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ABSTRACT
Given a random sample of size n from a p dimensional random vector,
where both n and p are large, we are interested in testing whether the
p components of the random vector are mutually independent. This
is the so-called complete independence test. In the multivariate nor-
mal case, it is equivalent to testing whether the correlation matrix is
an identity matrix. In this paper, we propose a one-sided empirical
likelihood method for the complete independence test for multivariate
normal data based on squared sample correlation coefficients. The lim-
iting distribution for our one-sided empirical likelihood test statistic is
proved to be Z2I(Z > 0) when both n and p tend to infinity, where Z

is a standard normal random variable. In order to improve the power
of the empirical likelihood test statistic, we also introduce a rescaled
empirical likelihood test statistic. We carry out an extensive simulation
study to compare the performance of the rescaled empirical likelihood
method and two other statistics which are related to the sum of squared
sample correlation coefficients.
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1. Introduction

Statistical inference on high dimensional data has gained a wide range of applications in re-

cent years. New techniques generate a vast collection of data sets with high dimensions, for

example, trading data from financial market, social network data and biological data like mi-

croarray and DNA data. The dimension of these types of data is not small compared with

sample size, and typically of the same order as sample size or even larger. Yet classical mul-

tivariate statistics usually deal with data from normal distributions with a large sample size n

and a fixed dimension p, and one can easily find some classic treatments in reference books

such as Anderson [1], Morrison [10] and Muirhead [11].

Under multivariate normality settings, the likelihood ratio test statistic converges in dis-

tribution to a chi-squared distribution when p is fixed. However, when p changes with n and

tends to infinity, this conclusion is no longer true as discovered in Bai et al. [2], Jiang et al. [6],

Jiang and Yang [8], Jiang and Qi [7], Qi et al. [16], among others. The results in these papers

indicate that the chi-square approximation fails when p diverges as n goes to infinity.

The test of complete independence of a random vector is to test whether all the compo-

nents of the random vector are mutually independent. In the multivariate normal case, the test

of complete independence is equivalent to the test whether covariance matrix is a diagonal

matrix, or whether the correlation matrix is the identity matrix.

For more details, we assume X = (X1, · · · , Xp) is a random vector from a p-dimensional

multivariate normal distribution Np(µ,Σ), where µ denotes the mean vector, and Σ is a

p × p covariance matrix. Given a random sample of size n from the normal distribution,

x1,x2, · · · ,xn, where xi = (xi1, xi2, · · · , xip) for 1 ≤ i ≤ n, Pearson’s correlation coeffi-

cient between the i-th and j-th components is given by

rij =

n∑︁
k=1

(xki − xī)(xkj − x̄j)√︄
n∑︁

k=1

(xki − x̄i)2 ·
n∑︁

k=1

(xkj − xj̄)2

, (1)

where x̄i = 1
n

n∑︁
k=1

xki and x̄j =
1
n

n∑︁
k=1

xkj for 1 ≤ i, j ≤ p. Now we set Rn = (rij)p×p as the

sample correlation coefficient matrix.

2



The complete independence test for the normal random vector is

H0 : Γ = Ip vs Ha : Γ ̸= Ip, (2)

where Γ is the population correlation matrix and Ip is p × p identity matrix. When p < n,

the likelihood ratio test statistic for (2) is a function of |Rn|, the determinant of Rn, from

Bartlett [3] or Morrison [10]. In traditional multivariate analysis, when p is a fixed integer, we

have under the null hypothesis in (2) that

−(n− 1− 2p+ 5

6
) log |Rn|

d→ χ2
p(p−1)/2 as n → ∞,

where χ2
f denotes a chi-square distribution with f degrees of freedom.

When p = pn depends on n with 2 ≤ pn < n and pn → ∞, the likelihood ratio method

can still be applied to test (2). The limiting distributions of the likelihood ratio test statistics in

this case have been discussed in the aforementioned papers. It is worth mentioning that Qi et

al. [16] propose an adjusted likelihood ratio test statistic and show that the distribution of the

adjusted likelihood test statistic can be well approximated by a chi-squared distribution whose

number of degrees of freedom depends on p regardless of whether p is fixed or divergent.

The limitation of the likelihood ratio test is that the dimension p of the data must be smaller

than the sample size n. Many other likelihood tests related to the sample covariance matrix

or sample correlation matrix have the same problem as the sample covariance matrices are

degenerate when p ≥ n. In order to relax this constraint, a new test statistic using the sum of

squared sample correction coefficients is proposed by Schott [17] as follows

tnp =
∑︂

1≤j<i≤p

r2ij .

Assume that the null hypothesis of (2) holds. Under assumption lim
n→∞

pn/n = γ ∈ (0,∞),

Schott [17] proves that tnp − p(p−1)
2(n−1) converges in distribution to a normal distribution with
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mean 0 and variance γ2, that is,

t∗np :=
tnp − p(p−1)

2(n−1)

σnp

d→ N(0, 1), (3)

where σ2
np =

p(p−1)(n−2)
(n−1)2(n+1) .

Recently, Mao [9] proposes a different test for complete independence. His test statistic is

closely related to Schott’s test and is defined by

Tnp =
∑︂

1≤j<i≤p

r2ij
1− r2ij

.

It has been proved in Mao [9] that Tnp is asymptotically normal under the null hypothesis of

(2) and the assumption that lim
n→∞

pn/n = γ ∈ (0,∞).

Very recently, Chang and Qi [4] investigate the limiting distributions for the two test statis-

tics above under less restrictive conditions on n and p. Chang and Qi [4] show that (3) is also

valid under the general condition that pn → ∞ as n → ∞, regardless of the convergence

rate of pn. Thus, the normal approximation in (3) based on t∗np yields an approximate level α

rejection region

R∗
t (α) =

{︂
tnp ≥

p(p− 1)

2(n− 1)
+ z1−α

√︄
p(p− 1)(n− 1)

(n− 1)2(n+ 1)

}︂
, (4)

where zα is a α level critical value of the standard normal distribution.

Furthermore, Chang and Qi [4] propose adjusted test statistics whose distribution can be

fitted by chi-squared distribution regardless of how p changes with n as long as n is large.

Chang and Qi’s [4] adjusted test statistics tcnp is defined as

tcnp =
√︁

p(p− 1)t∗np +
p(p− 1)

2
. (5)

Chang and Qi show that

sup
x

⃓⃓⃓
P (tcnp ⩽ x)− P (χ2

p(p−1)/2 ⩽ x)
⃓⃓⃓
→ 0
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as long as pn → ∞ as n → ∞. Let χ2
f (α) denote the α level critical value of χ2

f . Then an

approximate level α rejection region based on tcnp is given by

Rc
t(α) =

{︂
tnp ≥

p(p− 1)

2
(1−

√︃
n− 2

n+ 1
) + χ2

p(p−1)

2

(α)

√︄
n− 2

(n− 1)2(n+ 1)

}︂
. (6)

One can find more references on test for complete independence in Mao [9] or Chang and

Qi [4].

In practice, the assumption of normality for distributions may be violated. Now we as-

sume X = (X1, · · · , Xp) is a random vector and X1, · · · , Xp are identically distributed

with distribution function F . Given a random sample of size n, x1,x2, · · · ,xn, where xi =

(xi1, xi2, · · · , xip) for 1 ≤ i ≤ n, are drawn from the distribution of X = (X1, · · · , Xp), and

define Pearson’s correlation coefficients rij’s as in (1). By using the Stein method, Chen and

Shao [5] show that (3) holds under some moment conditions of F if pn/n is bounded.

In this paper, we propose to apply empirical likelihood method to the testing problem (2).

The empirical likelihood is a nonparametric statistical method proposed by Owen [12,13],

which is originally used to test the mean vector of a population based on a set of independent

and identically distributed (i.i.d.) random variables. Empirical likelihood does not require to

specify the family of distributions for the data and it possesses some good properties of the

likelihood methods.

The rest of the paper is organized as follows. In Section 2, we first introduce a one-sided

empirical likelihood method for the mean of a set of random variables with a common mean

and then establish the connection between the test of complete independence and the one-

sided empirical likelihood method. Our main result concerning the limiting distribution of the

one-sided empirical likelihood ratio statistic is also given in Section 2. In Section 3, we carry

out a simulation study to compare the performance of the empirical likelihood method and

normal approximation based on Schott’s test statistic and chi-square approximation based on

Chang and Qi’s adjusted test statistic. In our simulation study, we also apply these methods to

some other distributions such as the exponential distributions and mixture of the exponential

and normal distributions so as to compare their adaptability to non-normality. The proofs of

the main results are given in Section 4.
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2. Main Results

In this section, we apply the empirical likelihood method to the test of complete independence.

First, we assume X = (X1, · · · , Xp) is a random vector from a p-dimensional multivariate

normal distribution. Under the null hypothesis of (2), {r2ij , 1 ≤ i < j ≤ p} are random

variables from an identical distribution with mean 1
n−1 . As a matter of fact, it follows from

Corollary 5.1.2 in Muirhead [11] that r2ij has the same distribution as T 2/(n− 2+ T 2) under

the null hypothesis of (2), where T is a random variable having t-distribution with n − 2

degrees of freedom. {r2ij , 1 ≤ i < j ≤ p} are asymptotically independent if the sample size n

is large. We will develop a one-sided empirical likelihood test statistic and apply it to the data

set {(n − 1)r2ij , 1 ≤ i < j ≤ p}, where p = pn is a sequence of positive integers such that

pn → ∞ as n → ∞. As an extension, we then consider the case when X = (X1, · · · , Xp) is

a random vector with an identical marginal distribution function F which is not necessarily

Gaussian. When the p components of X are independent, we demonstrate that the empirical

likelihood method we develop under normality works for general distribution F as well if

some additional conditions are satisfied.

2.1. One-sided empirical likelihood test

Consider a random sample of size N , namely y1, · · · , yN . Assume the sample comes from a

population with mean µ and variance σ2. The empirical likelihood function for the mean µ is

defined as

L(µ) = sup
{︂ N∏︂

i=1

ωi

⃓⃓⃓ N∑︂
i=1

ωiyi = µ, ωi ≥ 0,

N∑︂
i=1

ωi = 1
}︂
. (7)

The function L(µ) is well defined if µ belongs to the convex hull given by

H :=
{︂ N∑︂

i=1

ωiyi

⃓⃓⃓ N∑︂
i=1

ωi = 1, ωi > 0, i = 1, · · · , N
}︂
;

otherwise, set L(µ) = 0. We see that H = ( min
1≤i≤N

yi, max
1≤i≤N

yi).

Assume µ ∈ H . By the standard Lagrange multiplier technique, the supremum on the
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right-hand side of (7) is achieved at

ωi =
1

N(1 + λ(yi − µ))
, i = 1, · · · , N, (8)

where λ is the solution to equation g(λ) = 0, with g(λ) defined as follows

g(λ) :=

N∑︂
i=1

yi − µ

1 + λ(yi − µ)
. (9)

Assume min
1≤i≤N

yi < max
1≤i≤N

yi. When µ ∈ H , then the function g(λ) defined in (9) is strictly

increasing for λ ∈ (−( max
1≤i≤N

yn − µ)−1, (µ − min
1≤i≤N

yi)
−1). A solution to g(λ) = 0 in this

range exists and the solution must be unique.

Proposition 2.1. Assume y1, · · · , yN are N observations with yi ̸= yj for some i and j. Then

logL(µ) is strictly concave in H , and L(ȳ) = sup
µ

L(µ) = N−N , where ȳ = 1
N

N∑︁
i=1

yi.

Remark. The results in Proposition 2.1 are well-known among the researchers in the area of

empirical likelihood methods. A short proof will be given in Section 4 for completeness.

Consider the following two-sided test problem

H0 : µ = µ0 vs Ha : µ ̸= µ0.

The empirical likelihood ratio is given by

L(µ0)

sup
µ∈R

L(µ)
=

L(µ0)

N−N
=

N∏︂
i=1

(1 + λ(yi − µ0))
−1,

where λ is the solution to the following equation

1

N

N∑︂
i=1

yi − µ0

1 + λ(yi − µ0)
= 0.
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Therefore, the log-empirical likelihood test statistic is given by

ℓ(µ0) := −2 log
L(µ0)

sup
µ∈R

L(µ)
= 2

N∑︂
i=1

log(1 + λ(yi − µ0)). (10)

It is proved in Owen [14] that ℓ(µ0) converges in distribution to a chi-square distribution

with one degree of freedom if y1, · · · , yN are i.i.d. random variables with mean µ0 and a finite

second moment.

Our interest here is to consider a one-sided test

H0 : µ = µ0 vs Ha : µ > µ0. (11)

According to Proposition 2.1, L(µ) is increasing in (−∞, ȳ) and decreasing in (ȳ,∞), which

implies sup
µ≥µ0

L(µ) = L(µ0)I(ȳ < µ0)+N−NI(ȳ ≥ µ0). Therefore, the empirical likelihood

ratio corresponding to test (11) is

L(µ0)

sup
µ≥µ0

L(µ)
=

⎧⎨⎩
L(µ0)
N−N , if ȳ ≥ µ0;

1, if ȳ < µ0.

Then the log-empirical likelihood test statistic for test (11) is

ℓn(µ0) := −2 log
L(µ0)

sup
µ≥µ0

L(µ)
= ℓ(µ0)I(ȳ ≥ µ0), (12)

where ℓ(µ0) is defined in (10).

2.2. Empirical likelihood method for testing complete independence

Let r denote the sample Pearson correlation coefficient based on a random sample of size n

from a bivariate normal distribution with correlation coefficient ρ. From Muirhead [11], page
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156,

E(r2) = 1− n− 2

n− 1
(1− ρ2)2F1(1, 1;

1

2
n+ 1; ρ2),

where

2F1(a, b; c; z) = 1 +
ab

1!c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 + · · · = 1 +

∞∑︂
k=1

(a)k(b)k
(c)k

zk

k!

is the hypergeometric function, (a)k = Γ(a + k)/Γ(a), and Γ(x) =
∫︁∞
0 tx−1e−tdt is the

gamma function. It is easy to check when ρ = 0, 2F1(1, 1;
1
2n + 1; ρ2) = 1, and E(r2) =

1 − n−2
n−1 = 1

n−1 ; when ρ ̸= 0, 2F1(1, 1;
1
2n + 1; ρ2) < 1 +

∞∑︁
k=1

ρ2k = 1
1−ρ2 , and thus,

E(r2) > 1− n−2
n−1 = 1

n−1 .

First, we assume X = (X1, · · · , Xp) is a random vector from a p-dimensional multivariate

normal distribution Np(µ,Σ). Review the sample correlation coefficients rij defined in (1).

Denote the correlation matrix of Σ by Γ = (γij). From the above discussion, we have that

under the null hypothesis of (2), E(r2ij) =
1

n−1 for all 1 ≤ i < j ≤ p, E(r2ij) ≥ 1
n−1 under the

alternative of (2) and at least one of the inequalities is strict. We see that test (2) is equivalent

to the following one-tailed test

H0 : E(r̄ij) = 1, 1 ≤ i < j ≤ p vs Ha : E(r̄ij) > 1 for some 1 ≤ 1 < j ≤ p,

where r̄ij = (n − 1)r2ij . Under the null hypothesis of (2), {(n − 1)r2ij , 1 ≤ i < j ≤

p} are identically distributed with mean 1 and variance 2(n−2)
(n+1) . We also notice from Chang

and Qi [4] that {(n − 1)r2ij , 1 ≤ i < j ≤ p} behave as if they were independent and

identically distributed. For these reasons, we propose a one-sided empirical likelihood ratio

test as follows.

Rewrite {(n − 1)r2ij , 1 ≤ i < j ≤ p} as y1, · · · , yN , where N = p(p − 1)/2. Then

y1, · · · , yN are asymptotically i.i.d with mean 1. Define the one-sided log-empirical likeli-
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hood ratio test statistics as in (12) with µ0 = 1, or equivalently

ℓn := ℓn(1) = 2I(r̄ ≥ 1)
∑︂

1≤i<j≤p

log
(︂
1 + λ

(︁
(n− 1)r2ij − 1

)︁)︂
, (13)

where λ is the solution to the equation

∑︂
1≤i<j≤p

(n− 1)r2ij − 1

1 + λ
(︁
(n− 1)r2ij − 1

)︁ = 0,

and r̄ = ȳ = n−1
N

∑︁
1≤i<j≤p r

2
ij .

Our first result on empirical likelihood method for testing the complete independence under

normality in the paper is as follows.

Theorem 1. Assume p = pn → ∞ as n → ∞. Then ℓn
d→ Z2I(Z > 0) as n → ∞ under

the null hypothesis of (2), where Z is a standard normal random variable.

Let Φ denote the cumulative distribution function of the standard normal distribution, i.e,

Φ(x) =
1√
2π

∫︂ x

−∞
e−t2/2dt, x ∈ (−∞,∞).

Let G denote the cumulative distribution function of Z2I(Z > 0). Then

G(x) =

⎧⎨⎩ 0, x < 0;

Φ(
√
x), x ≥ 0.

Therefore, for any α ∈ (0, 12), an α-level critical value of G is given by z2α, where zα is an

α-level critical value for the standard normal distribution. Based on Theorem 1, a level α

rejection region for test on (11) is

Re(α) =
{︂
ℓn ≥ z2α

}︂
. (14)

Here we only consider α < 1
2 because Z2I(Z > 0) is nonnegative, P (Z2I(Z > 0) >
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c|H0) <
1
2 if c > 0, and P (Z2I(Z > 0) > c|H0) = 1 if c ≤ 0.

Now we consider the general case when X = (X1, · · · , Xp) is a random vector with

independent and identically distributed components. The one-sided empirical likelihood test

statistic ℓn based on {(n − 1)r2ij , 1 ≤ i < j ≤ p} is defined as in (13). The limiting

distribution for ℓn is the same as that under normality.

Theorem 2. Assume X1, · · · , Xp are independent and identically distributed and E(X24
1 ) <

∞. If p = pn → ∞ as n → ∞ and pn/n is bounded, then ℓn
d→ Z2I(Z > 0) as n → ∞.

Compared with Theorem 1, pn in Theorem 2 is restricted in a smaller range and it can be

of the same order as n.

To demonstrate the performance of empirical likelihood method and two other test statis-

tics, we have a numerical study. Our simulation study indicates that the empirical likelihood

test (14) based om ℓn maintains a very stable size or type I error. In terms of size, ℓn is

more accurate tcnp and t∗np. Most of the time, tcnp and t∗np have slightly larger sizes than 0.05

when the nominal level α is 0.05, and their powers are also slightly larger than that of ℓn in

our simulation study. For simplicity purpose, the simulation result on ℓn is not shown in this

paper.

In order to balance the size and power for the empirical likelihood method, We introduce a

rescaled empirical likelihood statistic, ℓ̄n, defined as follows

ℓ̄n =
2(n− 1)(n+ 1)

3(p− 1)(p+ 4)
ℓn

∑︂
1≤i<j≤p

r4ij . (15)

Under conditions of Theorems 1 or 2, ℓ̄n and ℓn have the same limiting distribution, that is,

ℓ̄n
d→ Z2I(Z > 0) as n → ∞ (16)

provided that

2(n− 1)(n+ 1)

3(p− 1)(p+ 4)

∑︂
1≤i<j≤p

r4ij
p→ 1. (17)
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This equation will be verified in Section 4. Based on (16), a level α test rejects the complete

independence if ℓ̄n falls into the rejection region

R̄e(α) =
{︂
ℓ̄n ≥ z2α

}︂
. (18)

3. Simulation

In this section, we will consider the following three test statistics for testing complete inde-

pendence (2), including Schott’s test statistic t∗np given in (3), Chang and Qi’s adjusted test

statistic tcnp defined in (5), and the rescaled empirical likelihood test statistic ℓ̄n given in (15).

The corresponding rejection regions are given in (4), (6), and (18), respectively. All simula-

tions are implemented by the software R.

For sample size n = 20, 50, 100 and dimension p = 10, 20, 50, 100, we apply the three test

statistics to each of five distributions for 10000 iterations to obtain the empirical sizes and the

empirical powers of the tests. We set the nominal type I error α = 0.05. The five distributions

include the normal, the uniform over [−1, 1], the exponential, the mixture of the normal and

exponential distributions, and the sum of normal and exponential distributions.

To control the dependence structure, we introduce a covariance matrix Γρ defined by

Γρ =
(︁
γij

)︁
p×p

, with γii = 1, and γij = ρ if i ̸= j, (19)

which is also a correlation matrix. In our simulation study, we generate random samples from

the distribution of a random vector X = (X1, · · · , Xp) with covariance matrix Γρ or correla-

tion matrix Γρ. For details, see the five distributions described below. For all distributions we

consider, the observations have independent components when ρ = 0 and positively depen-

dent components when ρ > 0. We choose very small values for ρ such as ρ = 0.02 and 0.05.

When the value of ρ is large, the resulting powers for all three methods will be too close to 1,

and the comparison is meaningless. Therefore, based on 10, 000 replicates, the sizes for three

test statistics are estimated when ρ = 0, and their powers are estimated when ρ = 0.02 and

0.05. All results are reported in Tables 1 to 5.
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a. Normal Distribution

The observations are drawn from a multivariate normal random vector X = (X1, · · · , Xp)

with mean µ = (0, · · · , 0) and variance matrix Γρ specified in (19). The results on the em-

pirical sizes and powers are given in Table 1.

b. Uniform Distribution

We first generate p + 1 i.i.d. random variables Y0, Y1, · · · , Yp from Uniform (−1, 1) dis-

tribution, then set Xi =
√
ρ√

1−ρ
Y0 + Yi, i = 1, 2, · · · , p. It is easy to verify that random vector

X = (X1, · · · , Xp) has mean µ = (0, · · · , 0) and correlation matrix Γρ as defined in (19).

The results on the empirical sizes and powers are given in Table 2.

c. Exponential Distribution

We generate p+1 i.i.d. random variables Y0, Y1, · · · , Yp from the unit exponential distribu-

tion, then define Xi =
√
ρ√

1−ρ
Y0 + Yi, i = 1, 2, · · · , p. The random vector X = (X1, · · · , Xp)

has a correlation matrix Γρ as defined in (19) for ρ ∈ [0, 1). The results on the empirical sizes

and powers are given in Table 3.

d. Mixture of Normal and Exponential Distributions

The random vector X = (X1, · · · , Xp) is sampled from a mixture of the normal and

exponential distributions which is with 90% probability from the multivariate normal with

mean µ = (1, · · · , 1) and covariance matrix Γρ given in (19) and with 10% probability from

a random vector (Y1, · · · , Yp) where Y1, · · · , Yp are i.i.d. unit exponential random variables.

The results on the empirical sizes and powers are given in Table 4.

e. Sum of Normal and Exponential Distribution

The random vector X = (X1, · · · , Xp) is a weighted sum of two independent random

vectors, U and V , X = U + 0.01V , where U is from a multivariate normal distribution with

mean µ = (0, · · · , 0) and covariance matrix Γρ defined in (19), and V = (Y1, · · · , Yp) with

Yi’s being i.i.d. unit exponential random variables. The results on the empirical sizes and

powers are given in Table 5.

From the simulation results, the empirical sizes for all three tests are close to 0.05 which is

the nominal type I error we set in the simulation, especially when both n and p are large. Test
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statistic tcnp has the smallest size in most cases, and it is a little bit conservative sometimes.

The size of ℓ̄n is between that of tcnp and t∗np and both ℓ̄n and t∗np are comparable for most

combinations of n and p.

As we expect, the powers of all three test statistics become higher as p grows larger. The

increase in n also brings about an increase in power, but not as much as the increase in p

does, because p(p−1)
2 is the number of r2ij’s involved in the test. All test statistics achieve high

power when ρ = 0.05. Three test statistics result in comparable powers in general, although

the power of Chang and Qi’s test statistic is occasionally a little bit less than the other two test

statistics. These differences may be due to the fact that Chang and Qi’s test statistic maintain

a lower type I error.

In summary, in this paper, we have developed the one-sided empirical likelihood method

and proposed the rescaled empirical likelihood test statistic for testing the complete indepen-

dence for high dimensional random vectors. The rescaled empirical likelihood test statistic

performs very well in terms of the size and power and can serve as a good alternative to the

existent test statistics in the literature.

4. Proofs

Proof of Proposition 2.1. To prove the strict concavity of L(µ), we need to show that for

µ1, µ2 ∈ H , µ1 ̸= µ2,

logL(tµ1 + (1− t)µ2) > t logL(µ1) + (1− t) logL(µ2), t ∈ (0, 1). (20)

Since µj ∈ H for j = 1, 2, we have logL(µj) = log
N∏︁
i=1

ωji =
N∑︁
i=1

logωji, where ωji > 0,

i = 1, · · · , N are determined by (8) and (9) with µ being replaced by µj ,
N∑︁
i=1

ωji = 1,

N∑︁
i=1

ωjiyi = µj for j = 1, 2.

For every t ∈ (0, 1), set ωti = tω1i + (1− t)ω2i, i = 1, · · · , N . Then ωti > 0,
N∑︁
i=1

ωti = 1,

14



N∑︁
i=1

ωtiyi = tµ1 + (1− t)µ2 ∈ H . Since log x is strictly concave in (0,∞), we have

log(ωti) = log
(︂
tω1i + (1− t)ω2i

)︂
≥ t logω1i + (1− t) logω2i i = 1, · · · , N,

and at least one of the inequalities is strict, i.e, log(ωti) > t logω1i + (1− t) logω2i for some

i, since µ1 ̸= µ2 implies (ω11, ω12, · · · , ω1N ) ̸= (ω21, ω22, · · · , ω2N ). Therefore, we get

N∑︂
i=1

log(ωti) >

N∑︂
i=1

(︂
t logω1i + (1− t) logω2i

)︂
= t logL(µ1) + (1− t) logL(µ2),

which implies

logL(tµ1 + (1− t)µ2) ≥ log

N∏︂
i=1

ωti =

N∑︂
i=1

log(ωti) > t logL(µ1) + (1− t) logL(µ2),

proving (20).

When µ = ȳ, an obvious solution to (9) is λ = 0. Since the solution to (9) is unique, we

see that ωi = N−1, and thus, L(ȳ) = N−N . We also notice that

sup
µ

L(µ) = sup
µ∈H

L(µ) ≤ sup
{︂ N∏︂

i=1

ωi

⃓⃓⃓
ωi ≥ 0,

N∑︂
i=1

ωi = 1
}︂
= N−N .

The last step is obtained by using the Lagrange multipliers. We omit the details here. There-

fore, we conclude that L(ȳ) = sup
µ

L(µ) = N−N . □

Proof of Theorem 1. We assume the null hypothesis in (2) is true in the proof.

Define σ2
n = 2(n−2)

n+1 and S2
n = 1

N

∑︁
1≤i<j≤p

(︁
(n−1)r2ij −1

)︁2. Review that N = p(p−1)/2.

We have σ2
np = Nσ2

n/(n−1)2. Since the distribution of yj’s depends on n, {yj , 1 ≤ j ≤ N}

forms an array of random variables.

If the following three conditions are satisfied: (i). 1
σn

max
1≤j≤N

|yj−1| = op(N
1/2) as n → ∞;

15



(ii). 1
Nσ2

n

N∑︁
j=1

(yj − 1)2
p→ 1 as n → ∞; (iii).

N∑︁
j=1

yj −N√︁
Nσ2

n

d→ N(0, 1) as n → ∞, equivalently,

in term of r2ij’s,

(C1).
1

σn
max

1≤i<j≤p
|(n− 1)r2ij − 1| = op(N

1/2) as n → ∞;

(C2).
1

σ2
n

S2
n

p→ 1 as n → ∞;

(C3). zn :=

∑︁
1≤i<j≤p

(n− 1)r2ij −N√︁
Nσ2

n

d→ N(0, 1) as n → ∞,

we can follow the same procedure as in Owen [14] or use Theorem 6.1 in Peng and

Schick [15] to conclude that

ℓ(1) =
(︂ ∑︁
1≤i<j≤p

(n− 1)r2ij −N√︁
Nσ2

n

)︂2
(1 + op(1)) + op(1) = z2n(1 + op(1)) + op(1)

where ℓ(1) is defined in (10) with µ0 = 1. Again, by using condition (C3), we have

ℓn = z2n(1 + op(1))I(ȳ > 0) + op(1) = z2n(1 + op(1))I(zn > 0) + op(1)
d→ Z2I(Z > 0)

as n → ∞, where ℓn is defined in (13), proving Theorem 1.

Now we will verify conditions (C1), (C2) and (C3). (C3) has been proved by Chang and

Qi [4] as we indicate below equation (3).

Assume (i, j) is a pair of integers with for 1 ≤ i < j ≤ p. It is proved in Schott [17] that

E(r2ij) =
1

n− 1
, Var(r2ij) =

2(n− 2)

(n+ 1)(n− 1)2
=

σ2
n

(n− 1)2
, (21)

From Chang and Qi [4], we have

E(r4ij) =
3

(n− 1)(n+ 1)
, E(r6ij) =

15

(n− 1)(n+ 1)(n+ 3)
,

E(r8ij) =
105

(n− 1)(n+ 1)(n+ 3)(n+ 5)
.

(22)
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By using binomial expansion, we also have

m4 := E
(︁
(r2ij−

1

n− 1
)4
)︁
= E(r8ij)−4

E(r6ij)

n− 1
+6

E(r4ij)

(n− 1)2
−4

E(r2ij)

(n− 1)3
+

1

(n− 1)4
. (23)

Now we can verify condition (C1). By use of Chebyshev’s inequality, equations (21) and

(22)

P (

max
1≤i<j≤p

(n− 1)r2ij

σn
> δN1/2) ≤

∑︂
1≤i<j≤p

P (
r2ij
σn

>
δN1/2

n− 1
)

≤ N(n− 1)3

δ4N3/2σ3
n

E(r612)

= O(
1

N1/2
) → 0

as n → ∞ for every δ > 0. This implies 1
σn

max
1≤i<j≤p

(n− 1)r2ij = o(N1/2). Hence, we have

1

σn
max

1≤i<j≤p
|(n− 1)r2ij − 1| = 1

σn
max

1≤i<j≤p
(n− 1)r2ij +O(1) = op(N

1/2),

proving condition (C1).

Below we will use (i, j) and (s, t) to denote two pair of integers with 1 ≤ i < j ≤ p and

1 ≤ s < t ≤ p. It follows from Theorem 2 in Veleval and Ignatov [18] that {rij , 1 ≤ i <

j ≤ p} are pairwise independent, that is, If (i, j) ̸= (s, t), then rij and rst are independent,

thus we have

E
(︂(︁

(n−1)r2ij−1
)︁2(︁

(n−1)r2st−1
)︁2)︂

= E
(︂(︁

(n−1)r2ij−1
)︁2)︂

E
(︂(︁

(n−1)r2st−1
)︁2)︂

= σ4
n.

Since E(S2
n) = σ2

n, we have

E
(︂
S2
n − σ2

n

)︂2
= E(S4

n)− σ4
n

=
1

N2

∑︂
1≤i<j≤p

∑︂
1≤s<t≤p

E
(︂(︁

(n− 1)r2ij − 1
)︁2(︁

(n− 1)r2st − 1
)︁2)︂− σ4

n.
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We can classify the summands within the double summation above into two classes: N(N−1)

terms in class 1 when (i, j) ̸= (s, t) and N terms in class 2 when (i, j) = (s, t). We see that

E
(︂(︁

(n− 1)r2ij − 1
)︁2(︁

(n− 1)r2st − 1
)︁2)︂

= σ4
n

if (i, j) ̸= (s, t) by using the independence, and

E
(︂(︁

(n− 1)r2ij − 1
)︁2(︁

(n− 1)r2st − 1
)︁2)︂

= m4(n− 1)4

if (i, j) = (s, t), where m4 is given by (23). Therefore, we have

E
(︂
S2
n − σ2

n

)︂2
=

1

N2
(N(N − 1)σ4

n +Nm4(n− 1)4)− σ4
n =

m4(n− 1)4 − σ4
n

N
.

In view of (21), (22) and (23), some tedious calculation shows that

E
(︂
S2
n − σ2

n

)︂2
=

16(n− 2)(7n3 − 30n2 + 11n+ 60)

p(p− 1)(n+ 1)2(n+ 3)(n+ 5)
=

4(7n3 − 30n2 + 11n+ 60)σ4
n

p(p− 1)(n− 2)(n+ 3)(n+ 5)
,

which implies

E
(︂S2

n

σ2
n

− 1
)︂2

=
4(7n3 − 30n2 + 11n+ 60)

p(p− 1)(n− 2)(n+ 3)(n+ 5)
= O(

1

p2n
) → 0,

as n → ∞, and thus Condition (C2) holds. The proof of Theorem 1 is complete. □

Proof of Theorem 2. Theorem 2 can be proved by using similar arguments in the proof of

Theorem 1. We will continue to use the notation defined in the proof of Theorem 1.

Under the conditions in Theorem 2, Chen and Shao [5] have obtained the following results:

E(r2ij) =
1

n− 1
, E(r4ij) =

3

n2
+O(

1

n3
), E(r8ij) = O(

1

n4
);

E(r2ij1r
2
ij2) =

1

(n− 1)2
, E(r4ij1r

4
ij2) =

9

n4
+O(

1

n5
) if j1 ̸= j2,

(24)

where 1 ≤ i ̸= j ≤ p, 1 ≤ i ̸= j1 ≤ p and 1 ≤ i ̸= j2 ≤ p. It follows from the Cr inequality
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that

E
(︁
(n− 1)r2ij − 1

)︁4 ≤ 23
(︁
(n− 1)4r8ij + 1

)︁
= O(1). (25)

We need to verify conditions (C1), (C2), and (C3) as given in the proof of theorem 1.

Condition (C1) can be verified similarly by using estimates of moments in (24), and condition

(C3) follows from the central limit theorem (3), which is true under the condition of the

theorem in virtue of Theorem 2.2 in Chen and Shao [5].

Now we proceed to verify condition (C2). First, we have

σ̄2
n := E(S2

n) = E
(︂(︁

(n−1)r212−1
)︁2)︂

= (n−1)2E
(︁
r412

)︁
−1 = 2+O(

1

n
) = σ2

n(1+O(
1

n
))

(26)

from (24). Then

E
(︂
S2
n − σ̄2

n

)︂2
= E(S4

n)− σ̄4
n

=
1

N2

∑︂
1≤i<j≤p

∑︂
1≤s<t≤p

E
(︂(︁

(n− 1)r2ij − 1
)︁2(︁

(n− 1)r2st − 1
)︁2)︂− σ̄4

n.

Considering the summands within the double summation above, we see that there are N(p−

2)(p− 3)/2 pairs of sets {i, j} and {s, t} which are disjoint. For these pairs,

E
(︂(︁

(n− 1)r2ij − 1
)︁2(︁

(n− 1)r2st − 1
)︁2)︂

= σ̄4
n.

because rij and rst are independent. For all other N2−N(p−2)(p−3)/2 pairs, corresponding

summands are dominated by

E
(︂(︁

(n− 1)r2ij − 1
)︁2(︁

(n− 1)r2st − 1
)︁2 ≤

√︂
E
(︁
(n− 1)r2ij − 1

)︁4
E
(︁
(n− 1)r2st − 1

)︁4
= E

(︁
(n− 1)r2ij − 1

)︁4
= O(1)
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from the Cauchy-Schwarz inequality and equation (25). Therefore, we have

E
(︂
S2
n − σ̄2

n

)︂2
=

1

N2

(︂1
2
N(p− 2)(p− 3)σ̄4

n +O
(︁
N2 − 1

2
N(p− 2)(p− 3)

)︁)︂
− σ̄4

n

= O
(︂ 1

N2

(︁
N2 − 1

2
N(p− 2)(p− 3)

)︁)︂
= O(

1

p
) → 0

as n → ∞. In the estimation above, we also use the fact that σ̄2
n ∼ σ2

n → 2 from (26).

Therefore, we have

E
(︂S2

n

σ̄2
n

− 1
)︂2

→ 0

as n → ∞. This yields
S2
n

σ̄2
n

p→ 1, which together with (26) implies condition (C2). This

completes the proof of the theorem. □

Proof of Equation (17). In the proofs of Theorems 2 and 2, we have obtained that Sn/σ
2
n

p→ 1,

which implies Sn
p→ 2 since σ2

n → 2. From condition (C3), we have

1

N

(︁ ∑︂
1≤i<j≤p

(n− 1)2r2ij −N
)︁ p→ 0.

Therefore, we get

2(n− 1)(n+ 1)

3(p− 1)(p+ 4)

∑︂
1≤i<j≤p

r4ij =
1 + o(1)

3N

∑︂
1≤i<j≤p

(n− 1)2r4ij

=
1 + o(1)

3

(︂
S2
n + 1 +

2

N

(︁ ∑︂
1≤i<j≤p

(n− 1)2r2ij −N
)︁)︂

p→ 1

as n → ∞, proving (17). □
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Table 1. Sizes and Powers of tests, Normal distribution
size (ρ = 0) power (ρ = 0.02) power (ρ = 0.05)

n p ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np

20 10 0.0593 0.0486 0.0598 0.0646 0.0551 0.0657 0.0974 0.0863 0.0987

20 0.0609 0.0565 0.0618 0.0670 0.0626 0.0675 0.1357 0.1281 0.1366

50 0.0594 0.0584 0.0596 0.0836 0.0810 0.0842 0.3079 0.3030 0.3096

100 0.0524 0.0519 0.0525 0.1156 0.1142 0.1159 0.5584 0.5571 0.5588

50 10 0.0596 0.0484 0.0603 0.0750 0.064 0.0744 0.1660 0.1478 0.1656

20 0.0533 0.0481 0.0525 0.0855 0.0790 0.0859 0.3257 0.3098 0.3244

50 0.0508 0.0489 0.0508 0.1457 0.1410 0.1461 0.7372 0.7320 0.7362

100 0.0536 0.0519 0.0535 0.2684 0.2660 0.2684 0.9609 0.9604 0.9608

100 10 0.0608 0.0504 0.0607 0.0894 0.0743 0.0882 0.3305 0.3025 0.3285

20 0.0581 0.0511 0.0573 0.1265 0.1167 0.1260 0.6520 0.6345 0.6495

50 0.0523 0.0494 0.0519 0.2735 0.2675 0.2723 0.9816 0.9809 0.9816

100 0.0516 0.0506 0.0515 0.5711 0.5669 0.5703 0.9997 0.9997 0.9997

Table 2. Sizes and Powers of tests, Uniform distribution
size (ρ = 0) power (ρ = 0.02) power (ρ = 0.05)

n p ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np

20 10 0.0610 0.0529 0.0615 0.0607 0.0525 0.0626 0.0913 0.0802 0.0934

20 0.0600 0.0571 0.0615 0.0668 0.0621 0.0686 0.1230 0.1147 0.1243

50 0.0595 0.0582 0.0607 0.0806 0.0785 0.0812 0.2680 0.2647 0.2693

100 0.0585 0.0582 0.0598 0.1099 0.1093 0.1109 0.5183 0.5171 0.5202

50 10 0.0572 0.0489 0.0575 0.0773 0.0655 0.0774 0.1744 0.1536 0.1749

20 0.0606 0.0548 0.0600 0.0809 0.0734 0.0816 0.3061 0.2920 0.3062

50 0.0559 0.0530 0.0562 0.1358 0.1319 0.1359 0.7449 0.7387 0.7449

100 0.0526 0.0518 0.0527 0.2417 0.2378 0.2422 0.9741 0.9736 0.9741

100 10 0.0596 0.0497 0.0583 0.0842 0.0710 0.0848 0.3225 0.2934 0.3200

20 0.0589 0.0528 0.0580 0.1269 0.1152 0.1271 0.6430 0.6265 0.6397

50 0.0516 0.0489 0.0522 0.2650 0.2587 0.2646 0.9889 0.9880 0.9887

100 0.0504 0.0494 0.0504 0.5567 0.5525 0.5566 1.0000 1.0000 1.0000
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Table 3. Sizes and Powers of tests, Exponential distribution

size (ρ = 0) power (ρ = 0.02) power (ρ = 0.05)

n p ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np

20 10 0.0718 0.0636 0.0745 0.0799 0.0734 0.0845 0.1419 0.1338 0.1486

20 0.0638 0.0610 0.0670 0.0867 0.0859 0.0924 0.2135 0.2116 0.2221

50 0.0581 0.0586 0.0612 0.1224 0.1266 0.1301 0.3982 0.4040 0.4080

100 0.0602 0.0622 0.0632 0.1901 0.1955 0.1975 0.5774 0.5848 0.5871

50 10 0.0734 0.0620 0.0751 0.0950 0.0840 0.0975 0.2288 0.2156 0.2335

20 0.0650 0.0606 0.0660 0.1158 0.1114 0.1205 0.3834 0.3800 0.3898

50 0.0612 0.0608 0.0643 0.1877 0.1912 0.1953 0.7102 0.7140 0.7175

100 0.0589 0.0607 0.0618 0.3230 0.3289 0.3310 0.9079 0.9107 0.9111

100 10 0.0701 0.0604 0.0698 0.1048 0.0936 0.1088 0.3636 0.3428 0.3689

20 0.0646 0.0595 0.0647 0.1555 0.1492 0.1578 0.6350 0.6281 0.6400

50 0.0636 0.0622 0.0653 0.3108 0.3125 0.3187 0.9481 0.9486 0.9495

100 0.0574 0.0583 0.0600 0.5823 0.5878 0.5899 0.9965 0.9966 0.9966

Table 4. Sizes and Powers of tests, Mixture distribution
size (ρ = 0) power (ρ = 0.02) power (ρ = 0.05)

n p ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np

20 10 0.0650 0.0547 0.0664 0.0682 0.0594 0.0680 0.1042 0.0921 0.1052

20 0.0618 0.0565 0.0630 0.0704 0.0650 0.0706 0.1561 0.1477 0.1572

50 0.0605 0.0584 0.0608 0.0974 0.0955 0.0983 0.3381 0.3353 0.3394

100 0.0688 0.0677 0.0692 0.1395 0.1381 0.1407 0.5979 0.5974 0.5998

50 10 0.0624 0.0520 0.0616 0.0778 0.0657 0.0781 0.1991 0.1790 0.1988

20 0.0602 0.0548 0.0606 0.0958 0.0869 0.0952 0.3832 0.3713 0.3828

50 0.0587 0.0559 0.0578 0.1643 0.1595 0.1638 0.7827 0.7792 0.7824

100 0.0569 0.0561 0.057 0.3086 0.3063 0.3097 0.9669 0.9666 0.9672

100 10 0.0610 0.0510 0.0615 0.0990 0.0845 0.0961 0.3777 0.3484 0.3745

20 0.0599 0.0520 0.0592 0.1395 0.1299 0.1380 0.7200 0.7055 0.7183

50 0.0556 0.0522 0.0555 0.3137 0.3080 0.3137 0.9888 0.9887 0.9888

100 0.0561 0.0545 0.0559 0.6389 0.6359 0.6400 1.0000 1.0000 1.0000
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Table 5. Sizes and Powers of tests, Sum
size (ρ = 0) power (ρ = 0.02) power (ρ = 0.05)

n p ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np ℓ̄n tcnp t∗np

20 10 0.0601 0.0520 0.0607 0.0625 0.0552 0.0634 0.0997 0.0884 0.1019

20 0.0556 0.0499 0.0558 0.0635 0.0584 0.0637 0.1402 0.1303 0.1401

50 0.0520 0.0499 0.0520 0.0804 0.0773 0.0807 0.3066 0.3031 0.3072

100 0.0592 0.0583 0.0593 0.1172 0.1153 0.1173 0.5509 0.5484 0.5515

50 10 0.0587 0.0493 0.0586 0.0723 0.0610 0.0723 0.1702 0.1501 0.1684

20 0.0558 0.0497 0.0557 0.0843 0.0762 0.0838 0.3315 0.3144 0.3290

50 0.0537 0.0507 0.0541 0.1429 0.1385 0.1429 0.7446 0.7377 0.7433

100 0.0557 0.0540 0.0555 0.2637 0.2614 0.2642 0.9550 0.9545 0.9550

100 10 0.0635 0.0552 0.0640 0.0897 0.0758 0.0892 0.3237 0.2955 0.3187

20 0.0593 0.0527 0.0586 0.1211 0.1097 0.1197 0.6540 0.6360 0.6513

50 0.0480 0.0459 0.0479 0.2716 0.2644 0.2706 0.9803 0.9791 0.9801

100 0.0551 0.0537 0.0549 0.5719 0.5690 0.5713 1.0000 1.0000 1.0000
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