and it can pose a significant challenge when a large
number of reagents is involved.
(3) Because of viscosity and other issues, it may not be
convenient to handle dense fluids with low content of distilled
water (DW) using a flow-based chip. Thus, some portions of
the CF-space cannot be uniformly sampled.

Prior work has provided high-level design methodologies
for implementing BRS on micro-electrode-dot-array (MEDA)
biochips [7]. However, this method is abstract and cannot be
used in practice as it overlooks the dynamics of interactions be-
tween the samples and the biochip. In this paper, we address this
limitation by presenting a comprehensive framework that imple-
ments BRS assays. The proposed framework, named BioScan,
includes: (i) a statistical method that selects suitable volumetric
ratios of biochemicals used to execute a BRS assay; (ii) a
high-level synthesis method that generates the specifications of
the target BRS assay; (iii) a physical-level mapping technique
for implementing BRS on a microelectrode dot-array (MEDA)
biochip; (iv) a Dirichlet-regressor that constructs the parameter
space of the associated biocircuit. Simulation results show that
the proposed framework can efficiently implement parameter-
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Fig. 3: Experimental demonstration of a droplet-aliquot opera-
tion [10]: (a) two droplets are with unequal volumes; (b) aliquot
droplet extracted from D1 combines with D2; (c) two droplets
are with equal volumes.

space exploration while significantly reducing completion time
and reagent cost.

The rest of the paper is organized as follows. Section II
presents an overview of the MEDA biochip and the droplet-
aliquot operation. Section III introduces the proposed BioScan
framework and present the sampling method used in the frame-
work. Section IV describes the high-level synthesis method,
droplet aliquoting constraints and the problem formulation of
the physical-level synthesis problem. Next, Section V introduces
the proposed physical-level synthesis method. Simulation results
and evaluations are presented in Section VI. Finally, Section VII
concludes the paper.

II. PRELIMINARIES

In this section, we present an overview of MEDA biochips
and prior sample-preparation methods.

A. MEDA Biochips and Droplet Aliquoting

Micro-Electrode-Dot-Array (MEDA) is a biochip platform
that is consisted of micro-electrode arrays. In contrast to conven-
tional Digital Microfluidic Biochips (DMFBs), MEDA biochips
can provide real-time capacitive sensing to detect the property
(droplet- property sensing) and the location (droplet-location
sensing) of the droplet [10], [11]. Droplet aliquot is an operation
on the MEDA platform (and not feasible on a conventional
DMFB) that allows us to derive a smaller droplet from a larger
one. This operation can be used to adaptively recover from
erroneous splitting in an efficient way.

For example, suppose a parent droplet is split into two child
droplets D1 and D2. If the size of D1 is larger than D2, a small
“aliquot” droplet Da can be extracted from D1 and be merged
with D2. As a result, the volumetric difference between D1 and
D2 can be reduced to an acceptable level. This fluidic operation
can only be achieved on MEDA and is referred to as a “droplet-
aliquot” operation. It has been validated by experiments, and
the illustration of this fluidic operation is shown in Fig. 3.
The size of D1 and D2 are initially 27 and 22 (the unit is
microelectrodes), respectively. Next, an “aliquot” droplet Da (2
microelectrode in size) is extracted from D1, and merged with
D2. After that, the resultant size of D1 and D2 are 25 and 24,
respectively. The volumetric difference is reduced from 5 to 1
after the “droplet aliquot” operation.
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Fig. 4: An illustration of the BioScan framework. The critical
steps are: (1) CF space sampling; (2) high-level synthesis; (3)
physical-level synthesis.

B. Previous Sample-Preparation Methods

Early research on sample preparation focused on optimizing
the dilution process for a single sample with the goal of
minimizing the amount of waste droplets [12]–[14]. In [10], the
process of sample dilution has been optimized using the (M:N)
mixing model offered by MEDA. However, these methods are
not capable of handling mixtures that contain three or more
reagents.

To support dilution gradients in quantitative analysis,
multi-target sample-preparation techniques have been intro-
duced [15]–[17]. These techniques generate multiple droplets
of the same sample, but with different concentration levels.
Each droplet therefore contains only a sample and a buffer
solution. However, these methods are limited to (1:1) mixing
and they cannot support the preparation of multiple mixtures
that constitute a large number of reagents.

For producing a desired multi-reagent mixture, synthesis
methods have been developed to generate a bottom-up mixing
tree that encodes the successive composition of reagent volumet-
ric ratios [18], [19]. These methods can be easily adapted to our
space-exploration problem by running multiple iterations of the
algorithm; every iteration specifies the mixing of an individual
mixture. This approach, however, may lead to a significant
increase in the amount of waste droplets and in the protocol
completion time.

To make DMFBs useful for dense PSE in synthetic biology,
we need a new top-down synthesis methodology that allows
concurrent production of several mixtures with maximum pre-
cision, especially in the presence of reagent-usage constraints.

III. SAMPLING OF CONCENTRATION FACTOR SPACE

In this section, we first introduce the proposed BioScan
framework. Next, we present a method of stratified sampling

and explain the mapping to the CF space.

A. The BioScan Framework

An illustration of the BioScan PSE framework is shown
in Fig. 4. First, to enable systematic scanning of CF space,
a statistical sampling approach is used to generate N points
in CF space, where N is initially specified by the user. By using
this sampling scheme, the scanning process is ensured to cover
all regions of CF space with equal probability (i.e., maximizing
space filling). Second, after N CF profiles are sampled from CF
space, an integer linear programming (ILP)-based high-level
synthesis method is presented to specify the mixture-production
strategy for all the samples on a MEDA biochip. This method
can be optimized to reduce the usage of reagents and to maxi-
mize the precision of the mixture-production process. Third, the
mixture-production strategy is implemented on MEDA using
physical-level synthesis and data related to gene-expression
analysis for all N samples is collected using on-chip sensors.
From a design-automation perspective, it suffices to “simulate”
the behavior of gene expression to generate appropriate gene-
expression labels. Finally, the obtained data is processed using
regression analysis to derive the model that represents the
parameter space.

A potential drawback of this iterative approach is that repet-
itive generation of new sets of mixtures may lead to significant
reagent usage; thus leading to an increased cost. A solution
to this problem is to generate the new mixtures not only
using reagents stored on chip, but also by exploiting mixtures
generated during previous iterations of PSE. This approach may
reduce reagent usage, which is useful especially in settings
where reservoir storage is constrained. This scheme, however,
is computationally challenging and therefore it needs to be
designed carefully through proper modeling and synthesis.

B. Stratified Sampling: Latin Hypercubes

Consider an rg-dimension continuous space X , in which each
point X in the space is defined as X = {x1, x2, ..., xrg}. If we
select a total of tm samples {X1, X2, ..., Xtm} ⊂ X , where
Xi = {x(i,1), x(i,2), ..., x(i,rg)} (1 ≤ i ≤ tm), the Euclidean
maximin distance is defined as:

Em(X ) = min{E(Xi, Xj) : Xi 6= Xj , X ∈ X} (1)

A larger value of Em indicates that the distance between the
closest points provides a better space-filling. We are seeking a
collection of tm samples that gives us a larger value of Em.

It is known that pseudo-random sampling (PRS) methods
such as Monte Carlo sampling may result in poor space fill-
ing [20]. We overcome this limitation by using a classical strat-
ified sampling technique known as Latin Hypercube sampling
(LHS) [21], which divides the range of each dimension into tm
equally probable strata and samples once from each stratum.
LHS can be further enhanced by dividing the sampling space
into ls equally probable subdivisions, and the value of ls is
equal to the number of samples; such a method is known
as Orthogonal Array-based Latin Hypercube Sampling (OA-
LHS) [22]. Fig. 5 shows the PRS, the LHS, the OA-LHS
methods for nine samples in a 2-D space (i.e., rg = 2, tm = 9).
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Fig. 5: Sampling nine points in a 2-D space using: (a) random
sampling, (b) Latin Hypercube sampling (LHS), (c) Orthogonal
Array-based Latin Hypercube Sampling (OA-LHS).
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Fig. 6: Mapping OA-LHS-sampled data to simplex CF space:
(a) graphical representation of 1-simplex and 2-simplex; (b)
scaling-based mapping leads to poor space filling; (c) Dirichlet-
based mapping (α = 3) preserves enhanced space filling.

In an rg-dimension CF space, a total of tm CF profiles
are selected for a set of mixtures {M1,M2, ...,Mtm}. The
CF profiles {CF (M1), CF (M2), ..., CF (Mtm)} are defined
as CF (Mi) = {cf(i,1), cf(i,2), ..., cf(i,rg)}, ∀i ∈ {1, 2, ..., tm}.
However, different from the X space described above, the
sample points (i.e., CF profiles) should satisfy the following two
constraints: (1) 0 ≤ cf(i,j) < 1, ∀(i, j) and (2)

∑rg
j=1 cf(i,j) =

1, ∀i). The CF space can be graphically represented using a sim-
plex that is formed using a barycentric coordinate system [23].
Fig. 6(a) depicts the shapes of 1-simplex (2-D space) and 2-
simplex (3-D space).

However, OA-LHS method can not be directly used in the
CF space. To adapt OA-LHS to the “simplex” CF space, we
seek a mapping function that is defined as fm : X → CF . A
trivial implementation of fm is to uniformly sample points in
the space X using OA-LHS then re-scale the points using the
relation cf(i,j) = x(i,j)/

∑rg
j=1 x(i,j); this method is referred

to as scaling-based mapping . However, this approach severely
degrades space filling since it tampers with the stratification
property; see Fig. 6(b).

We develop an alternative implementation of fm that does not
change the uniformity of the sampling by using the Dirichlet
distribution, which is an exponential family distribution over
a simplex, i.e., positive vectors that sum to one. Formally, if
x(i,j) ∈ [0, 1) is sampled using OA-LHS based on a uniform
distribution, then fs : x(i,j) → cf(i,j) can be computed as:
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Fig. 7: A high-level synthesis solution to obtain three target
mixtures using two intermediate mixtures and three reagents.

y(i,j) =
xα−1(i,j)e

−x(i,j)

Γ(α)
; cf(i,j) =

y(i,j)∑rg
j=1 y(i,j)

(2)

The above sampling and mapping processes can be applied
to a CF space with any dimension, i.e., they are scalable. To
further improve space filling, we run the above method several
times and report the result associated with the largest Euclidean
maximin distance (i.e., Em).

IV. HIGH-LEVEL SYNTHESIS METHOD

BioScan is designed to be an iterative PSE flow that enables
composition of new mixtures on a MEDA biochip; new iter-
ations are executed if the accuracy of the constructed model
needs to be enhanced. A cost-effective design can generate the
new mixtures not only using reagents stored on chip, but also
by exploiting mixtures generated during previous iterations.

A. Definitions of the Mixing Model

According to [7], the high-level synthesis solution includes
the following three components:
(1) Target Mixtures: A set of tm mixtures need to be gen-
erated, i.e., {M1,M2, ...,Mtm}, and the volume of them are
{V (M1), V (M2), ..., V (Mtm)}, respectively. Note that the CF
profile of these target mixtures are sampled from the CF space
using the adaptive OA-LHS method.
(2) Intermediate Mixtures and Reagents: To generate the
target mixtures, a set of intermediate mixtures generated in
a previous iteration and reagent fluids are used; see Fig. 7.
We assume there are a total of im intermediate mixtures, i.e.,
{I1, I2, ..., Iim}, and the volume of them are {V (I1), V (I2),
..., V (Iim)}, respectively. We also assume there are a total of
rg reagents, i.e., {R1, R2, ..., Rrg}, and the volume of them are
unlimited since they can be refilled in the reservoir.
(3) Aliquots: Utilizing droplet-aliquot operations, an aliquot of
volume B(i, k) from an intermediate mixture Ik contributes to
the generation of a target mixture Mi. Similarly, an aliquot of
volume A(i, j) from a reagent Rj contributes to the generation
of the same target mixture Mi. Note that the lower bounds on
B(i, k) and A(i, j), denoted by Bmin(i, k) and Amin(i, j), re-
spectively, are controlled by the aliquoting constraints imposed
by MEDA [24].
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Fig. 7 illustrates high-level synthesis with three pure reagents
R1, R2 and R3, and two intermediate mixtures I1 and I2 with
a volume of 16 units. In order to obtain three target mixture
M1, M2 and M3 with a volume of 32 units, we need to extract
“aliquots” from pure reagents and intermediate mixtures, and
then mixing them together. For example, in order to obtain M1,
we need to extract 6 units of M1, 8 units of M2, 6 units of M3,
4 units of I1, and 4 units of I2 (see the number of the edges),
and then combine them.

MEDA biochips discretize the CF space. We define parame-
ter δ as the degree of concentration accuracy. The concentration
factor of a reagent Rj in mixture Mi, which is defined as
cf(i,j) = V (Rj)/V (Mi) in Section I, can be represented using
an integer called concentration factor integer (cfi), which is
defined as cfi(i,j) = dcf(i,j)/ 1

δ e. For example, if δ = 128, a
cf of 0.64 can be represented using a cfi of d0.64/ 1

128e = 82.

B. Problem Formulation for High-Level Synthesis

Based on the above discussion, we describe the optimization
problem as follows:
Inputs: (1) The number of target mixtures, intermediate mix-
tures and reagents are tm, im and rg, respectively. (2) The
degree of accuracy is δ. (3) The CF profiles of im intermediate
mixtures {CF (I1), CF (I2), ..., CF (Iim)} and their volumes
{V (I1), V (I2), ..., V (Iim)}. (4) The CF profiles of tm target
mixtures {CF (M1), CF (M2), ..., CF (Mtm)} and their vol-
umes {V (M1), V (M2), ..., V (Mtm)}.
Output: (1) Volumes of aliquots B(i, k) and A(i, j); (2)
Actual CF profile of target mixtures {ĈF (M1), ĈF (M2),
..., ĈF (Mtm)} and the actual volumes {V̂ (M1), V̂ (M2),
..., V̂ (Mtm)}; (3) A mixture-production assay that can generate
the target mixtures on MEDA.
Constraints: Aliquoting constraints of MEDA biochips.
Objective: Minimize reagent usage.

C. ILP-Based High-Level Synthesis

The above problem can be optimally solved by mapping it
to an ILP model, as described below:

∀i ∈ {1, ..., tm}; ∀j ∈ {1, ..., rg}; ∀k ∈ {1, ..., im} (3)

Minimize:
tm∑
i=1

rg∑
j=1

α(j)×A(i, j) (4)

where α(j) is the unit cost of reagent Rj .
Subject to:

Bmin(i, k) < B(i, k) ≤ V (Ik);
im∑
k=1

B(i, k) ≤ V (Ik) (5)

Amin(i, j) < A(i, j) (6)

V̂ (Mi) =
im∑
k

B(i, k) +

rg∑
j

A(i, j) ≥ V (Mi) (7)

ĉf (i,j) =

∑im
k=1 cf(i,k) ·B(i, k) +A(i, j)

V̂ (Mi)
(8)

R2 Protrusion R1 Pinch-off

(a)                                                     (b)

Fig. 8: Steps in droplet aliquoting: (a) finger formation; (b)
pinch-off.

∣∣∣ĉf (i,j) · δ − cf (i,j) · δ∣∣∣ < 0.5 (9)

Equation (4) shows that we need to minimize the overall
reagent cost in the ILP formulation. Equation (5) and Equa-
tion (6) specify the volume constraints of the aliquot droplet
from an intermediate mixture Ik or a reagent fluid from the
reservoir. Equation (7) calculates the actual volume of target
mixture Mi, which should be equal to or larger than the
designated value V (Mi). Equation (8) calculates the actual
concentration factor (CF) of a reagent Rj in mixture Mi, which
should be within the calibrated range of the designated value of
cf(i,j); see Equation (9).

V. PHYSICAL-LEVEL SYNTHESIS METHOD

The objective of physical-level synthesis is to map the high-
level synthesis solution (see Section IV) to a sequence of
MEDA-enabled operations with the lowest completion time and
the smallest reagent cost. In addition, the constraints associated
with droplet aliquoting must be satisfied.

A. Droplet-Aliquoting Constraints

In a droplet-aliquot operation on MEDA, a smaller target
droplet, with principal radius of curvature R2, is extracted
from another droplet, with principal radius of curvature R1

(R1 > R2). This operation is a key enabler of fine-grained
mixture production. However, the main difficulty with droplet
aliquoting, similar to droplet dispensing [25], is the control
of the flow rate that leads to aliquot formation. Note that the
original droplet, which is used before the aliquoting operation,
has principal radius of curvature Rs that can be computed in
terms of R1 and R2 as follows: Rs ≈

√
(R2

1 +R2
2).

As shown in Fig. 8, droplet aliquoting is performed in
two steps: (1) finger formation, which initiates aliquoting by
inducing a protrusion from the bigger droplet; (2) pinch-off,
which breaks the protrusion to form an aliquot. According
to [25], a protrusion can be successfully maintained only if the
following condition is fulfilled:

0 <
1

R2
− 1

R1
<
ε0 · εr · (Ve − V the )2

2γLM · de · se
(10)

where ε0 and εr are the permittivity of free space and the
relative permittivity of the insulator, respectively, Ve and V the
are the actuation voltage and the threshold voltage, respectively,
γLM is the liquid-medium interfacial tension, de is the insulator
thickness, and se is the spacing between the parallel plates. For
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Fig. 9: Illustration of aliquoting constraints (% = 5761 m−1;
se = 50 µm−1).

simplicity, if we consider % =
ε0·εr·(Ve−Vth

e )2

2γLM ·de·se , then according
to Equation (10) we have:

R2 = R1.min < R1 < R1.max =
R2

1− % ·R2
(11)

Note that R1.max must be positive in Equation (11), and the
smallest droplet that can be moved on MEDA covers at least a
microelectrode. Therefore, we have the following constraints:

Le√
2

= R2.min ≤ R2 < R2.max =
1

%
(12)

where Le is the microelectrode pitch.
Fig. 9 shows a graphical representation of the relation be-

tween R1 and R2 based on the above constraints1. For example,
a target droplet with principal radius of curvature R2 = 140 µm
(i.e., of volume 11.5 nL) can be aliquoted from a droplet with
principal radius of curvature R1 only if 140 µm < R1 < 724
µm. If R1 ≥ 724 µm, then the volume of the bigger droplet
needs to be reduced until R1 lies in the range (140, 724). The
sequence of operations involved in this process is specified
using physical-level synthesis as described in the following
subsection.

B. Problem Formulation for Physical-Level Synthesis

In fact, the proposed physical-level synthesis consists of a
sequence of MEDA-enabled operations (mixing, splitting, and
droplet aliquoting), which can be modeled as a directed acyclic
graph G = (V,E), named a composition graph. A vertex
vi ∈ V represents a MEDA-enabled operation, which can be
one of four types: (1) mixing; (2) splitting; (3) aliquoting; (4)
null operation (i.e., start/end point). Each operation type is as-
sociated with a cost value: cost(aliquoting) > cost(mixing) >
cost(splitting) > cost(null) = 0. The mixing and splitting are
easier to implement and take less time compared to aliquot-
ing [10], [26]. In addition, an edge e(i,j) ∈ E models the
dependency between a pair of operations vi and vj .

1The intuition behind the above constraints is that aliquoting requires an
electrowetting force, specified by %, that is sufficient to overcome the pressure
gradient between the two droplets. A large gap in the pressure between the
two droplets (due to the variation in radii of curvature) may prevent protrusion
formation [25].
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Fig. 10: A composition graph that generates three target mix-
tures from two intermediate mixtures, and three reagent fluids.

Fig. 10 shows the physical-level synthesis results derived
from the high-level synthesis solution in Fig. 7. Note this is
only one of many composition graphs that can be used to
implement the solution in Fig. 7. For example, in Fig. 10
instead of generating the aliquots from I2 using two splitting
operations, an alternative (but more costly) solution may involve
two aliquoting operations to generate aliquots with volumes of
8, 4 and 4, respectively. Note that a unit volume is defined as
the volume of a droplet that covers one MC.

Based on the above discussion, we describe the physical-level
synthesis problem as follows:

Inputs: (1) The volume V̂ (Mi) of every target mixture Mi;
(2) The volume V (Ik) of every intermediate mixture Ik; (3)
The volume V (Rj) of reagent Rj being used; (4) Volumes of
aliquots A(i, j) and B(i, k) from the high-level synthesis.
Output: A composition graph G.
Constraints: Droplet aliquoting constraints for MEDA
biochips.
Objectives: Minimize the completion time of the physical-level
synthesis.

Table I summarizes the notation used to describe the physical-
level synthesis problem.

An optimal composition graph is one that has the lowest
overall cost computed in Equation (13) and the lowest com-
pletion time, and it can be found by enumerating all possible
composition graphs and exhaustively searching for the optimal
graph. Clearly, this is an impractical solution that entails sig-
nificant computation time. Therefore, we propose an alternative
design methodology that divides the problem of computing a
composition graph to two groups of subproblems: (1) computing
im + rg aliquot-generation binary trees, and (2) computing
tm aliquot-mixing binary trees, where im, rg and tm are the
numbers of intermediate mixtures, reagents and target mixtures,
respectively.
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TABLE I: Notation used to describe physical-level synthesis.

Notation Meaning

T g
[o1...oN ]

An aliquot-generation tree with N leafs

C(T g
[o1...oN ]

) Overall cost of T g
[o1...oN ]

T g
([o1...oN ],j)

A node j in T g
[o1...oN ]

O(T g
([o1...oN ],j)

) Operation type of T g
([o1...oN ],j)

C(T g
([o1...oN ],j)

) Cost of T g
([o1...oN ],j)

S(T g
([o1...oN ],j)

) Start time of T g
([o1...oN ],j)

F (T g
([o1...oN ],j)

) Finish time of T g
([o1...oN ],j)

H(T g
([o1...oN ],j)

) Height of T g
([o1...oN ],j)

T m
[o1...oN ]

An aliquot-mixing tree with N leafs

T m
([o1...oN ],j)

A node j in T m
[o1...oN ]

S(T m
([o1...oN ],j)

) Start time of T m
([o1...oN ],j)

F (T m
([o1...oN ],j)

) Finish time of T m
([o1...oN ],j)

C. Construction of Aliquot-Generation Binary Tree

A tree T gi represents a hierarchy of MEDA-enabled opera-
tions needed to generate aliquots from an intermediate mixture
Ik or from a reagent Rj ; see Fig. 10. The root of the tree
represents the first MEDA-enabled operation applied to Ik or
Rj and the leaf nodes represent the generated aliquots. We focus
our discussion on the construction of T g[o1...oN ] that is associated
with Ik—a tree T g[o1...oN ] associated with Rj can be constructed
similarly.

We consider a mapping function, denoted by fsort, that is
implemented by sorting the aliquot volumes B(i, k) before
assigning them to the leaf nodes, i.e., fsort : {B(i, k)} →
[o1, o2, ..., oN ], where [o1, o2, ..., oN ] is a sorted list of aliquots
derived from intermediate mixture Ik.

The completion time of a protocol is determined by the
height of the binary tree. If we have a balanced tree, we
will have shorter completion time. Therefore, modeling aliquots
generation as a binary tree can let us map a scheduling problem
to a problem of reducing the height of the tree. An objective
function that captures the overall cost of the binary tree T g[o1...oN ]
can be computed as:

C(T g[o1...oN ]) =
M∑
j=1

C(T g([o1...oN ],j)) ·H(T g([o1...oN ],j)) (13)

where M is the number of nodes in T g[o1...oN ].
Another relevant advantage of using binary trees is that

binary search trees can be constructed optimally using recursive
methods such as dynamic programming [27]. Similarly, we
observe that the construction of T g[o1...oN ] can be recursively
decomposed into subproblems; each subproblem can be solved
optimally, and the obtained solution can be reused to solve the
original problem.

An illustrative example is shown in Fig. 11. Consider an
intermediate mixture with a volume of 16 nL that needs to
be used to generate three aliquots A, B, and C, with volumes
of 8 nL, 4 nL, and 4 nL, respectively. To construct the tree
T g[A B C] shown in Fig. 11(a), which is the tree with the lowest
cost, we first construct two subtrees (T g[A B] and T g[B C]) that

BC:8

A:8 B:4
C:4

(a)

Cost = 3

Height = 1

Height = 2

Cost = 2

A:8 B:4

Cost = 1

B:4 C:4

Step 1

BC:8A:8

Cost = 3

AB:12

Step 2

(b)

C:4

Cost = 6

Null operation (Cost = 0) Splitting (Cost = 1) Aliquoting (Cost = 2)

𝑇ሾ஺  ஻ሿ
௚ 𝑇ሾ஻  ஼ሿ

௚ 𝑇ሾ஺  ஻  ஼ሿ
௚

Root

Fig. 11: Construction of a tree T g[A B C] that models the
generation of 3 aliquots: (a) the minimal-cost tree; (b) solution
methodology.

represent two-aliquot problems (Step 1 in Fig. 11(b)). In T g[A B],
the merging of A and B is modeled as an aliquoting operation,
and the cost is therefore equal to 2. On the other hand, in T g[B C],
the merging of B and C is modeled as a splitting operation, and
the corresponding cost is therefore equal to 1.

Next, these solutions are reused to compute the trees for
a three-aliquot problem (Step 2 in Fig. 11(b)), and the so-
lution/tree with the minimal cost is selected for T g[A B C].
Dynamic programming is successful (i.e., optimal) if both “opti-
mal substructure” and “overlapping subproblems” properties are
satisfied. In our setting, the preprocessing of the leaf nodes by
sorting them (using fsort) ensures that these requirements are
satisfied. Unsorted leaf nodes may lead to suboptimal solutions
being propagated throughout the construction of the tree.

The above example can be generalized to the following result
(the proof of Lemma 1 can be found in [28]).

Lemma 1. An aliquot-generation tree T g[o1...oN ] has the
“overlapping-subproblems” and the “optimal-substructure”
properties.

Based on the above lemma, the construction of T g[o1...oN ] can
be mapped to a dynamic programming problem [27], and the
the mapping is defined as follows (the proof of Theorem 1 can
be found in the appendix).

Theorem 1. An optimal aliquot-generation tree T g([o1...oN ]) with
root T g([o1...oN ],1) can be constructed using dynamic program-
ming, where the recursion can be described as follows:

C(T g[o1...oN ]) =
arg min
1≤k<N

{C(T g[o1...ok]) + C(T g[ok+1...oN ])}
+C(T g([o1...oN ],1)) ·H(T g([o1...oN ],1)) N ≥ 1

0 N < 1

A description of our dynamic programming implementation
is shown in Fig. 12. If list [o1...oN ] exists in the lookup table,
the aliquot tree will be returned immediately (Lines 1-2). If the
length of list [o1...oN ] is equal to one (i.e., only one node), we
will store the result into the lookup table (Lines 3-5). Otherwise,
we iterate the value of k from 1 to N − 1, and find out the
value of kt that minimizes C(T g[o1...oN ]) (Lines 6-14). Note that
in Line 6, we use “9999” to indicate a value that is very large.
Next, we merge two subtrees C(T g[o1...okt]

) and C(T g[okt+1...oN ])

to construct C(T g[o1...oN ]), and store the result into the lookup
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Algorithm 1 create_aliquot_tree([o1...oN ], LT)
Input: a list of nodes [o1...oN ] and the lookup table LT
Output: the aliquot-generation tree T g

[o1...oN ] and the cost C(T g
[o1...oN ])

1: if has_record([o1...oN ], LT) then
2: return LT[o1...oN ];
3: if len([o1...oN ]) = 1 then
4: LT[o1...oN ] := ([o1...oN ], 0);
5: return LT[o1...oN ];
6: Cmin := 9999;
7: kt := 0;
8: for ok in [o1...oN ] do
9: T g

[o1...ok]
, C(T g

[o1...ok]
) := create_aliquot_tree([o1...ok], LT);

10: T g
[ok+1...oN ], C(T g

[ok+1...oN ]) := create_aliquot_tree([ok+1...oN ], LT);
11: C(T g

[o1...oN ]) := C(T g
([o1...oN ],1)) ·H(T g

([o1...oN ],1));
12: C(T g

[o1...oN ]) := C(T g
[o1...oN ]) + C(T g

[o1...ok]
) + C(T g

[ok+1...oN ]);
13: if C(T g

[o1...oN ]) < Cmin then
14: kt := k;
15: T g

[o1...oN ] := merge(T g
([o1...oN ],1), T

g
[o1...okt]

, T g
[okt+1...oN ]);

16: LT[o1...oN ] := (T g
[o1...oN ], C(T g

[o1...oN ]));
17: return LT[o1...oN ];

Algorithm 2 create_mixing_tree([o1...oN ])
Input: a list of nodes [o1...oN ]
Output: the mixing-generation tree Tm

[o1...oN ] and its finish time F (Tm
[o1...oN ])

1: Tm
[o1...oN ] := null;

2: PQ := create_priority_queue([o1...oN ]);
3: while len(PQ) != 0 do
4: if len(PQ) = 1 then
5: oj , ftj := PQ.pop_front();
6: return oj , ftj
7: else
8: oj , ftj := PQ.pop_front();
9: ok, ftk := PQ.pop_front();

10: ol := create_binary_mixing_tree(oj , ok);
11: ftl := max(ftj , ftk) + tmix;
12: PQ := update_priority_queue(PQ, ol, ftl);

1

Fig. 12: Pseudocode describing the construction of T g[o1...oN ].
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Fig. 13: MEDA-enabled aliquoting: (a) aliquoting is not pos-
sible when the constraints are not satisfied; (b) an alternative
sequence of MEDA operations for aliquoting (i.e., fragment step
defined in Section V.C.); (c) illustration of fragment steps using
the aliquoting-constraints curve.

table (Lines 15-16). Note that, this merge is performed by
selecting a suitable MEDA-enabled operation. If an aliquoting
operation needs to be implemented but the aliquoting constraints
cannot be satisfied, then a single aliquoting operation is not
adequate to generate the target volume.

To explain the steps needed to overcome the above challenge,
suppose that an aliquot with a radius of curvature R2 = 140 µm
is needed, and the source droplet has a radius of curvature
Rsrc = 2.004 mm. Based on the relation Rsrc ≈

√
(R2

1 +R2
2),

the radius of curvature of the bigger droplet is R1 = 2 mm;
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Fig. 14: Computing an aliquot-mixing tree and the correspond-
ing completion time using: (a) a naive method; (b) a priority-
based method. Each mixing operation takes two time steps.

see Fig. 13(a). However, based on Fig. 13, the aliquoting con-
straints for R2 = 140 µm are R1 > 140 µm and R1 < 724 µm;
thus aliquoting based on the above values of R1 and R2 is not
possible2.

To overcome this problem, we choose a different value for
R2 in the interval (140, R2.max) so that aliquoting can be
performed. This implies that the target aliquot may be obtained
after executing two aliquoting operations. Fig. 13(b)-(c) explains
the steps needed to address this challenge. For convenience,
we consider the steps in Fig. 13(b) as a single operation
T g([o1...oN ],j), named fragment. The cost value C(T g([o1...oN ],j))
of this operation is determined based on the constituent se-
quence of aliquoting operations.

Post tree-construction, we use a one-pass algorithm to
compute the start time S(T g([o1...oN ],j)) and finish time
F (T g([o1...oN ],j)) of each node T g([o1...oN ],j) [29].

D. Construction of Aliquot-Mixing Binary Tree

An aliquot-mixing tree T m[o1...oN ] represents a hierarchy of
mixing operations that merge aliquots to form a target mixture
Mi; see Fig. 10. The primitive aliquots are modeled as leaf
nodes, whereas the last mixing operation before the target
mixture is modeled as a root node. An intermediate tree node
corresponds to a MEDA-enabled mixing operation that merges
two intermediate aliquots. Note that, in reality, the mixing
operations of different types and sizes of droplets have different
time cost. Our physical-level synthesis model can be easily
adapted to support mixing operations with different time costs.
However, for simplicity, we assume that all mixing operations
have the same time cost.

Recall that the primitive aliquots are generated by the aliquot-
generation trees. Therefore their finish times, which indicate
their availability, may not be equal. Such a variation in the
availability of the input primitive aliquots causes the generation

2Note that Rsrc is fixed.
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Algorithm 1 create_aliquot_tree([o1...oN ], LT)
Input: a list of nodes [o1...oN ] and the lookup table LT
Output: the aliquot-generation tree T g

[o1...oN ] and the cost C(T g
[o1...oN ])

1: if has_record([o1...oN ], LT) then
2: return LT[o1...oN ];
3: if len([o1...oN ]) = 1 then
4: LT[o1...oN ] := ([o1...oN ], 0);
5: return LT[o1...oN ];
6: Cmin := 9999;
7: kt := 0;
8: for ok in [o1...oN ] do
9: T g

[o1...ok]
, C(T g

[o1...ok]
) := create_aliquot_tree([o1...ok], LT);

10: T g
[ok+1...oN ], C(T g

[ok+1...oN ]) := create_aliquot_tree([ok+1...oN ], LT);
11: C(T g

[o1...oN ]) := C(T g
([o1...oN ],1)) ·H(T g

([o1...oN ],1));
12: C(T g

[o1...oN ]) := C(T g
[o1...oN ]) + C(T g

[o1...ok]
) + C(T g

[ok+1...oN ]);
13: if C(T g

[o1...oN ]) < Cmin then
14: kt := k;
15: T g

[o1...oN ] := merge(T g
([o1...oN ],1), T

g
[o1...okt]

, T g
[okt+1...oN ]);

16: LT[o1...oN ] := (T g
[o1...oN ], C(T g

[o1...oN ]));
17: return LT[o1...oN ];

Algorithm 2 create_mixing_tree([o1...oN ])
Input: a list of nodes [o1...oN ]
Output: the mixing-generation tree Tm

[o1...oN ] and its finish time F (Tm
[o1...oN ])

1: Tm
[o1...oN ] := null;

2: PQ := create_priority_queue([o1...oN ]);
3: while len(PQ) != 0 do
4: if len(PQ) = 1 then
5: oj , ftj := PQ.pop_front();
6: return oj , ftj
7: else
8: oj , ftj := PQ.pop_front();
9: ok, ftk := PQ.pop_front();

10: ol := create_binary_mixing_tree(oj , ok);
11: ftl := max(ftj , ftk) + tmix;
12: PQ := update_priority_queue(PQ, ol, ftl);

1

Fig. 15: Procedure describing the constructing of T m[o1...oN ].

of the aliquot-mixing trees T m[o1...oN ] to be computationally chal-
lenging. In other words, using a naive method that determines
the mixing of aliquots randomly, without considering their
availability, may unnecessarily increase the completion time,
whereas adopting a priority scheme can enhance the synthesis
performance. Fig. 14 shows an example that compares the
completion time based on the two approaches.

Note that if T m([o1...oN ],j) is a leaf, then S(T m([o1...oN ],j)) =
F (T m([o1...oN ],j)). Moreover, if a leaf node T m([o1...oN ],j) is directly
connected to a leaf node T g([o1...oN ],k) (see Fig. 10), then the
start time of T m([o1...oN ],j) is defined as S(T m([o1...oN ],j)) =

F (T g([o1...oN ],k)). Our goal in this stage is to minimize com-
pletion time, which can be computed as:

max
j
F (T m([o1...oN ],j)) ∀T m([o1...oN ],j) (14)

To construct T m([o1...oN ],j), we develop a greedy method based
on a priority queue PQ that stores MEDA-enabled operations
and sort them based on their finish time (Fig. 15); more
specifically, the queue uses a nearest-finish-time-first approach.
Initially, the primitive aliquots are sorted in ascending order
in the priority queue PQ according to their finish times (Line
2). Then, the algorithm runs as a time-wheel. At each time, it
will retrieve two elements oj and ok from the priority queue
PQ. Each element can represent either a primitive aliquot or a
mixing tree. The finish time of these two elements are ftj and
ftk, respectively (Lines 8-9). Then, we construct a new element
ol by merging oj and ok, and compute the finish time ftl (Lines
10-11). Next, we add this element into PQ and update the order
(Line 12). This algorithm stops when the queue becomes empty,
meaning that the target mixing tree T m([o1...oN ],j) is successfully
formed (Line 3).

VI. SIMULATION RESULTS

In this section, we evaluate the sampling method of CF space
and the proposed sample-preparation method.

A. Analysis of CF Sampling

Recall that the sampling of CF space is accomplished in two
steps: regular sampling within the interval [0, 1] followed by
mapping of samples to the simplex CF space. Therefore, we
evaluate the space filling of the CF profiles based on these
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Fig. 16: The performance of (1) OA-LHS using Dirichlet-
based mapping; (2) OA-LHS using scaling-based mapping; (3)
uniform sampling techniques on space filling.

two steps; we compare four sampling approaches: (1) OA-
LHS (stratified sampling) followed by Dirichlet-based mapping
where α̃ = 3; (2) OA-LHS followed by Dirichlet-based mapping
where α̃ = 20; (3) OA-LHS followed by scaling-based map-
ping; (4) uniform sampling followed by scaling-based mapping.
The number of CFs, i.e., reagents rg, is set to 8, and the number
of sampling trials in each case is 1000. Results based on other
values of rg also lead to the same conclusion, showing that our
methodology is scalable with rg.

Fig. 16 compares the above sampling approaches using Em
as a metric when we vary the number of targeted samples tm.
We observe that scaling-based mapping degrades the space-
filling property, i.e., reduces Em, regardless of which sampling
method is utilized. This is expected since scaling-based mapping
tampers with the stratification property. We also observe that
space filling can be severely degraded if the Dirichlet-based
mapping is not properly tuned. We have varied α̃ from 0 to 20,
and found that large values of α̃ cause the generated samples to
be highly concentrated instead of being uniformly distributed,
i.e., as shown in Fig. 16, α̃ = 20 leads to a low value of Em.
We also found that α̃ = 3 give us the highest value of Em.
Therefore, in the following evaluations, we use OA-LHS with
Dirichlet-based mapping where α̃ = 3.

B. Simulation Setup

To evaluate the effectiveness of the proposed sample-
preparation method, we compare it with three existing sample-
preparation methods, i.e., BS [30], CoDOS [31], and e-
MRCM [32]. While BS and CoDOS methods were developed
for traditional DMFBs, e-MRCM method is designed for MEDA
biochips. To compare these methods properly, we consider that
the volumes of the target droplet are the same across a DMFB
and a MEDA biochip in our experiments. We assume that the
gaps between the top plate and the bottom plate are the same,
and the electrode size of the DMFB is 1 × 1 mm2 [33]. We
also assume that the minimum aliquot droplet spans an area
of 0.25 × 0.25 mm2 [10] on a MEDA biochip, i.e., the target
droplet is 16 times as big as the aliquot droplet.

Experiments with different numbers of reactants Nr (3 ≤
Nr ≤ 5) and target mixtures Nt (2 ≤ Nt ≤ 5) are carried out



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

R

T

R R R

Round 1 Round 2 Round 3 Round 10

R

T

R R R

T T T

Round 1 Round 2 Round 3 Round 10
(a)

(b)

…

…

…

…

I T I T I T I

Fig. 17: Sample-preparation flow for (a) the proposed method
and (b) prior methods. “R” represents pure reagent, “T” repre-
sents target mixture, and “I” represents intermediate mixture.

for all the methods. We adopt a degree of accuracy δ = 512
(see in Section IV.A) because precision levels for traditional
DMFBs can only be powers of 2. A total of 10 rounds of sample
preparations are simulated. In each round, a statistical sampling
method is used to choose Nt CF points in the Nr dimension
CF space. Next, a total of Nt target mixtures are generated.
As shown in Fig. 17(b), in each round, prior methods only use
the reagent to generate target mixtures. However, except for
the first round, the proposed method uses both the intermediate
mixtures from the last round and the reagent to generate the
target mixtures; see Fig. 17(a).

Two metrics are used to evaluate the effectiveness of the
proposed method, namely average reagent usage and average
completion time.

The average reagent usage R̄U is defined as follows:

R̄U =

∑10
i=1RU(i)

10
(15)

where RU(i) is the reagent usage of round i. Note that we
define the volume of a droplet that occupies an electrode of
1× 1 mm2 as the unit reagent usage.

The average completion time C̄T is defined as follows:

C̄T =

∑10
i=1 CT (i)

10
(16)

where CT (i) is the completion time of round i. Since module
placement and droplet routing are not considered in our simu-
lation, the completion time of each round is estimated as the
shortest time needed to execute the fluidic operation steps in
the dilution tree(s).

All simulations are performed in Python on a workstation
with a 3.6 GHz octa-core AMD processor and 32 GB memory.

C. Experimental Results

In this section, we consider sample preparation scenarios
where the number of reactants Nr varies from 3 to 5. For
each choice of Nr, we conducted experiments by varying the
number of target mixtures Nt from 2 to 5. The average reagent

usages and average completion times for all methods are shown
in Table II and Table III, respectively. Note that the unit of time
is in seconds.

We can see that e-MRCM performs better than BS and
CoDoS in terms of the reagent usage, because e-MRCM is
based on the MEDA platform and the M : N mixing model is
utilized, which enables a fine-grained mixing strategy. However,
the proposed method achieves at least 20% reduction in reagent
usage compared with e-MRCM, because e-MRCM only uses the
reagents to generate target mixtures while the proposed method
uses both the reagent and the intermediate mixtures to generate
target mixtures.

Considering the average completion time, the proposed
method uses a smaller amount of time to finish each round.
The significant time reduction is because the aliquot-generation
trees and the aliquot-mixing trees in Fig. 10 can be performed in
parallel. However, the construction of the dilution trees in BS,
CoDOS and e-MRCM are more “serial”, and therefore they use
more time to finish each round.

VII. CONCLUSION

We have introduced an optimization framework for
parameter-space exploration in synthetic biology. The proposed
framework uses statistical sampling to select reagent mixtures,
a high-level synthesis method to provide specification for the
biocircuit-regulatory scanning assays. We have also presented
a technique that translates the high-level synthesis solutions
to a sequence of fluidic operations for implementing them on
MEDA-chips with reduced completion time and reagent cost.
Simulation results have shown the effectiveness of the proposed
method in emulating important problems of synthetic biology.

APPENDIX

We present the proof of Theorem 1 in the appendix. First we
restate the theorem:

Theorem 1. An optimal aliquot-generation tree T g([o1...oN ]) with
root T g([o1...oN ],0) can be constructed using dynamic program-
ming, where the recursion can be described as follows:

C(T g[o1...oN ]) =
arg min
1≤k<N

{C(T g[o1...ok]) + C(T g[ok+1...oN ])}
+C(T g([o1...oN ],1)) ·H(T g([o1...oN ],1)) N ≥ 1

0 N < 1

Our objective here is to show that, by using the properties
in Lemma 1 (i.e., overlapping subproblems and optimal sub-
structure), an optimal aliquot-generation tree T g[o1...oN ] can be
constructed using dynamic programming. Note that the proof
of Lemma 1 can be found in [28].
The Base Case: We start with the smallest scale of an
aliquot-generation tree, which contains only two leaf nodes, i.e.,
T g[o1 o2]

, as shown in Fig. 18. At this scale, a single MEDA
operation is needed to generate the aliquots, on condition that
the aliquoting constraints (Section V.) can be satisfied. If the
two aliquots have the same volume, then a splitting operation is
performed Fig. 18(a). However, if the two aliquots have different
volumes, then an aliquoting operation is executed Fig. 18(b).
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TABLE II: Average Reagent Usage for Different Sample-Preparation Methods (unit: 0.25× 0.25 mm2 droplet volume).

Method
Nr = 3 Nr = 4 Nr = 5

Nt = 2 Nt = 3 Nt = 4 Nt = 5 Nt = 2 Nt = 3 Nt = 4 Nt = 5 Nt = 2 Nt = 3 Nt = 4 Nt = 5

BS 56.7 88.2 114.9 144.3 84.7 128.5 172.5 200.5 90.9 140.8 180.6 236.4
CoDOS 48.0 72.3 94.2 118.1 60.1 90.6 122.3 154.2 66.1 100.4 134.1 164.1

e-MRCM 24.7 37.1 49.4 61.8 29.4 44.1 58.8 73.5 33.2 49.6 66.7 84.3
Proposed 19.3 25.0 32.9 43.6 28.0 38.2 49.4 57.5 33.0 48.2 62.5 76.5

TABLE III: Average Completion Time for Different Sample-Preparation Methods (unit: second).

Method
Nr = 3 Nr = 4 Nr = 5

Nt = 2 Nt = 3 Nt = 4 Nt = 5 Nt = 2 Nt = 3 Nt = 4 Nt = 5 Nt = 2 Nt = 3 Nt = 4 Nt = 5

BS 16.0 16.0 16.0 16.0 26.1 26.1 26.1 26.1 33.8 33.8 33.8 33.8
CoDOS 13.8 13.8 13.8 13.8 21.2 21.2 21.2 21.2 23.8 23.8 23.8 23.8

e-MRCM 9.1 9.9 10.5 11.6 11.3 12.7 13.9 14.6 13.3 13.9 14.8 15.8
Proposed 7.6 8.8 9.6 10.5 8.0 9.8 10.4 11.1 9.7 10.4 10.8 11.7
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Fig. 18: Possible MEDA operations to generate T g[o1 o2]
: (a) a

single splitting operation; (b) a single aliquoting operation; (c)
a fragment operation.

On the other hand, if the aliquoting constraints cannot be
satisfied directly, then two consecutive aliquoting operations are
performed to generate the target aliquot volume; these steps are
referred to as a fragment operation (Fig. 18(c))—the optimality
of the fragment operation based on these steps is discussed as
part of the presented proof. For convenience, we consider the
steps of a fragment operation as a single operation T g([o1 o2],j)

and its associated cost is C(T g([o1 o2],j)
) > cost(aliquot). Based

on the above discussion, we introduce the following lemma:

Lemma 2. An aliquot-generation tree T g[o1 o2]
with root

T g([o1 o2],1)
and two leaf nodes {T g([o1 o2],2)

, T g([o1 o2],3)
} is opti-

mal, and the cost is computed as follows:

C(T g[o1 o2]
) = C(T g([o1 o2],1)

) ·H(T g([o1 o2],1)
)

+ arg min
1≤k<2

{C(T g[o1...ok]) + C(T g[ok+1...o2]
)} (17)

Proof. We present the proof by contradiction. Suppose that the
tree T g[o1 o2]

is not optimal. This implies that there is another tree
T̃ g[o1 o2]

that has a lower cost, i.e., C(T̃ g[o1 oN ]) < C(T g[o1 oN ]).
Since the leaf nodes are the same in both trees, then this implies
that C(T̃ g([o1 o2],1)

) < C(T g([o1 o2],1)
). This inequality is studied

based on three cases related to aliquots’ volumes:

Case 1: Suppose that the two leaf nodes represent two aliquots
that have the same volume, meaning that C(T g([o1 o2],1)

) =

cost(split). Since cost(split) < cost(aliquot) < cost(fragment),
then C(T g([o1 o2],1)

) exhibits the lowest value. This contradicts
the original assumption that C(T̃ g([o1 o2],1)

) < C(T g([o1 o2],1)
).

As a result, T g[o1 o2]
must be optimal if T g([o1 o2],1)

represents a
splitting operation.

Since T g[o1 o2]
is optimal and using Lemma 1, the subtrees T g[o1

and T g[o2] are also optimal. Note that C(T g[o1]) = C(T g([o1 o2],2)
)

and C(T g[o2]) = C(T g([o1 o2],3)
). Hence, the cost of T g[o1 o2]

is
computed as follows:

C(T g[o1 o2]
) = C(T g([o1 o2],1)

) ·H(T g([o1 o2],1)
)

+ C(T g[o1]) + C(T g[o2])
= C(T g([o1 o2],1)

) ·H(T g([o1 o2],1)
)

+ arg min
1≤k<2

{C(T g[o1...ok]) + C(T g[ok+1...o2]
)}

(18)

which is the required result.
Case 2: Suppose that the two leaf nodes {T g([o1 o2,2)

, T g([o1 o2,3)
}

represent aliquots of different volumes, and that the aliquoting
constraints are satisfied. This implies that C(T g([o1 o2],1)

) =

cost(aliquot). Hence, the original assumption that c̃t
g

([o1 o2],1) <

ctg([o1 o2],1)
cannot be true unless C(T̃ g([o1 o2],1)

) = cost(split).
However, since the aliquots’ volumes are different, then these
aliquots cannot be generated using a single splitting operation.
The only possible method to generate two aliquots of different
volumes using splitting is to perform serial splitting followed
by mixing steps to attain the right volumes3. Fig. 19 compares
the aliquoting and the serial splitting mechanisms. The best case
scenario for the latter mechanism is achieved when only three
splitting and two mixing operations are performed. Clearly,
this still exhibits a higher cost C(T̃ g([o1 o2],1)

) compared to
the aliquoting cost C(T g([o1 o2],1)

); this contradicts the original
assumption that C(T̃ g([o1 o2],1)

) < C(T g([o1 o2],1)
). As a result,

T g[o1 o2]
must be optimal if T g([o1 o2],1)

represents an aliquoting
operation.

3This is equivalent to solving the sample-preparation problem using conven-
tional DMFBs.
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Fig. 19: Generation of two aliquots with different volumes
using: (a) a single MEDA-enabled aliquoting operation; (b)
serial splitting and mixing operations.

Also, similar to Case 1, the cost C(T g[o1 o2]
) can now be

computed as follows:

C(T g[o1 o2]
) = C(T g([o1 o2],1)

) ·H(T g([o1 o2],1)
)

+ C(T g[o1]) + C(T g[o2])
= C(T g([o1 o2],1)

) ·H(T g([o1 o2],1)
)

+ arg min
1≤k<2

{C(T g[o1...ok]) + C(T g[ok+1...o2]
)}

(19)

which is the required result.
Case 3: Suppose that the two leaf nodes {T g([o1 o2],2)

,
T g([o1 o2],3)

} represent aliquots of different volumes, and that the
aliquoting constraints are not satisfied based on these volumes.
This implies that C(T g([o1 o2],1)

) = cost(fragment). Hence, the
original assumption that C(T̃ g([o1 o2],1)

) < C(T g([o1 o2],1)
) cannot

be true unless C(T̃ g([o1 o2],1)
) = cost(split) or C(T̃ g([o1 o2],1)

) =

cost(aliquot).
Case 3.A: We first examine the proposition that
C(T̃ g([o1 o2],1)

) = cost(split). Since the aliquots’ volumes
are different, then these aliquots cannot be generated using a
single splitting operation. Hence, this proposition is not valid.
Case 3.B: We now examine the proposition that
C(T̃ g([o1 o2],1)

) = cost(aliquot). Since the aliquoting conditions
are not satisfied, then these droplets cannot also be generated
using a single aliquoting operation. Hence, this proposition is
also not valid.

As a result, using a single primitive operation to generate the
target aliquot is not possible4; we need to implement more than
one primitive operation to obtain the required volume. Below we
present a proof for the optimal sequence of primitive operations
that can be used to implement the steps of a fragment operation.

Suppose that the source droplet, e.g., the 120 µL droplet
in Fig. 19(a), has a principal radius of curvature Wsrc, the bigger
droplet, e.g., the 75 µL droplet in Fig. 19(a), has a principal
radius of curvature W1, and the target aliquot, e.g., the 45 µL
droplet in Fig. 19(a), has a principal radius of curvature W2.

4A primitive operation is either splitting or aliquoting. We use the keyword
“primitive” to distinguish between these operations and the fragment operation.

There are only three possible implementations of the fragment
operation to obtain the target aliquot (Fig. 20(a-c)):
Case 3.C.I (Splitting and Mixing): We carry out consecutive
splitting operations on Wsrc and its successors until we obtain
multiple instances of the target droplet W2; see Fig. 20(a).
This approach is similar to Case 2, which proves that using
splitting only is more costly compared with using aliquoting
operations. This implies that this implementation does not lead
to the optimal cost for fragment.
Case 3.C.II (Splitting, Aliquoting, and Mixing): We carry
out consecutive splitting operations on Wsrc and its successors
until we obtain multiple instances of droplets with a radius
of 1

kWsrc, which can be used to generate a droplet with
radius W2 through droplet aliquot; see Fig. 20(b). Similar to
Case 2, this implementation is costly and it may not lead to
the optimal cost for fragment. Note that this proof is also
applicable to the case where an aliquoting operation is used first
followed by consecutive splitting operations. More specifically,
the aliquoting operation generates an intermediate aliquot with
radius W ∗2 > W2, which satisfies the aliquoting constraints.
Next, this aliquot is processed through consecutive splitting
operations.
Case 3.C.III (Aliquoting and Mixing): We carry out droplet-
aliquot operation to generate an intermediate aliquot with a
radius of W ∗2 , where W2 < W ∗2 < W2.max. This droplet will
then be used to generate the target droplet with a radius of W2;
see Fig. 20(c). Note that only two droplet-aliquot operations are
executed, and this assumption is based on the following facts:
(1) an intermediate aliquot can always be generated when W ∗2
lies in the interval (W2,W2.max); (2) the difference between
W ∗2 and W2 is significantly small compared to the scale of
the bigger droplet W1, therefore the aliquoting constraints are
always satisfied for the second aliquoting operation.

Based on the above discussion, the approach described in
Case 3.C.III, which is guaranteed to use only two aliquoting
steps, is the optimal method to perform the fragment operation.
The cost C(T g[o1 o2]

) can now be computed as follows:

C(T g[o1 o2]
) = C(T g([o1 o2],1)

) ·H(T g([o1 o2],1)
)

+ C(T g[o1]) + C(T g[o2])
= C(T g([o1 o2],1)

) ·H(T g([o1 o2],1)
)

+ arg min
1≤k<2

{C(T g[o1...ok]) + C(T g[ok+1...o2]
)}

(20)

where T g([o1 o2],1)
is the fragment operation.

Inductive Step: Next, we study a generic structure of T g[o1 oN ].
Suppose that T g[o1 oN ] is an optimal aliquot-generation tree.
Then, by splitting the tree into two subtrees, T g[o1 ok]

and
T g[ok+1 oN ], we obtain the following result.

Lemma 3. If an aliquot-generation tree T g[o1...oN ] with root
T g([o1...oN ],1) is optimal, then:

(1) its subtrees T g[o1...ok] and T g[ok+1...oN ] are also optimal,
and

(2) the parameter k is specified as follows: k =
arg min1≤k<N{C(T g[ol...ok]) + C(T g[ok+1...oN ])}
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Fig. 20: Possible implementations of the fragment operation: (a) using splitting and mixing operations; (b) using splitting,
aliquoting, and mixing operations; (c) using aliquoting and mixing operations.

(3) the cost C(T g[o1...oN ]) is computed as follows:

C(T g[o1...oN ]) = C(T g([o1...oN ],1)) ·H(T g([o1...oN ],1))

+ min
1≤k<N

{C(T g[o1...ok]) + C(T g[ok+1...oN ])}

Proof. The proof for (1) is similar to the proof of Lemma 1. The
proof for (2) and (3) is presented using construction as follows.
Since both subtrees T g[o1...ok] and T g[ok+1...oN ] are optimal, then
there is no other subtrees T g[o1...oj ] and T g[oj+1...oN ] (where j 6= k)
that can have lower cost values. In other words, the following
conditions must be satisfied:
C(T g[o1...ok]) + C(T g[ok+1...oN ]) > C(T g[o1]) + C(T g[o2...oN ])

C(T g[o1...ok]) + C(T g[ok+1...oN ]) > C(T g[o1 o2]
) + C(T g[o3...oN ])

C(T g[o1...ok]) + C(T g[ok+1...oN ]) > C(T g[o1...oj ]) + C(T g[oj+1...oN ])

C(T g[o1...ok]) + C(T g[ok+1...oN ]) > C(T g[o1...oN−1]
) + C(T g[oN ])

(21)
where j > 2 and j 6= k.

By combining the above constraints, we obtain the required
result for k as follows:

k = arg min
1≤k<N

{C(T g[ol...ok]) + C(T g[ok+1...oN ])}

Based on the above result and by using Lemma 1, we obtain
the required result for CT g[o1...oN ] as follows:

C(T g[o1...oN ]) = C(T g([o1...oN ],1)) ·H(T g([o1...oN ],1))

+ min
1≤k<N

{C(T g[o1...ok]) + C(T g[ok+1...oN ])}
(22)

Using Lemma 2 and Lemma 3, and by induction, we are able
to complete the proof of Theorem 1.
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