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ABSTRACT

The emerging volumetric videos offer a fully immersive, six degrees
of freedom (6DoF) viewing experience, at the cost of extremely
high bandwidth demand. In this paper, we design, implement, and
evaluate Vues, an edge-assisted transcoding system that delivers
high-quality volumetric videos with low bandwidth requirement,
low decoding overhead, and high quality of experience (QoE) on
mobile devices. Through an IRB-approved user study, we build a
first-of-its-kind QoE model to quantify the impact of various fac-
tors introduced by transcoding volumetric content into 2D videos.
Motivated by the key observations from this user study, Vues em-
ploys a novel multiview approach with the overarching goal of
boosting QoE. The Vues edge server adaptively transcodes a volu-
metric video frame into multiple 2D views with the help of a few
lightweight machine learning models and strategically balances
the extra bandwidth consumption of additional views and the im-
proved QoE, indicated by our QoE model. The client selects the
view that optimizes the QoE among the delivered candidates for dis-
play. Comprehensive evaluations using a prototype implementation
indicate that Vues dramatically outperforms existing approaches.
On average, it improves the QoE by 35% (up to 85%), compared
to single-view transcoding schemes, and reduces the bandwidth
consumption by 95%, compared to the state-of-the-art that directly
streams volumetric videos.

CCS CONCEPTS

» Information systems — Multimedia streaming; - Human-
centered computing — Ubiquitous and mobile computing
systems and tools; Mixed / augmented reality.

KEYWORDS

Volumetric Video Streaming, Multiview Transcoding, Mobile Mixed
Reality, Edge Computing, Quality-of-experience (QoE).

ACM Reference Format:

Yu Liu, Bo Han, Feng Qian, Arvind Narayanan, Zhi-Li Zhang. 2022. Vues:
Practical Mobile Volumetric Video Streaming Through Multiview Transcod-
ing. In The 28th Annual International Conference On Mobile Computing And
Networking (ACM MobiCom °22), October 24-28, 2022, Sydney, NSW, Australia.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3495243.3517027

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM MobiCom 22, October 24-28, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9181-8/22/10...$15.00
https://doi.org/10.1145/3495243.3517027

Arvind Narayanan Zhi-Li Zhang

*George Mason University

1 INTRODUCTION

With recent advances in capturing and streaming technologies and
the increasing popularity of virtual reality (VR) and augmented re-
ality (AR) devices on the consumer market, mobile video streaming
is gaining not only higher resolutions, but also higher degrees of im-
mersion. This is demonstrated by the emergence of 360° panoramic
videos [19, 43], volumetric videos [18, 31], and more recently light
field videos [12]. In this paper, we focus on volumetric videos,
whose display is essentially rendering a sequence of 3D models
(point clouds or 3D meshes) at a fast pace such as 30 frames per
second (FPS). The 3D representation of volumetric videos offers
full immersion by allowing viewers to freely explore the 3D scene
during video playback.

When watching a volumetric video, users can move with six
degrees of freedom (6DoF) along three rotational dimensions by
changing viewing direction in yaw, pitch, and roll and three trans-
lational dimensions by altering viewpoint position in X, Y, and Z.
In contrast, regular 2D videos do not support any user interaction,
and 360° videos enable only 3DoF (yaw, pitch, roll). As a result,
volumetric videos will empower numerous novel applications. For
example, in a chemistry class, students can investigate a molecular
structure from various directions by moving around its volumet-
ric display, when the instructor is explaining the properties of a
chemical element.

While static volumetric content such as point clouds and 3D
meshes has been well studied in the computer graphics commu-
nity [22, 25, 28, 35, 51], streaming high-quality volumetric videos
on mobile networks still remains a challenging issue. The state-of-
the-art approaches for volumetric video streaming can be classified
into two categories: direct streaming [18, 24, 31, 41] and transcoded
streaming [16, 17, 42]. When directly streaming a volumetric video,
the client downloads the encoded 3D content, either in its full form
or segmented parts, before decoding and rendering. Although it
can offer a desirable quality of experience (QoE), direct streaming
suffers from high bandwidth requirements (e.g., hundreds of Mbps)
and non-trivial decoding overhead on mobile devices due to the
sophisticated compression algorithms such as octree [25, 38] and
kd-tree [26, 32].

In a transcoded streaming system, the server or the edge proxy
performs real-time transcoding, by rendering 3D scenes into 2D
images based on the (predicted) viewport of the client, and streams
the encoded 2D video. Existing solutions [16, 17] create a single
view for each frame using a simple prediction model. They may lead
to a poor QoE when viewport prediction is not accurate, which is
common for volumetric video streaming due to 6DoF motion dynam-
ics. Note that the transcoding methods for 360° videos [44, 54] can
handle prediction errors along the rotational dimension (yaw, pitch,
roll) by enlarging the transcoded viewport. Robust transcoding of
volumetric content is much more challenging, as it also needs to
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Figure 1: Generating multiple views from different view-
points (left), spatial (upper right), and temporal (lower right)
arrangements of those views.

‘ Direct ‘ Single View ‘ Vues

Streaming | Transcoding
Low Bandwidth v v
Low Dec. Overhead v v
High QoE v Vv

Table 1: Comparison of Vues and existing approaches.

deal with inaccurate predictions of translational motion, which is
overlooked by single-view transcoding schemes [16, 17].

To address the above issues, we propose Vues, a practical mobile
volumetric video streaming system that benefits from multiview
transcoding (Figure 1). The Vues edge fetches the original (high-
quality) volumetric content from the server and then adaptively
transcodes each frame into multiple 2D views by utilizing a few
lightweight viewport prediction models. After that, it streams to the
client carefully selected candidate views, which offer more choices
for display and thus improve the QoE. The Vues client chooses a
view that provides the best QoE, indicated by our proposed model,
among all the candidates and displays it to the viewer. We posi-
tion Vues by comparing it with existing solutions using several
key metrics in Table 1. Vues focuses on general video-on-demand
(VoD) streaming scenarios such as online learning or YouTube-style
entertainment, although the key concepts of Vues can be applied
to live volumetric video streaming.

Our study for designing Vues includes the following.

QoE of Transcoding-based Volumetric Video Streaming
(§4). We develop a practical model for quantifying the QoE of
transcoded volumetric content. We identify several unique factors
that are introduced by rendering future views based on potentially
inaccurate viewport predictions, including viewport drift, viewport
smoothness, viewport movement distance, and motion-to-photon
latency. Our model takes into account both the above factors and
those that have been studied for regular video streaming. We train
this model through an IRB-approved user study that collected QoE
ratings from more than 4,000 viewing sessions of transcoded vol-
umetric videos. We also analyze the importance of these factors
based on their contribution to the overall QoE.

Multiview Transcoding (§5). Based on the key observations
from the above user study, we make judicious design decisions for
Vues. Inspired by ensemble learning, the Vues edge intelligently
combines the viewport prediction results from multiple machine
learning models for enhancing the prediction accuracy and strate-
gically adds additional views that cover a larger area than what is
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predicted by these models. It then ranks the candidate views based
on their estimated QoE scores, dynamically decides the proper
number of to-be-streamed views with a heuristic algorithm based
on users’ 6DoF motion, and explores two arrangement methods
of encoding those views for balancing the QoE improvement and
extra bandwidth consumption. The client also takes a principled,
QoE-driven approach for selecting the view that maximizes the
QoE.

Implementation and Evaluation (§6, §7). We implement a
prototype of Vues (in 10,500 LoC) on commodity smartphones
and demonstrate its efficacy through extensive evaluations. We
compare the performance of Vues with both the state-of-the-art
approaches that directly stream volumetric videos [18] and solu-
tions that transcode volumetric content into a single view [16, 17].
We thoroughly evaluate Vues over WiFi, emulated LTE, and live
LTE networks, with two real volumetric video datasets, as well as
ratings from real subjects. We highlight key evaluation results as
follows.
® Vues reduces bandwidth consumption by 95% compared to ViVo [18],
the state-of-the-art direct streaming scheme, and avoids stall when
streaming high-quality volumetric videos.

e When network bandwidth is limited, human subjects’ ratings with
mean opinion score (MOS) show that Vues attains considerably
better QoE than ViVo.

e Vues achieves an average QoE improvement of 35% (up to 85%)
compared to single-view, single-model transcoded streaming ap-
proaches [16, 17]. The improved QoE comes at the cost of 2.35x
bandwidth usage compared to single-view systems. Given the very
low bandwidth consumption of the single-view approach (around
only 2 Mbps), the absolute additional bandwidth usage of Vues is
acceptable. We therefore believe that Vues strikes a desired tradeoff
between bandwidth usage and QoE.

2 RELATED WORK

Volumetric Video Streaming. There exist a few studies of volu-
metric video streaming in the literature [16-18, 24, 31, 40-42, 48].
Among them, ViVo [18] introduces several visibility-aware opti-
mizations for streaming mainly the visible portion of a volumetric
video to reduce resource consumption. GROOT [31] is another pro-
posal that improves the efficiency of point cloud compression. The
above approaches directly deliver volumetric videos. Recently, Gl
et al. [16, 17] propose to leverage remote rendering (i.e., transcod-
ing) on cloud servers for low-latency volumetric video streaming.
However, for each frame, they use only a single model to predict
just a single viewport for streaming, which may degrade the QoE
due to motion dynamics (as shown in §4).

Transcoding-based Systems. The transcoding approach has
been widely applied in many other streaming systems including 360
video streaming, cloud gaming, virtual reality (VR), etc. DeepVista[54]
streams ultra high resolution (up to 16K) panoramic videos to mo-
bile devices by leveraging an edge server to extract and transcode
the views based on the client’s viewport. Outatime[30] presents a
low-latency mobile cloud gaming system that offloads the scene
rendering to an edge server and streams the transcoded images.
FlashBack[10] enables high-quality VR content rendering on mo-
bile devices by extensively pre-rendering, transcoding and storing
all possible images the users may view offline. None of the above
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Figure 2: System architecture of Vues.

systems tackles volumetric video streaming that incurs unique
challenges as to be described in §5.

QoE Assessment of Volumetric Videos. There has been some
recent work on directly assessing the visual quality of point clouds.
For example, using a data-driven approach, Meynet et al. [39]
present a full-reference visual quality metric for colored point
clouds. Viola et al. [49] explore global color statistics such as his-
tograms and correlograms to analyze color-based metrics for deter-
mining the level of impairment of point clouds. A detailed review
of existing subjective quality assessments and objective quality
metrics for point clouds is available in Alexiou et al. [6]. The state-
of-the-art visual quality assessment focuses on static point clouds.
To the best of our knowledge, we are the first to model the QoE of
transcoding-based volumetric video streaming.

3 MOTIVATION AND OVERVIEW

There are two major representations of volumetric content: point
cloud and 3D mesh. A point cloud is essentially a group of unsorted
points in 3D space, with attributes such as color or intensity. With
a collection of vertices, edges, and faces, 3D mesh models the struc-
ture of an object with rich geometry information. These faces can
be triangles, quadrangles, or even polygons with holes. We empha-
size that by leveraging the transcoding of volumetric content into
2D views for streaming, the key design of Vues does not depend on
the underlying representation. Although we focus on point-cloud-
based volumetric videos in this work, we can extend Vues to 3D
mesh-based videos by simply replacing the rendering pipeline on
the edge, which is currently done by OpenGL. Moreover, since the
rendering workload is offloaded to the edge server, the client-side
performance of Vues is irrelevant to the complexity of 3D content.

The design of Vues is motivated by three key observations of ex-
isting solutions for volumetric video streaming. First, systems that
directly stream volumetric videos [18, 31] usually lead to high net-
work bandwidth consumption. For example, even with the visibility-
aware optimizations proposed in ViVo [18], it may still require a
bandwidth as high as 180 Mbps. Second, the performance of the
above systems is typically limited by the decoding capability of dense
point clouds on mobile devices. For instance, the average number
of points per frame for all volumetric videos used in ViVo [18] is
less than 250K. In contrast, each frame in the high-quality videos
released by 8i [2] has ~1M points. Third, for single-view transcod-
ing approaches [16, 17], their QoE is in general undesirable, mainly
due to the inaccurate viewport prediction that is used to render
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volumetric content. They may result in an unsmooth trajectory of
displayed views, a key contributor that degrades QoE (§4.4).

The overarching goal of Vues is to address the above issues by
reducing the bandwidth consumption, making the decoding over-
head on mobile devices independent of the quality of volumetric
content, and enhancing the QoE for volumetric video streaming.
We show the system architecture of Vues in Figure 2. The edge
fetches the volumetric videos on demand from the original content
server and adaptively transcodes a volumetric frame into multiple
2D views using a few lightweight machine learning models. It then
delivers candidate views that provide more choices for the client to
render and display. The Vues client selects the view that offers the
best QoE among all candidates.

We face the following challenges when designing Vues. How to
build a practical model for estimating the QoE of volumetric videos,
which takes into account various factors introduced by transcoding?
How to adaptively generate multiple candidate views for accom-
modating the inaccurate viewport prediction that is utilized for
pre-rendering these views? How to strategically select and encode
the most appropriate views that will be streamed to users with
limited information available on the edge server? How to select
from the multiple views on the client side to maximize the perceived
viewing quality for the user? Next, we present how we address
these challenges.

4 QOE MODELING FOR VUES

In this section, we discuss the key factors that can potentially affect
the QoE of transcoding-based volumetric video streaming. We then
conduct an IRB-approved user study to explore the suitable machine
learning models for quantifying the QoE based on these factors. We
also analyze the impact of each factor on user-perceived QoE.

4.1 QoE Factors
We consider both the factors introduced by remote rendering of
volumetric content on the edge and traditional factors that have
been extensively investigated in regular video streaming. Those
traditional QoE factors include startup delay, visual quality (i.e.,
resolution of transcoded 2D frames), quality variation caused by
adaptive bitrate streaming to accommodate dynamic network band-
width, and stall (i.e., rebuffering) time [53]. We use a fixed startup
delay of 2 seconds and thus it is not included in our QoE model.
We conduct a separate IRB-approved user study, referred to
as Study-Trace, to collect viewport movement traces when users
watch volumetric videos on smartphones. We recruit 16 users (8
male and 8 female) from a large university. Their age ranges from
18 to 55. Three of them are university faculty or staff members.
Each participant watches volumetric videos (described in §7.1) on
a smartphone while we collect the movement trajectory. We use
those traces to study the users’ movement patterns, measure the ac-
curacy of various prediction models, and conduct the performance
evaluation in §7. Leveraging this dataset, we apply several off-the-
shelf machine learning algorithms (details in §5.1) to predict the
viewport movement, and then replay the video with the predicted
trajectories to perceive the visual quality. We observe that the pre-
dicted trajectories oftentimes deviate from the ground truth, with
large viewport drift and unsmooth viewport movement negatively
affecting the QoE. Based on those observations, we identify three
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Figure 3: Illustration of three QoE factors.

viewport-related factors that affect the QoE of volumetric videos
as described next. We illustrate them using the ground truth mo-
tion data (GT) from a real user and the predicted result of linear
regression (LR) in Figure 3.
e Viewport Drift. For the ith frame of a video, the viewport drift
—_
D%/ is defined as the vector viu;,,
actual viewport, and u;, is the center of V;, the predicted/displayed
viewport. We employ the magnitude of this vector to represent the
viewport drift for a single video frame in our QoE model. For a

video with n frames, we define the viewport drift as
1 T —
Dy = - " [lov)|
=
i=

When using linear regression as the prediction method, the view-

port drift could be as high as 2.83 meters for the single-view ap-
proach. Even with the multiview approach adopted by Vues, it can
only alleviate the viewport drift along the translational dimensions
to some extent, but cannot completely avoid it.
o Viewport Smoothness. Besides the viewport drift, the displayed
viewport trajectory based on prediction results may not be as
smooth as the real trajectory, again due to inaccurate viewport
prediction. The unsmooth trajectory of pre-rendered views hap-
pens especially when a user starts to move or stops moving. For
example, a user from Study-Trace moves 1.02 meters within 300ms.
However, the predicted motion moves 3.84 meters in the same di-
rection and then moves 2.86 meters in the opposite direction before
stopping. This predicted motion, which dramatically deviates from
the ground truth, significantly affects the QoE.

We define the viewport smoothness Sy as the magnitude of the
difference between the viewport drift vectors of two consecutive
frames. For a video with n frames,

1 v, ;
S = D! _Dl*l
\4 n-1 i§=2|| Vv 74 ||

where o' is the center of Vi, the

e Viewport Movement Distance. This is the translational dis-
tance that the predicted/displayed viewport moves between two
consecutive frames, which may be longer than the actual move-
ment distance of the ground-truth viewport. For example, for the
aforementioned user, the actual viewport moved only 1.02 meters.
However, the predicted viewport moved 5.7 meters. For the ith
video frame, suppose the center of the displayed viewport V; is

U;,. For a video with n frames, we define the viewport movement

distance My as
n
1 ——_—1>
My == > llopop
i=2
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e Motion-to-photon (MTP) Latency. This latency is the required
time to fully reflect user movement, either translational or rota-
tional, on the display. It is known to be a major contributor to
motion sickness for VR applications [20]. For systems that prefetch
volumetric content [18], this latency is essentially the time to render
a point cloud based on the current viewport. In Vues, this latency
is the time to display the pre-rendered volumetric content.

By considering the above factors, we introduce the following QoE
model for evaluating the viewing of transcoding-based volumetric
video streaming:

QoE = q(Dy, Sy, My, L, R, Ry, B)

where L is the motion-to-photon latency, R is the average resolution
of individual frames, R, is the resolution variation of video frames,
and B is the stall duration. R, Ry, and B are the QoE factors com-
monly used in QoE metrics of traditional 2D videos [53]. Next, we
conduct an IRB-approved user study to identify the most suitable
machine learning model for estimating the QoE.

4.2 User Study for Building the Model

To build a practical model, we conduct an IRB-approved user study,
referred to as Study-QoE, for collecting real users’ ratings of viewing
transcoded volumetric content. We recruit 33 participants, including
18 males and 15 females. Most of the participants are students,
faculty, and staff from a large university, with their ages ranging
from 18 to 40. The goal of our user study is to create a model that can
accurately estimate the QoE ratings based on the factors mentioned
in §4.1. We develop a volumetric video player for this purpose,
which renders and displays the pre-generated video content on
smartphones.

We employ the Double Stimulus Comparison Scale (DSCS) method
for our user study, which requires participants to watch two video
clips (i.e., the original one as the ground truth and its impaired coun-
terpart) that are displayed side by side in random order. During
playback, participants can freely make translational movements on
smartphones using screen interactions. Afterwards, we ask them to
compare the QoE of the two video clips. The clips are pre-generated
by applying 2 to 3 levels of impairments introduced by the QoE
factors discussed in §4.1 to two volumetric video sources, Long
Dress and Loot, from the 8i dataset [2]. The DSCS method is rec-
ommended by ITU [3] to minimize the impact of video content
and bias towards unimpaired videos. The high-level approach was
also used by Netflix to build the VMAF QoE model [33, 34] that is
widely used in the industry. Also note that, in this user trial, we
focus on studying participants’ translational motion that is unique
to volumetric content. For the rotational motion dynamics, Vues
can tackle them by leveraging existing methods (§5.1).

We list the parameters to reflect different levels of impairments
in Table 2. Their values are determined from our impairment exper-
iments conducted on Study-Trace based on our domain knowledge.

In total, we create 144 impaired videos using the settings in Ta-
ble 2. For videos with low-level (high-level) of viewport drifts, we
set D{, (in meters) for each pre-rendered video frame to be in the
range of [0, 0.08] ([0, 0.36]), which results in an average viewport
drift of 0.029 (0.124) meters. We control the difference of viewport
drift between consecutive frames to be less than 0.014 (0.056) me-
ters, on average, for videos with low (high) values of viewport
smoothness (the lower, the better). The time for rendering each
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Low | Medium | High

Viewport Drift (m) 0.029 - 0.124

Viewport Smoothness (m) 0.014 - 0.056
Motion-to-Photon Latency (ms) 0 100 200

Resolution 2.020 - 2.313

Resolution Variation 0.014 - 0.055

Stall (s) 0 0.033 | 0.066

Table 2: Different impaired levels of QoE factors.

video frame is fixed to be 100 (200) ms, in order to generate videos
with medium-level (high-level) of MTP latency. We consider three
resolution levels: 1 (540p), 2 (720p), and 3 (1080p). For videos with
low resolution, the level for each frame is randomly and uniformly
selected. For videos with high resolution, the level is 3 (1080p) for
about 1/3 frames and is 2 (720p) for the rest frames. We re-select
the resolution every 40 (10) frames for videos with a low (high)
resolution variation. A resolution switch occurs if the re-selected
resolution level is different from the previous one. The probability
of stalling each frame is set to be 3%. When a stall happens, it lasts
for 33ms (66ms) for videos with a low-level (high-level) of stall.
During the user study, the participants watch 144 pairs of vol-
umetric videos on their smartphones in random order, generated
using either Long Dress or Loot, and rate the QoE using seven scores:
{left looks much better, better, slightly better, similar to, slightly
worse, worse, much worse than right}. We allow participants to pause
and replay the video if needed. In total, we collect 4,752 ratings.

4.3 A Practical QoE Model

With the data collected from the above user study, we explore differ-
ent machine learning models for estimating the QoE of transcoding-
based volumetric video streaming. We convert all ratings from our
participants to the same scale before training the models.

For each video clip pair, the possible scores rated by participants
belong to {-3, -2, —1, 0}, where -3 indicates that the impaired clip
incurs much worse QoE than the ground truth clip, whereas 0 in-
dicates the two clips yield the same QoE. Note that the positive
ratings (+1, +2, and +3), which indicate that the ground truth has
a worse viewing experience compared to the impaired video, do
exist in our user study results. We exclude them from our analysis
because (1) these ratings are very rare (around 1.6% of all ratings),
and (2) most of them appear to be the cases where users made
mistakes by unintentionally selecting the opposite option (e.g.,-3
vs. +3); including them will thus introduce noises. This issue was
also mentioned in the standardization documentation of the DSCS
method [3]. We then further standardize and normalize the rat-
ings. The goal of standardization is to eliminate the bias of the data

Figure 5: Importance of
QoE factors.
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Model | MAE RMSE | Pearson | Spearman
SVR 14.1036 | 17.5473 | 0.6035 0.5761
LR 14.2638 | 17.5452 | 0.6010 0.5968
KNN | 15.9504 | 21.0479 | 0.5203 0.5034
DT 16.5025 | 22.5515 | 0.4706 0.4464

Table 3: Results of four QoE models.

collected from each user and make the data from different users
comparable. Users may have different standards for what counts as
better and much better. Standardization helps eliminate this differ-
ence between users. We leverage the Z-score standardization [29]
to rescale the data to have a mean of 0.0 and a standard deviation of
1.0. After the standardization, we merge the ratings from all users,
cluster them with similar impairment levels, and normalize the data
by rescaling the ratings into the range of [0.0, 100.0].

We train four machine learning models, by applying the 10-fold
cross-validation, and evaluate their accuracy for estimating the
QoE. We consider two classification models, decision tree (DT)
and k-nearest neighbor (KNN), and two regression models, linear
regression (LR) and support vector regression (SVR). When training
these models, we use the values of the identified QoE factors for
creating impaired videos as the features and the corresponding
ratings from the users as the labels.

We quantitatively compare the prediction errors of these four
models and present the results in Table 3. We also report the Pear-
son [8] and Spearman [7] correlation coefficients (the higher, the
better) that measure the strength of the relationship between the
actual user ratings and the predicted ratings using these models.
Ideally, an accurate model would lead to an error close to 0 and a
correlation coefficient close to 1.0. As we can see from this table,
although the mean absolute error (MAE) of DT and KNN is only
slightly higher than that of LR and SVR (11.6% increase, DT vs. LR),
the difference of the root mean squared error (RMSE) between the
classification and regression models is significant (28.2% increase,
DT vs. LR). The better accuracy of LR and SVR is further veri-
fied by their higher Pearson and Spearman correlation coefficients,
compared to KNN and DT. Among the two regression models, the
accuracy of LR is comparable to that of SVR.

We also infer the model accuracy using the heatmap of user
ratings and ratings predicted by these models in Figure 4. The x-
axis of the heatmap is the standardized and normalized ratings
collected from the user study. The y-axis is the predicted QoE
ratings using those models. Each point in the map shows the user
rating (on x-axis) and the predicted rating (on y-axis) for the same
video watched by the same user. For an accurate model, a majority
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of the points should be scattered along the diagonal line connecting
(0,0) and (100, 100). The heatmap of KNN (SVR) looks similar to that
of DT (LR), and thus is not shown. The heatmaps also suggest that
LR has better accuracy compared to DT, which has more samples
(albeit with lower intensities) scattered across the heatmap. Thus,
we select the lightweight LR to model the QoE in Vues.

It is worth mentioning that the QoE model derived here is specif-
ically designed for assessing the quality of transcoded volumet-
ric videos. It may not be directly applicable to the direct stream-
ing scheme (Table 1). Nevertheless, the high-level data-driven ap-
proach we adopted is generic and can be applied to other streaming
paradigms for building their QoE models.

4.4 Importance of Different QoE Factors

We investigate the impact of different factors on the overall QoE.
Figure 5 plots the coefficient of each component in the trained LR
model. The coefficients, which are properly scaled to ensure they
are comparable, measure the contributions of their corresponding
components to the final predicted QoE. Figure 5 shows that view-
port smoothness Sy contributes the most to the QoE, followed by
motion-to-photon latency L and video resolution R. Surprisingly,
this figure demonstrates that viewport drift has a much less con-
tribution to the QoE, compared to viewport smoothness. A key
reason is that viewport drift is usually less perceivable than view-
port smoothness. For example, even if all the predicted viewports
drift from the ground truth by 0.5 meters, as long as their trajectory
is smooth, the impact of the drifted display on the QoE is limited.

5 SYSTEM DESIGN

By leveraging the QoE model in §4 and our observation from
Study-QoE, we propose Vues for boosting the QoE of transcoding-
based volumetric video streaming.

5.1 Multiview Generation

Unlike existing approaches [16, 17] that transcode the viewport
into a single 2D video frame using a single prediction model, which
may lead to remarkable viewport drift and unsmooth trajectory of
displayed content, Vues creates multiple candidate views of a future
viewport. The sets of candidate views are generated in real-time
based on the output of multiple 6-DoF viewport prediction models.
Compared to a single view, generating multiple candidate views
allows the client to select the most appropriate view at the playback
time. This helps tolerate users’ sudden movement and inaccurate
prediction of each individual algorithm.

Motivation and Challenges: To demonstrate the limitations of
existing single-view single-model transcoding solutions, we plot in
Figure 6 the ground-truth viewport trajectory along the Z dimen-
sion (backward or forward) and the trajectories predicted by two
machine learning models, linear regression (LR) and multilayer per-
ceptron (MLP). We choose these two models because they are light-
weight and have been extensively used for viewport prediction of
360° video streaming and volumetric video streaming [18, 19, 43, 52].
We set the history window to be 500ms and the prediction window
to be 1000ms. That is to say, at time ¢ seconds, we use the viewport
trajectory in the window [t — 0.5, ¢] to train a machine learning
model for predicting the viewport at time ¢ + 1.0. We also plot
the trajectory generated by a simple method, called stable (STB),
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Viewport Drift (m)

Figure 7: CDF of Figure 8: Selecting locations for creat-
viewport drifts. ing additional views with a large area.

which assumes the viewport will not change within the prediction
window. While Vues may benefit from more sophisticated deep
learning algorithms such as LSTM [52] to yield more accurate view-
port prediction, those models usually require substantial efforts
for offline training and incur considerable overheads for online
inference. We plan to explore this direction in our future work.
Note that the Vues framework does not rely on specific choices of
prediction methods. Other prediction models can be easily plugged
in with little changes to the multiview generation pipeline.

As we can see from Figure 6, none of the methods can accurately
predict future viewports. Both LR and MLP lead to significant view-
port drift, compared to the ground truth. Moreover, the spikes and
fluctuations indicate that the predicted trajectories are less smooth
and incur unnecessary motions compared to the ground truth, thus
bearing a significantly lower QoE. For the trajectory generated by
STB, it bears the same level of smoothness as the ground truth and
introduces a moderate level of viewport drifts when the viewers
keep moving around. However, it introduces a noticeable latency
for updating the displayed view when users start to move or stop
moving, which increases motion-to-photon latency and degrades
the overall QoE perceived by users.

To quantitatively illustrate the prediction errors of these three
methods, we plot in Figure 7 the CDF of viewport drifts for their
created trajectories. On average, the viewport drift is 0.35, 0.40
and 0.45 meters for MLP, STB, and LR, respectively. Around 60% of
predicted viewports are accurate without any drift. The main reason
is that viewers are stationary when watching these video frames.
However, for 20% of the predictions, the viewport drift is at least
0.65, 0.80, and 0.86 meters for MLP, STB, and LR, respectively. This
indicates that the single-model, single-view solution also incurs
larger viewport drifts compared to the ground truth.

Given the deficiency of the single-model, single-view solution,

we propose to generate multiple views using multiple models to
shield the inaccuracy of individual view/motion, which is inevitable
due to the random nature of the viewer’s motion. However, the
large solution space, the heterogeneity of the prediction models,
the complex QoE metrics (§4.3), and the highly dynamic motion all
make the multi-view approach challenging.
Our Solution: In order to address the above challenges, we (1)
intelligently leverage the prediction results from multiple models,
(2) strategically select the views that will be pre-rendered by the
edge server and delivered to the client, and (3) carefully choose the
final view that will be displayed by the client-side player.

Generating Multiple Candidate Views. Unlike existing ap-
proaches that use a single machine learning for predicting future
viewports, Vues leverages multiple prediction models that have
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different accuracies under different scenarios for creating multiple
views. A simple solution to generate multiple views is to just com-
bine the prediction results from different models. For instance, if we
use the above three models, MLP, STB, and LR, we will create three
views for a single frame (one for each model). At the client-side,
the player selects a view from the three candidates that is closest
to the ground-truth viewport. We show the CDF of viewport drifts
introduced by this solution in Figure 7, illustrated by the MIN curve.
This simple multiview scheme achieves an average viewport drift of
0.24 meters (a 31.4% reduction from MLP, the most accurate model
among the three).

After analyzing the viewport movement traces collected from
our Study-Trace, we find two issues of the above approach. First, if
a user suddenly changes the movement speed (e.g., starts to move
faster/slower, or stops moving), all predicted viewports will dramat-
ically deviate from the ground truth. Note that when the movement
of users is relatively stable with low speed or when the users have
been stationary for a while, the predicted translational positions
(i.e., viewpoints) are usually close to the ground truth. Second, if
users have been keeping moving around to explore the volumetric
video content, the prediction accuracy of the three aforementioned
models is much worse than that for the stationary or low movement
speed scenarios, leading to substantial viewport drifts.

To solve the above two issues, we need to add more views to
cover a larger area than the prediction results. We use the following
method to dynamically expand the coverage area of the predicted
results and uniformly add more candidate views. We show a sketch
of these candidates in Figure 8, where the blue squares are the
translational positions predicted by the three models and the green
circles are the locations of the additional views created by Vues.
We first determine the size of the blue box that is the convex hull of
the predicted positions (a rectangle for the case with three models).
We then expand the blue box into the outer green box that covers
a larger area, to handle the sudden changes of movement pattern.
We increase the width of the blue box by d,, and its height by y, to
create the outer green box. Finally, we divide the outer green box
into a 4x4 grid. To reduce viewport drift, we select all 9 green circles
inside the grid and only 8 green circles on the outer boundary box
for generating additional candidate views. In total, we identify 20
candidate views in Vues (17 views from the expanded area plus 3
views from prediction models).

Next, we explain how to get §,, and §j,. Intuitively, the distance
of two neighboring grid points should be approximately the step
size As that a user could move between two consecutive frames, to
accommodate viewport prediction errors. We derive the step size
As from the viewport traces collected from our Study-Trace, which
is around 0.1 meters. With As known, we can calculate dyy and 5g
based on the convex hull determined by the prediction results:

As = %(2x§w+cw) = %(2x5h+CH)
where Cyy and Cpy are the width and the height of the convex hull.
By solving the above equations, we have
5W=2><As—%CW,5h=2XAs—%CH
Similar to other systems that use viewport prediction [43], Vues

dynamically changes the size of the prediction window, for bal-
ancing potential video stalls caused by a small window and larger
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viewport drifts and unsmooth viewport trajectory introduced by
a large window. Essentially, the prediction window Ty needs to
cover the processing time Tp on both the edge and the client, the
network transfer time Ty, and the buffering time Tp introduced by
the client-side video player. Hence, Tyy > Tp+Tn +Tp. Vues profiles
offline the processing time Tp in advance and keeps monitoring
the network latency Ty and buffering time Tp. It then dynamically
tunes the prediction window Ty, based on those parameters.

When creating multiple candidate views for Vues, we consider
mainly translational movements along the X (leftward or rightward)
and Z (backward or forward) dimensions, due to two reasons. First,
the analysis of viewport trajectories by existing work shows that
the movement along the Y (upward or downward) dimension is
usually limited, as it is inconvenient for users to crouch down and
jump up [18]. Second, even when users move along the Y dimension,
the prediction of translational position in that dimension is much
more accurate than the X and Z dimensions, mainly because of the
low movement speed along the Y dimension [18].

Handling Rotational Movement. The design of the above mul-
tiview generation mitigates the impact of inaccurate viewport pre-
diction along the translational dimensions on the QoE. Instead of
predicting user movements along the rotational dimensions, a sim-
ple solution would be to create a 360° panoramic view for each
candidate viewport. In this case, even if there are rotational move-
ments within the prediction window, users can still watch their
intended content. However, this solution significantly increases
bandwidth consumption by delivering redundant video content.

We carefully select the size of the pre-rendered panoramic view
to accommodate potential rotational movement within the pre-
diction window. Previous work has shown that when watching
volumetric videos on smartphones, the movement speed along the
yaw and pitch dimensions is, on average, less than 10° per second,
and is less than 20° per second for 80% of the cases [18]. As a result,
Vues extends the pre-rendered viewport from the default 90° x45°
field of view (FoV) to a 180° X90° panoramic view for avoiding the
side effect caused by the rotational movements. By doing this, we
can correctly render, at the client side, the view expected by users
based on the current viewing direction.

For other devices such as headsets, the rotational movement

pattern and the viewport prediction accuracy may differ from those
on smartphones [18]. Therefore, when applying Vues to headsets,
the above FoV values may be adjusted accordingly.
Discussion. Another possible solution to address the inaccurate
viewport prediction along the translational dimensions is to lever-
age image-based rendering [46] such as view interpolation [14] and
3D warping [37]. Image-based rendering has been applied to virtual
reality [10], 3D video and graphics streaming [13, 45], and cloud
gaming [30], to name a few. However, the integration of image-
based rendering into Vues may increase computation overhead on
mobile devices for reconstructing the expected view and degrade
QoE due to the distortion incurred by the reconstruction. We plan
to explore image-based rendering in our future work.

5.2 Megaframe Formulation

After identifying the candidate positions to generate multiple views,
we next explain how to merge these views into a megaframe for
encoding and streaming.
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We define a megaframe to be a group of views (rendered from

the same volumetric video frame) that will be streamed to the
client. The resolution of a candidate view could be 540p (960x540)
or 720p (1280%720). We exclude the 1080p (1920x1080) resolution
based on an observation from our Study-QoE, which reveals that the
improvement introduced by 1080p on the overall QoE is marginal,
compared to 720p.! Note that the above resolution configurations
are chosen based on typical smartphone screen sizes. For other
devices such as headsets and tablets, the resolution configurations
may differ, but the multiview approach remains generic.
Challenges: There are several challenges when formulating a
megaframe, including selecting the most suitable views, arranging
chosen views into a megaframe, and determining the resolution for
each to-be-delivered view to accommodate the network dynamics.
Compared to single-view transcoding schemes, Vues can improve
the user-perceived QoE at the cost of extra bandwidth consumption
caused by streaming additional views. Thus, it is crucial to limit the
number of candidate views and select those that could potentially
maximize the QoE. However, it is non-trivial to determine the QoE
improvement introduced by a candidate view with the limited in-
formation available on the edge server. For example, to calculate
the viewport drift and viewport smoothness that are required by
the QoE model, we need to know the ground truth viewport, which
is the key task of viewport prediction and is not obtainable when
formulating a megaframe.
Our Solution: To address the above challenges and balance the
QoE improvement and bandwidth consumption, we (1) explore
different arrangements of candidate views to encode megaframes
with different communication overhead, (2) effectively combine the
prediction results from multiple models to estimate the ground-
truth viewport when predicting the QoE score of candidate views
for ranking, (3) design an intelligent heuristic algorithm that decides
the proper number of candidate views based on users’ motion, and
(4) develop an efficient rate adaptation algorithm for multiview.

Arranging Candidate Views. In Vues, we propose two meth-
ods to form a megaframe: spatial arrangement and temporal ar-
rangement. Spatial arrangement encodes candidate views into a
single larger frame. We set the resolution of a megaframe using
the spatial arrangement to be 4K (3840%2160). Although there are
smartphones that can decode 8K videos, this high resolution is un-
necessary for Vues due to its efficient algorithm for optimizing the
number of candidate views. Thus, a megaframe includes at most
nine 720p, or sixteen 540p views, resulting in 10 possible layouts.
These layouts include zero to nine 720p views and the rest, if any,
will be filled by one or more 540p views.

Temporal arrangement encodes the candidate views sequentially
without merging them into a single frame. Different from the spa-
tial arrangement, the number of candidate views in the temporal
arrangement is mainly limited by the decoding capability of mo-
bile devices. If the client can decode at most N 720p frames every
second, Vues will generate up to | N/30] views to guarantee a 30

!We divide the user ratings of impaired videos into three groups based on the average
resolution level: less than 2 (the average resolution is around 720p), between 2 and
2.27, and higher than 2.27 (at least 1/3 of the views are 1080p). The median user ratings
of the three groups are 35.06, 43.70, and 44.21, respectively, indicating the limited QoE
improvement of 1080p (mainly due to the small screen size of smartphones).
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FPS decoding rate. Although the temporal arrangement may in-
clude fewer views in a megaframe, as we will show in §7, it reduces
the consumed bandwidth for the same number of candidate views,
compared to its spatial counterpart. We also experiment with other
codecs such as the H.265 and get similar results. To select the most
suitable views, we need to first rank them by their contribution to
the QoE improvement, which we will explain next.

Ranking Candidate Views. The key challenge for ranking the
candidate views is to estimate the ground truth viewport that is
used in our QoE model. Although the viewport prediction of each
individual model may not be accurate, we find that simply av-
eraging the results of these models can improve the prediction
accuracy, offering a good estimation of the ground truth. We call
this prediction method AVG. The AVG method is inspired by ensem-
ble learning [11, 15, 21] that utilizes multiple learning algorithms
for obtaining better predictive performance than what could be
achieved by any of the basic learning algorithms alone. As we can
see from Figure 7, the AVG prediction method indeed decreases the
average viewport drift to 0.30 meters (14.3% reduction compared
to MLP). The result of AVG should be close to the center of the
bounding box in Figure 8, and thus it is not considered as one of
the candidate views to save a spot.

With the estimated ground-truth viewport by AVG, we can com-
pute the score of each candidate view using the QoE model in §4.3.
When ranking these views, we use the viewport drift, viewport
smoothness, and viewport movement distance as the factors. We
use the view that has the highest ranking in the previous megaframe
as the viewport of the previously displayed frame. We will deter-
mine the resolution and resolution variation in the rate adaptation
algorithm as to be detailed next.

Deciding the Number of Views. After ranking the candidate
views, we should determine the proper number of views that will be
streamed to the client, with the goal of minimizing the bandwidth
consumption while not affecting user-perceived QoE. As shown in
Figure 6, when the user is stationary or slowly moves, the three
prediction models will generate similar results. In this case, sending
multiple views with almost no difference will waste the network
bandwidth. On the other hand, when the user is moving fast, the
predictions are less accurate, requiring more views to compensate
the prediction error. Thus, instead of fixing the number of candi-
date views, we propose a heuristic algorithm to decide the proper
number of views based on users’ motion. For each frame, the initial
number of views is set to be 1. The reason is that when the user is
stationary, the three prediction models give the same result, and
thus there is no need to send extra views. When the user is mov-
ing slowly (indicated by 8y = 0 and g = 0), we add two more
views for the prediction results from LR and MLP. When the user
is moving too fast or random (indicated by larger Cyy for x-axis
or Cp for z-axis shown in Figure 8), we add two more views for a
larger Cyy or Cp, leading to a maximum of 7 views per frame. As
discussed previously, the movement on y-axis is slower than x-axis
and z-axis, and thus it is not considered in our algorithm.

We also compare our heuristic algorithm to a deep learning
model. The reinforcement learning (RL) model would fit our needs
since it selects a series of actions based on the environment and
states. RL has been used in video streaming [36]. However, we find
that RL does not exhibit a better QoE compared to our heuristic
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algorithm due to the high randomness of users’ motion. Thus, we
apply the heuristic algorithm to decide the number of views.

Adapting to Network Dynamics. Our rate adaptation algo-
rithm is based on the throughput-based ABR algorithms of tra-
ditional 2D videos [27], which selects the highest content quality
level under the constraint of the (predicted) available bandwidth.
Despite a simple concept, the challenge in our case is to determine
the highest content quality level: we need to determine not only
the number of views, but also each view’s resolution; these two
dimensions incur a tradeoff that is unique in our multi-view rep-
resentation and is difficult to balance even if we know the precise
network bandwidth.

The two dimensions above form an exponential solution space
with respect to the number of views. To make the solution effi-
cient, we develop an approximate algorithm based on the gradient
descent concept. In our approach, we start with the list of views
determined by the aforementioned heuristic algorithm, with each
view having the highest resolution. We then iteratively decrease
either the number of views or a view’s resolution until the band-
width constraint is satisfied. Since the views are already ranked
by their QoE scores, in each iteration, we take a greedy action by
either removing the very last (least important) view, or reducing
the resolution of the least important view that is higher than 540p
(the lowest quality). Since all the views incur statistically similar
bandwidth consumption, manipulating the least important view
(in terms of its QoE contribution) ensures bandwidth reduction
at the cost of the minimum QoF reduction. We repeat the above
process until the bandwidth usage of the remaining views is less
than the predicted available bandwidth. We find the above solution
works well in practice despite its heuristic-driven nature, as to be
evaluated in §7.2. The same content selection approach could be
plugged into many other bitrate adaptation algorithms.

5.3 Selection of Displayed View

The above design is for the Vues edge. Next, we explain the method
for choosing the most suitable view from the megaframe for the
client-side display. A naive solution is to select the view that is the
closest to the ground-truth viewport expected by the user (to avoid
the drift). However, as demonstrated in our Study-QoE, the contribu-
tion of viewport drift to the overall QoE is much less than viewport
smoothness. Hence, the view chosen by the above approach may
not lead to the best QoE.

Vues leverages our proposed QoE model in §4.3 to calculate the
QoE score of each candidate view and displays the view with the
highest score. In order to do that, Vues keeps tracking the ground-
truth viewport trajectory and the viewport of each displayed frame.
The client computes the viewport smoothness with the ground
truth of the current and previous frames and the displayed viewport
of previous frames. The above information enables the client to
calculate the QoE score for each candidate and choose the one with
the best QoE for display.

6 IMPLEMENTATION

We implement the Vues client on Android devices and the Vues
edge on a Linux server. The client is written in Java using Android
SDK for networking, decoding, and rendering. The megaframe de-
coding is implemented with the Android MediaCodec API [1] in
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asynchronous mode for achieving the best decoding performance.
Client-side buffer is realized by storing the decoded frames in Frame-
BufferObject (FBO) provided by OpenGL. The panoramic frame is
rendered with GPU-accelerated OpenGL ES. Our client can decode
and render 4K megaframes at 30 FPS on commodity smartphones.
The edge is written in C++ on Ubuntu for rendering, encoding,
and networking. It renders volumetric content using OpenGL. The
megaframe encoding is implemented by the Nvidia codec API [4]
and NvPiPe [9]. Our client implementation consists of 4700 LoC in
Java and the edge consists of 5800 LoC in C++.

7 EVALUATION

7.1 Experiment setup

Devices and Network: We run our client on Samsung Galaxy S8
(Android 9.0, Snapdragon 835, 4G RAM), and the edge on a desktop
PC with Intel Core i7-9700K CPU @ 3.60GHz, GeForce RTX 2080
Ti GPU, and Ubuntu 19.10. We experiment with three network
settings. (1) Home WiFi: we connect the edge and client using a
commodity 802.11ac AP at 5GHz, with around 300 Mbps bandwidth
and ping latency <10ms. This represents a good and stable network
condition. (2) Emulated LTE networks: we use the tc tool [5] to
replay 10 network bandwidth traces collected from a commercial
LTE network at multiple locations with poor to medium signal
strength. The average bandwidth of these traces ranges from 9 to
15 Mbps. They represent limited, fluctuating network conditions.
(3) Real-world LTE network. We conduct live experiments over a
commercial LTE network in the U.S. with good signal strength. The
average bandwidth is around 30 Mbps. Also, we co-locate the edge
and the video content server (implemented as a simple TCP server)
to ensure that the server-edge path does not become the bottleneck,
as this paper focuses on the edge-side transcoding and client-side
view selection.

Videos and User Traces: We create two volumetric video datasets
for our experiments. The first dataset is referred to as Video-Regular,
which includes four videos (captured by us) with an average point
density of ~195K points per frame. In a point cloud frame, each
point occupies 15 bytes (4 bytes each for X, Y, and Z, and 1 byte
each for R, G, and B). So the raw bitrate of these videos ranges from
500 to 870 Mbps. The duration of these videos is from 60 seconds
to 120 seconds. The second dataset is referred to as Video-Dense,
which includes two videos with higher point densities (250K and
456K). We use the raw videos released by 8i [2] to generate those
two videos. For example, we create the second video by merging
two 8i videos (each depicting a single person), leading to a raw
bitrate of ~1.6 Gbps. The duration of both videos is 10 seconds.

We employ 2 videos (V1, V2) from Video-Dense for the high point
density evaluation compared to ViVo [18], and 4 videos (V3-V6)
from Video-Regular for other experiments. For most evaluations,
we employ Video-Regular because the videos are longer, and the
viewport movement traces (described below) can thus capture more
diverse user movement. We replay viewport traces of 16 users col-
lected from Study-Trace (§4.1) to make the experiments automated
and reproducible. To better illustrate the user experience of Vues,
we captured several videos comparing Vues, SingleView, and ViVo.?
%Vues vs. LR: https://youtu.be/R4DQaSKIGRg;

Vues vs. MLP: https://youtu.be/cwrCQ96isVI;
Vues vs. ViVo: https://youtu.be/zTrLggBXTv8.
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Figure 9: QoE of Vues and SingleView over WiFi: overall QoE, viewport drift, smoothness, and movement distance (left to right).
Vues improves QoE by 35% compared to SingleView with viewport smoothness contributing the most to QoE improvement.
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Figure 10: QoE of Vues and SingleView under emulated LTE: overall QoE, viewport drift, smoothness, and movement distance.
Vues improves QoE by 22% compared to SingleView, with viewport smoothness contributing the most to QoE improvement.

Systems to Compare with: We compare two view arrange-
ment schemes of Vues: spatial (denoted as Vues_S) and temporal
(denoted as Vues_T). Recall from §5.2 that Vues_S combines multi-
ple views into a 4K megaframe whereas Vues_T encodes each view
sequentially without spatial combination. For brevity, in some ex-
periments we only show the results of Vues_T if both arrangement
schemes exhibit similar performance. We also compare Vues with
two existing volumetric video streaming systems: ViVo [18] and
SingleView [16, 17]. ViVo is a recently proposed system where the
server directly sends a point cloud stream (without transcoding)
to the client; the client performs point cloud decoding and renders
the 3D scene for each frame. SingleView is the approach taken by
Giil et al. [16, 17] where the 3D point cloud stream is transcoded
to 2D video frames. The main difference between Vues and Single-
View is that SingleView only transcodes and transmits one view
per frame as opposed to multiple views in Vues. Other transcoding-
based streaming schemes [44, 54] are similar to SingleView: they
only apply one single prediction model and send one candidate
view for each video frame. We thus only compare Vues with Single-
View, which serves as the 2D remote rendering baseline. To ensure
apple-to-apple comparison, SingleView also uses two resolutions
for bitrate adaptation: 720p for high bandwidth and 540p for low
bandwidth, and applies the expanded FoV to handle the rotational
movement as described in §5.1. We choose two prediction models
for SingleView: LR and MLP, denoted as Single_LR and Single_ MLP
respectively. The rate adaptation algorithm of SingleView works as
follows. When the estimated bandwidth drops below the bandwidth
requirement of streaming 720p frames, SingleView will send a 540p
frame instead.

7.2 Comparing QoFE of Vues and SingleView
We first evaluate the QoE score of Vues compared to SingleView
under three network conditions.

Unlimited WiFi. We first run the experiments using WiFi with
no bandwidth limit. The client-side buffer ranges from 300ms to
1200ms. On average, the client stores 750ms of frames inside the
buffer. Figure 9 shows the QoE scores and the three viewport-related
QOE factors (the lower, the better) for SingleView and Vues. The
median QoE score of Vues_T, Vues_S, Single_LR, and Single_ MLP
is 87, 86, 67, and 47, respectively. On average, Vues_T improves the
QoE by 35% (up to 85%) compared to Single_LR, and no significant
QokE difference compared to Vues_S. We also show three main fac-
tors: viewport drift, viewport smoothness, and viewport movement
distance. Under good WiFi conditions, there is no stall for all four
systems. The resolution, resolution variance, and motion-to-photon
latency are similar for the four systems, and thus are not shown
in the figure. As shown, Vues significantly improves the viewport
smoothness, which contributes the most to the overall QoE im-
provement. It also results in a much shorter viewport movement
distance, compared to SingleView. Overall, the result indicates that
with the help of multi-view, Vues can significantly improve the
QoE by improving viewport smoothness and reducing viewport
movement distance.

Emulated LTE. We next compare the QoE of Vues against Sin-
gleView when the network bandwidth is limited. Figure 10 shows
the QOE scores and the three viewport-related QoE factors. The
results are generated by the 10 low-bandwidth traces described
in §7.1. We only show the result of Vues_T in the figure because
Vues_S yields similar results to Vues_T. The median QoE score of
Vues_T, Single_LR, and Single_ MLP is 79, 65 and 44, respectively.
On average, under limited bandwidth, Vues improves the QoE score
by 22%. The main contributions of the improvement are still from
viewport smoothness and movement distance, due to Vues’s multi-
view approach. Notice that the viewport drift of the two systems
is similar. This is because when bandwidth is low, Vues will adap-
tively select fewer views to send. Those views are chosen to achieve
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Figure 15: Impact of the number of views on QoE and data
usage. As the number of views increases, the QoE improves
while the bandwidth usage also increases.

better QoE instead of simply reducing the viewport drift. Therefore,
some of the selected viewports may have slightly higher viewport
drift but can achieve better smoothness.

Live LTE. We repeat the same experiment under the live LTE
network. Figure 11 shows the QoE of Vues and SingleView. The
median QoE score of Vues_T, Single_LR, and Single_MLP is 76, 63
and 46, respectively. On average, Vues improves the QoE score by
21% over the real-world LTE network.

7.3 Comparing QoE of Vues and ViVo

We compare the viewing quality of Vues and ViVo with Video-Regular-.
A challenge we face here is that ViVo directly streams the volumet-
ric content without transcoding. Thus, we cannot use our model
derived in §4 to assess the QoE for ViVo. To address this problem,
we conduct a separate IRB-approved user study. The high-level
procedure of this user study is similar to Study-QoE in §4.2, which
uses the DSCS method for comparison. We recruit 32 voluntary
participants (16 females). Their ages range from 20 to 40+. We in-
vite each of them to watch 45 pairs of videos (video {V4, V5, V6} x
3 representative viewport traces X 5 bandwidth traces described
below) side-by-side, in random order. In each pair, one video is
generated by Vues, and the other is generated by ViVo. We ask
the participants to rate the QoE of the two videos using the same
choices for Study-QoE.

We generate the 5 bandwidth traces using the following method.
We notice that ViVo supports five levels of video quality, corre-
sponding to five average point density levels: 160K, 134K, 102K,
80K, 57K points per frame. To comprehensively assess the QoE of
ViVo, we thus generate five bandwidth traces, each being just able
to support one of the five point cloud density levels. Their average
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bandwidth is 265 Mbps, 165 Mbps, 125 Mbps, 85 Mbps, and 55 Mbps,
respectively. The end-to-end RTT is <10ms. Figure 12 shows the
rating distributions, in terms of the Mean Opinion Score (MOS)
difference, given by the 32 subjects. A MOS difference of +3 (-3)
means that Vues achieves a much better (worse) QoE than ViVo
based on the subjects’ feedback; 0 suggests a similar QoE between
Vues and ViVo. As shown, under high network bandwidth that al-
lows ViVo to stream high-quality volumetric content without a stall,
ViVo’s QoE is similar to Vues with an average MOS difference of 0.
For 35% of the cases under the highest bandwidth, ViVo achieves
a better QoE than Vues. This is because ViVo can maintain a high
QoE by directly streaming dense 3D point clouds at the cost of high
bandwidth usage — a desirable approach when the bandwidth is
sufficiently high. However, when the bandwidth drops, ViVo has
to reduce its point cloud density to adapt to the scarce network
resources, leading to significantly reduced QoE. In contrast, Vues’s
transcoding approach is much more bandwidth efficient, making it
a preferred approach when the bandwidth is limited.

Next, we compare the viewing experience of Vues and ViVo with
Video-Dense. Recall from §7.1, there are two videos in Video-Dense
with point densities of around 250K and 456K per frame respec-
tively. We find that, even under the unlimited WiFi network, the
average stall percentage of ViVo for the two videos in Video-Dense
is 95% and 255%, respectively, and makes the video not watchable.
This is caused by the excessive decoding and rendering overhead of
the high-density point clouds on smartphones with limited process-
ing capability. In contrast, no stall is observed with Vues, making
the viewing experience much better than ViVo with higher point
density videos. This echos our discussion in §3 of one key benefit of
transcoding-based streaming over direct streaming: for the former
scheme, the client-side processing overhead is independent of the
complexity of volumetric content (the number of points per frame)
— the computational workload is offloaded to the edge/cloud.

7.4 Comparing with Traditional Quality Metrics
We are also interested in understanding whether traditional objec-
tive image quality metrics can accurately reflect the QoE for Vues.
We use SSIM (Structural Similarity Index [50]), a widely adopted
perceptual metric measuring image distortion and quality degrada-
tion. When calculating the SSIM for each frame, we use the frame
transcoded using the viewer’s true movement as the ground truth
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image. For ViVo, the ground truth image is obtained by transcoding
the original point cloud frame according to the viewer’s true move-
ment without ViVo’s visibility-aware optimizations [18]. Figure 13
shows the SSIM distributions for Single_LR, Single_MLP, Vues_T,
and ViVo under unlimited bandwidth, using Video-Regular with
five representative users’ motion traces. As shown, the difference
is overall small: the median SSIM values for the four schemes are
0.90, 0.89, 0.91, and 0.92, respectively. ViVo achieves slightly higher
SSIM under unlimited bandwidth due to the reasons explained
in §7.3. Vues also slightly outperforms the single-view transcoding
approaches. We observe qualitatively similar results for PSNR (Peak
Signal-to-Noise Ratio [23]). The Spearman’s correlation coefficients
between SSIM and PSNR are 0.949, 0.914, 0.944, and 0.926 for LR,
MLP, Vues_T, and ViVo, respectively.

The SSIM and PSNR results contrast our results in §7.2 where
Vues can improve the QoE (quantified using our derived QoE model)
by 35%. This is because traditional image quality metrics such as
SSIM and PSNR can only capture the visual quality dimension such
as viewport drift within each individual transcoded frame. Other
important cross-frame factors, in particular those relevant to user’s
movement such as viewport smoothness and viewport movement
distance, cannot be captured by traditional quality metrics. This is
why we develop a custom QoE model for Vues.

7.5 Bandwidth Consumption

We next compare the bandwidth consumption of Vues_T, Vues_S,
Single_MLP, and ViVo. We evaluate all four systems under the un-
limited WiFi network with Video-Regular. Note that for SingleView,
the prediction model does not affect the bandwidth consumption.
Thus, we only show the results of Single_ MLP here.

Figure 14 shows the bandwidth consumption of four systems.
Each boxplot is generated from 5 representative viewport move-
ment traces. On average, the required bandwidth is 2.01, 4.72, 9.02,
and 94.50 Mbps for Single_ MLP, Vues_T, Vues_S, and ViVo, respec-
tively. Vues_T reduces the average bandwidth consumption by 40%
compared to Vues_S, and reduces the bandwidth consumption by
95% compared to ViVo, but requires 2.35x more bandwidth than Sin-
gleView. Vues_S requires 4.49X more bandwidth than Single_ MLP.
Compared to SingleView, Vues consumes more bandwidth because
it streams multiple views instead of a single 720p view. The reason
of Vues_T being more bandwidth-efficient than Vues_S is likely
attributed to the video codec (we use H.264). Newer video codecs
such as the multiview extension (MV-HEVC [47]) may further im-
prove the encoding efficiency for spatial view arrangement. Overall,
the results reveal a fundamental tradeoff that Vues aims to better
balance: Vues trades more bandwidth for far better QoE. We believe
the increase in bandwidth usage is reasonable in most situations
considering the significant QoE improvement brought by Vues.

We also compare the bandwidth consumption of Vues and ViVo
with higher point density videos from Video-Dense. The bandwidth
consumption of Vues_T and ViVo is 2.96 and 225.08 Mbps, respec-
tively. Compared to ViVo, Vues’s bandwidth consumption for high
point-density videos remains almost the same compared to lower
point-density videos (V3, V5). The reason is that Vues streams
transcoded 2D content instead of raw 3D point clouds. The above re-
sults confirm the advantages of Vues when handling high-complexity
volumetric content.

Yu Liu, et al.

7.6 Comparing Arrangement Methods

To compare the accessibility and performance of the two arrange-
ment methods, we benchmark the encoding and decoding perfor-
mance of two resolutions on our devices (described in §7.1). On
average, the edge server can encode 4K frames at 30 FPS and 720P
frames at 180 FPS. The client can decode 4K frames at 90 FPS and
720P frames at 550 FPS.

We also compared the two arrangement methods on the QoE
score and bandwidth requirement with different numbers of views
in Figure 15. There is a QoE drop with 9 views for the temporal
arrangement caused by stall: it requires 270 encoding FPS for this
setting, which is beyond the encoding capability and results in a
stall. With less than 9 views, the temporal arrangement achieves
lower bandwidth usage than the spatial arrangement with similar
QoE. The right plot in Figure 15 also suggests that Vues_T is more
bandwidth-efficient than Vues_S, echoing our finding in Figure 14.

Figure 15 demonstrates the trade-off between bandwidth con-
sumption and QoE gain: with only one view, the bandwidth con-
sumption is minimized but the QoE also becomes the lowest. On
the other hand, having more views improves the QoE at the cost of
additional bandwidth usage. Given such a complex tradeoff, Vues
adaptively decides the number of views to be sent to the client based
on the user’s movement to achieve a desirable balance between the
bandwidth usage and QoE improvement.

7.7 Energy and CPU Utilization

To profile the energy consumption, we play V5 repeatedly over the
WiFi network on an SGS8 smartphone for 30 minutes. We start
each experiment on a fully-charged phone. After 30 minutes of
playback, the battery level drops from 100% to 85% for Vues, 86%
for SingleView, and 83% for ViVo. The average CPU utilization
on SGS8 is 22% for Vues, 21% for SingleView, and 27% for ViVo.
Compared to SingleView, the additional energy and CPU usage of
Vues is only 1%. Overall, we believe the resource consumption of
Vues is acceptable.

8 CONCLUDING REMARKS

We presented Vues, an edge-assisted system that delivers truly
immersive volumetric content with high QoFE, low bandwidth con-
sumption, and low decoding overhead on mobile devices. Vues pre-
renders a volumetric video frame into several 2D views using mul-
tiple lightweight viewport prediction models. Compared to direct
streaming, it significantly reduces the bandwidth consumption and
makes the decoding overhead independent of the quality of volu-
metric content. Compared to single-view, single-model transcoding,
Vues substantially improves the smoothness of displayed viewport
trajectory, leading to a much better user experience. Using a practi-
cal QoE model that we proposed for transcoding-based volumetric
video streaming, we demonstrate that Vues dramatically enhances
the QoE by up to 85% (35% on average).
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