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ABSTRACT

Given a random sample of size n from a p dimensional random vector,
where both n and p are large, we are interested in testing whether the
p components of the random vector are mutually independent. This
is the so-called complete independence test. In the multivariate nor-
mal case, it is equivalent to testing whether the correlation matrix is
an identity matrix. In this paper, we propose a one-sided empirical
likelihood method for the complete independence test for multivariate
normal data based on squared sample correlation coefficients. The lim-
iting distribution for our one-sided empirical likelihood test statistic is
proved to be Z?1(Z > 0) when both n and p tend to infinity, where Z
is a standard normal random variable. In order to improve the power
of the empirical likelihood test statistic, we also introduce a rescaled
empirical likelihood test statistic. We carry out an extensive simulation
study to compare the performance of the rescaled empirical likelihood
method and two other statistics which are related to the sum of squared
sample correlation coefficients.
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1. Introduction

Statistical inference on high dimensional data has gained a wide range of applications in re-
cent years. New techniques generate a vast collection of data sets with high dimensions, for
example, trading data from financial market, social network data and biological data like mi-
croarray and DNA data. The dimension of these types of data is not small compared with
sample size, and typically of the same order as sample size or even larger. Yet classical mul-
tivariate statistics usually deal with data from normal distributions with a large sample size n
and a fixed dimension p, and one can easily find some classic treatments in reference books
such as Anderson [1/], Morrison [10] and Muirhead [|11].

Under multivariate normality settings, the likelihood ratio test statistic converges in dis-
tribution to a chi-squared distribution when p is fixed. However, when p changes with n and
tends to infinity, this conclusion is no longer true as discovered in Bai et al. [2], Jiang et al. [6],
Jiang and Yang [8]], Jiang and Qi [7]], Qi et al. [16], among others. The results in these papers
indicate that the chi-square approximation fails when p diverges as n goes to infinity.

The test of complete independence of a random vector is to test whether all the compo-
nents of the random vector are mutually independent. In the multivariate normal case, the test
of complete independence is equivalent to the test whether covariance matrix is a diagonal
matrix, or whether the correlation matrix is the identity matrix.

For more details, we assume X = (X1,---, X)) is arandom vector from a p-dimensional
multivariate normal distribution N, (u, X), where p denotes the mean vector, and X is a
p X p covariance matrix. Given a random sample of size n from the normal distribution,
X1,X2, - , Xy, Where x; = (21, 2, -+, Tjp) for 1 < i < n, Pearson’s correlation coeffi-

cient between the i-th and j-th components is given by

n

> (Tri — 7)) (T — Tj)

rij = ——— - : (1)
\/Z (Thi — 2i)? - 3 (wkj — 5)?
k=1 k=1

n n
where 7; = % > xpiand T, = % > ap;forl <i,j < p.Now we set R, = (74) pxp as the
k=1 k=1
sample correlation coefficient matrix.



The complete independence test for the normal random vector is

Hy:T=1I, vs Hy:T #1, )

where I' is the population correlation matrix and I, is p X p identity matrix. When p < n,

the likelihood ratio test statistic for (2)) is a function of |R,,

, the determinant of R,,, from
Bartlett [3] or Morrison [[10]. In traditional multivariate analysis, when p is a fixed integer, we

have under the null hypothesis in (2) that

2p+5
(n—1—
(n :

) log |R,,| LN X;Qa(p—l)/z asn — 0o,
where Xfc denotes a chi-square distribution with f degrees of freedom.

When p = p,, depends on n with 2 < p,, < n and p,, — o0, the likelihood ratio method
can still be applied to test (2)). The limiting distributions of the likelihood ratio test statistics in
this case have been discussed in the aforementioned papers. It is worth mentioning that Qi et
al. [16] propose an adjusted likelihood ratio test statistic and show that the distribution of the
adjusted likelihood test statistic can be well approximated by a chi-squared distribution whose
number of degrees of freedom depends on p regardless of whether p is fixed or divergent.

The limitation of the likelihood ratio test is that the dimension p of the data must be smaller
than the sample size n. Many other likelihood tests related to the sample covariance matrix
or sample correlation matrix have the same problem as the sample covariance matrices are
degenerate when p > n. In order to relax this constraint, a new test statistic using the sum of

squared sample correction coefficients is proposed by Schott [17] as follows

_ 2
tnp = E i

1<j<i<p

Assume that the null hypothesis of (2) holds. Under assumption lim p,/n = v € (0, 00),
n—o0

Schott [17] proves that ¢, — g((ﬁ :i)) converges in distribution to a normal distribution with



mean 0 and variance 72, that is,

-
t:Lp = T — N(O, 1), (3)

2 _ plp—=1)(n—2)

where U?’Lp = m

Recently, Mao [9] proposes a different test for complete independence. His test statistic is

closely related to Schott’s test and is defined by

1—rz
1<j<i<p ij

It has been proved in Mao [9] that T}, is asymptotically normal under the null hypothesis of
and the assumption that nh_>n010 pn/n =7 € (0,00).

Very recently, Chang and Qi [4] investigate the limiting distributions for the two test statis-
tics above under less restrictive conditions on n and p. Chang and Qi [4] show that (3)) is also
valid under the general condition that p, — oo as n — oo, regardless of the convergence
rate of p,,. Thus, the normal approximation in (3)) based on tnp yields an approximate level a

rejection region

. p(p—1) plp—1)(n—1)
Ri(a) = {tnp 2 2n—1) + Zl—a\/(n 3 )}7 4)

where z,, is a « level critical value of the standard normal distribution.
Furthermore, Chang and Qi [4] propose adjusted test statistics whose distribution can be
fitted by chi-squared distribution regardless of how p changes with n as long as n is large.

Chang and Qi’s [4] adjusted test statistics t;p is defined as

oy = Vp(p = Dy, + p(p;l) )

Chang and Qi show that

N

sup | P(t,, < @) — P(Xz(p—l)/Z <z)|—0
x
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as long as p, — oo as n — oo. Let Xfc(a) denote the « level critical value of Xfc. Then an

approximate level « rejection region based on ¢7,, is given by

Clar _ plp—1) n—2 n—2
Rt(a)—{tanT(l_ n+1)+X%(’§1)(a)\/(n—1)2(n+1)}' (6)

One can find more references on test for complete independence in Mao [9] or Chang and

Qi [4].

In practice, the assumption of normality for distributions may be violated. Now we as-

sume X = (Xi,---,X,) is a random vector and X1,---, X, are identically distributed
with distribution function F'. Given a random sample of size n, x1, X2, - - - , X,, Where x; =
(i1, 2, - -+, Tip) for 1 < ¢ < n, are drawn from the distribution of X = (Xy,---,X,), and

define Pearson’s correlation coefficients 7;;’s as in (I)). By using the Stein method, Chen and
Shao [5] show that (3]) holds under some moment conditions of F if p,, /n is bounded.

In this paper, we propose to apply empirical likelihood method to the testing problem (2)).
The empirical likelihood is a nonparametric statistical method proposed by Owen [12{13]],
which is originally used to test the mean vector of a population based on a set of independent
and identically distributed (i.i.d.) random variables. Empirical likelihood does not require to
specify the family of distributions for the data and it possesses some good properties of the
likelihood methods.

The rest of the paper is organized as follows. In Section [2] we first introduce a one-sided
empirical likelihood method for the mean of a set of random variables with a common mean
and then establish the connection between the test of complete independence and the one-
sided empirical likelihood method. Our main result concerning the limiting distribution of the
one-sided empirical likelihood ratio statistic is also given in Section 2] In Section 3| we carry
out a simulation study to compare the performance of the empirical likelihood method and
normal approximation based on Schott’s test statistic and chi-square approximation based on
Chang and Qi’s adjusted test statistic. In our simulation study, we also apply these methods to
some other distributions such as the exponential distributions and mixture of the exponential
and normal distributions so as to compare their adaptability to non-normality. The proofs of

the main results are given in Section 4]



2. Main Results

In this section, we apply the empirical likelihood method to the test of complete independence.

First, we assume X = (X,---, X,) is a random vector from a p-dimensional multivariate

2

normal distribution. Under the null hypothesis of @), {r;,1 < i < j < p} are random

variables from an identical distribution with mean ﬁ As a matter of fact, it follows from

Corollary 5.1.2 in Muirhead [[I1]] that rizj has the same distribution as 7% /(n — 2 + T) under

the null hypothesis of (2), where 7" is a random variable having t-distribution with n — 2

2
i)

degrees of freedom. {r;;,1 < i < j < p} are asymptotically independent if the sample size n
is large. We will develop a one-sided empirical likelihood test statistic and apply it to the data
set {(n — l)rfj, 1 <i < j < p}, where p = p, is a sequence of positive integers such that
Pn — 00 as n — 00. As an extension, we then consider the case when X = (Xq,---, X)) is
a random vector with an identical marginal distribution function F' which is not necessarily
Gaussian. When the p components of X are independent, we demonstrate that the empirical
likelihood method we develop under normality works for general distribution F' as well if

some additional conditions are satisfied.

2.1. One-sided empirical likelihood test

Consider a random sample of size N, namely y1,--- , yn. Assume the sample comes from a
population with mean p and variance o2. The empirical likelihood function for the mean s is

defined as

L(p) = sup { f[wi

N N
> wiyi = mwi 20,3 wi =1}, @)
=1

i=1
The function L(p) is well defined if x belongs to the convex hull given by

N
Y wi= 1w >0, 7;:1,---,N};

i=1

N
H = {Zwiyi
i=1

herwi L(p) = 0. hat H = i ; i)
otherwise, set L(x) = 0. We see that (121%1]\[ Yi, max )

Assume p € H. By the standard Lagrange multiplier technique, the supremum on the



right-hand side of ((7) is achieved at

1
N1+ My — )’

i=1,---,N, (8)

W; =

where \ is the solution to equation g(\) = 0, with g(\) defined as follows

Pﬂz

1+A 1+ My —p) ©)

Assume mi ; < max vy;. When p € H, then the function g()\) defined in is strictl
in g < max s 0 g(\) © y

increasing for \ € (—(1r<nizgv Yn — 1)L, (1 — 1£n1<nN ;)" 1). A solution to g(\) = 0 in this

range exists and the solution must be unique.

Proposition 2.1. Assume y1,--- ,yn are N observations with y; # y; for some i and j. Then

N
log L(p) is strictly concave in H, and L(y) = sup L(p) = NN, where j = & 3 i
o =1
Remark. The results in Proposition [2.1] are well-known among the researchers in the area of

empirical likelihood methods. A short proof will be given in Sectiond] for completeness.

Consider the following two-sided test problem

Ho:p=po vs Ha:p# po-

The empirical likelihood ratio is given by

L(po) _ Limo) _ 11 .
supLO(M) - N—?V _H(1+)‘(91_M0)) .

peR i=1

where A is the solution to the following equation

N
Z:: Mo) =0



Therefore, the log-empirical likelihood test statistic is given by

I N
E(po) := —2log Sup(% =2 log(1+ A(yi — o). (10)
HER =1

It is proved in Owen [14] that ¢(po) converges in distribution to a chi-square distribution
with one degree of freedom if y1, - - - , y are i.i.d. random variables with mean 1 and a finite
second moment.

Our interest here is to consider a one-sided test

Ho:p=po vs Hq:p> po. (11)

According to Proposition 2.1} L(y) is increasing in (—oo, y) and decreasing in (¥, co0), which

implies sup L(u) = L(u0)I(§ < po) + N"NI(5 > o). Therefore, the empirical likelihood
12 Ho
ratio corresponding to test is

L(po) ) w=~> Y= po;
sup L .
uzpl?o (1) 1, if y < po.

Then the log-empirical likelihood test statistic for test (T]) is

L (o)
sup L(p)
12 fo

En(,u()) = _210g = E(MO)I(g > MO)? (12)

where £(p) is defined in (I0).

2.2. Empirical likelihood method for testing complete independence

Let r denote the sample Pearson correlation coefficient based on a random sample of size n

from a bivariate normal distribution with correlation coefficient p. From Muirhead [11], page



156,

n—2 1
E(?) =1- 1—p2)eFi(1,1; =n + 1; p°
(%) =1 5 A= eR Lign+ L),
where
ab  ala+1)bb+1) , o~ (@) 2
o Fy(a,b; c; 2) +1!c2+ e+ 1) z°+ +Z (©)r K

k=1

is the hypergeometric function, (a), = I'(a + k)/I'(a), and T'(z) = [ t* 'e 'dt is the

gamma function. It is easy to check when p = 0, 2 F(1,1; %n +1;0%) = 1, and E(r?) =

[o.¢]
L= 051 = wmp when p # 0R(L Lign 4+ 15p%) < 14 3 0% = 5, and thus,
2 -2 _ 1 -
First, we assume X = (X1,---, X)) is arandom vector from a p-dimensional multivariate

normal distribution N, (p, 3). Review the sample correlation coefficients r;; defined in (TJ).
Denote the correlation matrix of 3 by I' = (-y;;). From the above discussion, we have that
under the null hypothesis of (), (rfj) =L foralll <i<j<p, E(rfj) > —L_ under the
alternative of (2) and at least one of the inequalities is strict. We see that test (2) is equivalent

to the following one-tailed test
Ho:E(rj)=1,1<i<j<pwvs H,: E(Tj;) >1 forsome1 <1< j<p,

where 75 = (n — 1)r;. Under the null hypothesis of @), {(n — 1)r};, 1 < i < j <
2(n—2)

p} are identically distributed with mean 1 and variance D)

. We also notice from Chang
and Qi [4] that {(n — l)r?j, 1 < i < j < p} behave as if they were independent and
identically distributed. For these reasons, we propose a one-sided empirical likelihood ratio
test as follows.

Rewrite {(n — l)rfj, 1 <i<j<p}lasyy, - ,yn, where N = p(p — 1)/2. Then

Y1, -+ ,yn are asymptotically i.i.d with mean 1. Define the one-sided log-empirical likeli-



hood ratio test statistics as in (I2) with py = 1, or equivalently

lo= () =21G>1) 3 log (1+A((n— 1) — 1)), (13)

1<i<j<p
where A is the solution to the equation

(n— 1)7“22- -1
Z 1+ X((n— 1J)r§j —1)

1<i<j<p

=0,

= _ — _ n—1 2
and 7 =y = "33 10, T
Our first result on empirical likelihood method for testing the complete independence under

normality in the paper is as follows.

Theorem 1. Assume p = p, — oo as n — oo. Then (), KN Z%1(Z > 0) as n — oo under

the null hypothesis of (2)), where Z is a standard normal random variable.

Let ® denote the cumulative distribution function of the standard normal distribution, i.e,

1 r 2
P(r) = — e*t/zdt, T € (—00,00).
Let G denote the cumulative distribution function of Z2I(Z > 0). Then

0, x < 0;

o(\/x), x=>0.

Therefore, for any o € (0, %), an a-level critical value of GG is given by zi, where z,, is an
a-level critical value for the standard normal distribution. Based on Theorem [T} a level «
rejection region for test on is

Re(a) = {En > z;i}. (14)

Here we only consider v < % because Z?I(Z > 0) is nonnegative, P(Z%1(Z > 0) >

10



c|Hp) < 3 ifc > 0,and P(Z%1(Z > 0) > c|Hp) = 1if ¢ < 0.

Now we consider the general case when X = (Xi,---,X,) is a random vector with
independent and identically distributed components. The one-sided empirical likelihood test
statistic ¢,, based on {(n — 1)7’%, 1 < i < j < p} is defined as in (I3). The limiting

distribution for Z,, is the same as that under normality.

Theorem 2. Assume X1,--- , X, are independent and identically distributed and EB(X3*) <

oo. If p = pp, — 00 as n — oo and py, /n is bounded, then (), LA Z21(Z > 0) as n — oc.

Compared with Theorem I} p,, in Theorem [2]is restricted in a smaller range and it can be
of the same order as n.

To demonstrate the performance of empirical likelihood method and two other test statis-
tics, we have a numerical study. Our simulation study indicates that the empirical likelihood
test based om ¢,, maintains a very stable size or type I error. In terms of size, ¢, is
more accurate t7,, and ¢7,,. Most of the time, ¢, and ¢, , have slightly larger sizes than 0.05
when the nominal level « is 0.05, and their powers are also slightly larger than that of ¢,, in
our simulation study. For simplicity purpose, the simulation result on ¢,, is not shown in this
paper.

In order to balance the size and power for the empirical likelihood method, We introduce a

rescaled empirical likelihood statistic, ¢,,, defined as follows

_ 2(n—1)(n+1)
0, = I ?, Z rk. (15)

Under conditions of Theorems or ¢,, and ¢,, have the same limiting distribution, that is,

Uy % Z°1(Z > 0) as n— oo (16)
provided that
2(n —1)(n+ 1) .
ot S I 17
3 Dpr 1y, 2 an

11



This equation will be verified in Section 4 Based on (1)), a level « test rejects the complete

independence if /,, falls into the rejection region
Re(a) = {Zn > zg}. (18)

3. Simulation

In this section, we will consider the following three test statistics for testing complete inde-
pendence (2), including Schott’s test statistic tp given in (3), Chang and Qi’s adjusted test

statistic ¢ defined in (5)), and the rescaled empirical likelihood test statistic ,, given in (T3).

np
The corresponding rejection regions are given in (@), (6)), and (18], respectively. All simula-
tions are implemented by the software R.

For sample size n = 20, 50, 100 and dimension p = 10, 20, 50, 100, we apply the three test
statistics to each of five distributions for 10000 iterations to obtain the empirical sizes and the
empirical powers of the tests. We set the nominal type I error o« = 0.05. The five distributions
include the normal, the uniform over [—1, 1], the exponential, the mixture of the normal and

exponential distributions, and the sum of normal and exponential distributions.

To control the dependence structure, we introduce a covariance matrix I', defined by

r,= (’Yij)pxp, with v;; = 1, and v;; = pif i # j, (19)

which is also a correlation matrix. In our simulation study, we generate random samples from
the distribution of a random vector X = (X7, --- , X},) with covariance matrix I", or correla-
tion matrix I',. For details, see the five distributions described below. For all distributions we
consider, the observations have independent components when p = 0 and positively depen-
dent components when p > (. We choose very small values for p such as p = 0.02 and 0.05.
When the value of p is large, the resulting powers for all three methods will be too close to 1,
and the comparison is meaningless. Therefore, based on 10, 000 replicates, the sizes for three
test statistics are estimated when p = 0, and their powers are estimated when p = 0.02 and

0.05. All results are reported in Tables [I]to[5]

12



a. Normal Distribution
The observations are drawn from a multivariate normal random vector X = (Xy, -+, X))
with mean g = (0, -- ,0) and variance matrix I', specified in (I9). The results on the em-

pirical sizes and powers are given in Table[I]

b. Uniform Distribution

We first generate p + 1 i.i.d. random variables Yy, Y7, - - - , Y, from Uniform (-1, 1) dis-
tribution, then set X; = \){%YO +Y;,i=1,2,---,p. Itis easy to verify that random vector
X = (Xy,---,Xp) hasmean p = (0,---,0) and correlation matrix I, as defined in (I9).

The results on the empirical sizes and powers are given in Table 2]

c. Exponential Distribution

We generate p+1 i.i.d. random variables Yy, Y1, - - - , Y}, from the unit exponential distribu-
tion, then define X; = \){%YO +Y;,i=1,2,--- ,p. The random vector X = (Xq,---,X,)
has a correlation matrix I', as defined in (I9) for p € [0, 1). The results on the empirical sizes

and powers are given in Table 3]

d. Mixture of Normal and Exponential Distributions

The random vector X = (Xj,---,X,) is sampled from a mixture of the normal and
exponential distributions which is with 90% probability from the multivariate normal with
mean gt = (1,---, 1) and covariance matrix I, given in (I9) and with 10% probability from
a random vector (Y7, ---,Y,) where Y7, -- , Y}, are i.i.d. unit exponential random variables.

The results on the empirical sizes and powers are given in Table ]

e. Sum of Normal and Exponential Distribution

The random vector X = (X1,---,X,) is a weighted sum of two independent random
vectors, U and V, X = U + 0.01V, where U is from a multivariate normal distribution with
mean g = (0,---,0) and covariance matrix I', defined in (I9), and V' = (Y3, -- ,Y),) with
Y;’s being i.i.d. unit exponential random variables. The results on the empirical sizes and

powers are given in Table 5]

From the simulation results, the empirical sizes for all three tests are close to 0.05 which is

the nominal type I error we set in the simulation, especially when both n and p are large. Test

13



statistic ¢7,,, has the smallest size in most cases, and it is a little bit conservative sometimes.
The size of £, is between that of tnp and t7, and both ¢y, and typ are comparable for most
combinations of n and p.

As we expect, the powers of all three test statistics become higher as p grows larger. The
increase in n also brings about an increase in power, but not as much as the increase in p
does, because @ is the number of rfj’s involved in the test. All test statistics achieve high
power when p = 0.05. Three test statistics result in comparable powers in general, although
the power of Chang and Qi’s test statistic is occasionally a little bit less than the other two test
statistics. These differences may be due to the fact that Chang and Qi’s test statistic maintain
a lower type I error.

In summary, in this paper, we have developed the one-sided empirical likelihood method
and proposed the rescaled empirical likelihood test statistic for testing the complete indepen-
dence for high dimensional random vectors. The rescaled empirical likelihood test statistic

performs very well in terms of the size and power and can serve as a good alternative to the

existent test statistics in the literature.

4. Proofs

Proof of Proposition To prove the strict concavity of L(u), we need to show that for

p, g2 € H, py # po,

log Lty + (1 — t)pa) > tlog L(p1) + (1 —t) log L(p2), t € (0,1). (20)
N N

Since p1; € H for j = 1,2, we have log L(1;) = log [[ wj; = ) logwj;, where wj; > 0,
i=1 i=1

N

i = 1,---,N are determined by (§) and (9) with x being replaced by pj, > wji = 1,
=1

N K3

> wiiyi = pj for j =1,2.

i=1

N
Forevery ¢t € (0,1), setwy; = twy; + (1 —t)woi, i =1,--- , N.Thenwy > 0, > wy = 1,
i=1

14



N
> wiiyi = tpr + (1 —t)ue € H. Since log x is strictly concave in (0, co), we have
i=1

log(wti) = log <tw1i + (1 — t)UJQi) Z tlogwli + (1 — t) logwgi 1= 1, e ,N,

and at least one of the inequalities is strict, i.e, log(w¢;) > tlogwi; + (1 —t) log we; for some

i, since py # po implies (w11, w12, -+ ,win) # (w21, we2, -+ ,wan ). Therefore, we get
N N
> log(wr) > Y (t logwy; + (1 —t) longz) = tlog L(m) + (1 — t)log L(us),
i=1 i=1

which implies

N N
log L(tp1 + (1 — t)ug) > log [ [wi = > log(we) > tlog L(p1) + (1 — ) log L(pa),
=1 i=1

proving (20).
When o = ¥, an obvious solution to (9) is A = 0. Since the solution to (9) is unique, we

see that w; = N1, and thus, L(7) = N~". We also notice that

sup L(p) = sup L(u) < sup { [[wilw: >
K neH i=1 i=1

The last step is obtained by using the Lagrange multipliers. We omit the details here. There-

fore, we conclude that L(y) = sup L(u) = NV, O
"

Proof of Theorem[I] We assume the null hypothesis in (2)) is true in the proof.

Define 02 = 2(:;12) andS2=% > ((n— l)rfj - 1)2. Review that N = p(p—1)/2.
1<i<j<p

We have agp = No2/(n—1)2. Since the distribution of y;’s depends on n, {y;, 1 < j < N}

forms an array of random variables.

If the following three conditions are satisfied: (i). 2 max lyj—1] = 0,(N'/?)asn — oo;
" 1<

15



N

>y — N

= 4N (0,1) as n — oo, equivalently,

N :
(i) v 2o (y;— 1)2 B Lasn — oo; (iii). e
Now = V/No?

in term of 7;’s,
1

(€. - max |(n = 1)rf; = 1] = 0p(N'/?) as n = o003
1

(C2). —253 5 lasn— 0;
g,

TS - -N

1<i<j<p

VNo?2

we can follow the same procedure as in Owen [14] or use Theorem 6.1 in Peng and

(C3). z, = 4 N(0,1) asn — oo,

Schick [15] to conclude that

X - N
() = (5=

2
) (1+0,(1)) +0,(1) = 231+ 0p(1)) + (1)

n

where /(1) is defined in with pg = 1. Again, by using condition (C3), we have
o = 22(1 4 0p(1)I(F > 0) + 0p(1) = 22(1 + 0p(1))I (2 > 0) + 0,(1) S Z2I(Z > 0)

as n — oo, where £,, is defined in (13)), proving Theorem I}

Now we will verify conditions (C1), (C2) and (C3). (C3) has been proved by Chang and
Qi [4] as we indicate below equation (3)).

Assume (i, 7) is a pair of integers with for 1 <14 < j < p. It is proved in Schott [[17]] that
2(n—2) o2

E(r%) = Var(rfj) = i+ D(n—1)2 = (n—1)2 (21)

Ay 3 psy 1
B(rS) = 10 .
Y (n=1)(n+1)(n+3)(n+5)
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By using binomial expansion, we also have

6 4 2
4E(Tij)+6 E(rij) 4 E(Tij) n 1

G )" = Bl 4 e e e @

Now we can verify condition (C1). By use of Chebyshev’s inequality, equations and

(2]

max (n — 1)r2j r2 1
1<J L i ON /2
PR >N < S, PE>TT)
" 1<i<j<p "
Nn-1)3 4
= GAN3253 E(ry)
1

asn — oo for every § > 0. This implies - | Inax. (n—1)r7; = o(N'/?). Hence, we have
AN ANAS 2

1 1
— 1) -1 =— — 1) 1) = 0,(N'/?
o Jnax |(n—1rj; —1] = = max (n—1)rj;+0(1) = op(N'%),
proving condition (C1).

Below we will use (7, j) and (s, t) to denote two pair of integers with 1 < i < j < p and
1 < s <t < p. It follows from Theorem 2 in Veleval and Ignatov [18]] that {r;;, 1 < i <

j < p} are pairwise independent, that is, If (i, ) # (s,t), then r;; and r are independent,

thus we have

E(((n—l)r?j—1)2((n—1)7‘§t—1)2) = E(((n—l)rfj—1)2)E(((n—1)r§t—1)2) = afl.

Since E(S2%) = o2, we have

= NL Z Z ( n—1)r —1)2((71—1)7“?25—1)2)—03.

1<i<j<p 1<s<t<p

17



We can classify the summands within the double summation above into two classes: N (N —1)

terms in class 1 when (4, j) # (s,t) and NV terms in class 2 when (i, ) = (s,t). We see that

if (4,7) # (s,t) by using the independence, and

E(((n — l)rfj — 1)2((71 — 1)7"52,15 — 1)2> =my(n — 1)4

if (4,7) = (s,t), where my is given by ([23)). Therefore, we have

4

ma(n —1)* — o

N

2 1
E(52 - ag) = (NN =)o} + Nmy(n — 1)) — o} =

In view of (21)), (22)) and (23), some tedious calculation shows that

E<52 02>2 ~ 16(n —2)(7n® —30n? + 11n+60)  4(7n® — 30n? + 11n 4 60)o;,
 oplp—D(+12n+3)(n+5) plp—1)(n—-2)(n+3)(n+5)

S2 2 4(7n — 30n? 4 11n + 60 1
o4 p(p—1)(n—2)(n+3)(n+5) i
as n — o0, and thus Condition (C2) holds. The proof of Theorem|l|is complete. a

Proof of Theorem [2] Theorem 2 can be proved by using similar arguments in the proof of
Theorem[I] We will continue to use the notation defined in the proof of Theorem |I]

Under the conditions in Theorem Chen and Shao [5] have obtained the following results:

1 3 1 1
E(ng) e E(T?j) =2 + O(ﬁ)a E(Tfj) = O(7n4);
(24)
lelrljz (n — 1)27 rzjlrmg nd nb J1 J2,

where 1 <i# j<p,1<i#j; <pandl <i# jo <p.Itfollows from the C, inequality

18



that
E((n—1)r3 —1)" <2*((n— D% +1) = 0(1). (25)

We need to verify conditions (C1), (C2), and (C3) as given in the proof of theorem
Condition (C1) can be verified similarly by using estimates of moments in (24)), and condition
(C3) follows from the central limit theorem (3]), which is true under the condition of the
theorem in virtue of Theorem 2.2 in Chen and Shao [5]].

Now we proceed to verify condition (C2). First, we have

5% = B(52) = B(((n— 1)k ~1)*) = (n—17B(rly) ~1 = 2+0(%) _ ag(1+0(%))
(26)
from (24). Then
B(si-a2) = Esh-a

- 3 2 Y B((e- v - ) (- 0rh - 1))~

1<i<j<p1<s<i<p

Considering the summands within the double summation above, we see that there are N (p —

2)(p — 3)/2 pairs of sets {4, j} and {s, ¢t} which are disjoint. For these pairs,

because 7;; and 7 are independent. For all other N2 — N (p—2)(p—3)/2 pairs, corresponding

summands are dominated by

E(((n — 1)7“1-2]- - 1)2((n —1)r? — 1)2 < \/E((n — 1)7"1-2]. — 1)4E((n — 1) — 1)4
= E((n — l)ri?j — 1)4

= 0(1)
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from the Cauchy-Schwarz inequality and equation (23). Therefore, we have

B(s2-02) = 5(GNE-2e-3)h+ 0N~ NG 2)(p-3)) -
= (3N~ SN -2 -3)
- 0(;)%0

as n — oo. In the estimation above, we also use the fact that 52 ~ o2 — 2 from (26).

Therefore, we have
S2 2
E(—" — ) —0

SQ

as n — oo. This yields &—g 21, which together with implies condition (C2). This
n

completes the proof of the theorem. a

Proof of Equation (I7). In the proofs of Theoremsand we have obtained that S,, /o2 51,

which implies .S, 2 2 since 0721 — 2. From condition (C3), we have

1

N( Z (n—l)zr?j—N) 0.

1<i<j<p

Therefore, we get

3N

1<i<j<p 1<i<j<p

2(n—1)(n_—||_—i)) Z T?j _ 1+0(1) Z (n — 1)

HO(D(SE;HJF;( Y -1 —N)>

3 —
1<i<j<p

as n — oo, proving (17). a
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Table 1. Sizes and Powers of tests, Normal distribution

size (p = 0) power (p = 0.02) power (p = 0.05)
n P by, £ thp by, e thp by, te the
20 10 0.0593  0.0486 0.0598 | 0.0646 0.0551 0.0657 | 0.0974 0.0863  0.0987
20 0.0609  0.0565 0.0618 | 0.0670 0.0626  0.0675 | 0.1357 0.1281  0.1366
50 0.0594  0.0584 0.0596 | 0.0836 0.0810 0.0842 | 0.3079 0.3030 0.3096
100 | 0.0524 0.0519 0.0525 | 0.1156  0.1142 0.1159 | 0.5584 0.5571  0.5588
50 10 0.0596  0.0484 0.0603 | 0.0750  0.064  0.0744 | 0.1660 0.1478  0.1656
20 0.0533  0.0481  0.0525 | 0.0855 0.0790 0.0859 | 0.3257 0.3098  0.3244
50 0.0508  0.0489  0.0508 | 0.1457 0.1410 0.1461 | 0.7372  0.7320 0.7362
100 | 0.0536  0.0519 0.0535 | 0.2684 0.2660 0.2684 | 0.9609 0.9604  0.9608
100 10 0.0608  0.0504 0.0607 | 0.0894 0.0743 0.0882 | 0.3305 0.3025 0.3285
20 0.0581 0.0511 0.0573 | 0.1265 0.1167 0.1260 | 0.6520  0.6345  0.6495
50 0.0523  0.0494  0.0519 | 0.2735 0.2675 0.2723 | 09816 0.9809 0.9816
100 | 0.0516 0.0506  0.0515 | 0.5711 0.5669 0.5703 | 0.9997 0.9997  0.9997

Table 2.

Sizes and Powers of tests, Uniform distribution
size (p = 0) power (p = 0.02) power (p = 0.05)

n P by, e thp by, e thp by, e, the

20 10 0.0610 0.0529 0.0615 | 0.0607 0.0525 0.0626 | 0.0913  0.0802 0.0934
20 0.0600 0.0571 0.0615 | 0.0668 0.0621 0.0686 | 0.1230  0.1147  0.1243
50 0.0595 0.0582 0.0607 | 0.0806 0.0785 0.0812 | 0.2680 0.2647  0.2693
100 | 0.0585 0.0582 0.0598 | 0.1099 0.1093 0.1109 | 0.5183 0.5171 0.5202

50 10 0.0572  0.0489 0.0575 | 0.0773 0.0655 0.0774 | 0.1744  0.1536  0.1749
20 0.0606 0.0548 0.0600 | 0.0809 0.0734 0.0816 | 0.3061 0.2920 0.3062
50 0.0559 0.0530 0.0562 | 0.1358 0.1319 0.1359 | 0.7449 0.7387  0.7449
100 | 0.0526 0.0518 0.0527 | 0.2417 0.2378 0.2422 | 09741 09736 0.9741

100 10 0.0596  0.0497 0.0583 | 0.0842 0.0710 0.0848 | 0.3225 0.2934  0.3200
20 0.0589  0.0528 0.0580 | 0.1269 0.1152 0.1271 0.6430  0.6265 0.6397
50 0.0516  0.0489 0.0522 | 0.2650 0.2587 0.2646 | 0.9889 0.9880 0.9887
100 | 0.0504 0.0494 0.0504 | 0.5567 0.5525 0.5566 | 1.0000 1.0000  1.0000
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Table 3. Sizes and Powers of tests, Exponential distribution

size (p = 0) power (p = 0.02) power (p = 0.05)
n P Oy, te thp ln, te, thp by, te, the
20 10 0.0718  0.0636  0.0745 | 0.0799 0.0734  0.0845 | 0.1419 0.1338  0.1486
20 0.0638  0.0610 0.0670 | 0.0867 0.0859 0.0924 | 0.2135 0.2116 0.2221
50 0.0581 0.0586 0.0612 | 0.1224  0.1266 ~ 0.1301 | 0.3982 0.4040 0.4080
100 | 0.0602 0.0622 0.0632 | 0.1901 0.1955 0.1975 | 0.5774 0.5848  0.5871
50 10 0.0734  0.0620  0.0751 | 0.0950 0.0840 0.0975 | 0.2288 0.2156  0.2335
20 0.0650  0.0606 0.0660 | 0.1158 0.1114  0.1205 | 0.3834 0.3800  0.3898
50 0.0612  0.0608 0.0643 | 0.1877 0.1912  0.1953 | 0.7102 0.7140 0.7175
100 | 0.0589 0.0607 0.0618 | 0.3230 0.3289 0.3310 | 0.9079 09107 09111
100 10 0.0701  0.0604  0.0698 | 0.1048 0.0936  0.1088 | 0.3636  0.3428  0.3689
20 0.0646  0.0595 0.0647 | 0.1555 0.1492  0.1578 | 0.6350 0.6281  0.6400
50 0.0636  0.0622  0.0653 | 0.3108 0.3125 0.3187 | 0.9481 0.9486 0.9495
100 | 0.0574 0.0583  0.0600 | 0.5823 0.5878 0.5899 | 0.9965 0.9966  0.9966

Table 4.

Sizes and Powers of tests, Mixture distribution
size (p = 0) power (p = 0.02) power (p = 0.05)

n P by, e, thp by, e thp by, e the

20 10 0.0650 0.0547 0.0664 | 0.0682 0.0594 0.0680 | 0.1042 0.0921 0.1052
20 0.0618 0.0565 0.0630 | 0.0704 0.0650 0.0706 | 0.1561 0.1477 0.1572
50 0.0605 0.0584 0.0608 | 0.0974 0.0955 0.0983 | 0.3381 0.3353 0.3394
100 | 0.0688 0.0677 0.0692 | 0.1395 0.1381 0.1407 | 0.5979 0.5974  0.5998

50 10 0.0624  0.0520 0.0616 | 0.0778 0.0657 0.0781 0.1991  0.1790  0.1988
20 0.0602 0.0548 0.0606 | 0.0958 0.0869 0.0952 | 0.3832 0.3713 0.3828
50 0.0587 0.0559 0.0578 | 0.1643 0.1595 0.1638 | 0.7827 0.7792 0.7824
100 | 0.0569  0.0561 0.057 0.3086  0.3063  0.3097 | 0.9669 0.9666 0.9672

100 10 0.0610 0.0510 0.0615 | 0.0990 0.0845 0.0961 | 0.3777 0.3484 0.3745
20 0.0599 0.0520 0.0592 | 0.1395 0.1299 0.1380 | 0.7200 0.7055 0.7183
50 0.0556  0.0522 0.0555 | 0.3137 0.3080 0.3137 | 0.9888 0.9887  0.9888
100 | 0.0561 0.0545 0.0559 | 0.6389 0.6359 0.6400 | 1.0000 1.0000  1.0000
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Table 5. Sizes and Powers of tests, Sum

size (p = 0) power (p = 0.02) power (p = 0.05)
n P by, £ thp by, e thp by, te the
20 10 0.0601  0.0520 0.0607 | 0.0625 0.0552 0.0634 | 0.0997 0.0884 0.1019
20 0.0556  0.0499  0.0558 | 0.0635 0.0584 0.0637 | 0.1402 0.1303  0.1401
50 0.0520  0.0499  0.0520 | 0.0804 0.0773  0.0807 | 0.3066 0.3031 0.3072
100 | 0.0592 0.0583 0.0593 | 0.1172  0.1153 0.1173 | 0.5509 0.5484  0.5515
50 10 0.0587  0.0493  0.0586 | 0.0723 0.0610 0.0723 | 0.1702  0.1501  0.1684
20 0.0558  0.0497  0.0557 | 0.0843 0.0762 0.0838 | 0.3315 0.3144  0.3290
50 0.0537  0.0507 0.0541 | 0.1429 0.1385 0.1429 | 0.7446  0.7377  0.7433
100 | 0.0557 0.0540 0.0555 | 0.2637 02614 0.2642 | 09550 0.9545  0.9550
100 10 0.0635 0.0552  0.0640 | 0.0897 0.0758 0.0892 | 0.3237 0.2955 0.3187
20 0.0593  0.0527 0.0586 | 0.1211  0.1097  0.1197 | 0.6540 0.6360 0.6513
50 0.0480  0.0459 0.0479 | 0.2716 0.2644 0.2706 | 0.9803 0.9791  0.9801
100 | 0.0551  0.0537 0.0549 | 0.5719 0.5690 0.5713 | 1.0000  1.0000  1.0000
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