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Abstract—Federated learning (FL) hyper-parameters signifi-
cantly affect the training overheads in terms of computation
time, transmission time, computation load, and transmission load.
However, the current practice of manually selecting FL hyper-
parameters puts a high burden on FL practitioners since various
applications prefer different training preferences. In this paper,
we propose FedTune, an automatic FL. hyper-parameter tuning
algorithm tailored to applications’ diverse system requirements
of FL training. FedTune is lightweight and flexible, achieving
8.48%-26.75% improvement for different datasets compared to
fixed FL hyper-parameters.

I. INTRODUCTION

Federated learning (FL) has been applied to a wide range of
applications such as mobile keyboard [4] and speech recogni-
tion [[18]]. Compared to other model training paradigms (e.g.,
centralized machine learning [7]] and conventional distributed
machine learning [22]), FL has unique properties in terms
of massively distributed as well as unbalanced and non-
IID data [16]. In addition to the common hyper-parameters
of model training such as learning rates, optimizers, and
mini-batch sizes, FL has unique hyper-parameters, including
aggregation algorithms and participant selection [[11f], [12].
Nonetheless, many FL algorithms, e.g., FedAvg [16], have
been proved to converge to the global optimum even different
FL hyper-parameters are adopted [15] [[24].

Although FL hyper-parameters do not invalidate FL con-
vergence (i.e., the same final global model accuracy), they
significantly affect the training overheads of reaching the final
model. Specifically, computation time (CompT), transmission
time (TransT), computation load (CompL), and transmission
load (TransL) are the four most important system overheads
where CompT measures how long an FL system spends in
model training; TransT represents how long an FL system
spends in model parameter transmission between the clients
and the server; CompL is the number of Floating-Point Oper-
ation (FLOP) that an FL system consumes; and TransL is the
total data size transmitted between the clients and the server.

Application scenarios have very different training pref-
erences in terms of CompT, TransT, CompL, and TransL.
For example, (1) attack and anomaly detection in computer
networks [3] is time-sensitive (CompT and TransT) as it needs
to adapt to malicious traffic rapidly; (2) smart home control
systems for indoor environment automation [[17]], e.g., Heating,

Ventilation, and Air Conditioning (HVAC), are sensitive to
computation (CompT and CompL) because sensor devices
are limited in computation capabilities; (3) traffic monitoring
systems for vehicles [26] are communication-sensitive (TransT
and TransL) because cellular communications are usually
adopted to provide city-scale connectivity; (4) precision agri-
culture based on Internet-of-Things (IoT) sensing [20] is not
time-urgent but requires energy-efficient solutions (CompL
and TransL); and (5) healthcare systems, e.g., fall detection
for elderly people [5] , require both fast response and small
energy consumption (CompT, TransT, CompL, and TransL);
and (6) Human stampedes detection/prevention [2] require
time, computation, and communication efficient systems.

There is a plethora of work that has studied FL training
performance under different hyper-parameters [23]. However,
they do not consider CompT, TransT, CompL, and TransL al-
together, which are essential from the system’s perspective. In
addition, it is challenging to tune multiple hyper-parameters in
order to achieve diverse training preferences, especially when
we need to optimize multiple system aspects. For example,
it is unclear how to select hyper-parameters to build an FL
training solution that is both CompT and TransL-efficient.

Contributions. This paper targets a new research problem
of optimizing the hyper-parameters for FL from the system
perspective. To do so, we formulate the system overheads of
FL training and conduct extensive measurements to understand
FL training performance. To avoid manual hyper-parameter se-
lection, we propose FedTune, an algorithm that automatically
tunes FL hyper-parameters during model training, respecting
application training preferences. Our evaluation results show
that FedTune achieves a promising performance in reducing
the system overheads.

II. RELATED WORK

Hyper-Parameter Optimization (HPO) is a field that has
been extensively studied [27]]. Many classical HPO algorithms,
e.g., Bayesian optimization [21]], successive halving [8], and
hyperband [13]], are designed to optimize hyper-parameters of
machine learning models.

Designing HPO methods for FL, however, is a new research
area. Only a few works have touched FL. HPO problems. For



example, FedEx is a general framework to optimize the round-
to-accuracy of FL by exploiting the Neural Architecture Search
(NAS) techniques of weight-sharing, which improves the
baseline by several percentage points [9)]; FLoRA determines
the global hyper-parameters by selecting the hyper-parameters
that have good performances in local clients [28]. However,
existing works cannot be directly applied to our scenario of
optimizing FL hyper-parameter for different FL training pref-
erences for two reasons. First, CompT (in seconds), TransL (in
seconds), CompL (in FLOPs), and TransL (in bytes) are not
comparable with each other. Incorporating training preferences
in HPO is not trivial. Second, hyper-parameter tuning needs
to be done during the FL training. No “comeback” is allowed
as the FL model keeps training until its final model accuracy.
Otherwise, it will cause significantly more system overheads.

III. UNDERSTANDING THE PROBLEM

We formulate the system overheads of FedAvg to illustrate
the problem. FedAvg minimizes the following objective
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where f;(w) is the loss of the model on data point (z;,y;),
that is, f;(w) = ¢(x;,y;;w), K is the total number of clients,
Py is the set of indexes of data points on client k, with n; =
|Pk|, and n is the total number of data points from all clients,
ie, n = Zszl ng. Due to a large number of clients in a
typical FL application (e.g., millions of clients in the Google
Gboard project [4]), a common practice is to randomly select
a small fraction of clients in each training round. In the rest of
this paper, we refer to the selected clients as participants and
denote M as the number of participants on each training round.
Each participant makes E training passes over its local data
in each round before uploading its model parameters to the
server for aggregation. Afterward, participants wait to receive
an updated global model from the server, and a new training
round starts.

A. System Model

Assume that clients are homogeneous regarding hard-
ware (e.g., CPU/GPU) and network (e.g., transmission speeds).
Let by, indicates whether client k participates at the training
round r. Then, we have Zszl by, = M, ie., each round
selects M participants. The number of training rounds to reach
the final model accuracy is denoted by R, which is unknown
a priori and varies when different sets of FL hyper-parameters
are used in FL training. CompT, TransT, CompL, and TransL
can be formulated as follows.

Computation Time (CompT). If client %k is selected on a
training round, it spends time in local training. The local
training delay can be represented by C - E - ng, where C} is
a constant. It is proportional to its number of data points (i.e.,
ng) because ny decides the number of local updates (number
of mini-batches) for one epoch, and each local update includes

one forward-pass and one backward-pass. The computation
time of the training round r is determined by the slowest
participant and thus is represented by C; - E-max)_, by - ny.
In total, the computation time of an FL training can be
formulated as

R
CompT =C1-F - Zr,?}%(bk”" - 2)
r=1 -

Transmission Time (TransT). Each participant on a training
round needs one download and one upload of model parame-
ters from and to the server [23]. Thus, the transmission time
is the same for all participants on any training round, i.e., a
constant C5. The total transmission time is represented by

TransT = Csy - R €))

Computation Load (CompL). Client k£ causes C3 - E - ny
computation load if it is selected on a training round, where
Cj is a constant. The computation load of the training round
r is the summation of each participant’s computation load and
thus is C5 - E - Zszl by, - ni. We can formulate the overall
computation load as

R K
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Transmission Load (TransL). Since each training round

selects M participants, the transmission load for a training

round is Cy - M where Cy is a constant. The total number of

training rounds is R, and thus, the total transmission load of

an FL training is represented by

TransL =C4-R-M 5)

In the experiments, we assign the model’s number of FLOPs
for one input to C; and C3, and the model’s number of
parameters to Cy and Cy.

B. Measurement Study

We conduct measurements to study the system overheads
when different FL hyper-parameters are used for training. We
use the Google speech-to-command dataset [25]]. Please refer
to Section for the training setup. The speech-to-command
dataset meets the data properties of FL: massively distributed,
unbalanced, and non-IID. The measurement study investigates
the FL training overheads in terms of the following three
hyper-parameters.

e The number of participants (i.e., M). It is well-known
that more participants on each training round have a better
round-to-accuracy performance [16]. In the measurement
study, we set M to 1, 10, 20, and 50.

e The number of training passes (i.e., F). Increasing the
number of training passes as a method to improve
communication efficiency has been adopted in several
works, such as FedAvg [16] and FedNova [[15]. In the
measurement study, we set E to 0.5, 1, 2, 4, 8, where
0.5 means that only half of each client’s local data are
used for local training in each round.



Model ResNet-10 ResNet-18 ResNet-26 ResNet-34
#BasicBlock [, 1,1,1] [2,2,2,2] [3,3,3,3] [3,4,6,3]
#FLOP (x106) 12.5 26.8 41.1 60.1
#Params (x103) 79.7 177.2 274.6 515.6
Accuracy 0.88 0.90 0.90 0.92
TABLE I

DIFFERENT MODELS USED FOR THE MEASUREMENT STUDY.

e Model complexity. We also investigate how the model
complexity influences the training overheads if a target
accuracy is met. We use ResNet [6]] to build different
models, as listed in Table [[}

Computation Time (CompT). Fig. compares CompT for
a different number of participants M and a different number of
training passes . In the experiments, we use ResNet-18 and
normalize their overheads. As we can see, more participants
lead to smaller CompT, i.e., it takes a shorter time to converge.
However, the difference is not significant among 10, 20, and 50
participants, especially when the number of training passes is
large. In addition, we can see that larger £/ has worse CompT.
Transmission Time (TransT). Fig. [I(b) plots TransT, which
clearly shows that TransT favors larger M and E. Since
TransT is dependent on the number of training rounds R
(Eq. (@), it is equivalent to the metric of round-to-accuracy.
Our measurement result is consistent with the common knowl-
edge (e.g., [24]) that more participants and more training
passes have a better round-to-accuracy performance. We can
also observe that when M is small, e.g., 1, TransL is much
worse than the other cases.

Computation Load (CompL). Fig. shows CompL. We
make the following observations: (1) More participants re-
sult in worse CompL. The results indicate that the gain of
faster model convergence from more participants does not
compensate for the higher computation costs introduced by
more participants. (2) CompL is increased when more training
passes are used. This is probably because that larger E
diverges the model training [14] and thus, the data utility per
unit of computation cost is reduced.

Transmission Load (TransL). Fig. illustrates TransL.
As shown, more participants greatly increase TransL. This is
because more participants can only weakly reduce the number
of training rounds R [[15]], however, in each round, the number
of transmissions is linearly increased with the number of
participants. Regarding the number of training passes, larger
FE reduces the total number of training rounds R and thus
has better TransL. On the other hand, the gain of larger E
is diminishing. The results are consistent with the analysis of
[15] that R is hyperbolic with E (the turning point happens
around 100-1000 in their experiments).

Model Complexity. Table [I| tabulates the models for com-
paring training overheads versus model complexity. In this
experiment, we select one participant (M = 1) to train one
pass (E = 1) on each training round. Fig. [2] shows the
normalized CompT, TransT, CompL, and TransL for different
models. The x-axis is the target model accuracy, and the
y-axis is the corresponding overheads to reach that model
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Fig. 1. CompT, TransT, CompL, and TransL when a different number of
participants and a different number of training passes are used. The lower the
better.
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Fig. 2. CompT, TransT, CompL, and TransL versus model complexity. The
lower the better.

accuracy. Since only one client and one training pass are used
on each round, CompT and CompL have the same normalized
comparison, and so are TransT and TransL. The results show
that smaller models are better with regard to all training
aspects. In addition, it is interesting to note that heavier models
have higher increase rates of overheads versus model accuracy.
This means that model selection is especially essential for high
model accuracy applications.

C. Summary of System Overheads

Based on our measurement study, we summarize systems
overheads versus FL hyper-parameters in Table [l As we
can see, CompT, TransT, CompL, and TransL conflict with
each other regarding M and E. Regarding model complexity,
smaller models have better system overheads if the model
accuracy is satisfied. Please note that Table [lI| is consistent
with existing works (e.g., [24]]), but is more comprehensive.

IV. FEDTUNE

FedTune considers training preferences for CompT, TransT,
CompL, and TransL, denoted by «, 3, 7, and 4, respectively.
We have o + 3+ v+ d = 1. For example, o = 0.6, § = 0.2,
~ = 0.1, and § = 0.1 represent that the application is greatly
concerned about CompT, while slightly about TransT, with
CompL and TransL the least concern.



Training aspect \ M E Model complexity
CompT > < <
TransT > > <
CompL < < <
TransL < > <
Model Accuracy = = >
TABLE 11

SYSTEM OVERHEADS VERSUS THE NUMBER OF PARTICIPANTS M, THE

NUMBER OF TRAINING PASSES E, AND MODEL COMPLEXITY. ‘<’, ‘=",

AND ‘>’ MEANS THE SMALLER THE BETTER, DOES NOT MATTER, AND
THE LARGER THE BETTER, RESPECTIVELY.

A. Problem Formulation

For two sets of FL hyper-parameters S; and Sy, FedTune
defines the comparison function (51, S2) as

to — 1 -
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where ¢1 and t9 are CompT for S and S; achieving the same
model accuracy. Correspondingly, ¢; and ¢o are TransT, z;
and zo are CompL, and v, and vo are TransL. If I(S1,52) <
0, then Sy is better than S;. A set of hyper-parameters is
better than another set if the weighted improvement of some
training aspects (e.g., CompT and CompL) is higher than the
weighted degradation of the remaining training aspects (e.g.,
TransT and TransL). The weights are training preferences on
CompT, TransT, CompL, and TransL.

However, the training overheads for different sets of FL
hyper-parameters are unknown a priori. As a result, directly
identifying the optimal hyper-parameters before FL training
is impossible. Instead, we propose an iterative method to
optimize the next set of hyper-parameters. Given the current
set of hyper-parameters S.,,, the goal is to find a set of hyper-
parameters Sy, that improves the training performance the
most, that is, minimizing the following objective function:

that — ¢ _
G(S71xt):axu+6xw

tcur Geur (7)
+’Y % Znxt — Zcur + § % Unzt — Vcur
Zeur Veur

where teur, Qeurs Zeur, ANd Uy, are CompT, TransT, CompL,
and TransL under the current hyper-parameters Scyr; tnat,
Qnzts Znzt, and v, are CompT, TransT, CompL, and TransL
for the next hyper-parameters S,,,;. We focus on the number
of participants M and the number of training passes E, since
model complexity is monotonous with training overheads.
Therefor, we need to optimize Syt = {Mpat, Enat }-

B. Spz: Optimization

To find the optimal S,,.¢, te take the derivatives of G(Sy,.¢)
over M and E, obtaining

_ 6G(Snwt) _ o 8tnwt 5 8ant
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We illustrate how to obtain AM. The process of solving
AFE is similar. Considering that each step makes a small
adjustment of M, Ot,,:/OM can be represented by (+1) X
|tnet — tewr|, where (+1) means CompT prefers larger M
according to Table [[Il To estimate |t,.t — tcur|, We apply a
linear function 7;_1 X |tcyr —tpro| Where 1,1 = | t::::t_?::r "
(tpropro 1s the CompT at two steps before). Similarf , We
have 1g_1, n2—1, Ny—1 for TransT, CompL, and TransL. when
calculating their derivatives over M. As a result, AM can be
approximated as

AM — (+1) X o X M1 X |teur — tprol
tcur
+ (+1) X B X Ng—1 X |QCur - q;)r'u‘
qC’U.’I"
(10)
+(_1) XY XNz—1 X ‘Zcur - Zpr'u‘
ZC'lL'I”
(—1) X 6 X Ny—1 X |[Veur — Upro|
/UCUT
Similarly, we can calculate AE as
AE — (—1) X & X G—1 X [teur — tprol
tcur
+(+1) X ﬁ X qul X |QCur - Qprv|
qC’LL’I'
(11)
+(7]') Xy X Cz—l X ‘Zcur - Zprv'
zcur

+(+1) X 6 X Cv—l X |Ucur - Uprv|
Veur

where (;—1, (4—1, C.—1, and (,—1 are the parameters for
calculating the derivatives of CompT, TransT, CompL, and
TransL over E.

C. Decision Making and Parameter Update

FedTune is activated when the model accuracy is improved
by at least e. Then, it computes AM and AF, and determines
the next M and F based on the signs of AM and AFE.
Specifically, M+ = My, + 1 if AM > 0, otherwise,
Myt = My — 1. Likewise, FedTune increases E,,,; by one
if AE > 0; else FedTune decreases F,,; by one. The FL
training is resumed using the new hyper-parameters. FedTune
is lightweight and negligible to the FL training: it only requires
dozens of multiplication and addition calculations.

FedTune automatically updates 7:—1, 7g—1, M2—1, Nv—1,
Ct—1> Cg—1, C2—1, and (,—y during FL training. At each
step, FedTune updates the parameters that favor the current
decision. For example, if M., is larger than M,,,.,, FedTune
updates 7;_1 and 7,—1 as CompT and TransT prefer larger
M; otherwise, FedTune updates 7,1 and 7,_1.

Furthermore, FedTune incorporates a penalty mechanism to
mitigate bad decisions. Given the previous hyper-parameters



Dataset Speech-command EMNIST Cifar-100
Data Feature Voice Handwriting Image
ML Model ResNet-10 2-layer MLP ResNet-10

Performance ‘ +22.48% (17.97%)  +8.48% (5.51%)  +9.33% (5.47%)

TABLE III
PERFORMANCE OF FEDTUNE FOR DIVERSE DATASETS WHEN FEDAVG
AGGREGATION METHOD IS APPLIED.

Sprv and the current hyper-parameters Sc,,, FedTune calcu-
lates the comparison function I(Spyy, Seur). A bad decision
occurs if the sign of I(Spy, Seur) is positive. In this case,
FedTune multiplies the parameters that are against the current
decision by a constant penalty factor, denoted by D (D > 1).
For example, if I(Spry, Seur) > 0 and Meyr > Mpyy,
FedTune updates 7,1 and 7,1 as explained before, but also
multiplies 1,1 and n,_; by D.

V. EXPERIMENTS AND ANALYSIS

Benchmarks and Baseline. We evaluate FedTune on three
datasets: speech-to-command [25], EMNIST [1f], and Cifar-
100 [10], and three aggregation methods: FedAvg [16]], Fed-
Nova [24], and FedAdagrad [19]. We set equal values for
the combination of training preferences «, 3, v and § (see
the first column in Table . Therefore, for each dataset, we
conduct 15 combinations of training preferences. We set target
model accuracy for each dataset and measure CompT, TransT,
CompL, and TransL for reaching the target model accuracy.
We regard the practice of using fixed M and E as the baseline
and compare FedTune to the baseline by calculating Eq. (6).
We implemented FedTune in PyTorch. All the experiments are
conducted in a server with 24-GB Nvidia RTX A5000 GPUs.

A. Overall Performance

Training setup. (1) speech-to-command dataset. It classifies
audio clips to 35 commands (e.g., ‘yes’, ‘off’). We transform
audio clips to 64-by-64 spectrograms and then downsize them
to 32-by-32 gray-scale images. As officially suggested [25]],
we use 2112 clients’ data for training and the remaining 506
clients’ data for testing. We set the mini-batch size to 5,
considering that many clients have few data points. We use
ResNet-10 and the target model accuracy of 0.8. (2) EMNIST
dataset. It classifies handwriting (28-by-28 gray-scale images)
into 62 digits and letters (lowercase and uppercase). We split
the dataset based on the writer ID. We randomly select 70%
writers’ data for training and the remaining for testing. We
use a Multiplayer Perception (MLP) model with one hidden
layer (200 neurons with ReLu activation). We set the mini-
batch size to 10 and the target model accuracy of 0.7. (3)
Cifar-100 dataset. It classifies 32-by-32 RGB images to 100
classes. We randomly split the dataset into 1200 users, where
each user has 50 data points. Then, we randomly select 1000
users for training and the remaining 200 users for testing. We
set the mini-batch size to 10. ResNet-18 is used, and the target
model accuracy is set to 0.2 (due to our limited computational
capability, we set a low threshold for Cifar-100).

For all datasets, we normalize the input images with the
mean and the standard deviation of the training data before

Aggregator FedAvg FedNova FedAdagrad
Performance | +22.48% (17.97%)  +23.53% (6.64%) +26.75% (6.10%)
TABLE IV

PERFORMANCE OF FEDTUNE FOR DIVERSE AGGREGATION ALGORITHMS.
SPEECH-TO-COMMAND DATASET AND RESNET-10 ARE USED IN THIS
EXPERIMENT.

feeding them to models for training and testing. Both M and
L’ are initially set to 20. FedTune is activated when the model
accuracy is increased by at least 0.01 (i.e., ¢ = 0.01). The
penalty factor D is set to 10. All results are averaged by three
experiments.

Results for Diverse Datasets. Table shows the overall
performance of FedTune for different datasets when FedAvg
is applied. We set the learning rate to 0.01 for the speech-to-
command dataset and the EMNIST dataset, and 0.1 for the
Cifar-100 dataset, all with the momentum of 0.9. We show
the standard deviation in parenthesis. As shown, FedTune
consistently improves the system performance across all the
three datasets. In particular, FedTune reduces 22.48% system
overheads of the speech-to-command dataset compared to the
baseline. We also observe that the FL training benefits more
from FedTune if the training process needs more training
rounds to converge. Our experiments with EMNIST (small
model) and Cifar100 (low target accuracy) only require a
few dozens of training rounds to reach their target model
accuracy, and thus their performance gains from FedTune are
not significant. The observation is consistent with the decision-
making process in FedTune, which increases/decreases hyper-
parameters by only one at each step. We leave it as future
work to augment FedTune to change hyper-parameters with
adaptive degrees.

Results for Different Aggregation Methods. Table [IV|shows
the overall performance of FedTune for different aggregation
methods when we use the speech-to-command dataset and the
ResNet-10 model. We set the learning rate to 0.1, 37 to 0,
and 7 to le-3 in FedAdagrad. As shown, FedTune achieves
consistent performance gain for diverse aggregation methods.
In particular, FedAdagrad reduces the system overheads by
26.75%.

Trace Analysis of FedTune. We present the details of traces
when the speech-to-command dataset and the FedAdagrad
aggregation method are used. Table [V] tabulates the results.
We report the average performance, as well as their standard
deviations in parentheses. The first row is the baseline, which
does not change hyper-parameters during the FL training. We
show the final M and E when the training is finished. As we
can see from Table [V] FedTune can adapt to different training
preferences. Only one preference (0.33, 0.33, 0, 0.33) results
in a slightly degraded performance. On average, FedTune
improves the overall performance by 26.75%.

VI. CONCLUSION

FL involves high system overheads, which hinders its re-
search and real-world deployment. We argue that optimizing
system overheads for FL applications is extremely valuable. To



a B v 5 | CompT (10'2)  TransT (10%)  CompL (10'2)  TransL (105) | Final M Final E_ | Overall

- - - - 0.94 (0.01) 11.61 (0.10) 5.97 (0.04) 232.24 (1.99) 20 20 -

10 00 00 00 0.42 (0.02) 50.19 (2.57) 4.57 (0.22) 241871 (24091) | 57.33 (450)  1.00 (0.00) | +55.23% (2.22%)
00 1.0 00 00 1.34 (0.22) 7.68 (1.12) 14.99 (2.73) 289.82 (46.98) | 48.00 (2.16)  48.00 (2.16) | +33.87% (9.67%)
00 00 10 00 1.02 (0.10) 61598 (97.52)  1.76 (0.16) 672.21 (91.62) 1.00 (0.00)  1.00 (0.00) | +70.51% (2.75%)
00 00 00 10 2.18 (0.47) 3547 (7.51) 330 (0.22) 76.47 (1.68) 1.00 (0.00)  46.67 (3.30) | +67.07% (0.72%)
05 05 00 00 0.82 (0.13) 9.17 (1.26) 9.13 (1.66) 347.11 (5431) | 47.33(2.05) 21.33 (478) | +16.97% (9.68%)
05 00 05 00 0.48 (0.04) 81.42 (9.83) 323 (0.14)  1875.99 (155.21) | 25.00 (1.63)  1.00 (0.00) | +47.57% (3.43%)
05 00 00 05 0.79 (0.10) 11.59 (0.55) 5.04 (0.89) 241.86 (68.65) | 22.33(5.79)  15.67 (4.50) | +5.82% (11.28%)
00 05 05 00 0.83 (0.03) 10.66 (0.15) 5.16 (0.31) 207.79 (6.08) 21.00 (141)  21.00 (1.41) | +10.87% (2.83%)
00 05 00 05 1.54 (0.16) 11.48 (3.83) 9.59 (3.52) 190.52 (61.53) | 19.67 (14.82)  49.00 (0.00) | +9.55% (7.08%)
00 00 05 05 1.69 (0.26) 50.14 (8.21) 270 (0.26) 93.21 (8.48) 1.00 (0.00)  23.33 (249) | +57.32% (3.76%)
033 033 033 00 0.82 (0.07) 11.59 (1.01) 5.65 (0.27) 255.35 (9.65) 2233 (2.62)  15.67 (1.25) | +6.09% (6.67%)
033 033 00 033 | 1.06(0.08) 10.07 (0.90) 8.10 (0.34) 247.54 (29.18) | 2633 (2.05)  27.00 (2.16) | -1.93% (7.40%)
033 00 033 033 | 091(0.19 18.23 (5.83) 4.15 (1.13) 22926 (63.40) | 12.00 (1.41)  14.00 (5.72) | +11.66% (11.76%)
00 033 033 033 | L13(0.13) 16.16 (3.36) 4.51 (0.59) 169.93 (25.84) 9.00 (5.35)  23.00 (4.55) | +3.99% (6.19%)
025 025 025 025 | 091(0.10) 9.73 (1.81) 6.19 (0.76) 207.34 (3.34) 2333 (5.44) 2267 (330) | +6.51% (6.13%)

TABLE V

PERFORMANCE OF FEDTUNE FOR THE SPEECH-TO-COMMAND DATASET WHEN FEDADAGRAD IS USED FOR AGGREGATION.
‘4’ IS IMPROVEMENT AND ‘—’ IS DEGRADATION. STANDARD DEVIATION IN PARENTHESES.

this end, in this work, we propose FedTune to adjust FL hyper-
parameters, catering to the application’s training preferences
automatically. Our evaluation results show that FedTune is
general, lightweight, flexible, and is able to significantly
reduce system overheads.
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