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ABSTRACT: Prior in situ attenuated total reflectance Fourier
transform infrared (ATR−FTIR) studies of electrochemical CO2
reduction catalyzed by Au, one of the most selective and active
electrocatalysts to produce CO from CO2, suggest that the reaction
proceeds solely on the top sites of the Au surface. This finding is
worth updating with an improved spectroelectrochemical system
where in situ IR measurements can be performed under real
reaction conditions that yield high CO selectivity. Herein, we
report the preparation of an Au-coated Si ATR crystal electrode with both high catalytic activity for CO2 reduction and strong
surface enhancement of IR signals validated in the same spectroelectrochemical cell, which allows us to probe the adsorption and
desorption behavior of bridge-bonded *CO species (*COB). We find that the Au surface restructures irreversibly to give an
increased number of bridge sites for CO adsorption within the initial tens of seconds of CO2 reduction. By studying the potential-
dependent desorption kinetics of *COB and quantifying the steady-state surface concentration of *COB under reaction conditions,
we further show that *COB are active reaction intermediates for CO2 reduction to CO on this Au electrode. At medium
overpotential, as high as 38% of the reaction occurs on the bridge sites.

1. INTRODUCTION
Electrocatalytic CO2 reduction reactions are explored as a
viable means to produce carbon-neutral chemicals.1−7 The rich
chemistry of carbon enables CO2 electroreduction to generate
a large variety of products including single-carbon (C1) and
multi-carbon (C2+) species.8−18 As the simplest two-electron
reduction product, CO is perhaps the most accessible species
from CO2 reduction and finds wide application in industrial
processes such as the Fischer−Tropsch reaction19 and
hydroformylation.20 In addition, CO can be electrochemically
upgraded to C2+ products.21,22 Different kinds of materials
including metals,23−27 metal coordination compounds/materi-
als,28−33 and metal-free materials34−36 have been found to be
active for CO2 electroreduction to CO. Among them, Au metal
is arguably the most well-known for its outstanding selectivity
and activity. Polycrystalline Au without any modification or
special treatment can achieve high Faradaic efficiency (FE) for
CO2-to-CO conversion.37,38 Catalyst structure optimization
and reaction condition engineering can further improve the
selectivity and significantly lower the overpotential.27,39−42

Interestingly, rough Au surfaces can enhance vibrational
absorption via surface plasmon resonance (known as surface
enhanced IR absorption spectroscopy, SEIRAS). This enables
the application of in situ attenuated total reflectance (ATR)
Fourier transform infrared (FTIR) spectroscopy to detect sub-
monolayer coverages of adsorbates for mechanistic under-
standing under reaction-relevant conditions.43−53 Surendra-
nath et al. were among the first to study Au-catalyzed CO2
electroreduction with in situ ATR−FTIR, and linearly bonded

or atop *CO (*COL) and bridge-bonded *CO (*COB) were
observed at CO2 reduction potentials.45 However, the use of a
Pt counter electrode led to some controversy.46,54 Xu and
coworkers performed similar measurements in a Pt-free setting
and observed only *COL species at positive electrode
potentials.46 More recently, Surendranath et al. reported
observation of irreversibly bonded *COB species in experi-
ments that followed recommended practices to mitigate
contamination,55 which reflects the dependence of Au surface
structures/properties on electrode preparation. Other studies
of this kind probed reactants, reaction intermediates, and/or
electrolyte species on Au surfaces.41,50−53,55−57 Almost all
these studies agree that *COL is the only active form of *CO
on Au.45,46,51,52,55,57 However, they share one notable
limitation that the catalytic performance, that is, selectivity,
activity, and stability, of the Au material deposited on the ATR
crystal has never been validated in the spectroelectrochemical
cell,45,46,51,52,55 which makes it difficult to tie spectroscopic
observations directly to catalytic reactivity and to exclude
interference from side reaction or contamination. While some
latest work started to validate catalytic performance of ATR
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electrodes,57 the sensitivity of electrode properties to
preparation conditions47,48,55 entails such validation to be a
standard practice. Meanwhile, new electrode structures should
be investigated to enrich the prevalent understanding of the
reaction mechanism(s).
In this work, we successfully develop a new procedure to

deposit a both catalytically and spectroscopically active Au
layer on the surface of a Si ATR crystal. The resulting Si//Au
electrode, as measured in the spectroelectrochemical cell,
exhibits high FEs of 80−90% for CO2 reduction to CO in the
potential range from −0.5 to −0.8 V versus RHE (RHE =
reversible hydrogen electrode; all potentials are with respect to
RHE unless otherwise stated) together with reasonable current
densities and stability. This catalytic performance is on par
with that of a typical polycrystalline Au catalytic electrode
measured in a standard H-type electrochemical cell, allowing
us to carry out an in situ ATR−FTIR study of an Au electrode
with benchmarked CO2 reduction reactivity. We find that the
Au surface restructures within the initial tens of seconds of
CO2 reduction to give an increased number of bridge sites for
CO adsorption, which has not been reported previously. Using
time-resolved scan (TRS), the kinetics of *COB desorption
from the Au surface is for the first time measured as a function

of the applied electrode potential. *COB surface concentration
is quantified by electrochemical titration and correlated to the
IR peak area. On the basis of these results, we derive the
contribution of the *COB pathway to the total current of CO2
reduction, which turns out to be a notable portion in the
medium overpotential range. This amends the conventional
knowledge that *COB is a spectator in Au-catalyzed CO2
electroreduction.

2. RESULTS AND DISCUSSION

Our Si//Au electrode is prepared following the procedure
illustrated in Figure 1a (experimental details are provided in
the Supporting Information). First, a Cr/Au layer is deposited
on the total reflection surface of the Si ATR crystal, followed
by a spin-coated thin poly(tetrafluoroethylene) (PTFE) layer.
The crystal is then annealed at 350 °C in an Ar atmosphere.
The annealed Cr/Au layer renders desirable electrical
conductivity, mechanical strength, and adhesion with the Si
substrate.58 PTFE serves as a binder for the Au catalyst layer to
be deposited and facilitates delivery of the gas reactant
CO2.

59−61 Finally, another Au layer is deposited to render the
electrocatalytic activity for CO2 reduction (Figure S1a,b). X-
ray photoelectron spectroscopy (XPS) depth profiling reveals

Figure 1. (a) Preparation of the Si//Au electrode. (b) XPS depth profile of Si//Au. (c) CO2 reduction performance of Si//Au in 0.1 M KHCO3.
Error bars represent standard deviations from measurements of three independently prepared electrodes. (d) FE and current density of 30 min CO2
reduction electrolysis by Si//Au at −0.6 V.

Figure 2. (a) Potential step program for studying CO adsorption on Au. A total of seven cycles are performed in which the time at −0.6 V is varied
in the sequence of 5, 10, 20, 40, 20, 10, and 5 s. (b) ATR−FTIR spectra recorded at 0.4 of each potential cycle. Each spectrum is labeled with the
time of CO2 reduction at −0.6 V prior to the 0.4 V step. Each spectrum is averaged from 14 scans. (c) Peak areas of *COL and *COB observed at
0.4 V.
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the Si/Cr/Au/PTFE/Au multi-layer structure as expected
(Figure 1b). We note that some Cr has diffused through the
bottom Au layer after annealing.58,62 The topmost Au layer
manifests a rough surface consisted of 20 nm particles (Figure
S2). The Si//Au electrode is assembled into a home-modified
ATR−IR spectroelectrochemical cell (Figure S3a,b) and
evaluated for its catalytic performance for CO2 reduction in
purified 0.1 M KHCO3 aqueous electrolyte. CO is detected by
gas chromatography at −0.5 V, and FE(CO) stays over 80% at
more negative potentials (Figure 1c). Both FE(CO) and
current density are stable for at least 30 min of continuous
operation at −0.6 V (Figure 1d), making it sufficient for ATR−
FTIR measurements. This performance is on par with 20 nm
Au sputter-coated on a carbon fiber paper electrode (Figure
S1c) which is tested in a standard H-cell (Figure S3c,d),
representing the typical reactivity of polycrystalline Au
electrodes.38,63

Successful validation of the catalytic performance of our Si//
Au electrode in the spectroelectrochemical cell enables us to
perform ATR−FTIR studies of Au under real CO2 reduction
conditions. A potential step program featuring three electrode
potentials is adopted (Figure 2a). Constant potential
electrolysis (CPE) is first performed at −0.6 V for CO2
reduction to take place. Then, the potential is changed to
0.4 V for the Au surface to adsorb some of the CO generated
earlier and to be probed by IR.46 After that the potential is
adjusted to −0.2 V to allow for CO desorption and
regeneration of the Au sites (Figure S4).46 This sequence is
repeated with a varied duration of the −0.6 V step. After the
first 5 s of CO2 reduction at −0.6 V, a band at 2108 cm−1 is
observed at 0.4 V, which is assigned to *COL adsorbed on

singlefold top sites (Figure 2b), consistent with previous
reports.45,46,52,55,57 A weaker band centered at around 2000
cm−1 is also observed and assigned to be *COB adsorbed on
twofold bridge sites.47,64 Note that this vibrational frequency is
considerably higher than that of *CO previously reported to be
induced by impurities/contamination.46,54 As the potential
step sequence continues with increasingly longer CO2
reduction, the area of the *COL peak remains largely
unchanged, whereas the *COB peak grows evidently with a
slight blue shift of 9 cm−1 and becomes the dominant *CO
species (Figure 2c). Concomitantly, an additional band with
much weaker intensity emerges at around 1940 cm−1, which
we assign as CO adsorbed on multifold Au sites (*COM).

47

Note that both *COB and *COM have previously been
observed on Au surfaces.47 As the potential step sequence
further proceeds with gradually reduced CO2 reduction
durations, both *COB and *COL bands remain largely
unchanged, which suggests that the increased amount of
*COB is not dependent on the CO2 reduction duration but is a
direct result of some surface restructuring induced by the
reaction conditions that forms more bridge sites. When the
CO2 reduction potential in this sequence is changed to −0.7 V,
similar enrichment of *COB can be observed in a smaller
amount of CO2 reduction time (Figure S5), indicating a larger
driving force for restructuring under a more reducing
condition. Consistently, no *COB can be detected at 0.4 V
even after 12 cycles of 5 s CO2 reduction at −0.5 V (Figure
S6). When the sequence starts with a fresh electrode under a
N2 atmosphere and is switched to CO2 from the second cycle
(Figure S7a,d−h), the *COB band is stronger than *COL
almost immediately after the switch and appears to further

Figure 3. (a) Potential step program for studying the desorption kinetics of *COB. A total of four cycles are performed in which Vdesorption is varied
in the sequence of −0.3, −0.2, −0.1, and 0 V. (b−e) Heatmaps of TRS ATR−FTIR spectra recorded at 0.4 V and Vdesorption for each cycle. (f)
Desorption profiles of *COB at varied Vdesorption. (g) Fitting desorption profiles to first-order kinetics. (h) Potential dependence of the desorption
rate constants.
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grow with longer CO2 reduction (Figure S7b,c), suggesting
that the Au surface restructuring is mainly induced by the
electrochemical condition but may be augmented by the
presence of CO2.
The restructuring to expose/activate more bridge sites

within the first tens of seconds of electrochemical CO2
reduction has not been reported before for Au. Because this
phenomenon was not observed in previous SEIRAS studies
with Au ATR electrodes prepared by the conventional wet
method,45,46,50,55,57 we suspect it may be related to differences
in electrode preparation which can influence surface roughness,
crystallinity, and nanostructures as well as catalytic perform-
ance. While the restructuring of our Au electrodes may not be
universal, it provides us a model system to answer the
fundamental question whether *COB could be an active
intermediate of the CO2 reduction reaction. Considering the
relatively weak adsorption strength of *COB on our Au
electrode indicated by its higher vibrational frequency
compared to *COB on other noble metals,27,52,65−70 we
hypothesize that *COB from CO2 reduction could desorb to
form CO. To test this hypothesis, the desorption kinetics of
*COB is first measured (Scheme S1). CO is generated from
CO2 reduction at −0.7 V and then captured at 0.4 V, after
which the electrode potential is held at Vdesorption to measure
*COB desorption using TRS ATR−FTIR with a temporal
resolution of 1.648 s (Figure 3a). From the recorded spectra
plotted in Figure 3b−e, the desorption of *COB is clearly

visible at ∼1985 cm−1. Two broad bands centered at 1870 and
1928 cm−1 become prominent in the later minutes at Vdesorption,
which are possibly *COOH71 and *COM, respectively.
Therefore, the desorption profile of *COB at each Vdesorption,
that is, IR peak area versus time, is acquired from the initial 60
s at Vdesorption to ensure correct quantification of *COB
desorption (Figure 3f). Here, we assume the surface
concentration (Γ*COB

, the number of CO molecules adsorbed
on bridge sites normalized to the geometric area of the Si//Au
electrode) is proportional to the IR peak area (A*COB

).72 The
desorption profiles can be simply fitted by the first-order
kinetics equation73

A

A
k t tln ln ( )CO

0

CO

0
d 0

B B−
Γ*

Γ
= − * = −

(1)

where kd is the rate constant, and Γ0 (A0) refers to *COB
surface concentration (IR peak area) at t0 moment. After
acquiring the kd values for four different desorption potentials
with reasonable linearity (Figure 3g), we analyze the potential
dependence of the desorption rate constant. We find the
relationship between kd and Vdesorption follows a simple
exponential equation (Figure 3h)74,75

k a V bln d desorption= · + (2)

where a and b are both constants. Extrapolating this equation
allows us to estimate kd values at CO2 reduction potentials

Figure 4. (a) Potential step program for quantifying Γ*CO. After CO is generated at −0.7 V, the electrode potential is cycled twice between 0.4 and
1.0 V. (b−c) Heatmaps of TRS ATR−FTIR spectra recorded at 0.4 and 1.0 V for the first (b) and second (c) potential cycles. Amount of charge
recorded at 1.0 V is labeled on each graph. (d) Representative ATR−FTIR spectra recorded at CO2 reduction potentials. (e) Steady-state Γ*COB

and *COB desorption rate at CO2 reduction potentials. (f) Potential-dependent share of the *COB pathway in total CO production.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c01098
J. Am. Chem. Soc. 2022, 144, 8641−8648

8644

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c01098/suppl_file/ja2c01098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c01098/suppl_file/ja2c01098_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c01098?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c01098?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c01098?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c01098?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c01098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where the generation of CO from CO2 reduction prevents a
direct measurement of the desorption kinetics.
To determine the value of Γ*COB

, which is needed to
calculate the CO production rate via the *COB pathway, we
quantify Γ*CO at 0.4 V with electrochemical titration and
correlate it with the IR peak area (Scheme S1).43,44 A potential
step program is adopted (Figure 4a) and monitored with TRS
ATR−FTIR. CO is generated at −0.7 V, captured at 0.4 V, and
then electrochemically stripped at 1.0 V (oxidized to CO2). By
holding the potential at 0.4 V for 30 s, unstable reductive
intermediates and free CO in the local electrolyte are removed
under continuous CO2 bubbling. The corresponding IR
spectra well reflect the capture and oxidative removal of
*COL, *COB, and *COM (Figure 4b). The 0.4 and 1.0 V steps
are repeated once to measure the background (e.g.,
contribution from double layer capacitance), during which
no *CO is observed by IR (Figure 4c). Based on the net
anodic charge, the total Γ*CO is determined to be 22.0 nmol
cm−2 (geometric surface area) at the last moment of 0.4 V
(corresponding to the IR peak area of 0.0322, Figure S8). We
note that this value is substantially higher than the atomic
density of the single-crystal Au(111) surface (2.01 nmol cm−2)
as a result of the high surface roughness of the deposited
Au.47,48

Assuming the ratio between the IR peak area and surface
concentration of each type of *CO is the same constant
regardless of the electrode potential and surface concentration
within the IR intensity range of this study, we can then
determine Γ*COB

under CO2 reduction conditions using this
relationship

A

0.0322
22.0 nmol cmCO

CO 2
B

BΓ* = * · −
(3)

We are able to acquire steady-state A*COB
under CO2

reduction reaction conditions by directly holding the electrode
potential at −0.7 and −0.6 V (Figure S9a,b). We note that the
accumulation of *COB at −0.6 V is considerably slower than
that at −0.7 V (Figure S9d,e) likely because of the slower
restructuring to generate bridge sites (Figures 2 and S5). At
−0.5 V where the restructuring is expected to be even slower,
*COB is not detected by IR within 5 min (Figure S9c).
Therefore, we first perform CO2 reduction at −0.7 V and then
switch the electrode potential stepwise from 0.2 to −0.8 V to
measure steady state Γ*COB

at each CO2 reduction potential
(−0.5 to −0.8 V) using the same Si//Au electrode (Figure
S10a). In situ ATR−FTIR reveals gradual *CO desorption and
decline of A*COB

from 0.2 to −0.3 V (Figure S10b,c), agreeing
with the previous observation of faster desorption at more
negative potential in this region (Figure 3). As the potential
becomes more negative, A*COB

evidently increases due to CO

production from CO2 reduction. The A*COB
values measured

this way for −0.6 and −0.7 V match well with those obtained
from directly setting the electrode at CO2 reduction potentials
(Figure S9e). The steady-state IR spectra at −0.5, −0.6, and
−0.7 V are shown in Figure 4d and the corresponding Γ*COB

values are determined using eq 3 (Figure 4e). We then
calculate the desorption rate of *COB, r*COB

, which is equal to
the reaction rate of CO2 reduction to CO via the *COB
pathway at steady state (CO re-adsorption at these potentials
is unlikely on Au surfaces46) using eq 4 (Figure 4e)

r kCO CO dB B* = Γ* × (4)

The total CO production rate rCO is given by eq 5

r j F 2CO CO= ÷ ÷ (5)

where jCO is the CO partial current density (Figure 1c) and F is
the Faraday constant. Comparing r*COB

to rCO evidently shows
that the *COB pathway accounts for a significant proportion of
CO2 reduction to CO (Figure 4f). For example, at −0.5 V,
approximately 38% of the reaction occurs on the bridge sites.
We note that r*COB

increases with overpotential (Figure 4e),
which is reasonable because of faster *COB desorption at more
negative potentials (Figure 3). It also appears that the
contribution of *COB to total CO production decreases at
larger overpotential (Figure 4f), which may be related to the
competition between *COB and *COL pathways.
Finally, we note that our aforementioned results are, as best

we can tell, free from any significant influence of possible
contamination. The spectroelectrochemical cell is configured
with an anionic exchange membrane and a high-purity graphite
counter electrode, and the electrolyte is purified before use,
following a recommended protocol to avoid contamination
from metal impurities.54 The electrochemically purified
KHCO3 electrolyte has been used in our lab for years to
benchmark many different electrocatalysts for different electro-
catalytic CO2 reduction products with no sign of interference
or contamination.12−18,76−83 To further confirm that our IR
results are not caused by contamination from the electrolyte,
we show that we can reliably reproduce the spectroelec-
trochemical results in Figure 2 with an ultrahigh-purity
KHCO3 electrolyte (Figure S11, see the Supporting
Information for electrolyte preparation and purification
details). Our Si//Au electrode manifests selective and stable
CO2 reduction activity characteristic of clean Au surfaces.
Consistently, no metal impurities are detected on the surface
by XPS either before or after electrocatalysis (Figure S12).
More specifically, a control electrode without the topmost 20
nm Au layer has essentially no catalytic activity for CO2
reduction to CO (Figure S1b), and no CO re-adsorption can
be observed in the in situ ATR−FTIR measurement (Figure
S13). This result adds additional support to the conclusion
that the use of the Cr adhesion layer (or any contamination
from it) is not responsible for the catalytic and spectroscopic
features that we observe on the Si//Au electrode. In addition,
the above-mentioned lack of *COB re-adsorption at 0.4 V
(only *COL is observed) while we limit the prior CO2
reduction potential to −0.5 V (Figure S6) is another piece
of evidence against possible contamination in our system.

3. CONCLUSIONS
In summary, we have presented a time-resolved in situ ATR−
FTIR study of Au-catalyzed electrochemical CO2 reduction.
From quantitatively probing bridge-bonded *CO species
across a wide electrode potential range including the CO2
reduction region, we have for the first time revealed that the
Au surface can restructure during the initial phase of CO2
reduction, and that the resulting bridge sites are catalytically
active for CO production. Future studies employing advanced
characterization techniques that are currently under rapid
development, for example, high-resolution scanning probe
microscopy imaging under electrochemical conditions, could
help visualize the atomic-scale restructuring.
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