
Vues: Practical Mobile Volumetric Video Streaming Through
Multiview Transcoding

Yu Liu Bo Han∗ Feng Qian Arvind Narayanan Zhi-Li Zhang
University of Minnesota, Twin Cities ∗George Mason University

ABSTRACT

The emerging volumetric videos offer a fully immersive, six degrees

of freedom (6DoF) viewing experience, at the cost of extremely

high bandwidth demand. In this paper, we design, implement, and

evaluate Vues, an edge-assisted transcoding system that delivers

high-quality volumetric videos with low bandwidth requirement,

low decoding overhead, and high quality of experience (QoE) on

mobile devices. Through an IRB-approved user study, we build a

first-of-its-kind QoE model to quantify the impact of various fac-

tors introduced by transcoding volumetric content into 2D videos.

Motivated by the key observations from this user study, Vues em-

ploys a novel multiview approach with the overarching goal of

boosting QoE. The Vues edge server adaptively transcodes a volu-

metric video frame into multiple 2D views with the help of a few

lightweight machine learning models and strategically balances

the extra bandwidth consumption of additional views and the im-

proved QoE, indicated by our QoE model. The client selects the

view that optimizes the QoE among the delivered candidates for dis-

play. Comprehensive evaluations using a prototype implementation

indicate that Vues dramatically outperforms existing approaches.

On average, it improves the QoE by 35% (up to 85%), compared

to single-view transcoding schemes, and reduces the bandwidth

consumption by 95%, compared to the state-of-the-art that directly

streams volumetric videos.

CCS CONCEPTS

• Information systems → Multimedia streaming; • Human-

centered computing → Ubiquitous and mobile computing

systems and tools;Mixed / augmented reality.

KEYWORDS

Volumetric Video Streaming, Multiview Transcoding, Mobile Mixed

Reality, Edge Computing, Quality-of-experience (QoE).

ACM Reference Format:

Yu Liu, Bo Han, Feng Qian, Arvind Narayanan, Zhi-Li Zhang. 2022. Vues:

Practical Mobile Volumetric Video Streaming Through Multiview Transcod-

ing. In The 28th Annual International Conference On Mobile Computing And

Networking (ACMMobiCom ’22), October 24–28, 2022, Sydney, NSW, Australia.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3495243.3517027

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9181-8/22/10. . . $15.00
https://doi.org/10.1145/3495243.3517027

1 INTRODUCTION
With recent advances in capturing and streaming technologies and

the increasing popularity of virtual reality (VR) and augmented re-

ality (AR) devices on the consumer market, mobile video streaming

is gaining not only higher resolutions, but also higher degrees of im-

mersion. This is demonstrated by the emergence of 360° panoramic

videos [19, 43], volumetric videos [18, 31], and more recently light

field videos [12]. In this paper, we focus on volumetric videos,

whose display is essentially rendering a sequence of 3D models

(point clouds or 3D meshes) at a fast pace such as 30 frames per

second (FPS). The 3D representation of volumetric videos offers

full immersion by allowing viewers to freely explore the 3D scene

during video playback.

When watching a volumetric video, users can move with six

degrees of freedom (6DoF) along three rotational dimensions by

changing viewing direction in yaw, pitch, and roll and three trans-

lational dimensions by altering viewpoint position in X, Y, and Z.

In contrast, regular 2D videos do not support any user interaction,

and 360° videos enable only 3DoF (yaw, pitch, roll). As a result,

volumetric videos will empower numerous novel applications. For

example, in a chemistry class, students can investigate a molecular

structure from various directions by moving around its volumet-

ric display, when the instructor is explaining the properties of a

chemical element.

While static volumetric content such as point clouds and 3D

meshes has been well studied in the computer graphics commu-

nity [22, 25, 28, 35, 51], streaming high-quality volumetric videos

on mobile networks still remains a challenging issue. The state-of-

the-art approaches for volumetric video streaming can be classified

into two categories: direct streaming [18, 24, 31, 41] and transcoded

streaming [16, 17, 42]. When directly streaming a volumetric video,

the client downloads the encoded 3D content, either in its full form

or segmented parts, before decoding and rendering. Although it

can offer a desirable quality of experience (QoE), direct streaming

suffers from high bandwidth requirements (e.g., hundreds of Mbps)

and non-trivial decoding overhead on mobile devices due to the

sophisticated compression algorithms such as octree [25, 38] and

kd-tree [26, 32].

In a transcoded streaming system, the server or the edge proxy

performs real-time transcoding, by rendering 3D scenes into 2D

images based on the (predicted) viewport of the client, and streams

the encoded 2D video. Existing solutions [16, 17] create a single

view for each frame using a simple prediction model. They may lead

to a poor QoE when viewport prediction is not accurate, which is

common for volumetric video streaming due to 6DoF motion dynam-

ics. Note that the transcoding methods for 360° videos [44, 54] can

handle prediction errors along the rotational dimension (yaw, pitch,

roll) by enlarging the transcoded viewport. Robust transcoding of

volumetric content is much more challenging, as it also needs to

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yu Liu, et al.

Figure 1: Generating multiple views from different view-

points (left), spatial (upper right), and temporal (lower right)

arrangements of those views.

Direct Single View Vues

Streaming Transcoding

Low Bandwidth � �
Low Dec. Overhead � �

High QoE � �
Table 1: Comparison of Vues and existing approaches.

deal with inaccurate predictions of translational motion, which is

overlooked by single-view transcoding schemes [16, 17].

To address the above issues, we propose Vues, a practical mobile

volumetric video streaming system that benefits from multiview

transcoding (Figure 1). The Vues edge fetches the original (high-

quality) volumetric content from the server and then adaptively

transcodes each frame into multiple 2D views by utilizing a few

lightweight viewport prediction models. After that, it streams to the

client carefully selected candidate views, which offer more choices

for display and thus improve the QoE. The Vues client chooses a

view that provides the best QoE, indicated by our proposed model,

among all the candidates and displays it to the viewer. We posi-

tion Vues by comparing it with existing solutions using several

key metrics in Table 1. Vues focuses on general video-on-demand

(VoD) streaming scenarios such as online learning or YouTube-style

entertainment, although the key concepts of Vues can be applied

to live volumetric video streaming.

Our study for designing Vues includes the following.

QoE of Transcoding-based Volumetric Video Streaming

(§4). We develop a practical model for quantifying the QoE of

transcoded volumetric content. We identify several unique factors

that are introduced by rendering future views based on potentially

inaccurate viewport predictions, including viewport drift, viewport

smoothness, viewport movement distance, and motion-to-photon

latency. Our model takes into account both the above factors and

those that have been studied for regular video streaming. We train

this model through an IRB-approved user study that collected QoE

ratings from more than 4,000 viewing sessions of transcoded vol-

umetric videos. We also analyze the importance of these factors

based on their contribution to the overall QoE.

Multiview Transcoding (§5). Based on the key observations

from the above user study, we make judicious design decisions for

Vues. Inspired by ensemble learning, the Vues edge intelligently

combines the viewport prediction results from multiple machine

learning models for enhancing the prediction accuracy and strate-

gically adds additional views that cover a larger area than what is

predicted by these models. It then ranks the candidate views based

on their estimated QoE scores, dynamically decides the proper

number of to-be-streamed views with a heuristic algorithm based

on users’ 6DoF motion, and explores two arrangement methods

of encoding those views for balancing the QoE improvement and

extra bandwidth consumption. The client also takes a principled,

QoE-driven approach for selecting the view that maximizes the

QoE.

Implementation and Evaluation (§6, §7). We implement a

prototype of Vues (in 10,500 LoC) on commodity smartphones

and demonstrate its efficacy through extensive evaluations. We

compare the performance of Vues with both the state-of-the-art

approaches that directly stream volumetric videos [18] and solu-

tions that transcode volumetric content into a single view [16, 17].

We thoroughly evaluate Vues over WiFi, emulated LTE, and live

LTE networks, with two real volumetric video datasets, as well as

ratings from real subjects. We highlight key evaluation results as

follows.

•Vues reduces bandwidth consumption by 95% compared to ViVo [18],

the state-of-the-art direct streaming scheme, and avoids stall when

streaming high-quality volumetric videos.

•When network bandwidth is limited, human subjects’ ratings with

mean opinion score (MOS) show that Vues attains considerably

better QoE than ViVo.

• Vues achieves an average QoE improvement of 35% (up to 85%)

compared to single-view, single-model transcoded streaming ap-

proaches [16, 17]. The improved QoE comes at the cost of 2.35×

bandwidth usage compared to single-view systems. Given the very

low bandwidth consumption of the single-view approach (around

only 2 Mbps), the absolute additional bandwidth usage of Vues is

acceptable. We therefore believe that Vues strikes a desired tradeoff

between bandwidth usage and QoE.

2 RELATEDWORK
Volumetric Video Streaming. There exist a few studies of volu-

metric video streaming in the literature [16–18, 24, 31, 40–42, 48].

Among them, ViVo [18] introduces several visibility-aware opti-

mizations for streaming mainly the visible portion of a volumetric

video to reduce resource consumption. GROOT [31] is another pro-

posal that improves the efficiency of point cloud compression. The

above approaches directly deliver volumetric videos. Recently, Gül

et al. [16, 17] propose to leverage remote rendering (i.e., transcod-

ing) on cloud servers for low-latency volumetric video streaming.

However, for each frame, they use only a single model to predict

just a single viewport for streaming, which may degrade the QoE

due to motion dynamics (as shown in §4).

Transcoding-based Systems. The transcoding approach has

been widely applied in many other streaming systems including 360

video streaming, cloud gaming, virtual reality (VR), etc.DeepVista[54]

streams ultra high resolution (up to 16K) panoramic videos to mo-

bile devices by leveraging an edge server to extract and transcode

the views based on the client’s viewport. Outatime[30] presents a

low-latency mobile cloud gaming system that offloads the scene

rendering to an edge server and streams the transcoded images.

FlashBack[10] enables high-quality VR content rendering on mo-

bile devices by extensively pre-rendering, transcoding and storing

all possible images the users may view offline. None of the above

Vues: Practical Mobile Volumetric Video Streaming Through Multiview Transcoding ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

Figure 2: System architecture of Vues.

systems tackles volumetric video streaming that incurs unique

challenges as to be described in §5.

QoEAssessment of Volumetric Videos. There has been some

recent work on directly assessing the visual quality of point clouds.

For example, using a data-driven approach, Meynet et al. [39]

present a full-reference visual quality metric for colored point

clouds. Viola et al. [49] explore global color statistics such as his-

tograms and correlograms to analyze color-based metrics for deter-

mining the level of impairment of point clouds. A detailed review

of existing subjective quality assessments and objective quality

metrics for point clouds is available in Alexiou et al. [6]. The state-

of-the-art visual quality assessment focuses on static point clouds.

To the best of our knowledge, we are the first to model the QoE of

transcoding-based volumetric video streaming.

3 MOTIVATION AND OVERVIEW
There are two major representations of volumetric content: point

cloud and 3D mesh. A point cloud is essentially a group of unsorted

points in 3D space, with attributes such as color or intensity. With

a collection of vertices, edges, and faces, 3D mesh models the struc-

ture of an object with rich geometry information. These faces can

be triangles, quadrangles, or even polygons with holes. We empha-

size that by leveraging the transcoding of volumetric content into

2D views for streaming, the key design of Vues does not depend on

the underlying representation. Although we focus on point-cloud-

based volumetric videos in this work, we can extend Vues to 3D

mesh-based videos by simply replacing the rendering pipeline on

the edge, which is currently done by OpenGL. Moreover, since the

rendering workload is offloaded to the edge server, the client-side

performance of Vues is irrelevant to the complexity of 3D content.

The design of Vues is motivated by three key observations of ex-

isting solutions for volumetric video streaming. First, systems that

directly stream volumetric videos [18, 31] usually lead to high net-

work bandwidth consumption. For example, even with the visibility-

aware optimizations proposed in ViVo [18], it may still require a

bandwidth as high as 180 Mbps. Second, the performance of the

above systems is typically limited by the decoding capability of dense

point clouds on mobile devices. For instance, the average number

of points per frame for all volumetric videos used in ViVo [18] is

less than 250K. In contrast, each frame in the high-quality videos

released by 8i [2] has ∼1M points. Third, for single-view transcod-

ing approaches [16, 17], their QoE is in general undesirable, mainly

due to the inaccurate viewport prediction that is used to render

volumetric content. They may result in an unsmooth trajectory of

displayed views, a key contributor that degrades QoE (§4.4).

The overarching goal of Vues is to address the above issues by

reducing the bandwidth consumption, making the decoding over-

head on mobile devices independent of the quality of volumetric

content, and enhancing the QoE for volumetric video streaming.

We show the system architecture of Vues in Figure 2. The edge

fetches the volumetric videos on demand from the original content

server and adaptively transcodes a volumetric frame into multiple

2D views using a few lightweight machine learning models. It then

delivers candidate views that provide more choices for the client to

render and display. The Vues client selects the view that offers the

best QoE among all candidates.

We face the following challenges when designing Vues. How to

build a practical model for estimating the QoE of volumetric videos,

which takes into account various factors introduced by transcoding?

How to adaptively generate multiple candidate views for accom-

modating the inaccurate viewport prediction that is utilized for

pre-rendering these views? How to strategically select and encode

the most appropriate views that will be streamed to users with

limited information available on the edge server? How to select

from the multiple views on the client side tomaximize the perceived

viewing quality for the user? Next, we present how we address

these challenges.

4 QOE MODELING FOR VUES
In this section, we discuss the key factors that can potentially affect

the QoE of transcoding-based volumetric video streaming. We then

conduct an IRB-approved user study to explore the suitable machine

learning models for quantifying the QoE based on these factors. We

also analyze the impact of each factor on user-perceived QoE.

4.1 QoE Factors
We consider both the factors introduced by remote rendering of

volumetric content on the edge and traditional factors that have

been extensively investigated in regular video streaming. Those

traditional QoE factors include startup delay, visual quality (i.e.,

resolution of transcoded 2D frames), quality variation caused by

adaptive bitrate streaming to accommodate dynamic network band-

width, and stall (i.e., rebuffering) time [53]. We use a fixed startup

delay of 2 seconds and thus it is not included in our QoE model.

We conduct a separate IRB-approved user study, referred to

as Study-Trace, to collect viewport movement traces when users

watch volumetric videos on smartphones. We recruit 16 users (8

male and 8 female) from a large university. Their age ranges from

18 to 55. Three of them are university faculty or staff members.

Each participant watches volumetric videos (described in §7.1) on

a smartphone while we collect the movement trajectory. We use

those traces to study the users’ movement patterns, measure the ac-

curacy of various prediction models, and conduct the performance

evaluation in §7. Leveraging this dataset, we apply several off-the-

shelf machine learning algorithms (details in §5.1) to predict the

viewport movement, and then replay the video with the predicted

trajectories to perceive the visual quality. We observe that the pre-

dicted trajectories oftentimes deviate from the ground truth, with

large viewport drift and unsmooth viewport movement negatively

affecting the QoE. Based on those observations, we identify three

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yu Liu, et al.

Figure 3: Illustration of three QoE factors.

viewport-related factors that affect the QoE of volumetric videos

as described next. We illustrate them using the ground truth mo-

tion data (GT) from a real user and the predicted result of linear

regression (LR) in Figure 3.

• Viewport Drift. For the 𝑖th frame of a video, the viewport drift

𝐷𝑖
𝑉 is defined as the vector

−−−→
𝑣𝑖𝑣𝑖𝑝 , where 𝑣

𝑖 is the center of 𝑉 𝑖 , the

actual viewport, and 𝑣𝑖𝑝 is the center of 𝑉 𝑖
𝑝 , the predicted/displayed

viewport. We employ the magnitude of this vector to represent the

viewport drift for a single video frame in our QoE model. For a

video with 𝑛 frames, we define the viewport drift as

𝐷𝑉 =
1

𝑛

𝑛∑

𝑖=1

| |
−−−→
𝑣𝑖𝑣𝑖𝑝 | |

When using linear regression as the prediction method, the view-

port drift could be as high as 2.83 meters for the single-view ap-

proach. Even with the multiview approach adopted by Vues, it can

only alleviate the viewport drift along the translational dimensions

to some extent, but cannot completely avoid it.

•Viewport Smoothness. Besides the viewport drift, the displayed

viewport trajectory based on prediction results may not be as

smooth as the real trajectory, again due to inaccurate viewport

prediction. The unsmooth trajectory of pre-rendered views hap-

pens especially when a user starts to move or stops moving. For

example, a user from Study-Trace moves 1.02 meters within 300ms.

However, the predicted motion moves 3.84 meters in the same di-

rection and then moves 2.86 meters in the opposite direction before

stopping. This predicted motion, which dramatically deviates from

the ground truth, significantly affects the QoE.

We define the viewport smoothness 𝑆𝑉 as the magnitude of the

difference between the viewport drift vectors of two consecutive

frames. For a video with 𝑛 frames,

𝑆𝑉 =
1

𝑛 − 1

𝑛∑

𝑖=2

| |𝐷𝑖
𝑉 − 𝐷𝑖−1

𝑉 | |

• Viewport Movement Distance. This is the translational dis-

tance that the predicted/displayed viewport moves between two

consecutive frames, which may be longer than the actual move-

ment distance of the ground-truth viewport. For example, for the

aforementioned user, the actual viewport moved only 1.02 meters.

However, the predicted viewport moved 5.7 meters. For the 𝑖th
video frame, suppose the center of the displayed viewport 𝑉 𝑖

𝑝 is

𝑣𝑖𝑝 . For a video with 𝑛 frames, we define the viewport movement

distance𝑀𝑉 as

𝑀𝑉 =
1

𝑛 − 1

𝑛∑

𝑖=2

| |
−−−−−→
𝑣𝑖𝑝𝑣

𝑖−1
𝑝 | |

•Motion-to-photon (MTP) Latency. This latency is the required

time to fully reflect user movement, either translational or rota-

tional, on the display. It is known to be a major contributor to

motion sickness for VR applications [20]. For systems that prefetch

volumetric content [18], this latency is essentially the time to render

a point cloud based on the current viewport. In Vues, this latency

is the time to display the pre-rendered volumetric content.

By considering the above factors, we introduce the followingQoE

model for evaluating the viewing of transcoding-based volumetric

video streaming:

𝑄𝑜𝐸 = 𝑞(𝐷𝑉 , 𝑆𝑉 , 𝑀𝑉 , 𝐿, 𝑅, 𝑅𝑣, 𝐵)

where 𝐿 is the motion-to-photon latency, 𝑅 is the average resolution

of individual frames, 𝑅𝑣 is the resolution variation of video frames,

and 𝐵 is the stall duration. 𝑅, 𝑅𝑣 , and 𝐵 are the QoE factors com-

monly used in QoE metrics of traditional 2D videos [53]. Next, we

conduct an IRB-approved user study to identify the most suitable

machine learning model for estimating the QoE.

4.2 User Study for Building the Model
To build a practical model, we conduct an IRB-approved user study,

referred to as Study-QoE, for collecting real users’ ratings of viewing

transcoded volumetric content.We recruit 33 participants, including

18 males and 15 females. Most of the participants are students,

faculty, and staff from a large university, with their ages ranging

from 18 to 40. The goal of our user study is to create a model that can

accurately estimate the QoE ratings based on the factors mentioned

in §4.1. We develop a volumetric video player for this purpose,

which renders and displays the pre-generated video content on

smartphones.

We employ theDouble Stimulus Comparison Scale (DSCS)method

for our user study, which requires participants to watch two video

clips (i.e., the original one as the ground truth and its impaired coun-

terpart) that are displayed side by side in random order. During

playback, participants can freely make translational movements on

smartphones using screen interactions. Afterwards, we ask them to

compare the QoE of the two video clips. The clips are pre-generated

by applying 2 to 3 levels of impairments introduced by the QoE

factors discussed in §4.1 to two volumetric video sources, Long

Dress and Loot, from the 8i dataset [2]. The DSCS method is rec-

ommended by ITU [3] to minimize the impact of video content

and bias towards unimpaired videos. The high-level approach was

also used by Netflix to build the VMAF QoE model [33, 34] that is

widely used in the industry. Also note that, in this user trial, we

focus on studying participants’ translational motion that is unique

to volumetric content. For the rotational motion dynamics, Vues

can tackle them by leveraging existing methods (§5.1).

We list the parameters to reflect different levels of impairments

in Table 2. Their values are determined from our impairment exper-

iments conducted on Study-Trace based on our domain knowledge.

In total, we create 144 impaired videos using the settings in Ta-

ble 2. For videos with low-level (high-level) of viewport drifts, we

set 𝐷𝑖
𝑉 (in meters) for each pre-rendered video frame to be in the

range of [0, 0.08] ([0, 0.36]), which results in an average viewport

drift of 0.029 (0.124) meters. We control the difference of viewport

drift between consecutive frames to be less than 0.014 (0.056) me-

ters, on average, for videos with low (high) values of viewport

smoothness (the lower, the better). The time for rendering each

Vues: Practical Mobile Volumetric Video Streaming Through Multiview Transcoding ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

Figure 4: Accuracy heatmaps QoE models: decision

tree (left) and linear regression (right).

Figure 5: Importance of

QoE factors.

Figure 6: Predicted

viewport trajectories.

Low Medium High

Viewport Drift (m) 0.029 - 0.124

Viewport Smoothness (m) 0.014 - 0.056

Motion-to-Photon Latency (ms) 0 100 200

Resolution 2.020 - 2.313

Resolution Variation 0.014 - 0.055

Stall (s) 0 0.033 0.066

Table 2: Different impaired levels of QoE factors.

video frame is fixed to be 100 (200) ms, in order to generate videos

with medium-level (high-level) of MTP latency. We consider three

resolution levels: 1 (540p), 2 (720p), and 3 (1080p). For videos with

low resolution, the level for each frame is randomly and uniformly

selected. For videos with high resolution, the level is 3 (1080p) for

about 1/3 frames and is 2 (720p) for the rest frames. We re-select

the resolution every 40 (10) frames for videos with a low (high)

resolution variation. A resolution switch occurs if the re-selected

resolution level is different from the previous one. The probability

of stalling each frame is set to be 3%. When a stall happens, it lasts

for 33ms (66ms) for videos with a low-level (high-level) of stall.

During the user study, the participants watch 144 pairs of vol-

umetric videos on their smartphones in random order, generated

using either Long Dress or Loot, and rate the QoE using seven scores:

{left looks much better, better, slightly better, similar to, slightly

worse, worse, muchworse than right}.We allow participants to pause

and replay the video if needed. In total, we collect 4,752 ratings.

4.3 A Practical QoE Model
With the data collected from the above user study, we explore differ-

ent machine learning models for estimating the QoE of transcoding-

based volumetric video streaming. We convert all ratings from our

participants to the same scale before training the models.

For each video clip pair, the possible scores rated by participants

belong to {−3,−2,−1, 0}, where -3 indicates that the impaired clip

incurs much worse QoE than the ground truth clip, whereas 0 in-

dicates the two clips yield the same QoE. Note that the positive

ratings (+1, +2, and +3), which indicate that the ground truth has

a worse viewing experience compared to the impaired video, do

exist in our user study results. We exclude them from our analysis

because (1) these ratings are very rare (around 1.6% of all ratings),

and (2) most of them appear to be the cases where users made

mistakes by unintentionally selecting the opposite option (e.g.,-3

vs. +3); including them will thus introduce noises. This issue was

also mentioned in the standardization documentation of the DSCS

method [3]. We then further standardize and normalize the rat-

ings. The goal of standardization is to eliminate the bias of the data

Model MAE RMSE Pearson Spearman

SVR 14.1036 17.5473 0.6035 0.5761

LR 14.2638 17.5452 0.6010 0.5968

KNN 15.9504 21.0479 0.5203 0.5034

DT 16.5025 22.5515 0.4706 0.4464

Table 3: Results of four QoE models.

collected from each user and make the data from different users

comparable. Users may have different standards for what counts as

better and much better. Standardization helps eliminate this differ-

ence between users. We leverage the Z-score standardization [29]

to rescale the data to have a mean of 0.0 and a standard deviation of

1.0. After the standardization, we merge the ratings from all users,

cluster them with similar impairment levels, and normalize the data

by rescaling the ratings into the range of [0.0, 100.0].

We train four machine learning models, by applying the 10-fold

cross-validation, and evaluate their accuracy for estimating the

QoE. We consider two classification models, decision tree (DT)

and 𝑘-nearest neighbor (KNN), and two regression models, linear

regression (LR) and support vector regression (SVR). When training

these models, we use the values of the identified QoE factors for

creating impaired videos as the features and the corresponding

ratings from the users as the labels.

We quantitatively compare the prediction errors of these four

models and present the results in Table 3. We also report the Pear-

son [8] and Spearman [7] correlation coefficients (the higher, the

better) that measure the strength of the relationship between the

actual user ratings and the predicted ratings using these models.

Ideally, an accurate model would lead to an error close to 0 and a

correlation coefficient close to 1.0. As we can see from this table,

although the mean absolute error (MAE) of DT and KNN is only

slightly higher than that of LR and SVR (11.6% increase, DT vs. LR),

the difference of the root mean squared error (RMSE) between the

classification and regression models is significant (28.2% increase,

DT vs. LR). The better accuracy of LR and SVR is further veri-

fied by their higher Pearson and Spearman correlation coefficients,

compared to KNN and DT. Among the two regression models, the

accuracy of LR is comparable to that of SVR.

We also infer the model accuracy using the heatmap of user

ratings and ratings predicted by these models in Figure 4. The x-

axis of the heatmap is the standardized and normalized ratings

collected from the user study. The y-axis is the predicted QoE

ratings using those models. Each point in the map shows the user

rating (on x-axis) and the predicted rating (on y-axis) for the same

video watched by the same user. For an accurate model, a majority

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yu Liu, et al.

of the points should be scattered along the diagonal line connecting

(0, 0) and (100, 100). The heatmap of KNN (SVR) looks similar to that

of DT (LR), and thus is not shown. The heatmaps also suggest that

LR has better accuracy compared to DT, which has more samples

(albeit with lower intensities) scattered across the heatmap. Thus,

we select the lightweight LR to model the QoE in Vues.

It is worth mentioning that the QoE model derived here is specif-

ically designed for assessing the quality of transcoded volumet-

ric videos. It may not be directly applicable to the direct stream-

ing scheme (Table 1). Nevertheless, the high-level data-driven ap-

proach we adopted is generic and can be applied to other streaming

paradigms for building their QoE models.

4.4 Importance of Different QoE Factors

We investigate the impact of different factors on the overall QoE.

Figure 5 plots the coefficient of each component in the trained LR

model. The coefficients, which are properly scaled to ensure they

are comparable, measure the contributions of their corresponding

components to the final predicted QoE. Figure 5 shows that view-

port smoothness 𝑆𝑉 contributes the most to the QoE, followed by

motion-to-photon latency 𝐿 and video resolution 𝑅. Surprisingly,
this figure demonstrates that viewport drift has a much less con-

tribution to the QoE, compared to viewport smoothness. A key

reason is that viewport drift is usually less perceivable than view-

port smoothness. For example, even if all the predicted viewports

drift from the ground truth by 0.5 meters, as long as their trajectory

is smooth, the impact of the drifted display on the QoE is limited.

5 SYSTEM DESIGN
By leveraging the QoE model in §4 and our observation from

Study-QoE, we propose Vues for boosting the QoE of transcoding-

based volumetric video streaming.

5.1 Multiview Generation
Unlike existing approaches [16, 17] that transcode the viewport

into a single 2D video frame using a single prediction model, which

may lead to remarkable viewport drift and unsmooth trajectory of

displayed content, Vues creates multiple candidate views of a future

viewport. The sets of candidate views are generated in real-time

based on the output of multiple 6-DoF viewport prediction models.

Compared to a single view, generating multiple candidate views

allows the client to select the most appropriate view at the playback

time. This helps tolerate users’ sudden movement and inaccurate

prediction of each individual algorithm.

Motivation and Challenges: To demonstrate the limitations of

existing single-view single-model transcoding solutions, we plot in

Figure 6 the ground-truth viewport trajectory along the Z dimen-

sion (backward or forward) and the trajectories predicted by two

machine learning models, linear regression (LR) and multilayer per-

ceptron (MLP). We choose these two models because they are light-

weight and have been extensively used for viewport prediction of

360° video streaming and volumetric video streaming [18, 19, 43, 52].

We set the history window to be 500ms and the prediction window

to be 1000ms. That is to say, at time 𝑡 seconds, we use the viewport
trajectory in the window [𝑡 − 0.5, 𝑡] to train a machine learning

model for predicting the viewport at time 𝑡 + 1.0. We also plot

the trajectory generated by a simple method, called stable (STB),

Figure 7: CDF of

viewport drifts.

Figure 8: Selecting locations for creat-

ing additional views with a large area.

which assumes the viewport will not change within the prediction

window. While Vues may benefit from more sophisticated deep

learning algorithms such as LSTM [52] to yield more accurate view-

port prediction, those models usually require substantial efforts

for offline training and incur considerable overheads for online

inference. We plan to explore this direction in our future work.

Note that the Vues framework does not rely on specific choices of

prediction methods. Other prediction models can be easily plugged

in with little changes to the multiview generation pipeline.

As we can see from Figure 6, none of the methods can accurately

predict future viewports. Both LR and MLP lead to significant view-

port drift, compared to the ground truth. Moreover, the spikes and

fluctuations indicate that the predicted trajectories are less smooth

and incur unnecessary motions compared to the ground truth, thus

bearing a significantly lower QoE. For the trajectory generated by

STB, it bears the same level of smoothness as the ground truth and

introduces a moderate level of viewport drifts when the viewers

keep moving around. However, it introduces a noticeable latency

for updating the displayed view when users start to move or stop

moving, which increases motion-to-photon latency and degrades

the overall QoE perceived by users.

To quantitatively illustrate the prediction errors of these three

methods, we plot in Figure 7 the CDF of viewport drifts for their

created trajectories. On average, the viewport drift is 0.35, 0.40

and 0.45 meters for MLP, STB, and LR, respectively. Around 60% of

predicted viewports are accurate without any drift. Themain reason

is that viewers are stationary when watching these video frames.

However, for 20% of the predictions, the viewport drift is at least

0.65, 0.80, and 0.86 meters for MLP, STB, and LR, respectively. This

indicates that the single-model, single-view solution also incurs

larger viewport drifts compared to the ground truth.

Given the deficiency of the single-model, single-view solution,

we propose to generate multiple views using multiple models to

shield the inaccuracy of individual view/motion, which is inevitable

due to the random nature of the viewer’s motion. However, the

large solution space, the heterogeneity of the prediction models,

the complex QoE metrics (§4.3), and the highly dynamic motion all

make the multi-view approach challenging.

Our Solution: In order to address the above challenges, we (1)

intelligently leverage the prediction results from multiple models,

(2) strategically select the views that will be pre-rendered by the

edge server and delivered to the client, and (3) carefully choose the

final view that will be displayed by the client-side player.

Generating Multiple Candidate Views. Unlike existing ap-

proaches that use a single machine learning for predicting future

viewports, Vues leverages multiple prediction models that have

Vues: Practical Mobile Volumetric Video Streaming Through Multiview Transcoding ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

different accuracies under different scenarios for creating multiple

views. A simple solution to generate multiple views is to just com-

bine the prediction results from different models. For instance, if we

use the above three models, MLP, STB, and LR, we will create three

views for a single frame (one for each model). At the client-side,

the player selects a view from the three candidates that is closest

to the ground-truth viewport. We show the CDF of viewport drifts

introduced by this solution in Figure 7, illustrated by the MIN curve.

This simple multiview scheme achieves an average viewport drift of

0.24 meters (a 31.4% reduction from MLP, the most accurate model

among the three).

After analyzing the viewport movement traces collected from

our Study-Trace, we find two issues of the above approach. First, if

a user suddenly changes the movement speed (e.g., starts to move

faster/slower, or stops moving), all predicted viewports will dramat-

ically deviate from the ground truth. Note that when the movement

of users is relatively stable with low speed or when the users have

been stationary for a while, the predicted translational positions

(i.e., viewpoints) are usually close to the ground truth. Second, if

users have been keeping moving around to explore the volumetric

video content, the prediction accuracy of the three aforementioned

models is much worse than that for the stationary or lowmovement

speed scenarios, leading to substantial viewport drifts.

To solve the above two issues, we need to add more views to

cover a larger area than the prediction results. We use the following

method to dynamically expand the coverage area of the predicted

results and uniformly add more candidate views. We show a sketch

of these candidates in Figure 8, where the blue squares are the

translational positions predicted by the three models and the green

circles are the locations of the additional views created by Vues.

We first determine the size of the blue box that is the convex hull of

the predicted positions (a rectangle for the case with three models).

We then expand the blue box into the outer green box that covers

a larger area, to handle the sudden changes of movement pattern.

We increase the width of the blue box by 𝛿𝑤 and its height by 𝛿ℎ to

create the outer green box. Finally, we divide the outer green box

into a 4×4 grid. To reduce viewport drift, we select all 9 green circles

inside the grid and only 8 green circles on the outer boundary box

for generating additional candidate views. In total, we identify 20

candidate views in Vues (17 views from the expanded area plus 3

views from prediction models).

Next, we explain how to get 𝛿𝑤 and 𝛿ℎ . Intuitively, the distance
of two neighboring grid points should be approximately the step

size Δ𝑠 that a user could move between two consecutive frames, to

accommodate viewport prediction errors. We derive the step size

Δ𝑠 from the viewport traces collected from our Study-Trace, which

is around 0.1 meters. With Δ𝑠 known, we can calculate 𝛿𝑊 and 𝛿𝐻
based on the convex hull determined by the prediction results:

Δ𝑠 =
1

4
(2 × 𝛿𝑤 +𝐶𝑊) =

1

4
(2 × 𝛿ℎ +𝐶𝐻)

where 𝐶𝑊 and 𝐶𝐻 are the width and the height of the convex hull.

By solving the above equations, we have

𝛿𝑤 = 2 × Δ𝑠 −
1

2
𝐶𝑊 , 𝛿ℎ = 2 × Δ𝑠 −

1

2
𝐶𝐻

Similar to other systems that use viewport prediction [43], Vues

dynamically changes the size of the prediction window, for bal-

ancing potential video stalls caused by a small window and larger

viewport drifts and unsmooth viewport trajectory introduced by

a large window. Essentially, the prediction window 𝑇𝑊 needs to

cover the processing time 𝑇𝑃 on both the edge and the client, the

network transfer time 𝑇𝑁 , and the buffering time 𝑇𝐵 introduced by

the client-side video player. Hence,𝑇𝑊 ≥ 𝑇𝑃 +𝑇𝑁 +𝑇𝐵 . Vues profiles
offline the processing time 𝑇𝑃 in advance and keeps monitoring

the network latency 𝑇𝑁 and buffering time 𝑇𝐵 . It then dynamically

tunes the prediction window 𝑇𝑊 based on those parameters.

When creating multiple candidate views for Vues, we consider

mainly translational movements along the X (leftward or rightward)

and Z (backward or forward) dimensions, due to two reasons. First,

the analysis of viewport trajectories by existing work shows that

the movement along the Y (upward or downward) dimension is

usually limited, as it is inconvenient for users to crouch down and

jump up [18]. Second, even when users move along the Y dimension,

the prediction of translational position in that dimension is much

more accurate than the X and Z dimensions, mainly because of the

low movement speed along the Y dimension [18].

Handling Rotational Movement. The design of the above mul-

tiview generation mitigates the impact of inaccurate viewport pre-

diction along the translational dimensions on the QoE. Instead of

predicting user movements along the rotational dimensions, a sim-

ple solution would be to create a 360° panoramic view for each

candidate viewport. In this case, even if there are rotational move-

ments within the prediction window, users can still watch their

intended content. However, this solution significantly increases

bandwidth consumption by delivering redundant video content.

We carefully select the size of the pre-rendered panoramic view

to accommodate potential rotational movement within the pre-

diction window. Previous work has shown that when watching

volumetric videos on smartphones, the movement speed along the

yaw and pitch dimensions is, on average, less than 10° per second,

and is less than 20° per second for 80% of the cases [18]. As a result,

Vues extends the pre-rendered viewport from the default 90° ×45°

field of view (FoV) to a 180° ×90° panoramic view for avoiding the

side effect caused by the rotational movements. By doing this, we

can correctly render, at the client side, the view expected by users

based on the current viewing direction.

For other devices such as headsets, the rotational movement

pattern and the viewport prediction accuracy may differ from those

on smartphones [18]. Therefore, when applying Vues to headsets,

the above FoV values may be adjusted accordingly.

Discussion. Another possible solution to address the inaccurate

viewport prediction along the translational dimensions is to lever-

age image-based rendering [46] such as view interpolation [14] and

3D warping [37]. Image-based rendering has been applied to virtual

reality [10], 3D video and graphics streaming [13, 45], and cloud

gaming [30], to name a few. However, the integration of image-

based rendering into Vues may increase computation overhead on

mobile devices for reconstructing the expected view and degrade

QoE due to the distortion incurred by the reconstruction. We plan

to explore image-based rendering in our future work.

5.2 Megaframe Formulation
After identifying the candidate positions to generate multiple views,

we next explain how to merge these views into a megaframe for

encoding and streaming.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yu Liu, et al.

We define a megaframe to be a group of views (rendered from

the same volumetric video frame) that will be streamed to the

client. The resolution of a candidate view could be 540p (960×540)

or 720p (1280×720). We exclude the 1080p (1920×1080) resolution

based on an observation from our Study-QoE, which reveals that the

improvement introduced by 1080p on the overall QoE is marginal,

compared to 720p.1 Note that the above resolution configurations

are chosen based on typical smartphone screen sizes. For other

devices such as headsets and tablets, the resolution configurations

may differ, but the multiview approach remains generic.

Challenges: There are several challenges when formulating a

megaframe, including selecting the most suitable views, arranging

chosen views into a megaframe, and determining the resolution for

each to-be-delivered view to accommodate the network dynamics.

Compared to single-view transcoding schemes, Vues can improve

the user-perceived QoE at the cost of extra bandwidth consumption

caused by streaming additional views. Thus, it is crucial to limit the

number of candidate views and select those that could potentially

maximize the QoE. However, it is non-trivial to determine the QoE

improvement introduced by a candidate view with the limited in-

formation available on the edge server. For example, to calculate

the viewport drift and viewport smoothness that are required by

the QoE model, we need to know the ground truth viewport, which

is the key task of viewport prediction and is not obtainable when

formulating a megaframe.

Our Solution: To address the above challenges and balance the

QoE improvement and bandwidth consumption, we (1) explore

different arrangements of candidate views to encode megaframes

with different communication overhead, (2) effectively combine the

prediction results from multiple models to estimate the ground-

truth viewport when predicting the QoE score of candidate views

for ranking, (3) design an intelligent heuristic algorithm that decides

the proper number of candidate views based on users’ motion, and

(4) develop an efficient rate adaptation algorithm for multiview.

Arranging Candidate Views. In Vues, we propose two meth-

ods to form a megaframe: spatial arrangement and temporal ar-

rangement. Spatial arrangement encodes candidate views into a

single larger frame. We set the resolution of a megaframe using

the spatial arrangement to be 4K (3840×2160). Although there are

smartphones that can decode 8K videos, this high resolution is un-

necessary for Vues due to its efficient algorithm for optimizing the

number of candidate views. Thus, a megaframe includes at most

nine 720p, or sixteen 540p views, resulting in 10 possible layouts.

These layouts include zero to nine 720p views and the rest, if any,

will be filled by one or more 540p views.

Temporal arrangement encodes the candidate views sequentially

without merging them into a single frame. Different from the spa-

tial arrangement, the number of candidate views in the temporal

arrangement is mainly limited by the decoding capability of mo-

bile devices. If the client can decode at most 𝑁 720p frames every

second, Vues will generate up to �𝑁 /30� views to guarantee a 30

1We divide the user ratings of impaired videos into three groups based on the average
resolution level: less than 2 (the average resolution is around 720p), between 2 and
2.27, and higher than 2.27 (at least 1/3 of the views are 1080p). The median user ratings
of the three groups are 35.06, 43.70, and 44.21, respectively, indicating the limited QoE
improvement of 1080p (mainly due to the small screen size of smartphones).

FPS decoding rate. Although the temporal arrangement may in-

clude fewer views in a megaframe, as we will show in §7, it reduces

the consumed bandwidth for the same number of candidate views,

compared to its spatial counterpart. We also experiment with other

codecs such as the H.265 and get similar results. To select the most

suitable views, we need to first rank them by their contribution to

the QoE improvement, which we will explain next.

Ranking Candidate Views. The key challenge for ranking the

candidate views is to estimate the ground truth viewport that is

used in our QoE model. Although the viewport prediction of each

individual model may not be accurate, we find that simply av-

eraging the results of these models can improve the prediction

accuracy, offering a good estimation of the ground truth. We call

this prediction method AVG. The AVGmethod is inspired by ensem-

ble learning [11, 15, 21] that utilizes multiple learning algorithms

for obtaining better predictive performance than what could be

achieved by any of the basic learning algorithms alone. As we can

see from Figure 7, the AVG prediction method indeed decreases the

average viewport drift to 0.30 meters (14.3% reduction compared

to MLP). The result of AVG should be close to the center of the

bounding box in Figure 8, and thus it is not considered as one of

the candidate views to save a spot.

With the estimated ground-truth viewport by AVG, we can com-

pute the score of each candidate view using the QoE model in §4.3.

When ranking these views, we use the viewport drift, viewport

smoothness, and viewport movement distance as the factors. We

use the view that has the highest ranking in the previousmegaframe

as the viewport of the previously displayed frame. We will deter-

mine the resolution and resolution variation in the rate adaptation

algorithm as to be detailed next.

Deciding the Number of Views. After ranking the candidate

views, we should determine the proper number of views that will be

streamed to the client, with the goal of minimizing the bandwidth

consumption while not affecting user-perceived QoE. As shown in

Figure 6, when the user is stationary or slowly moves, the three

prediction models will generate similar results. In this case, sending

multiple views with almost no difference will waste the network

bandwidth. On the other hand, when the user is moving fast, the

predictions are less accurate, requiring more views to compensate

the prediction error. Thus, instead of fixing the number of candi-

date views, we propose a heuristic algorithm to decide the proper

number of views based on users’ motion. For each frame, the initial

number of views is set to be 1. The reason is that when the user is

stationary, the three prediction models give the same result, and

thus there is no need to send extra views. When the user is mov-

ing slowly (indicated by 𝛿𝑊 = 0 and 𝛿𝐻 = 0), we add two more

views for the prediction results from LR and MLP. When the user

is moving too fast or random (indicated by larger 𝐶𝑊 for x-axis

or 𝐶𝐻 for z-axis shown in Figure 8), we add two more views for a

larger 𝐶𝑊 or 𝐶𝐻 , leading to a maximum of 7 views per frame. As

discussed previously, the movement on y-axis is slower than x-axis

and z-axis, and thus it is not considered in our algorithm.

We also compare our heuristic algorithm to a deep learning

model. The reinforcement learning (RL) model would fit our needs

since it selects a series of actions based on the environment and

states. RL has been used in video streaming [36]. However, we find

that RL does not exhibit a better QoE compared to our heuristic

Vues: Practical Mobile Volumetric Video Streaming Through Multiview Transcoding ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

algorithm due to the high randomness of users’ motion. Thus, we

apply the heuristic algorithm to decide the number of views.

Adapting to Network Dynamics. Our rate adaptation algo-

rithm is based on the throughput-based ABR algorithms of tra-

ditional 2D videos [27], which selects the highest content quality

level under the constraint of the (predicted) available bandwidth.

Despite a simple concept, the challenge in our case is to determine

the highest content quality level: we need to determine not only

the number of views, but also each view’s resolution; these two

dimensions incur a tradeoff that is unique in our multi-view rep-

resentation and is difficult to balance even if we know the precise

network bandwidth.

The two dimensions above form an exponential solution space

with respect to the number of views. To make the solution effi-

cient, we develop an approximate algorithm based on the gradient

descent concept. In our approach, we start with the list of views

determined by the aforementioned heuristic algorithm, with each

view having the highest resolution. We then iteratively decrease

either the number of views or a view’s resolution until the band-

width constraint is satisfied. Since the views are already ranked

by their QoE scores, in each iteration, we take a greedy action by

either removing the very last (least important) view, or reducing

the resolution of the least important view that is higher than 540p

(the lowest quality). Since all the views incur statistically similar

bandwidth consumption, manipulating the least important view

(in terms of its QoE contribution) ensures bandwidth reduction

at the cost of the minimum QoE reduction. We repeat the above

process until the bandwidth usage of the remaining views is less

than the predicted available bandwidth. We find the above solution

works well in practice despite its heuristic-driven nature, as to be

evaluated in §7.2. The same content selection approach could be

plugged into many other bitrate adaptation algorithms.

5.3 Selection of Displayed View
The above design is for the Vues edge. Next, we explain the method

for choosing the most suitable view from the megaframe for the

client-side display. A naive solution is to select the view that is the

closest to the ground-truth viewport expected by the user (to avoid

the drift). However, as demonstrated in our Study-QoE, the contribu-

tion of viewport drift to the overall QoE is much less than viewport

smoothness. Hence, the view chosen by the above approach may

not lead to the best QoE.

Vues leverages our proposed QoE model in §4.3 to calculate the

QoE score of each candidate view and displays the view with the

highest score. In order to do that, Vues keeps tracking the ground-

truth viewport trajectory and the viewport of each displayed frame.

The client computes the viewport smoothness with the ground

truth of the current and previous frames and the displayed viewport

of previous frames. The above information enables the client to

calculate the QoE score for each candidate and choose the one with

the best QoE for display.

6 IMPLEMENTATION
We implement the Vues client on Android devices and the Vues

edge on a Linux server. The client is written in Java using Android

SDK for networking, decoding, and rendering. The megaframe de-

coding is implemented with the Android MediaCodec API [1] in

asynchronous mode for achieving the best decoding performance.

Client-side buffer is realized by storing the decoded frames in Frame-

BufferObject (FBO) provided by OpenGL. The panoramic frame is

rendered with GPU-accelerated OpenGL ES. Our client can decode

and render 4K megaframes at 30 FPS on commodity smartphones.

The edge is written in C++ on Ubuntu for rendering, encoding,

and networking. It renders volumetric content using OpenGL. The

megaframe encoding is implemented by the Nvidia codec API [4]

and NvPiPe [9]. Our client implementation consists of 4700 LoC in

Java and the edge consists of 5800 LoC in C++.

7 EVALUATION

7.1 Experiment setup
Devices and Network: We run our client on Samsung Galaxy S8

(Android 9.0, Snapdragon 835, 4G RAM), and the edge on a desktop

PC with Intel Core i7-9700K CPU @ 3.60GHz, GeForce RTX 2080

Ti GPU, and Ubuntu 19.10. We experiment with three network

settings. (1) Home WiFi: we connect the edge and client using a

commodity 802.11ac AP at 5GHz, with around 300 Mbps bandwidth

and ping latency <10ms. This represents a good and stable network

condition. (2) Emulated LTE networks: we use the tc tool [5] to

replay 10 network bandwidth traces collected from a commercial

LTE network at multiple locations with poor to medium signal

strength. The average bandwidth of these traces ranges from 9 to

15 Mbps. They represent limited, fluctuating network conditions.

(3) Real-world LTE network. We conduct live experiments over a

commercial LTE network in the U.S. with good signal strength. The

average bandwidth is around 30 Mbps. Also, we co-locate the edge

and the video content server (implemented as a simple TCP server)

to ensure that the server-edge path does not become the bottleneck,

as this paper focuses on the edge-side transcoding and client-side

view selection.

Videos andUserTraces:We create two volumetric video datasets

for our experiments. The first dataset is referred to as Video-Regular,

which includes four videos (captured by us) with an average point

density of ∼195K points per frame. In a point cloud frame, each

point occupies 15 bytes (4 bytes each for X, Y, and Z, and 1 byte

each for R, G, and B). So the raw bitrate of these videos ranges from

500 to 870 Mbps. The duration of these videos is from 60 seconds

to 120 seconds. The second dataset is referred to as Video-Dense,

which includes two videos with higher point densities (250K and

456K). We use the raw videos released by 8i [2] to generate those

two videos. For example, we create the second video by merging

two 8i videos (each depicting a single person), leading to a raw

bitrate of ∼1.6 Gbps. The duration of both videos is 10 seconds.

We employ 2 videos (V1, V2) from Video-Dense for the high point

density evaluation compared to ViVo [18], and 4 videos (V3–V6)

from Video-Regular for other experiments. For most evaluations,

we employ Video-Regular because the videos are longer, and the

viewport movement traces (described below) can thus capture more

diverse user movement. We replay viewport traces of 16 users col-

lected from Study-Trace (§4.1) to make the experiments automated

and reproducible. To better illustrate the user experience of Vues,

we captured several videos comparing Vues, SingleView, and ViVo.2

2Vues vs. LR: https://youtu.be/R4DQaSKIGRg;
Vues vs. MLP: https://youtu.be/cwrCQ96isVI;
Vues vs. ViVo: https://youtu.be/zTrLggBXTv8.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yu Liu, et al.

Figure 9: QoE of Vues and SingleView overWiFi: overall QoE, viewport drift, smoothness, andmovement distance (left to right).

Vues improves QoE by 35% compared to SingleView with viewport smoothness contributing the most to QoE improvement.

Figure 10: QoE of Vues and SingleView under emulated LTE: overall QoE, viewport drift, smoothness, and movement distance.

Vues improves QoE by 22% compared to SingleView, with viewport smoothness contributing the most to QoE improvement.

Systems to Compare with: We compare two view arrange-

ment schemes of Vues: spatial (denoted as Vues_S) and temporal

(denoted as Vues_T). Recall from §5.2 that Vues_S combines multi-

ple views into a 4K megaframe whereas Vues_T encodes each view

sequentially without spatial combination. For brevity, in some ex-

periments we only show the results of Vues_T if both arrangement

schemes exhibit similar performance. We also compare Vues with

two existing volumetric video streaming systems: ViVo [18] and

SingleView [16, 17]. ViVo is a recently proposed system where the

server directly sends a point cloud stream (without transcoding)

to the client; the client performs point cloud decoding and renders

the 3D scene for each frame. SingleView is the approach taken by

Gül et al. [16, 17] where the 3D point cloud stream is transcoded

to 2D video frames. The main difference between Vues and Single-

View is that SingleView only transcodes and transmits one view

per frame as opposed to multiple views in Vues. Other transcoding-

based streaming schemes [44, 54] are similar to SingleView: they

only apply one single prediction model and send one candidate

view for each video frame. We thus only compare Vues with Single-

View, which serves as the 2D remote rendering baseline. To ensure

apple-to-apple comparison, SingleView also uses two resolutions

for bitrate adaptation: 720p for high bandwidth and 540p for low

bandwidth, and applies the expanded FoV to handle the rotational

movement as described in §5.1. We choose two prediction models

for SingleView: LR and MLP, denoted as Single_LR and Single_MLP

respectively. The rate adaptation algorithm of SingleView works as

follows. When the estimated bandwidth drops below the bandwidth

requirement of streaming 720p frames, SingleView will send a 540p

frame instead.

7.2 Comparing QoE of Vues and SingleView
We first evaluate the QoE score of Vues compared to SingleView

under three network conditions.

Unlimited WiFi. We first run the experiments using WiFi with

no bandwidth limit. The client-side buffer ranges from 300ms to

1200ms. On average, the client stores 750ms of frames inside the

buffer. Figure 9 shows the QoE scores and the three viewport-related

QoE factors (the lower, the better) for SingleView and Vues. The

median QoE score of Vues_T, Vues_S, Single_LR, and Single_MLP

is 87, 86, 67, and 47, respectively. On average, Vues_T improves the

QoE by 35% (up to 85%) compared to Single_LR, and no significant

QoE difference compared to Vues_S. We also show three main fac-

tors: viewport drift, viewport smoothness, and viewport movement

distance. Under good WiFi conditions, there is no stall for all four

systems. The resolution, resolution variance, and motion-to-photon

latency are similar for the four systems, and thus are not shown

in the figure. As shown, Vues significantly improves the viewport

smoothness, which contributes the most to the overall QoE im-

provement. It also results in a much shorter viewport movement

distance, compared to SingleView. Overall, the result indicates that

with the help of multi-view, Vues can significantly improve the

QoE by improving viewport smoothness and reducing viewport

movement distance.

Emulated LTE. We next compare the QoE of Vues against Sin-

gleView when the network bandwidth is limited. Figure 10 shows

the QoE scores and the three viewport-related QoE factors. The

results are generated by the 10 low-bandwidth traces described

in §7.1. We only show the result of Vues_T in the figure because

Vues_S yields similar results to Vues_T. The median QoE score of

Vues_T, Single_LR, and Single_MLP is 79, 65 and 44, respectively.

On average, under limited bandwidth, Vues improves the QoE score

by 22%. The main contributions of the improvement are still from

viewport smoothness and movement distance, due to Vues’s multi-

view approach. Notice that the viewport drift of the two systems

is similar. This is because when bandwidth is low, Vues will adap-

tively select fewer views to send. Those views are chosen to achieve

Vues: Practical Mobile Volumetric Video Streaming Through Multiview Transcoding ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

Figure 11: QoE

over live LTE. Vues

improves QoE by

21% compared to

SingleView.

Figure 12: Subjects’ ratings com-

paring Vues and ViVo (median

values aremarked in thick lines).

Vues achieves higher user-rated

scores under lower bandwidth.

Figure 13: SSIM values of Sin-

gleView, Vues, and ViVo. The

small differences are attrib-

uted to limitations of tradi-

tional image quality metrics.

Figure 14: BWusage among three

systems. Vues reduces BW usage

by 95% compared to ViVo while

incurring higher (yet acceptable)

BW usage than SingleView.

Figure 15: Impact of the number of views on QoE and data

usage. As the number of views increases, the QoE improves

while the bandwidth usage also increases.

better QoE instead of simply reducing the viewport drift. Therefore,

some of the selected viewports may have slightly higher viewport

drift but can achieve better smoothness.

Live LTE. We repeat the same experiment under the live LTE

network. Figure 11 shows the QoE of Vues and SingleView. The

median QoE score of Vues_T, Single_LR, and Single_MLP is 76, 63

and 46, respectively. On average, Vues improves the QoE score by

21% over the real-world LTE network.

7.3 Comparing QoE of Vues and ViVo
We compare the viewing quality ofVues andViVowith Video-Regular.

A challenge we face here is that ViVo directly streams the volumet-

ric content without transcoding. Thus, we cannot use our model

derived in §4 to assess the QoE for ViVo. To address this problem,

we conduct a separate IRB-approved user study. The high-level

procedure of this user study is similar to Study-QoE in §4.2, which

uses the DSCS method for comparison. We recruit 32 voluntary

participants (16 females). Their ages range from 20 to 40+. We in-

vite each of them to watch 45 pairs of videos (video {V4, V5, V6} ×

3 representative viewport traces × 5 bandwidth traces described

below) side-by-side, in random order. In each pair, one video is

generated by Vues, and the other is generated by ViVo. We ask

the participants to rate the QoE of the two videos using the same

choices for Study-QoE.

We generate the 5 bandwidth traces using the following method.

We notice that ViVo supports five levels of video quality, corre-

sponding to five average point density levels: 160K, 134K, 102K,

80K, 57K points per frame. To comprehensively assess the QoE of

ViVo, we thus generate five bandwidth traces, each being just able

to support one of the five point cloud density levels. Their average

bandwidth is 265 Mbps, 165 Mbps, 125 Mbps, 85 Mbps, and 55 Mbps,

respectively. The end-to-end RTT is <10ms. Figure 12 shows the

rating distributions, in terms of the Mean Opinion Score (MOS)

difference, given by the 32 subjects. A MOS difference of +3 (-3)

means that Vues achieves a much better (worse) QoE than ViVo

based on the subjects’ feedback; 0 suggests a similar QoE between

Vues and ViVo. As shown, under high network bandwidth that al-

lows ViVo to stream high-quality volumetric content without a stall,

ViVo’s QoE is similar to Vues with an average MOS difference of 0.

For 35% of the cases under the highest bandwidth, ViVo achieves

a better QoE than Vues. This is because ViVo can maintain a high

QoE by directly streaming dense 3D point clouds at the cost of high

bandwidth usage – a desirable approach when the bandwidth is

sufficiently high. However, when the bandwidth drops, ViVo has

to reduce its point cloud density to adapt to the scarce network

resources, leading to significantly reduced QoE. In contrast, Vues’s

transcoding approach is much more bandwidth efficient, making it

a preferred approach when the bandwidth is limited.

Next, we compare the viewing experience of Vues and ViVo with

Video-Dense. Recall from §7.1, there are two videos in Video-Dense

with point densities of around 250K and 456K per frame respec-

tively. We find that, even under the unlimited WiFi network, the

average stall percentage of ViVo for the two videos in Video-Dense

is 95% and 255%, respectively, and makes the video not watchable.

This is caused by the excessive decoding and rendering overhead of

the high-density point clouds on smartphones with limited process-

ing capability. In contrast, no stall is observed with Vues, making

the viewing experience much better than ViVo with higher point

density videos. This echos our discussion in §3 of one key benefit of

transcoding-based streaming over direct streaming: for the former

scheme, the client-side processing overhead is independent of the

complexity of volumetric content (the number of points per frame)

– the computational workload is offloaded to the edge/cloud.

7.4 Comparing with Traditional Quality Metrics
We are also interested in understanding whether traditional objec-

tive image quality metrics can accurately reflect the QoE for Vues.

We use SSIM (Structural Similarity Index [50]), a widely adopted

perceptual metric measuring image distortion and quality degrada-

tion. When calculating the SSIM for each frame, we use the frame

transcoded using the viewer’s true movement as the ground truth

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yu Liu, et al.

image. For ViVo, the ground truth image is obtained by transcoding

the original point cloud frame according to the viewer’s true move-

ment without ViVo’s visibility-aware optimizations [18]. Figure 13

shows the SSIM distributions for Single_LR, Single_MLP, Vues_T,

and ViVo under unlimited bandwidth, using Video-Regular with

five representative users’ motion traces. As shown, the difference

is overall small: the median SSIM values for the four schemes are

0.90, 0.89, 0.91, and 0.92, respectively. ViVo achieves slightly higher

SSIM under unlimited bandwidth due to the reasons explained

in §7.3. Vues also slightly outperforms the single-view transcoding

approaches. We observe qualitatively similar results for PSNR (Peak

Signal-to-Noise Ratio [23]). The Spearman’s correlation coefficients

between SSIM and PSNR are 0.949, 0.914, 0.944, and 0.926 for LR,

MLP, Vues_T, and ViVo, respectively.

The SSIM and PSNR results contrast our results in §7.2 where

Vues can improve the QoE (quantified using our derived QoEmodel)

by 35%. This is because traditional image quality metrics such as

SSIM and PSNR can only capture the visual quality dimension such

as viewport drift within each individual transcoded frame. Other

important cross-frame factors, in particular those relevant to user’s

movement such as viewport smoothness and viewport movement

distance, cannot be captured by traditional quality metrics. This is

why we develop a custom QoE model for Vues.

7.5 Bandwidth Consumption
We next compare the bandwidth consumption of Vues_T, Vues_S,

Single_MLP, and ViVo. We evaluate all four systems under the un-

limitedWiFi network with Video-Regular. Note that for SingleView,

the prediction model does not affect the bandwidth consumption.

Thus, we only show the results of Single_MLP here.

Figure 14 shows the bandwidth consumption of four systems.

Each boxplot is generated from 5 representative viewport move-

ment traces. On average, the required bandwidth is 2.01, 4.72, 9.02,

and 94.50 Mbps for Single_MLP, Vues_T, Vues_S, and ViVo, respec-

tively. Vues_T reduces the average bandwidth consumption by 40%

compared to Vues_S, and reduces the bandwidth consumption by

95% compared to ViVo, but requires 2.35×more bandwidth than Sin-

gleView. Vues_S requires 4.49× more bandwidth than Single_MLP.

Compared to SingleView, Vues consumes more bandwidth because

it streams multiple views instead of a single 720p view. The reason

of Vues_T being more bandwidth-efficient than Vues_S is likely

attributed to the video codec (we use H.264). Newer video codecs

such as the multiview extension (MV-HEVC [47]) may further im-

prove the encoding efficiency for spatial view arrangement. Overall,

the results reveal a fundamental tradeoff that Vues aims to better

balance: Vues trades more bandwidth for far better QoE. We believe

the increase in bandwidth usage is reasonable in most situations

considering the significant QoE improvement brought by Vues.

We also compare the bandwidth consumption of Vues and ViVo

with higher point density videos from Video-Dense. The bandwidth

consumption of Vues_T and ViVo is 2.96 and 225.08 Mbps, respec-

tively. Compared to ViVo, Vues’s bandwidth consumption for high

point-density videos remains almost the same compared to lower

point-density videos (V3, V5). The reason is that Vues streams

transcoded 2D content instead of raw 3D point clouds. The above re-

sults confirm the advantages ofVueswhen handling high-complexity

volumetric content.

7.6 Comparing Arrangement Methods
To compare the accessibility and performance of the two arrange-

ment methods, we benchmark the encoding and decoding perfor-

mance of two resolutions on our devices (described in §7.1). On

average, the edge server can encode 4K frames at 30 FPS and 720P

frames at 180 FPS. The client can decode 4K frames at 90 FPS and

720P frames at 550 FPS.

We also compared the two arrangement methods on the QoE

score and bandwidth requirement with different numbers of views

in Figure 15. There is a QoE drop with 9 views for the temporal

arrangement caused by stall: it requires 270 encoding FPS for this

setting, which is beyond the encoding capability and results in a

stall. With less than 9 views, the temporal arrangement achieves

lower bandwidth usage than the spatial arrangement with similar

QoE. The right plot in Figure 15 also suggests that Vues_T is more

bandwidth-efficient than Vues_S, echoing our finding in Figure 14.

Figure 15 demonstrates the trade-off between bandwidth con-

sumption and QoE gain: with only one view, the bandwidth con-

sumption is minimized but the QoE also becomes the lowest. On

the other hand, having more views improves the QoE at the cost of

additional bandwidth usage. Given such a complex tradeoff, Vues

adaptively decides the number of views to be sent to the client based

on the user’s movement to achieve a desirable balance between the

bandwidth usage and QoE improvement.

7.7 Energy and CPU Utilization
To profile the energy consumption, we play V5 repeatedly over the

WiFi network on an SGS8 smartphone for 30 minutes. We start

each experiment on a fully-charged phone. After 30 minutes of

playback, the battery level drops from 100% to 85% for Vues, 86%

for SingleView, and 83% for ViVo. The average CPU utilization

on SGS8 is 22% for Vues, 21% for SingleView, and 27% for ViVo.

Compared to SingleView, the additional energy and CPU usage of

Vues is only 1%. Overall, we believe the resource consumption of

Vues is acceptable.

8 CONCLUDING REMARKS
We presented Vues, an edge-assisted system that delivers truly

immersive volumetric content with high QoE, low bandwidth con-

sumption, and low decoding overhead on mobile devices. Vues pre-

renders a volumetric video frame into several 2D views using mul-

tiple lightweight viewport prediction models. Compared to direct

streaming, it significantly reduces the bandwidth consumption and

makes the decoding overhead independent of the quality of volu-

metric content. Compared to single-view, single-model transcoding,

Vues substantially improves the smoothness of displayed viewport

trajectory, leading to a much better user experience. Using a practi-

cal QoE model that we proposed for transcoding-based volumetric

video streaming, we demonstrate that Vues dramatically enhances

the QoE by up to 85% (35% on average).

ACKNOWLEDGMENTS

We thank the reviewers and our shepherd for their insightful com-

ments. This research was supported in part by NSF Award 1901103,

1915122, 2106090, 2106771, 2128489, and a Cisco research award.

The research of Bo Han was funded in part by 4-VA, a collaborative

partnership for advancing the Commonwealth of Virginia.

Vues: Practical Mobile Volumetric Video Streaming Through Multiview Transcoding ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

REFERENCES
[1] Android mediacodec api document. https://developer.android.com/reference/

android/media/MediaCodec.
[2] Eugene d’eon, bob harrison, taos myers, and philip a. chou, "8i voxelized full bod-

ies - a voxelized point cloud dataset," iso/iec jtc1/sc29 joint wg11/wg1 (mpeg/jpeg)
input document wg11m40059/wg1m74006, geneva, january 2017.

[3] ITU-P.913: Methods for the subjective assessment of video quality, audio quality
and audiovisual quality of Internet video and distribution quality television in
any environment. https://www.itu.int/rec/T-REC-P.913.

[4] Nvidia video codec sdk. https://developer.nvidia.com/nvidia-video-codec-sdk.
[5] tc(8) - linux man page. https://linux.die.net/man/8/tc.
[6] E. Alexiou, I. Viola, T. M. Borges, T. A. Fonseca, R. L. de Queiroz, and T. Ebrahimi.

A comprehensive study of the rate-distortion performance in MPEG point cloud
compression. APSIPA Transactions on Signal and Information Processing, 8:e27,
2019.

[7] R. Artusi, P. Verderio, and E. Marubini. Bravais-pearson and spearman correlation
coefficients: meaning, test of hypothesis and confidence interval. The International
journal of biological markers, 17(2):148–151, 2002.

[8] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson Correlation Coefficient, pages
1–4. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[9] T. Biedert, P. Messmer, T. Fogal, and C. Garth. Hardware-Accelerated Multi-Tile
Streaming for Realtime Remote Visualization. In H. Childs and F. Cucchietti,
editors, Eurographics Symposium on Parallel Graphics and Visualization. The
Eurographics Association, 2018.

[10] K. Boos, D. Chu, and E. Cuervo. Flashback: Immersive virtual reality on mobile
devices via rendering memoization. In Proceedings of the 14th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys ’16, page
291–304, New York, NY, USA, 2016. Association for Computing Machinery.

[11] L. Breiman. Bagging predictors, 1994.
[12] F. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. DuVall, J. Dourgar-

ian, J. Busch, M. Whalen, and P. Debevec. Immersive Light Field Video with a
Layered Mesh Representation. In Proceedings of ACM SIGGRAPH, 2020.

[13] C.-F. Chang and S.-H. Ger. Enhancing 3d graphics on mobile devices by image-
based rendering. In Proceedings of the Third IEEE Pacific Rim Conference on Multi-
media: Advances in Multimedia Information Processing, PCM ’02, page 1105–1111,
Berlin, Heidelberg, 2002. Springer-Verlag.

[14] S. E. Chen and L. Williams. View interpolation for image synthesis. In Proceedings
of the 20th annual conference on Computer graphics and interactive techniques,
pages 279–288, 1993.

[15] T. G. Dietterich et al. Ensemble learning. The handbook of brain theory and neural
networks, 2:110–125, 2002.

[16] S. Gül, D. Podborski, J. Son, G. S. Bhullar, T. Buchholz, T. Schierl, and C. Hellge.
Cloud rendering-based volumetric video streaming system for mixed reality ser-
vices. In Proceedings of the 11th ACM Multimedia Systems Conference, MMSys ’20,
page 357–360, New York, NY, USA, 2020. Association for Computing Machinery.

[17] S. Gül, D. Podborski, T. Buchholz, T. Schierl, and C. Hellge. Low-latency cloud-
based volumetric video streaming using head motion prediction, 2020.

[18] B. Han, Y. Liu, and F. Qian. Vivo: Visibility-aware mobile volumetric video
streaming. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, MobiCom ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[19] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical 360-Degree
Streaming for Smartphones. In Proceedings of ACM MobiSys, 2018.

[20] L. J. Hettinger and G. E. Riccio. Visually induced motion sickness in virtual
environments. Presence: Teleoperators & Virtual Environments, 1(3):306–310, 1992.

[21] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model
averaging: a tutorial (with comments by m. clyde, david draper and e. i. george,
and a rejoinder by the authors. Statist. Sci., 14(4):382–417, 11 1999.

[22] H. Hoppe. Progressive meshes. In Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’96, page 99–108, New
York, NY, USA, 1996. Association for Computing Machinery.

[23] A. Horé and D. Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th Interna-
tional Conference on Pattern Recognition, pages 2366–2369, 2010.

[24] M. Hosseini and C. Timmerer. Dynamic Adaptive Point Cloud Streaming. In
Proceedings of ACM Packet Video, 2018.

[25] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi. A Generic Scheme for Progressive
Point Cloud Coding. IEEE Trans. on Vis. and Computer Graphics, 14(2):440–453,
2008.

[26] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The Quantized kd-Tree: Efficient
Ray Tracing of Compressed Point Clouds. In Proceedings of IEEE Symposium on
Interactive Ray Tracing, 2006.

[27] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability
in http-based adaptive video streaming with festive. In Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’12, page 97–108, New York, NY, USA, 2012. Association for Computing
Machinery.

[28] S. Katz and A. Tal. On the Visibility of Point Clouds. In Proceedings of IEEE ICCV,
2015.

[29] R. Kochendörffer. Kreyszig, e.: Advanced engineering mathematics. j. wiley &
sons, inc., new york, london 1962. ix + 856 s. 402 abb. preis s. 79.—. Biometrische
Zeitschrift, 7(2):129–130, 1965.

[30] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wolman, and J. Flinn.
Outatime: Using speculation to enable low-latency continuous interaction for
mobile cloud gaming. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’15, page 151–165, New
York, NY, USA, 2015. Association for Computing Machinery.

[31] K. Lee, J. Yi, Y. Lee, S. Choi, and Y. M. Kim. Groot: A real-time streaming system
of high-fidelity volumetric videos. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, New York, NY, USA, 2020.
Association for Computing Machinery.

[32] J.-M. Lien, G. Kurillo, and R. Bajcsy. Multi-camera tele-immersion system with
real-time model driven data compression. The Visual Computer, 26(3):3–15, 2010.

[33] J. Y. Lin, T. Liu, E. C. Wu, and C. . J. Kuo. A fusion-based video quality assessment
(fvqa) index. In Signal and Information Processing Association Annual Summit
and Conference (APSIPA), 2014 Asia-Pacific, pages 1–5, 2014.

[34] T.-J. Liu, Y.-C. Lin, W. Lin, and C.-C. J. Kuo. Visual quality assessment: recent
developments, coding applications and future trends. APSIPA Transactions on
Signal and Information Processing, 2:e4, 2013.

[35] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. 3D Mesh Compression: Survey,
Comparisons, and Emerging Trends. ACM Computing Surveys, 47(3), 2015.

[36] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, page 197–210, New York, NY, USA, 2017.
Association for Computing Machinery.

[37] W. R.Mark, L.McMillan, andG. Bishop. Post-rendering 3dwarping. In Proceedings
of the 1997 symposium on Interactive 3D graphics, pages 7–ff, 1997.

[38] R. Mekuria, K. Blom, and P. Cesar. Design, Implementation and Evaluation of a
Point Cloud Codec for Tele-Immersive Video. IEEE Trans. on Circuits and Systems
for Video Technology, 27(4):828–842, 2017.

[39] G. Meynet, Y. Nehmé, J. Digne, and G. Lavoué. PCQM: A Full-Reference Quality
Metric for Colored 3D Point Clouds. In Proceedings of the 12th International
Conference on Quality of Multimedia Experience (QoMEX), 2020.

[40] J. Park, P. A. Chou, and J.-N. Hwang. Volumetric Media Streaming for Augmented
Reality. In Proceedings of IEEE GLOBECOM, 2018.

[41] J. Park, P. A. Chou, and J.-N. Hwang. Rate-Utility Optimized Streaming of
Volumetric Media for Augmented Reality. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 9(1):149–162, 2019.

[42] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward Practical Volumetric
Video Streaming On Commodity Smartphones. In Proceedings of ACM HotMobile,
2019.

[43] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical Viewport-
Adaptive 360-Degree Video Streaming for Mobile Devices. In Proceedings of ACM
MobiCom, 2018.

[44] S. Shi, V. Gupta, and R. Jana. Freedom: Fast Recovery Enhanced VR Delivery
Over Mobile Networks. In Proceedings of ACM MobiSys, 2019.

[45] S. Shi, W. Jeon, K. Nahrstedt, and R. Campbell. Real-time remote rendering of 3d
video for mobile devices. pages 391–400, 01 2009.

[46] H. Shum and S. B. Kang. Review of image-based rendering techniques. In
Visual Communications and Image Processing 2000, volume 4067, pages 2–13.
International Society for Optics and Photonics, 2000.

[47] G. Tech, Y. Chen, K. Müller, J.-R. Ohm, A. Vetro, and Y.-K. Wang. Overview of the
multiview and 3d extensions of high efficiency video coding. IEEE Transactions
on Circuits and Systems for Video Technology, 26(1):35–49, 2016.

[48] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and H. Hellwagner.
Towards 6dof http adaptive streaming through point cloud compression. In
Proceedings of the 27th ACM International Conference on Multimedia, pages 2405–
2413, 2019.

[49] I. Viola, S. Subramanyam, and P. Cesar. A color-based objective quality metric
for point cloud contents. In Proceedings of the 12th International Conference on
Quality of Multimedia Experience (QoMEX), 2020.

[50] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[51] J. Xia, P. L. Dubin, T. Izumi, M. Hirata, and E. Kokufuta. Dynamic and elec-
trophoretic light scattering of poly (dimethyldiallylammonium chloride) in salt-
free solutions. Journal of Polymer Science Part B: Polymer Physics, 34(3):497–503,
1996.

[52] T. Xu, B. Han, and F. Qian. Analyzing viewport prediction under different vr
interactions. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, CoNEXT ’19, page 165–171, New York,
NY, USA, 2019. Association for Computing Machinery.

[53] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach for
dynamic adaptive video streaming over http. SIGCOMM Comput. Commun. Rev.,
45(4):325–338, Aug. 2015.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yu Liu, et al.

[54] W. Zhang, F. Qian, B. Han, and P. Hui. Deepvista: 16k panoramic cinema on
your mobile device. In Proceedings of the Web Conference 2021, WWW ’21, page

2232–2244, New York, NY, USA, 2021. Association for Computing Machinery.

