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Abstract
Quantum repeater is an essential ingredient for quantum networks that link distant quantum
modules such as quantum computers and sensors. Motivated by distributed quantum computing
and communication, quantum repeaters that relay discrete-variable quantum information have
been extensively studied; while continuous-variable (CV) quantum information underpins a
variety of quantum sensing and communication application, a quantum-repeater architecture for
genuine CV quantum information remains largely unexplored. This paper reports a CV
quantum-repeater architecture based on CV quantum teleportation assisted by the
Gottesman–Kitaev–Preskill code to significantly suppress the physical noise. The designed CV
quantum-repeater architecture is shown to significantly improve the performance of
entanglement-assisted communication, target detection based on quantum illumination and CV
quantum key distribution, as three representative use cases for quantum communication and
sensing.

1. Introduction

Quantum networks [1–6] not only offer unconditional security in private-key distributions [7–10], but also
enable the establishment of entanglement across multiple parties to endow quantum-enhanced capabilities.
Photons are ideal information carriers for long-haul quantum communications by virtue of their robustness
against environmental noise, but they are susceptible to loss because, unlike classical information, quantum
information cannot be regenerated by amplifiers due to the quantum no-cloning theorem [11, 12]. Such a
restriction places a fundamental rate-loss trade-off between entanglement-distribution rate and
transmission distance, which, in terms of the distribution of bipartite entanglement, was formulated as the
Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound [13] and has been subsequently generalized to
end-to-end capacity of a general quantum network [14].

To circumvent the rate-loss trade-off, a long-distance quantum link is divided into shorter and less lossy
links via introducing intermediate quantum repeater (QR) nodes [15–21]. Based on the processing power
at each node, QRs are categorized into three generations (see references [15, 22, 23], references [17, 24] and
references [25, 26]). The mainstream QR architectures have been dedicated to the long-distance distribution
of discrete-variable (DV) quantum states [17, 27–29], i.e., qubits, to link quantum computers, in analogy to
sharing digital information among classical computers. On the other hand, continuous-variable (CV)
quantum states, akin to analog information, underpins a variety of quantum-enhanced sensing and
communication capabilities including entangled sensor networks [30–37], physical-layer quantum data
classification [38, 39], quantum-illumination (QI) target detection [40–43] and ranging [44], and
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Figure 1. Scheme of m-relay repeaters based on CV error-correction protocol. ENC: encoding. DEC: decoding. L is the physical
distance between Alice and Bob. L∆ is the inter-repeater spacing.

entanglement-assisted (EA) communication [45–53]. Apart from a handful of investigations for a few
specific use cases [54, 55], the QR architecture for CV quantum states remains largely unexplored.

Quantum error correction (QEC) is an essential ingredient for QRs to reliably relay quantum
information. QEC for qubits has been well established to support the development of fault-tolerant
quantum computing [56, 57]. QEC for QRs, however, requires an additional framework to account for the
infinite dimensional Hilbert space that photons reside in. In this regard, bosonic QEC [58] has emerged as a
powerful paradigm to protect quantum information carried on photons. To date, multiple single-mode
bosonic codes, including the binomial code [59, 60], Schrödinger-cat-state codes [61–65], and
Gottesman–Kitaev–Perskill (GKP) codes [66–70], have been proposed and experimentally produced in the
platforms of trapped ion and superconducting qubit [71–75]. Most bosonic codes have been designed to
protect qubits by encoding them into bosonic modes. The more recent works of Rozpȩdek et al [76] and
Fukui et al [77, 78] introduced the optical GKP-formed qubit codes into the QR architecture to transmit
qubits, but a QR based on bosonic QEC to transmit CV quantum information, which will significantly
benefit a wide range of quantum-enhanced applications, remains elusive. While generating optical GKP
states in the experiment is still challenging, recently, a few theoretical works have been proposed on
generating optical GKP state probabilistically [79–81] or deterministically [82].

This article proposes a CV QR architecture based on the recently developed GKP-assisted QEC [67, 83]
combined with CV quantum teleportation [84, 85] and is organized as follows: section 2 provides an
overview on the QR architecture; section 3 introduces the GKP-assisted QEC to the QR architecture. Finally,
in section 4, the QEC QR is shown to boost the performance of EA communication, target detection based
on QI, and CV quantum key distribution (CV-QKD).

2. Quantum-repeater architecture with bosonic quantum error correction

Figure 1 illustrates the architecture for our CV QR based on the bosonic QEC code [67]. Consider a
quantum link comprising m QR nodes. At the source, Alice performs an encoding operation on the message
mode and an ancilla mode and then transmits both modes to the first QR node through a quantum
channel. The QR node performs a decoding operation on both received modes to correct the accumulated
errors incurred by the channel. Afterwards, encoding is operated on the error-corrected message mode and
an additional ancilla mode; the two modes are subsequently transmitted to the next QR node for decoding
and encoding, until the message mode is finally decoded at Bob’s terminal.

Note that here the quantum channels not only model the transmission via fiber quantum links, but also
takes into account some pre- and post-processing that enhances the quantum information transmission.
Each fiber link between two nodes can be modeled as a bosonic pure-loss channel (i.e. optical fiber) with
the transmissivity η = 10−γL∆/10, where L∆ is the physical distance between the two nodes, with an
attenuation factor γ = 0.2 dB per kilometer. With additional pre- and post-processing, we convert the
pure-loss link into two types of quantum channels, the amplified one-way channel (section 2.1) and the
quantum teleportation channel (section appendix A.1). The effect of transmitting the message and ancilla
modes through the amplified one-way or quantum teleportation channel is equivalent to adding to their
quadratures some additive noises of variance σ2

A or σ2
T, instead of the original pure-loss.

2.1. Amplified one-way channel
Sketched in figure 2(a), the amplified one-way channel introduced in the QR architecture studied by Fukui
et al [77] applies a phase-insensitive amplifier of gain 1/η before the pure-loss channel of transmissivity η
induced by the fiber transmission. The variance of additive noise of the amplified one-way channel is

2
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Figure 2. The scheme of (a) amplified one-way channel, and (b) teleportation channel. CC: classical communication. HM:
homodyne measurement. Amp: amplification. BS: beamsplitter.

Figure 3. Variances of the additive noise for the protocols of amplified one-way and teleportation channels. Amp: amplification.
Tele: teleportation.

derived to be
σ2

A = 1 − η, (1)

where the vacuum noise is normalized as 〈q̂2〉vac = 〈 p̂2〉vac = 1/2. Because both the channel loss and the
amplification add noise, the performance of QEC is limited. To overcome the drawback of the amplified
one-way channel, we introduce the quantum teleportation channel below.

2.2. Quantum teleportation channel
CV quantum teleportation transmits CV quantum states from the source to the destination with only local
operations, classical communication, and shared CV entangled states. To implement a CV quantum
teleportation channel in the CV QR architecture, a two-mode squeezed vacuum (TMSV) source placed in
the middle of QR nodes, as shown in figure 2(b), generates entangled signal and idler modes that are sent to
two adjacent QR nodes through two pure-loss channels, yielding a shared entangled state that is
subsequently used to teleport a CV quantum state between the two QR nodes. Earlier results of CV
quantum teleportation (e.g., reference [86]) showed that the teleportation channel is equivalent to an
additive thermal noise channel due to finite squeezing and TMSV distribution loss. The variance of additive
noise is

σ2
T =

√
η10−s/10 +

(
1 −√

η
)

, (2)

where s (i.e. in dB) characterizes the squeezing level of TMSV (see appendix A.1).
Figure 3 plots the additive noise of the amplified one-way channel (red) and the teleportation channel

(blue). Apparently, the inter-repeater spacing, L∆ is a crucial factor for determining the optimal
transmission protocol, and figure 3 implies there exists a minimal inter-repeater spacing (MIRS)

L∗
∆ ≡ −2

(
log10

[
1 − 10−s/10

])
/γ, (3)

such that σ2
T < σ2

A, ∀ L∆ > L∗
∆.
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Figure 4. The Wigner functions in phase space of (a) ideal and (b) approximate GKP states.

3. GKP-error-correction code

Before proceeding to GKP-assisted QEC, we will first introduce the GKP ancilla mode in section 3.1 and the
GKP-two-mode-squeezing (TMS) code in section 3.2.

3.1. The GKP state
A bosonic mode of, e.g., the photon or the phonon, encompasses the continuous degrees of freedom in the
position and momentum quadratures. Mathematically, the quadratures, q̂ and p̂, are the normalized real
and imaginary parts of the annihilation operator â,

q̂ =
1√
2

(
â + â†) , p̂ =

1

i
√

2

(
â − â†) , (4)

satisfying the commutation relation
[
q̂, p̂

]
= i. The GKP state is pure and stabilized by the following CV

analog of the Pauli-Z and Pauli-X operators:

Ẑ = D̂
[

0,
√

2π
]

, X̂ = D̂
[√

2π, 0
]

, (5)

where D̂ [α,β] = ei(αp̂−βq̂). An ideal GKP state can be considered as the superposition of an infinite
number of position or momentum eigenstates along a grid, i.e.,

|GKP〉 ∝
∑

n∈Z
|q = n

√
2π〉 ∝

∑

n∈Z
|p = n

√
2π〉. (6)

The Wigner function of the ideal GKP state is sketched in figure 4(a), where each dot represents a Dirac
delta function. A GKP state incorporates precise information of both quadratures within a critical range
without violating the uncertainty principle. Precisely, the standard deviation of both quadrature operators
modulo

√
2π are zero. Hence, both quadratures can be measured simultaneously modulo

√
2π, rendering

the GKP state perfect to calibrate any other states encoded by the GKP codes. Nonetheless, ideal GKP states
are not normalizable and thus not physical. The consideration of experimental feasibility calls for a CV
QEC based on approximate GKP states, as presented below.

The approximate GKP considers an uncertainty ξ(G)
q(p),2 ∈ N

(
0, 2σ2

G

)
on both quadratures of each tooth.

For an approximate GKP state, a series of Dirac delta functions in equation (6) are replaced by a series of
Gaussian packets weighted by a Gaussian profile

|GKP〉 ∝
∑

n∈Z
e−πσ2

Gn2
∫ ∞

−∞
e
− (q−

√
2πn)2

2σ2
G |q〉dq ∝

∑

n∈Z
e−

σ2
Gp2

2

∫ ∞

−∞
e
− (p−

√
2πn)2

2σ2
G |p〉dp, (7)

and its Wigner function is plotted in figure 4(b) [74, 75, 80, 87]. The linewidths of each Gaussian teeth is
characterized by the squeezing parameter s(G) = −10 log10

[
2σ2

G

]
(i.e. unit dB). At σG + 1, the Gaussian

envelope can be ignored so that the approximate GKP state approaches the ideal GKP state.
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Figure 5. General architecture of CV QEC protocol. The light blue shaded area denotes decoding (i.e. DEC), and the light yellow
shaded area denotes encoding (i.e. ENC).

3.2. GKP-two-mode-squeezing code
The CV QEC code that is assisted with GKP state is referred to as the GKP code and were developed to
protect a bosonic mode by encoding it into multiple oscillator modes. A few of GKP codes have already
been well discussed in reference [67], such as, the GKP-two-mode-squeezing (GKP-TMS), the
GKP-repetition (GKP-R) and the GKP-squeezing-repetition (GKP-SR) codes, and, for consistency, the
following QEC protocols are all referred to as the GKP-TMS code. To exploit the GKP-TMS code in the CV
QR architecture, a QR node that entails an encoding operation and a decoding operation is designed, as
sketched in figure 5.

To correct the additive noise, which can be modeled as independent and identically distributed (i.i.d.)
Gaussian random displacements

(
ζq,1, ζp,1, ζq,2, ζp,2

)
on the four quadratures of the two modes, the encoding

process is carried out by a TMS gate, T̂1,2
[
g
]

= e
g
2

(
â1 â2−â†

1 â†
2

)

, where g = log
[√

G +
√

G − 1
]
, i.e., G ! 1,

and â1 and â2 denote, respectively, the annihilation operators of the involved bosonic message and ancilla
mode (mode 1 and mode 2). The decoding process entails three parts: an inverse TMS operation (i.e. T̂†

1,2),
estimating the channel-induced noise by a quantum measurement and using displacement operations
D̂2 = D̂

[
−ξ̄q,1, 0

]
and D̂3 = D̂

[
0,−ξ̄p,1

]
to compensate for the displacement errors incurred by the channel

on the message mode, where the displacements depend on the measurement outcomes of the corresponding
modes. To perform the quantum measurement, one introduces an additional GKP ancilla (mode 3). Two
homodyne measurements on the prepared two ancilla modes (mode 2 and mode 3) are implemented by a
SUM gate beforehand, i.e., Ŝ2,3 = e−îq2⊗p̂3 . Here, ξ̄q,1 and ξ̄p,1 are the estimations of the displacement error
ξq,1 =

√
Gζq,1 −

√
G − 1ζq,2 and ξp,1 =

√
Gζp,1 +

√
G − 1ζp,2, acquired by measuring the ancila states in

mode 2 and mode 3. In terms of experimental realization of the two in-line gates, TMS and SUM
operations can be carried out via linear optics, homodyne detection, and off-line squeezers [88–91].

The corrected message mode is subsequently encoded with a new GKP ancilla at mode 2 generated at
the present QR node, and both mode 1 and mode 2 are transmitted to the next QR node for decoding and
encoding.

The displacement noise continuously accumulates on the message mode until it arrives at Bob’s
terminal. In a weak additive noise regime [83], the displacement noise is approximately the Gaussian so the
Wigner function of the message mode can be fully derived based on the variance of displacement noise. Let
L be the physical distance between Alice and Bob, the average variances of the displacement noise for Bob’s
received message mode are derived as

Σ2
QA =

(
L/L∆

)
VQ

[
σ2

A

]
, Σ2

QT =
(
L/L∆

)
VQ

[
σ2

T

]
, (8)

over, respectively, the QEC with amplified one-way and the QEC with teleportation channels, where σ2
A(T) is

a number given by equation (1) (equation (2)). Here, VQ [)] is a function to calculate the variance of the
displacement noise after QEC (see appendix A.2).

3.3. Fidelity performances
This section compares the performances of CV QR with different types of quantum channels from the
choices of pre- and post-processing. We will focus on the establishment of CV entanglement in the form of
TMSV pairs between Alice and Bob. The overall input–output relations are constructed as the following
channels: T D

L [)] for direct one-way transmission, T QA
L [)] for QEC with amplified one-way transmission,

and T QT
s,L [)] for QEC with teleportation. In the three regimes, the GKP-TMS code is optimized over G for

5
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Table 1. Definitions of related symbols.

r Message squeezing L Spacing between Alice and Bob
s Teleportation squeezing L∆ Inter-repeater spacing
s(G) GKP teeth squeezing L∗

∆ MIRS s.t. σ2
T < σ2

A

Figure 6. Based on ideal GKP state, fidelities of direct one-way transmission (FO), m-relay QEC with amplified one-way
transmission (FQA), and m-relay QEC with teleportation (FQT) versus L, with repeater spacing (a) L∆ = 1 km and (b) L∆ = 0.25
km, and (c) versus numbers of repeaters m at L = 5 km. s(G) →∞, r = 15 dB and s = {20,∞} dB (i.e. L∗

∆ = {0.44, 0} km).

any given parameters of the inter-repeater spacing L∆, the squeezing parameter s of the TMSV in quantum
teleportation, and the finite squeezing teeth of the GKP state s(G).

To establish CV entanglement in the form of TMSV pairs, we focus on the following scenario: Alice
generates a TMSV state consisting of a pair of modes, signal and idler, characterized by the squeezing level r
(in dB). Alice attempts to transmit the idler mode to Bob via a series of QRs while locally retaining the
signal mode. In doing so, Alice and Bob share a pair of noisy TMSV. We will evaluate the performance of
the QR in terms of the fidelity of the established TMSV to the ideal TMSV. The symbols of related
parameters are summarized in table 1.

The Uhlmann fidelity is a measure to quantify the similarity between two density operators, ρ̂ and ρ̂′,
defined as

F
[
ρ̂, ρ̂′

]
≡

(
Tr

[√√
ρ̂′ρ̂

√
ρ̂′
])2

. (9)

The fidelity is used to quantify the deviation between the distributed TMSV state and the original TMSV
state, and can be calculated via the covariance matrices (CMs) of the involved CV quantum states (see
appendix B).

The fidelities of direct one-way transmission (i.e. neither pre- nor post-processing), QEC with amplified
one-way transmission, and QEC with teleportation are defined, respectively, as

FO ≡ F
[
ρ̂, ρ̂′D

]
, FQA ≡ F

[
ρ̂, ρ̂′QA

]
, FQT ≡ F

[
ρ̂, ρ̂′QT

]
, (10)

where
ρ̂′D =

(
I ⊗ T D

L

)
[ρ̂] , ρ̂′QA =

(
I ⊗ T QA

L

)
[ρ̂] , ρ̂′QT =

(
I ⊗ T QT

s,L

)
[ρ̂] . (11)

Here, I is the identity channel assuming ideal signal storage, and ρ̂ = |TMSV〉〈TMSV| is the input TMSV
state.

First, let us assume a perfect GKP state is available (i.e. s(G) →∞) and plot the optimized fidelities in
figures 6(a) and (b). Given that the teleportation squeezing is s = 20 dB, we choose L∆ = 250 m to coincide
with the optimal repeater separation that Rozpȩdek et al selected in their article [76].

The simulation result indicates that at an infinite teleportation squeezing level, i.e. s →∞, σ2
A > σ2

T

always holds, yielding L∗
∆ = 0; yet, infinite squeezing requires unbounded energy and is therefore

unphysical. With a practical finite teleportation squeezing level, there is an associated non-zero MIRS.
However, a shorter inter-repeater spacing increases the density of QRs and the associated resource overhead.
In contrast, the QR protocol based on quantum teleportation channels reduces the density of QRs while
maintaining a high fidelity for the transmitted quantum states by placing the TMSV source in the middle
between two QR nodes separated by a distance of L∆ > L∗

∆, as shown in figure 6(b). The GKP-TMS code
drastically improves the fidelity for the transmitted quantum state in both channel scenarios, as compared
to the direct one-way transmission. Figure 6(c) plots how the fidelity scales with the numbers of introduced
repeaters m = L/L∆ − 1.

6
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Figure 7. Fidelities of teleportation-based QEC QR based on imperfect GKP. Input TMSV is set r = 15 dB and the inter-repeater
separation is L∆ = 1 km. (a) s = 10 dB (L∗

∆ = 4.6 km), (b) s = 15 dB (L∗
∆ = 1.4 km), (c) s = 20 dB (L∗

∆ = 0.44 km), (d)
s = 25 dB (L∗

∆ = 0.14 km).

Assuming using imperfect GKP states in QEC, we plot FQT in figures 7(a)–(d) as functions of L and s(G)

while fixing r = 15 dB, corresponding to different s. Figure 7 concludes that s(G) " s" r is required for
effective QEC over quantum teleportation channels; otherwise, under s < r, the additive noise caused by
teleportation will add too much noise to the transmitted quantum state while under s(G) < s, the GKP state
only increases the added noise because the variance of GKP state is even larger than the noise to be
corrected.

3.4. Concatenation of GKP-TMS code
Recent study has shown that concatenation of multiple layers of QEC would substantially reduce the
displacement noise comparing with only a single layer code [83]. In a multi-layer QEC scheme, Alice, Bob
and all repeaters prepare k GKP ancilla (i.e. k ∈ N) to be encoded with a single message state, shown in
figure 8 and another k GKP ancilla to decode the teleported state. In k-layer QEC, the message mode in
mode 1 is encoded with k ancilla modes (2, 1), (2, 2), . . . , (2, k); then, the k-layer encoded message mode
and the k encoding ancilla modes are distributed to the next node over the associative channels; finally, the
distributed k + 1 modes are decoded with the another set of ancilla (3, 1), (3, 2), . . . , (3, k). Adopting the
assumption before, the physical noise of QEC can be approximately Gaussian given that the displacement
noise is much less than unity [83]. This k-layer QEC process corrects the aboriginal noise to the kth order.
In multi-layer QEC, the first layer corrects the noise with variance σ2

0 carried on the received signal, yielding
output noise with a variance of σ2

1 = VQ
[
σ2

0

]
; the second layer then corrects the noise from the first layer

QEC and results in a variance σ2
2 = VQ

[
σ2

1

]
; subsequently, the kth-layer corrects the output noise of the

(k − 1)th-layer, leading to a residue noise variance of σ2
k = VQ

[
σ2

k−1

]
.

Although the resources for implementing m-relay k-layer GKP-assisted QEC are immense (i.e. in total,
2 (m + 1) k GKP ancilla modes need to be prepared beforehand), the correction outcomes are remunerable.
In figure 9, we demonstrate the fidelities of the m-relay QEC QRs, that correspond to different layers of
QEC and it shows that the fidelities are significantly improved. Albeit TMSV and GKP modes are never
ideal in practice, concatenating multi-layer QEC codes is an alternative approach to suppress the additive
noises of the channel, as shown in figure 9. As k"13, the endmost iterative noise almost converges to a
finite value, which is ultimately determined by s(G).

4. Applications

Preshared entanglement between distant parties underpins numerous quantum applications. Nonetheless,
establishing entanglement at a distance is impeded by the loss of the entanglement-distribution channel.
The proposed GKP-assisted QEC can correct the Gaussian errors to enhanced the performance of a
multitude of applications, including EA communication, QI, and CV-QKD. For simplicity, we will set
s(G) = s in the following performance analysis on the three applications assisted by the proposal QR
protocol (detailed theoretical derivations are shown in appendix C).

4.1. Entanglement-assisted communication
The classical information rate over a thermal-loss channel is upper bounded by the classical capacity
[50, 92], formulated as

C = g [κNS + NB] − g [NB] , (12)

7
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Figure 8. Scheme of m-relay k-layer CV QEC repeaters. The wiring in the boxes of encoding and decoding are defined in the
bottom. T̂1,(2,n), is the TMS gate operated on mode 1 and mode (2, n); Ŝ(2,n),(3,n) is the SUM gate operated on mode (2, n) and
mode (3, n); D̂(2,n) and D̂(3,n) are two displacements based on the measurement outcomes of mode (2, n) and mode (3, n). In
encoding, mode 1 is operated by

⊗k
n=1T̂1,(2,n) with ancilla modes (2, 1), (2, 2), . . . , (2, k), and, along with these k modes,

distributed to the next node; in decoding,
⊗k

n=1 T̂†
1,(2,n) is operated on the teleported (k + 1) modes; afterwards,

⊗k
n=1Ŝ(2,n),(3,n) is

operated on the 2k ancilla modes, (2, 1), (2, 2), . . . , (2, k) and (3, 1), (3, 2), . . . , (3, k), for simultaneously accessing the
measurement outcomes of both quadratures, and the outcomes are, ultimately, feedforwarded to mode 1.

Figure 9. Fidelities of m-relay k-layer (k = 1, 2, 13) QEC with teleportation. The message squeezing is r = 15 dB.

where g [x] ≡ [x + 1] log2 [x + 1] − x log2 x, NS is the mean photon number of a signal mode, κ is the
transmissivity of the channel, and NB is the mean photon number of thermal-noise bath mode. EA
communication is able to surpass the classical capacity [46, 50, 93, 94]. In an ideal EA communication
scenario illustrated in figure 10(a), Alice performs phase encoding on the signal mode of a preshared TMSV
state and sends it to Bob over a very lossy and noisy channel, i.e., κ + 1 and NB / 1. Bob then performs a
joint measurement on the received signal with the idler at hand.

However, building up preshared entanglement in real-world operational environments hinges on lossy
entanglement-distribution channels that degrade the quality of the entanglement, holding back the
advantage endowed by EA communication. The proposed CV QR architecture opens a promising route
toward mitigating the loss arising from the entanglement-distribution channel.

The EA capacity normalized to the classical capacities are sketched as the dashed black, dashed blue,
solid blue, solid purple and solid magenta curves, associated with different scenarios of entanglement
sharing, in figure 10(b). Over an extremely lossy and noisy communication channel, the asymptotic Holevo
capacity normalized to the classical capacity is given by

HIdeal/C ≈ (NS + 1) log
[
1 + 1/NS

]
, HD/C ≈ η (NS + 1) log

[
1 + 1/ηNS

]
,

HQT/C ≈ (NS + 1) log
[
1 + 1/Σ2

QT

]
− NS/

(
Σ2

QT + Σ4
QT

)
,

(13)
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Figure 10. Entanglement-assisted communication (a) scheme and (b) the phase encoding Holevo information normalized to
classical capacity (H/C) at L = 25 km for the cases of ideal, direct one-way transmission and m-relay k-layer (k = 1, 13) QEC
with teleportation.

where HIdeal, HD and HQT denote the Holevo information associated with ideal preshared TMSV states,
TMSV sharing via direct one-way transmission and teleportation-based QEC QR. The QEC inevitably
introduces thermal noise, causing the EA Holevo information to saturate at weak NS’s. In this regime,
teleportation is inferior to direct one-way transmission in entanglement distribution. Conversely, as NS

increases, teleportation-based QEC QR starts to outperform the direct one-way entanglement distribution
approach. Under this parameter setting, we find that the multi-layer encoding on finite squeezed TMSV and
GKP states is more powerful than single-layer encoding on infinitely squeezed TMSV and GKP states.

4.2. Quantum illumination
QI is a paradigm for quantum-enhanced target detection through a very lossy and noisy environment
[40, 43, 95–97]. Illustrated in figure 11(a), the QI transmitter prepares TMSV states composed of entangled
signal-idler mode pairs. The idler modes are distributed to receiver over a distribution channel while the
signal modes are transmitted to interrogate a target residing in an environment modeled as a thermal-loss
channel. The QI receiver performs a joint measurement on the transmitted signal embedded in a bright
noise background and the idler to infer the presence or absence of the target. Tan et al [40] showed that QI,
with ideal equipment and the optimum quantum receiver, achieves a 6 dB advantage in the error-
probability exponent of the quantum Chernoff bound (QCB) (magenta curve in figure 11(b)) over that of
classical illumination (CI) based on the coherent-state transmitter and homodyne receiver (cyan curve in
figure 11(b)).

A practical challenge for QI lies in the requirement for high-fidelity quantum memories used to match
the propagation delay between the signal and idler modes. At present, QI experiments [41] utilize low-loss
optical fibers to store the idler, which mimics the one-way entanglement-distribution channel. Due to the
idler-storage loss, QI’s advantage over CI quickly diminishes, as shown in the black dashed curve of
figure 11(b). The proposed QR architecture based on QEC and teleportation would constitute an effective
approach to mitigate the idler-storage loss. The blue dashed and solid curves in figure 11(b) depicts the
simulation results for QI enhanced by QEC on the idler modes, showing reduced error probabilities as
compared to QI without QEC. Akin to EA communication, in this case the multi-layer QEC with finite
squeezing outperforms the single-layer QEC with infinite squeezing.

4.3. CV quantum key distribution
CV-QKD enables two distant parties, Alice and Bob, to securely share a common binary random key despite
the adversary, Eve, mounts the optimal attack to capture the communicated information [6, 98–100].
Unlike its DV counterpart, CV-QKD can be fully implemented with off-the-shelf telecommunication
components without resorting to single-photon detectors and is thus particularly intriguing for real-world
deployment. The security of CV-QKD protocols is analyzed by upper bounding the accessible information
to Eve assuming her power is only limited by the laws of physics. Specifically, the secret-key rate (SKR) for
CV-QKD is given by

R ≈ −1
2

log2

[
e2ε (1 + ε) /4

]
, (14)

where ε quantifies the variance of overall additive excess noise. The proposed QR architecture based on
m-relay k-layer QEC mitigates the loss of the quantum channel to boost the SKR, as shown in figure 12.

To further investigate the application of the QR architecture to CV-QKD, two additional remarks on
figure 12 are worth making. First, the SKR of the QR architecture based on k-layer QEC and teleportation
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Figure 11. (a) Scheme of quantum illumination. (b) The quantum Chernoff bounds of error probability Pe versus transmitted
M modes for CI and three QI cases: ideal entanglement distribution, direct one-way, and m-relay k-layer (k = 1, 13) QEC with
teleportation at L = 25 km with NS = 0.01.

Figure 12. The secret key rates per mode of m-relay k-layer (k = 1, 7, 10, 13) teleportation-based QEC QR.

are below the PLOB bound at k # 9, hindered by the accumulated noise introduced at the QR nodes.
Second, given s = s(G) = 25 dB, the theoretical maximal distance of the QR architecture based on 13-layer
QEC and teleportation, as shown in the purple curve of figure 12, reaches 596 km. We expect that the
incorporation of an additional DV QEC layer would suppress the residue noise and further extend the
CV-QKD distance [76, 77].

5. Discussion and outlook

The QR architecture based on teleportation channels places an entanglement source in the middle of two
adjacent QR nodes. In contrast, the QR scheme based on amplified one-way channels directly connects the
adjacent nodes by optical fibers. One may argue that adding an intermediate QR node in an amplified
one-way channel would surpass the performance of the teleportation-based scheme. However, a full-scale
QR node needs multiple GKP ancilla modes, which consumes much more resources than the widely
available TMSV source.

The combination of CV and DV QEC was recently proposed by Rozpȩdek et al [76] and Fukui et al [77].
Such a hybrid QEC scheme would allow the proposed QR architecture based on m-relay k-layer QEC to be
further concatenated with a DV QEC code to drastically reduce the amount of residue noise. As long as the
CV errors after QEC are limited to a certain range, the DV QEC will be able to correct these errors to
maximize the fidelity of the transmitted quantum state.

6. Conclusions

In this article, we proposed a deterministic CV QR architecture based on optical GKP states to enable the
distribution of CV quantum states over long distances. The proposed QR architecture based on GKP QEC
obviates the needs for quantum memories and thereby remarkably reduces the burden on quantum
information storage; moreover, it significantly suppresses the additive errors caused by a lossy bosonic

10
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channel. In our study, we showed that the optical QR architecture based on GKR QEC and teleportation
outperforms direct one-way transmission when the squeezing level is higher than 15 dB. The proposed QR
architecture is applied to improve the performance of EA communication, QI and CV-QKD. Once optical
GKP states with sufficient squeezing become available, the proposed QR architecture will enable CV
quantum states to be faithfully transmitted over unprecedented distances, thereby making a large stride
forward in the development of quantum technology.
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Appendix A. Additive Gaussian noises of protocols

In this section, we prove that both teleportation and QEC result in additive zero-mean Gaussian noises to
the quantum system.

A.1. Teleportation
The quantum circuit of teleportation is shown in figure A1. In teleportation, sender prepares multiple
TMSV states (with quadratures q̂(T) and p̂(T)) at the middle of two consecutive nodes. The off-line TMSV
state have the quadratures

q̂(T)
a =

(
q̂(v)

a 10s/20 + q̂(v)
b 10−s/20

)
/
√

2, p̂(T)
a =

(
p̂(v)

a 10−s/20 + p̂(v)
b 10s/20

)
/
√

2,

q̂(T)
b =

(
q̂(v)

a 10s/20 − q̂(v)
b 10−s/20

)
/
√

2, p̂(T)
b =

(
p̂(v)

a 10−s/20 − p̂(v)
b 10s/20

)
/
√

2
(A.1)

for submodes a and b, where q̂(v) denotes the vacuum operator. In equation (A.1). The submodes a and b
are distributed, respectively, to the former nodes and the later one. Since TMSV is put in the middle, the
distribution channel becomes two sub-channels with transmissivity η1/2 and the attenuated quadratures
become,

q̂(T)′
a =

√
η1/2q̂(T)

a +
√

1 − η1/2q̂(v)′
a , p̂(T)′

a =
√
η1/2p̂(T)

a +
√

1 − η1/2p̂(v)′
a ,

q̂(T)′

b =
√
η1/2q̂(T)

b +
√

1 − η1/2q̂(v)′

b , p̂(T)′

b =
√
η1/2p̂(T)

b +
√

1 − η1/2p̂(v)′

b ,
(A.2)

where p̂(v)′

a(b) is the transmission-induced vacuum operator at a (b). In teleportation, sender implements the
Bell measurement on M (with quadratures q̂M , p̂M) and a, and results in the quadratures as

q̂(T)′′
a =

(
q̂M + q̂(T)′

a

)
/
√

2, p̂(T)′′
a =

(
p̂M + p̂(T)′

a

)
/
√

2,

q̂(T)′′
M =

(
q̂M − q̂(T)′

a

)
/
√

2, p̂(T)′′
M =

(
p̂M − p̂(T)′

a

)
/
√

2.
(A.3)

Subsequently, the sender feedforwards the measurement results in mode M and a to b. With
equations (A.1)–(A.3), the resulting quadratures in b are

q̂(T)′′′
b = q̂M −

√
2η1/210−s/20q̂(v)

b +
√

1 − η1/2
(

q̂(v)′

b − q̂(v)′
a

)
,

p̂(T)′′′
b = p̂M +

√
2η1/210−s/20p̂(v)

a +
√

1 − η1/2
(

p̂(v)′

b + p̂(v)′
a

)
,

(A.4)

and, apparently, we acquire the formula of additive noise as in equation (2).

A.2. QEC protocol
The QEC protocol consists of two parts: encoding and decoding.
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Figure A1. The quantum circuit scheme of teleportation. The apostrophes, ′, ′′ and ′′ ′, stand for the stages, mentioned in the
context. qM = 〈q̂(T)′′

M 〉 and pa = 〈p̂(T)′′
a 〉.

A.2.1. Encoding

In GKP-TMS code, we implement T̂1,2
[
g
]

to correlate the message mode (with density operator ρ̂1) in
mode 1 and an approximate GKP ancilla mode (with density operator ρ̂(G)

2 ) in mode 2 as

T̂1,2
[
g
] [

ρ̂1 ⊗ ρ̂(G)
2

]
T̂†

1,2

[
g
]
. (A.5)

This TMS gate is described by a symplectic matrix,

S1,2 =

( √
G I2

√
G − 1 Z2√

G − 1 Z2

√
G I2

)
(A.6)

in the basis of
(
q1, p1, q2, p2

)T
, where In and Zn denote the n × n identity and Pauli Z matrices.

A.2.2. Decoding

During quantum information processing (e.g. teleportation), the quantum state is added with Gaussian
noises

(
ζq,1, ζp,1, ζq,2, ζp,2

)
∼iid N

(
0,σ2

)
(σ ∈ R). The noise can be characterized by the CM V = σ2I4. The

CM, after being operated by S−1
1,2 , becomes

S−1
1,2 V

(
S−1

1,2

)T
=

(
(2G − 1) I2 −2

√
G(G − 1) Z2

−2
√

G(G − 1) Z2 (2G − 1) I2

)
σ2, (A.7)

and the formulated additive noises in mode 1 and mode 2 are:

(
ξq,1

ξp,1

)
=

(√
Gζq,1 −

√
G − 1ζq,2√

Gζp,1 +
√

G − 1ζp,2.

)
,

(
ξq,2

ξp,2

)
=

(√
Gζq,2 −

√
G − 1ζq,1√

Gζp,2 +
√

G − 1ζp,1

)
. (A.8)

At this stage, the noise ξq(p),1 is correlated with ξq(p),2 (see equation (A.7)), and, hence, can be inferred by
measuring the ancilla in mode 2. Based on the minimum variance unbiased estimation (with a Gaussian
approximation) [67], the estimator of ξq(p),1, is formulated as

ξ̄q,1 = arg min
ξ̃q,1∈R

{
Var

[
ξq,1 − ξ̃q,1

]}
= − 2

√
G (G − 1)σ2

(2G − 1)σ2 + 2σ2
G

R√
2π

[
ξq,2 + ξ(G)

q,2

]
,

ξ̄p,1 = arg min
ξ̃p,1∈R

{
Var

[
ξp,1 − ξ̃p,1

]}
=

2
√

G (G − 1)σ2

(2G − 1) σ2 + 2σ2
G

R√
2π

[
ξp,2 + ξ(G)

p,2

]
,

(A.9)

where, Var [)] denotes variance, R√
2π [x] = x −

√
2π × arg minn∈Z

∣∣x −
√

2πn
∣∣. The state in mode 1, then,

is implemented with two displacement operations D̂
[
−ξ̄q,1, 0

]
and D̂

[
0,−ξ̄p,1

]
to have the resulting noise

ξq,1 − ξ̄q,1 = ξq,1 +
2
√

G (G − 1)σ2

(2G − 1) σ2 + 2σ2
G

R√
2π

[
ξq,2 + ξ(G)

q,2

]
,

ξp,1 − ξ̄p,1 = ξp,1 −
2
√

G (G − 1)σ2

(2G − 1) σ2 + 2σ2
G

R√
2π

[
ξp,2 + ξ(G)

p,2

]
.

(A.10)
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When the noise is small, we can approximate R√
2π

[
ξq(p),2 + ξ(G)

q(p),2

]
as a Gaussian random variable and

therefore our QEC protocol approximately produces a Gaussian state, and we show the derivation of
resulting variance after QEC in the following section.

A.2.3. Full derivation of Σ2
Q

With equation (A.8), the resulting variance of both quadratures are

〈q̂2〉 =
∞∑

n=−∞

∫ ∞

−∞
dξ(G)

q,2

∫ ∞

−∞
dξq,2

∫ ∞

−∞
dξq,1



 1√
4πσG

e
−

ξ(G)2
q,2
4σ2

G




[

1
2πσ2

e−
2G−1
2σ2

(
ξ2

q,1+ξ2
q,2

)
−

2
√

G(G−1)ξq,1ξq,2
σ2

]

×
(
ξq,1 − ξ̄q,1

)2U
(
ξq,2 + ξ(G)

q,2 ∈
[(

n − 1
2

)√
2π,

(
n +

1
2

)√
2π

])
,

〈p̂2〉 =
∞∑

n=−∞

∫ ∞

−∞
dξ(G)

p,2

∫ ∞

−∞
dξp,2

∫ ∞

−∞
dξp,1



 1√
4πσG

e
−

ξ(G)2
p,2
4σ2

G




[

1
2πσ2

e−
2G−1
2σ2

(
ξ2

p,1+ξ2
p,2

)
+

2
√

G(G−1)ξp,1ξp,2
σ2

]

×
(
ξp,1 − ξ̄p,1

)2U
(
ξp,2 + ξ(G)

p,2 ∈
[(

n − 1
2

)√
2π,

(
n +

1
2

)√
2π

])
,

(A.11)
where U is an indicator function (i.e. U (S) = 1, if S is true; otherwise, U (S) = 0). Performing partial
integration, we obtain

〈q̂2〉 =
∞∑

n=−∞

∫ ∞

−∞
dξ(G)

q,2

∫ ∞

−∞
dξq,2 e

−
ξ2
q,2

2(2G−1)σ2 −
ξ(G)2
q,2
4σ2

G U
(
ξq,2 + ξ(G)

q,2 ∈
[(

n − 1
2

)√
2π,

(
n +

1
2

)√
2π

])

×





σ

[2 (2G − 1)]3/2πσG
+

√
2G (G − 1)

[
(2G − 1)

(
n
√

2π − ξ(G)
q,2

)
σ2 + 2ξq,2σ2

G

]2

(2G − 1)5/2πσG
[
(2G − 1) σ2 + 2σ2

G

]2
σ






=
∞∑

n=−∞

{
σ2

[
8 (G − 1) Gn2πσ2 + (2G − 1)σ4 + 4 (2G (G − 1) + 1) σ2σ2

G + 4 (2G − 1) σ4
G

]

2
[
(2G − 1)σ2 + 2σ2

G

]2

}

×
{

erfc

[ (
n − 1/2

)√
π√

(2G − 1)σ2 + 2σ2
G

]
− erfc

[ (
n + 1/2

)√
π√

(2G − 1)σ2 + 2σ2
G

]}
≡ VQ

[
σ2
]

= 〈p̂2〉.

(A.12)

Appendix B. Quantum fidelities of TMSV

Starting with equation (9), the fidelity between two-mode Gaussian quantum states ρ̂ and ρ̂′ can be
obtained as [95],

F =

(
√
Γ +

√
Ω−

√(√
Γ +

√
Ω
)2

−Θ

)−1

exp

[
−1

2
δvT

(
C + C′)−1

δv
]

, (B.1)

where

J =
2⊗

n=1

(
0 1
−1 0

)
, Γ = 24Det

[
JCJC′ − 1

4
I4

]
, Θ = Det

[
C + C′] ,

Ω = 24Det

[
C +

i
2

J
]

Det

[
C′ +

i
2

J
]

.

(B.2)

Here δv = 〈v〉 − 〈v′〉, with 〈v〉 and 〈v′〉 being the quadrature means of quantum states ρ̂ and ρ̂′, with the
associated CMs C and C′. Since our concerning state is zero-mean Gaussian (i.e. δv = 0), we can derive
quantum fidelity by its CM. Defining re =

(
r log 10

)
/10, we have the CM of ideal TMSV,

C =
1
2

(
cosh re I2 sinh re Z2

sinh re Z2 cosh re I2

)
, (B.3)
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and CMs of the distribution channels of direct one-way, m-relay QEC with amplified one-way and m-relay
QEC with teleportation,

C′
D =

1
2

(
cosh re I2

√
η sinh re Z2,√

η sinh re Z2 {η cosh re + 1 − η} I2

)
, C′

QA =
1
2

(
cosh re I2 sinh re Z2

sinh re Z2
{

cosh re + 2Σ2
QA

}
I2

)
,

C′
QT =

1
2

(
cosh re I2 sinh re Z2

sinh re Z2
{

cosh re + 2Σ2
QT

}
I2

)
,

(B.4)
and use equation (B.1) to derive the fidelities,

FD =
4

[(
1 +

√
η
)

+
(
1 −√

η
)

cosh re
]2 , FQA =

1
1 + Σ2

QA cosh re
, FQT =

1
1 + Σ2

QT cosh re
.

(B.5)

Appendix C. Theoretical formula of applications

In this section, we discuss the outcomes of three applications, considering a lossy and noisy idler
distribution channel (i.e. direct one-way transmission channel), and their boosted performances after QEC
process. To be consistent with the widely used quadrature convention of these applications, we choose the
quadrature convention: q̂ = â + â† and p̂ =

(
â − â†) /i in the following calculations.

C.1. Entanglement assisted communications
In EA communication scenario, the signal arm of the prepared TMSV quantum state (with density operator

ρ̂) is encoded by a phase modulation operator Ûθ = exp
[

iθâ†
SâS

]
(i.e. θ ∈ [0, 2π )) for message encoding

(i.e. ρ̂θ = Ûθρ̂Û†
θ) to obtain the CM,

Λ =

(
(2NS + 1) I2 2C0Rθ

2C0Rθ (2NS + 1) I2

)
, (C.1)

where C0 =
√

NS (NS + 1), and Rθ = Re {exp [iθ (Z2 − iX2)]}, NS is the mean photon number of the
preshared TMSV. After encoding, the signal mode is distributed to receiver via a lossy and noisy channel
(i.e. transmissivity κ + 1 and NB = 〈â†

BâB〉/ (1 − κ) is the mean photon number of heat bath). Given that
the optimal decoding approach is applied, the Holevo (maximally accessible) capacity can be obtained from
the formula

χ = S

[
1

2π

∫ 2π

0
ρ̂θdθ

]
− 1

2π

∫ 2π

0
S [ρ̂θ] dθ, (C.2)

where S [)] is the von Neumann entropy. As the signal and idler mode of the phase-encoded field are,
respectively, transmitted to the lossy and noisy channel and the distribution channel, the CMs become

Λideal =

(
(2NB + 2κNS + 1) I2 2

√
κC0Rθ

2
√
κC0Rθ (2NS + 1) I2

)
, ΛD =

(
(2NB + 2κNS + 1) I2 2

√
ηκC0Rθ

2
√
ηκC0Rθ (2ηNS + 1) I2

)
,

ΛQT =

(
(2NB + 2κNS + 1) I2 2

√
κC0Rθ

2
√
κC0Rθ

(
2NS + 2Σ2

QT + 1
)

I2

)
,

(C.3)
with respect to ideal (Λideal), direct-one way (ΛD) and m-relay QEC with teleportation (ΛQT) distribution
channel. Finally, equations (C.2) and (C.3) allow us to calculate the Holevo capacities (more detailed
calculations can be found in [50]),

χideal ≈
κ

NB
NS (NS + 1) log2

[
1 + 1/NS

]
, χD ≈ ηκ

NB
NS (NS + 1) log2

[
1 + 1/ηNS

]
,

χQT ≈
κNS

{
(NS + 1)Σ2

QT

(
Σ2

QT + 1
)

log
[
1 + 1/Σ2

QT

]
− NS

}

NBΣ
2
QT

(
Σ2

QT + 1
)

log 2
,

(C.4)

by assuming NS + 1, κ + 1 and NB / 1.
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C.2. Quantum illumination
The error probability of binary hypothesis testing in a quantum system can be evaluated from the two
density operators involved in the hypotheses,

Hypothes is 1 :ρ̂1, when target is present,

Hypothes is 2 :ρ̂2, when target is absent.
(C.5)

With multiple copies of the unknown state, the error probability is upper bounded by the QCB [95],

1
2

(
inf

0!ν!1

{
Tr

[
ρ̂ν1 ρ̂

1−ν
2

]})M

, (C.6)

where M is the number of identical copy of the quantum system. Reference [95] guides us the formula of
QCB,

1
2

inf
0!ν!1

{
2n∏n

j=1Gν

[
λ1,j

]
G1−ν

[
λ2,j

]
√

det [V1 [ν] + V2 [1 − ν]]
exp

[
−1

2
δvT(V1 [ν] + V2 [1 − ν])−1δv

]}M

, (C.7)

where Gν [x] = 2ν/ [(x + 1)ν − (x − 1)ν], n ∈ N denotes the numbers of mode, λ1(2) is the symplectic
eigenvalue of ρ̂1(2),

V1(2) [ν] = S1(2)






n⊕

j=1

[(
λ1(2),j + 1

)ν −
(
λ1(2),j − 1

)ν
(
λ1(2),j + 1

)ν
+
(
λ1(2),j − 1

)ν ⊗ I2

]

 ST
1(2),

S1(2)






n⊕

j=1

(
0 1
−1 0

)

 ST
1(2) =

n⊕

j=1

(
0 1
−1 0

)
,

C1(2) = S1(2)






n⊕

j=1

λ1(2),jI2




 ST
1(2),

(C.8)

δv = 〈v1〉 − 〈v2〉, 〈v1(2)〉 is the quadrature mean and C1(2) is the CM of ρ̂1(2).
Comparing with the QI performances under three idler distribution channels: ideal, direct one-way and

m-relay QEC with teleportation, we have the CMs of hypothesis 1 as
{

C(1)
ideal, C(1)

D , C(1)
QT

}
,

C(1)
ideal =

(
(2NB + 2κNS + 1) I2 2

√
κC0Z2

2
√
κC0Z2 (2NS + 1) I2

)
, C(1)

D =

(
(2NB + 2κNS + 1) I2 2

√
ηκC0Z2

2
√
ηκC0Z2 (2ηNS + 1) I2

)
,

C(1)
QT =

(
(2NB + 2κNS + 1) I2 2

√
κC0Z2

2
√
κC0Z2

(
2NS + 2Σ2

QT + 1
)

I2

)
,

(C.9)

and hypothesis 2 as
{

C(2)
ideal, C(2)

D , C(2)
QT

}

C(2)
ideal =

(
(2NB + 1) I2 02

02 (2NS + 1) I2

)
, C(2)

D =

(
(2NB + 1) I2 02

02 (2ηNS + 1) I2

)
,

C(2)
QT =

(
(2NB + 1) I2 02

02
(
2NS + 2Σ2

QT + 1
)

I2

)
,

(C.10)

where 02 is the 2 × 2 zero matrix. Calculating the symplectic eigenvalues of the CMs in equations (C.9) and
(C.10), we substitute them into equation (C.7) and numerically calculate the QCBs in figure 11.

C.3. CV quantum key distribution
In the CV-QKD scheme, Alice and Bob preshared a TMSV state with CM

(
VI2

√
V2 − 1Z2√

V2 − 1Z2 VI2

)
, (C.11)

and have the mutual information at the limit of V / 1

IAB ≈ 1
2

log2

[
V

1 + ε

]
, (C.12)
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where V is the variance of the observed thermal mode if the state in Alice is traced out, ε is the variance of
overall additive excess noise. Presumably, Eve adopts Gaussian attack, shown to be optimal among all
collective attacks [101, 102], to the system. In this attack, the maximal accessible information is limited by
the Holevo information,

χBE = S [ρ̂E] −
∫

p [xB] S
[
ρ̂xB

E

]
dxB, (C.13)

where p [xB] is the probability density function of Bob’s measurement outcome xB, ρ̂xB
E (or ρ̂E) is the density

operator conditioned (or unconditioned) on Bob’s result. Equation (C.13) can be derived as

χBE ≈ 1
2

log2

[
e2Vε/4

]
(C.14)

and we obtain equation (14) with the definition of SKR, R ≡ IAB − χBE (see more details in reference [98]).
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