
IceBreaker: Warming Serverless Functions Better with
Heterogeneity

Rohan Basu Roy
Northeastern University

Boston, Massachusetts, USA

Tirthak Patel
Northeastern University

Boston, Massachusetts, USA

Devesh Tiwari
Northeastern University

Boston, Massachusetts, USA

ABSTRACT

Serverless computing, an emerging computing model, relies on
łwarming upž functions prior to its anticipated execution for faster
and cost-effective service to users. Unfortunately, warming up func-
tions can be inaccurate and incur prohibitively expensive cost dur-
ing the warmup period (i.e., keep-alive cost). In this paper, we intro-
duce IceBreaker, a novel technique that reduces the service time and
the łkeep-alivež cost by composing a system with heterogeneous
nodes (costly and cheaper). IceBreaker does so by dynamically de-
termining the cost-effective node type to warm up a function based
on the function’s time-varying probability of the next invocation.
By employing heterogeneity, IceBreaker allows for more number of
nodes under the same cost budget and hence, keeps more number
of functions warm and reduces the wait time during high load. Our
real-system evaluation confirms that IceBreaker reduces the overall
keep-alive cost by 45% and execution time by 27% using represen-
tative serverless applications and industry-grade workload trace.
IceBreaker is the first technique to employ and leverage the idea of
mixing expensive and cheaper nodes to improve both service time
and keep-alive cost for serverless functions ś opening up a new
research avenue of serverless computing on heterogeneous servers
for researchers and practitioners.

CCS CONCEPTS

· Computer systems organization → Cloud computing; n-
tier architectures; · General and reference→ Performance.

KEYWORDS

Serverless Computing, Cloud Computing, Cold Start, Keep-alive
Cost, Heterogeneous Hardware

ACM Reference Format:

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker:
Warming Serverless Functions Better with Heterogeneity. In Proceedings

of the 27th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’22), February 28 ś

March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3503222.3507750

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507750

1 INTRODUCTION

Background and Motivation. Serverless computing paradigm is
becoming increasingly prevalent in multiple domains including
web applications, microservices, latency-critical workloads, data
processing, andmachine learning [18, 27, 32]. This is because server-
less has lowered the barrier to entry for end users by enabling them
to make use of cloud computing resources in a pay-per-use model
with elastic scaling, and without worrying about the management
and provisioning of computing resources.

Serverless functions are spawned on serverless instances (con-
tainer or microVM [1]). They suffer from the problem of cold starts,
which is the overhead (also known as cold start time) of setting
up an instance, and loading an application logic into the mem-
ory [11, 31, 55, 68]. This overhead can be a significant fraction of
a serverless function execution time as serverless mainly attracts
short running tasks (order of seconds) due to limited resources of
serverless instances.

Existing Methods for Mitigating Cold Starts. The most intu-
itive solution to avoid cold starts is to keep serverless functions
instances set up and loaded in the memory so that when a function
gets invoked, it can avoid the cold start overhead [57, 68]. This
process of keeping a function alive in memory is called awarm up.
However, keeping functions alive takes up memory and incurs a
keep-alive cost for the serverless providers, increasing the capital
budget. Keep-alive cost is defined as the product of three terms: the
cost per unit memory per unit time for reserving the server, the
memory required to accommodate the function instance, and the
time for which the function is kept alive. If a function is invoked
while it is kept alive in the memory, it undergoes a warm start,
and thus executes without incurring the cold start overhead.

As serverless workloads are becoming diverse with different in-
vocation patterns, it is becoming harder to decide how long to keep
a function alive and when to warm it up to avoid cold start [57, 66].
Serverless providers usually follow a 10-minute keep-alive policy
after a function invocation, but such a fixed policy does not ensure
cold start mitigation for diverse invocation characteristics [57, 68].
To reduce the effect of cold starts, previous works have come up
with strategies like overbooking server instances and pre-caching
different parts of an application [3, 34, 50, 51]. However, these tech-
niques increase the capital cost [2, 12]. Other strategies that predict
the function inter-arrival time to accordingly warm up a function
instance also increase the keep-alive cost [19, 57]. Even though
complete servers are reserved for creating a serverless computing
platform, reducing the keep-alive cost is important as it directly
minimizes memory wastage. This helps the servers accommodate
more functions.

753

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3503222.3507750

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari

Existing Approaches

Time

F
u
n
c
ti
o

n
 i
n
v
o

c
a
ti
o

n

p
ro

b
a
b

ili
ty

Time

Warm
up

start Low-end
Keep-alive

Homogeneous servers Low-end
servers

Low-end
servers

High-end
servers

Warm
up

start

F
u
n
c
ti
o

n
 i
n
v
o

c
a
ti
o

n

p
ro

b
a
b

ili
ty

IceBreaker

Low-end
Keep-alive

High-end
Keep-alive

High-end
Keep-alive

Figure 1: IceBreaker employs heterogeneity to reduce the

keep-alive cost and service time.

It is in the best interest of the service provider to reduce the keep-
alive cost. While the end-users want to reduce the service time

(time to serve a complete serverless function request from invoca-
tion to the completion of execution). Depending on the scenario,
the service time can be (1) just the execution time of a function (if
a function undergoes a warm start), or (2) the sum of execution
time and cold start time (if a function undergoes a cold start), or
(3) the sum of the execution time, cold start time and wait time (if
currently the servers are occupied with executing functions). There
is a requirement for a technique that reduces both keep-alive cost
and service time.

Limitations of Existing Approaches. The current approaches
have two major limitations:

I. Fixed keep-alive cost throughout the keep-alive period. A
function’s probability of arrival (invocation) is not constant over
time during its keep-alive period. But, the current approaches pay
a constant amount of dollars per second during the time a function
is kept alive after a warm-up. Unfortunately, this current approach
leads to high keep-alive costs for serverless functions. If the prob-
ability of arrival is not constant during the warm-up period, an
effective scheme should adjust itself dynamically to match the in-
curred keep-alive cost with the function arrival probability.

II. Lack of robustness to frequently changing patterns and

concurrency degree: Existing approaches use histogram-based
or ARIMA time-series-based mechanisms for predicting the next
arrival (invocation) of a function [57]. While useful and effective
for many functions, existing schemes are not robust to frequently
changing patterns and hence, often mispredict function invocations,
especially for hard-to-predict and infrequently functions [57, 65].
Furthermore, existing schemes optimistically assume that the con-
currency degree of future invocations of a function is identical to
its last invocation ś concurrency degree refers to the number of
simultaneous invocations of the same function. Our characteriza-
tion, using a production-level workload trace, demonstrates that the
inability to handle this leads to mispredictions, increased keep-alive
cost, and higher service time.

IceBreaker: Key Insight and Approach. The key insight behind
IceBreaker is the observation that a function’s probability of arrival
(invocation) is not constant over time during its keep-alive period,

and hence, the cost of keeping it alive should not remain constant.
Unfortunately, current approaches pay a constant amount of dollar
per second during the whole time a function is kept alive after a
warm-up. Unfortunately, this current approach leads to high keep-
alive costs for serverless functions. IceBreaker introduces the idea
of server-heterogeneity for keeping-alive functions based on their
anticipated arrival probability. Specifically, IceBreaker warms up
a function on a low-end server when the probability of arrival is
relatively low and prioritizes warming functions with higher arrival
probability on high-end servers.

On the positive side, keeping a functionwarm on low-end servers
incurs relatively less cost to the service provider because the low-
end servers are cheaper compared to high-end servers. Hence, func-
tions with less arrival probability can be kept warm at a lower per
unit time cost. When their arrival probability increases or others
functions with higher arrival probability are available, they can be
warmed on the high-end servers, and hence, high-end servers are
utilized more cost-effectively (Fig. 1).

On the flip-side, low-end servers are slower and hence, when
functions with low arrival probability receive an invocation on the
low-end servers, the execution time will be relatively longer. This
can be particularly undesirable for the end-users. However, since
the low-end servers are relatively cheaper, the service provider
can potentially afford more aggregated memory capacity to keep
functions warm. This enables service providers to lower the waiting
time for functions, and hence, decrease the overall service time
despite of a potential increase in the execution time ś thus, helping
users.

Furthermore, our characterization of real-world serverless func-
tions provides experimental evidence that for many functions, a
warm start on a low-end server can be still faster than cold start
execution on a high-end server. This is because cold-start is compa-
rable to execution time for many functions, and hence, the ability
to provide a warm start (zero cold start time) on low-end servers
reduces the overall service time despite of an increase in the exe-
cution time. Overall, IceBreaker experimentally demonstrates the
benefit of using a mixture of low-end and high-end servers for
both the service providers and end-users, which is a new resource
provisioning strategy for serverless platforms that has not been
explored by prior works.

Overall, IceBreaker makes the following key contributions:

• IceBreaker is a novel function pre-warming and keep-alive
scheme for serverless functions that exploit server-heterogeneity
to lower the keep-alive cost and reduce the service time. Ice-
Breaker is the first work to propose using a heterogeneous mix of
servers (high-end and low-end). IceBreaker appropriately decides
where to warm up serverless functions to gain most benefit while
reducing the keep-alive cost.

• The key to the beneficial realization of IceBreaker’s heterogeneity
idea requires an effective function-invocation prediction mech-
anism. Unfortunately, our results show that current state-of-
the-art function-invocation prediction mechanisms (e.g., ARIMA
time-series and histogram-based prediction) are not robust to
frequent changes in the function invocation patterns, and do not

754

IceBreaker: Warming Serverless Functions Better with Heterogeneity ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

0 5 10 15 20
Keep-alive Time Since

Last Invocation (minutes)
(a)

14
35

65

%
 o

f W
ar

m
 S

ta
rts

14%
35%

65%

14 35 65
% of Warm Starts

(b)

0

25

50

75

To
ta

l K
ee

p-
al

iv
e

Co
st

52.4

High-end Server
(Average Service Time = 4.12s)

14 35 65
% of Warm Starts

(c)

0

25

50

75

To
ta

l K
ee

p-
al

iv
e

Co
st

High End
Low End44.1

52.4

Mix of High and Low-end Servers
(Average Service Time = 3.66s)

14 35 65 84
% of Warm Starts

(d)

0

25

50

75

To
ta

l K
ee

p-
al

iv
e

Co
st 70.6

Low-end Server
(Average Service Time = 3.66s)

Figure 2: A heterogeneous mix of low and high-end servers can reduce both service time (due to more warm starts) and keep-

alive cost than only high-end server. On only low-end server, the keep-alive cost increases for maintaining the same service

time as that of the heterogeneous mix of servers (keep-alive cost expressed as a % of maximum on high-end server).

handle the invocation concurrency degree well. IceBreaker’s de-
signs and implement a novel Fast Fourier Transformation based
prediction mechanism that removes these limitations from exist-
ing works ś and is experimentally shown to outperform existing
strategies even on homogeneous clusters by up to 27% for the
most recent production-level serverless function trace.

• IceBreaker designs and implements a łutility-drivenž warm-up
and keep-alive strategy targeted for a heterogeneous mix of
servers. IceBreaker assigns a łutility scorež to each function based
on several important factors that capture arrival probability, pre-
diction of next arrival and expected concurrency degree, func-
tion’s relative benefit in execution time across different server
types, and keep-alive cost. IceBreaker combines its prediction
mechanism and utility estimation to determine the appropriate
location for warming a function and the duration of its keep-alive
period.

• Our evaluation demonstrates that IceBreaker reduces the keep-
alive cost by 60% and improves the service time by 40%, out-
performing all competing state-of-the-art approaches [19, 57].
IceBreaker outperforms the next-best technique by 45% and 27%
points in terms of keep-alive cost and service time. Our evalu-
ation also demonstrates that IceBreaker is also more effective
than existing schemes in predicting the invocations of infrequent
and hard-to-predict functions by 10% ś a notable challenge in
serverless computing domain [57, 65].

IceBreaker’s open-source artifact is available at:
https://zenodo.org/record/5748667

2 ICEBREAKER: BACKGROUND AND
MOTIVATION

In this section, first, we provide concrete quantitative examples
to motivate the benefits of introducing heterogeneity in a server-
less execution environment. Then, we discuss the challenges in
achieving the full potential of heterogeneity ś IceBreaker provides
solutions for those challenges.

High-end and low-end servers for serverless functions have
competing design trade-offs. High-end servers are computationally
more powerful and hence, provide faster execution time ś thereby,
have higher potential to provide a lower service time. However,
high-end servers are relativelymore expensive. Consequently, using

Table 1: A cold start on high-end can have higher service

time than awarm start on low-end server (true for functions

𝐹𝐴 & 𝐹𝐶 , and, in general, true for more than 60% of the func-

tions in ServerlessBench [71], all units are in seconds, CST=

cold start time, ET = execution time, ST w/ CS = service time

with cold start, ST w/ WS = service time with warm start,

the metric checks if a warm start on low-end server is better

than a cold start on high-end server).

Function Server CST ET ST w/ CS ST w/ WS Metric

𝐹𝐴 Low-end 2.63 3.13 5.77 3.13 ✓

High-end 2.09 2.75 4.85 2.75
𝐹𝐵 Low-end 1.20 3.01 4.21 3.01 ×

High-end 0.66 0.77 1.43 0.77
𝐹𝐶 Low-end 1.11 2.09 3.2 2.09 ✓

High-end 0.81 1.62 2.43 1.62

only high-end servers limits the number of servers the service
provider can employ under a fixed capital budget. Introducing
some low-end servers at the expense of high-end servers allows
the service provider to buy additional nodes and higher aggregate
memory capacity. This additional memory capacity enables the
service provider to provide warm start to more functions. Also,
higher node count can potentially reduce the wait time under the
same budget constraint ś thereby, potentially reduce the service
time. Unfortunately, due to lower computational power of low-
end severs, functions might be executed at lower speed and hence,
undesirably result in longer execution times.

Next, we provide experimental evidence based on the production
workload trace and representative benchmarks to demonstrate that
a mixture of low-end and high-end servers has the potential to
provide both lower service time and keep-alive cost, than what a
homogeneous setting alone can offer.

Observation 1. Both low-end and high-end server types

have the potential to lower service time, but it depends on

the function type.

Table 1 shows the cold start time, execution time, and service
time with warm start (execution time only) and without warm start
(execution time plus cold start time) for three representative appli-
cations from the ServerlessBench suite [71] on different types of

755

 https://zenodo.org/record/5748667

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari

servers (refer to the Sec. 4 for methodological details). Experimen-
tally, we observed the cold start overhead to be similar for different
server types. These selected functions demonstrate the potential
benefit of using heterogeneity.

As expected, all functions experience a slow-down when exe-
cuted on the low-end server. But, interestingly, the overall service
time on the low-end server can be lower for some functions if they
experience a warm start, compared to a cold start on a high-end
server (e.g., 𝐹𝐴 & 𝐹𝐶 ,). This is likely to be true for functions where
the cold start overhead is a significant fraction of the execution time
ś as is the case for many real-world serverless function [57, 71].
The reduction in execution time on the high-end server is not suffi-
cient to outweigh the downside of cold start. Employing low-end
servers can increase the number of nodes and hence, the likelihood
of warm starts on low-end servers. Despite slower execution time,
the overall service time can be smaller for some functions. However,
as expected, this is not always true; some functions (𝐹𝐵) may not
experience any benefit despite a warm start on low-end servers.

We point out that this characterization is only focused on service
time (primarily a user-centric metric) and does not discuss the
impact on keep-alive cost ś the expense incurred by the service
provider to provide benefit to functions that have the potential to
benefit from low-end servers. This leads us to our next discussion
point. Via a simple experiment, we demonstrate that a mixture of
low-end and high-end servers is beneficial for both end-users and
service providers since it has the potential to reduce both service
time and keep-alive cost.

Observation 2. A mixture of high-end and low-end servers

have the potential to reduce both the service time and

keep-alive cost.

To demonstrate this take-away, we pick a function’s inter-arrival
time from Microsoft Azure production-level serverless function
workload trace [57] and estimate its keep-alive cost under various
constant keep-alive periods after its execution.

Fig. 2(a) shows the fraction of warm starts as a function of the
keep-alive period after the end of execution. For example, if a func-
tion is always kept alive (or warm) for 10 minutes after its execu-
tions, 35% of its invocation will receive warm starts. As expected,
keeping the function alive for a longer period increases the fraction
of warm starts (e.g., 15-minute window receives 65% warm start).
But, note that the keep-alive cost and execution time change de-
pending on the server type. Low-end servers type naturally incur
lower $/GB-unit-time expense to service providers, and high-end
servers provide faster execution time.

Fig. 2(b) show the keep-alive cost and service time for this func-
tion alone if only the high-end server was used. In this figure, the
keep-alive period is chosen to be 10 minutes ś resulting in 35%
warm start as expected from Fig. 2 (a). Hence, the average service
time calculation adds the overhead of cold start for 65% invocations
to the execution time. Since the Microsoft Azure function trace does
not provide the function binary ś we used application StatelessCost
from ServerlessBench [71] to obtain the execution time and cold
start overheads (other methodological details about server type and

Low-End

High-EndJob Queue SchedulerIceBreaker Dispatcher

Function Invocation
Predictor

Placement
Decision Maker

S
e

rv
e

rs

Figure 3: Overview of the design of IceBreaker

keep-alive cost rate covered in Sec. 4). The keep-alive cost is rep-
resented in a normalized form as a fraction of the total keep-alive
which is the same across all server-type settings.

In Fig. 2(c), we slightly modify the keep-alive cost to demonstrate
the potential of using heterogeneity. We keep the function alive for
five minutes in the high-end server (14% warm starts as per Fig. 2(a))
and then, move it to a low-end server and keep-alive for 10 minutes
(total 65% warm starts). This hand-constructed policy shows that
using both types of servers reduces keep-alive cost and execution
time. This is because using low-end servers reduces the cost of
keeping alive a function per unit time, and hence, the function can
be kept alive longer to increase warm starts (lower service time)
such that the overall keep-alive cost is also lower. In fact, keeping
alive first in the low-end server and then, shifting to a high-end
server achieves a similar effect. Motivated by the reduction in both
metrics, one may be tempted to employ only low-end servers.

Fig. 2(d) shows that this is not an effective strategy ś to achieve
the same service time as Fig. 2(c), one will need to keep the function
alive for much longer (23 minutes after the execution) such that
warm starts are sufficiently increased to a point (84%) to offset the
slow-down in execution time. But, unfortunately, the keep-alive cost
of keeping this function alive for too long results in 20% additional
keep-alive cost compared to the heterogeneous case (Fig. 2(c)).

In summary, our motivational example demonstrates that a hetero-

geneous solution has the potential to offer improvements in both key

metrics, but achieving this in an autonomic fashion for a large mix

of functions is challenging ś IceBreaker overcomes these challenges.
We also point out in this motivating example, our heterogeneous
setting has a higher capital budget because it employs both the
servers, although it does not use them all the time. It is important
to show that a heterogeneous solution can be effective when the
capital budget for the infrastructure is fixed and the gains are not
coming simply because of an increased capital budget. Therefore, as
we discuss next, IceBreaker is designed to provide effective improve-

ments in both service time and keep-alive cost under fixed overall

infrastructure capital budget (our evaluation in Sec. 5 also confirms

this).

3 ICEBREAKER: KEY IDEAS AND DESIGN

We begin by providing an overview of IceBreaker (Fig. 3).

(1) Function Invocation Prediction Scheme (FIP). The FIP
helps IceBreaker to predict if a function will be invoked within
a particular time interval. In addition, it also predicts the invocation
concurrency so that the appropriate number of function instances

756

IceBreaker: Warming Serverless Functions Better with Heterogeneity ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

0
5

10

In
vo

ca
tio

n
Co

nc
ur

re
nc

y F1

0 20 40
Time (minutes)

0
5

10 F2

(a)

0
5

10
15

Co
n-

cu
rre

nc
y

ARIMA Actual

0 250 500 750
Time (minutes)

−5
0
5

AR
IM

A
Er

ro
r

(b)

Figure 4: (a) Existing techniques using ARIMA are slow to

converge as periodicity changes. (b) The invocation concur-

rency and inter-arrival time of a function can vary with

time.

can be warmed up. IceBreaker designs a serverless-computing-
specific time series prediction model to make accurate predictions
about function invocations.

(2) Placement Decision Maker (PDM). If a function is predicted
to be invoked by the FIP, the PDM decides where to warm up a
function: the high-end server, or the low-end server, or no warm
up at all. It makes this decision based upon a utility score, which
is calculated by taking into consideration several factors like the
accuracy of the FIP and the speedup gained from warming up on a
high-end server.

Next, we delve into these two components in detail.

3.1 IceBreaker: The Function Invocation
Predictor

First, we discuss why existing FIP approaches are insufficient.

What is missing from the state-of-the-art function invoca-

tion prediction schemes? Almost 98% of the serverless functions
(from Microsoft Azure serverless trace) show some kind of periodic
behavior in their invocation pattern (number of functions invoked
per time interval), as shown in Fig. 4(a). The inter-arrival time
between two successive function invocations can keep varying,
making probability-histogram-based inter-arrival time prediction
schemes (e.g., [21, 43, 49, 57]) unsuitable for serverless. In addition,
all existing invocation prediction schemes only predict the inter-
arrival time of a function, they do not predict the concurrency with
which a function will be invoked [12, 19, 56]. If a function is pre-
dicted to be invoked in a time interval, these schemes simply warm
up the number of instances of the function which were invoked in
the previous time interval. However, as we see from Fig. 4(a), for
functions 𝐹1 and 𝐹2, this approach is not suitable. This is because
(1) functions can have multiple invocation concurrency levels, and (2)

the concurrency might change between two successive invocations.

For example, the function shown in Fig. 4(b) changes its invoca-
tion concurrency over time. Previous state-of-the-art techniques
like łServerless in the Wildž [57] use auto-regressive integrated
moving average (ARIMA) as a FIP. Fig. 4(b) shows that as period-
icity changes, the predictions by ARIMA can be greater or lower
by a considerable amount compared to the observed invocation
concurrency, as reflected in the prediction error of ARIMA. Note
that in this example, we enhance ARIMA from [57] to predict the

0 1000 2000
Time (minutes)

(a)

0
5

10
15
20

In
vo

ca
tio

n
Co

nc
ur

re
nc

y

1 2 3 4 5 6 7 8 9 10
Number of Harmonics

(b)

0
25
50
75

100

Pe
rc

en
ta

ge
 o

f
Fu

nc
tio

ns

Figure 5: Invocation concurrency of most serverless func-

tions have multiple frequency components or harmonics.

number of invocations and tune its parameters (time lags, degree of
difference, and order of moving average) for best results. Even still,
because ARIMA uses prediction error and values of previous time
intervals to predict an invocation concurrency of the future, it takes
a long time to converge. As these kinds of invocation periodicity
changes are commonwith serverless functions [28, 56, 66, 70], there
is a need for a better prediction technique.

In IceBreaker, we design a function invocation prediction (FIP)
scheme that predicts the concurrency of a function at every time
interval, taking advantage of the periodic nature of serverless func-
tion invocations.

How does IceBreaker’s function invocation prediction (FIP)

work? At each time interval, IceBreaker predicts the concurrency
with which a function will be invoked in that interval. It is also
capable of predicting the inter-arrival time as it is simply the time
between two non-zero concurrency predictions.

We observed in Fig. 4(a) that function invocation concurrency
can be periodic, with periodicity varying over time. Fig. 5(a) shows
that within one major period, the invocation concurrency can have
multiple other periodic components (multiple frequencies or har-
monics). This invocation concurrency pattern can be considered as
a time domain series and hence, it can be described by its ampli-

tude (the number of invocations at any time interval) and period

(frequency with which the amplitude is repeated). The invocation
concurrency of the function shown in Fig. 5(a), has three harmonics.
The period of the major harmonic (the sinusoidal function with the
maximum amplitude) is shown using dashed vertical lines. Fig. 5(b)
we see that most of the serverless functions show some kind of
periodicity in their invocation concurrency, and frequently they
have more than one harmonic (25% of the functions have at least
one harmonic, 98% of the functions have less than 10 harmonics).
However, to predict the invocation concurrency of the next (fu-
ture) time interval, we need to model and formalize the invocation
pattern. For this purpose, we can take advantage of the Fourier
theorem [7]:
Any time series, with multiple frequencies or harmonics, can be bro-

ken down into sinusoidal components with different amplitudes and

frequencies using the Fourier Transformation.

IceBreaker uses the Fourier Transform to compute the harmonics
and the amplitudes in the time domain (invocation concurrency).
The time-dependency of invocation concurrency can be represented
as a sum of sinusoidal components.

What if the invocation concurrency is non-periodic?When a
time series in non-periodic, the Fourier Transform is also effective

757

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari

in breaking it down into multiple sinusoidal components. These
components have low values of frequencies (large time period) as
the time series is non-periodic. In addition, IceBreaker also needs to
capture the overall trend of the invocation currency through polyno-
mial regression. This is helpful for both periodic and non-periodic
time series. For example, in Fig. 5(a) the invocation concurrency has
an overall increasing slope along with a periodic trend. IceBreaker
computes the coefficients (𝑎, 𝑏, 𝑐) of a second order polynomial func-
tion to capture this overall trend of the invocation concurrency 𝑓 (𝑡).
The polynomial regression fit of 𝑓 (𝑡) is given by 𝑎 × 𝑡2 + 𝑏 × 𝑡 + 𝑐 .

We validate the effectiveness of IceBreaker’s polynomial model
by performing the Pearson 𝜒2 Goodness-of-Fit Test, which is a
widely-used statistical test for polynomial model fit validation [25].
We observed that this polynomial model fits the function invocation
trend with 99.2% confidence on average. Thus, we conclude this
model is representative of the observed overall trend in invocation
concurrency.

Note that 𝑓 (𝑡) eventually needs to be de-trended by subtracting
the polynomial regression fit from it in order to only capture the
periodic variations of 𝑓 (𝑡) using Fourier Transform. Hence, using a
Fast Fourier Transform (FFT) of the de-trended version, IceBreaker
computes the harmonics and their amplitudes as following:

𝐹𝐹𝑇 (𝑓 (𝑡) − 𝑎 × 𝑡2 + 𝑏 × 𝑡 + 𝑐) =

𝑛
∑

𝑖=1

𝑐𝑜𝑠 (2𝜋 𝑓𝑖𝑡 + 𝜃𝑖)

Here, 𝑓𝑖 is the frequency of the 𝑖𝑡ℎ harmonic of 𝑓 (𝑡), and 𝜃𝑖 is
the phase. Now that we have the mathematical equations of overall
trend and the periodic components of the invocation concurrency,
IceBreaker uses this to predict the concurrency of a function invo-
cation at a future time interval 𝑡𝑘 + 1, given that the concurrency
up to time interval 𝑡𝑘 is known. The following equation gives the
value of the concurrency.

𝑓 (𝑡𝑘 + 1) = 𝑎(𝑡𝑘 + 1)
2 + 𝑏 (𝑡𝑘 + 1) + 𝑐 +

𝑛
∑

𝑖=1

𝑐𝑜𝑠 (2𝜋 𝑓𝑖 (𝑡𝑘 + 1) + 𝜃𝑖)

IceBreaker considers the top ten major harmonics (𝑛 = 10) to
make this prediction as the major periodic pattern is well captured
by the major harmonics, and we observed a negligible difference in
prediction performance (<0.75%) beyond ten harmonics. IceBreaker
only considers the invocation concurrency in a local time window

to make the concurrency prediction of the next time interval. This
helps IceBreaker to maintain a low overhead of prediction (similar
to the pre-existing inter-arrival prediction techniques) throughout
all time intervals. IceBreaker selects the local time window to be one
hour. However, the variation in IceBreaker’s results are negligible
(< 2%), when this time window is set to be anywhere below 10
hours. Next, we will discuss how IceBreaker uses this predicted
concurrency to decide where to warm up a function.

3.2 IceBreaker: The Placement Decision Maker

IceBreaker’s FIP predicts if a function will be invoked in a given
time interval. This helps reduce the service time by avoiding cold
starts. But to reduce cold starts, a function needs to be warmed up
without a large increase in the keep-alive cost. Recall from Sec. 2,
that maintaining a heterogeneous mix of low and high-end servers
can be beneficial for both the service provider and the users as it
reduces the overall keep-alive cost and service time. For the same
allocation cost, low-end servers have more memory to warm up

more functions than high-end servers because a larger number of
low-end servers can be allocated than the number of high-end ones.
Warming up more number of functions can potentially reduce cold
starts. However, only having low-end servers is harmful for the
average service time, while only having high-end servers increases
the keep-alive cost. IceBreaker’s placement decision maker (PDM)
decides where to warm up a function in a heterogeneous system:
high-end server, low-end server, no warm-up.

How does IceBreaker’s Placement Decision Maker (PDM)

make this decision? Because a warm up on a high-end server
is costlier than a warm up on a low-end server, PDM gives the most
promising functions a higher priority for a high-end server warm
up.

Not all functions predicted to be invoked by IceBreaker’s FIP are
actually invoked. Even if they are invoked, the concurrencymay not
match. If the predicted concurrency of an invocation is more than
the actual concurrency, then warming up will increase the keep-
alive cost. If the predicted concurrency is less than the actual one,
then even after warming up, some of the functions may undergo
cold start. Also, there might be cases when warming up only one
function can take up a considerable amount of memory which
could have been utilized for warming up multiple other functions
with lesser memory requirements. By taking these factors into
consideration, IceBreaker calculates a utility score per function per
time interval. Based on this score the placement decision is made.
Next, we will discuss the individual components used by IceBreaker
to compute this utility score.

True negative prediction rate. If IceBreaker warms up less num-
ber of function instances than the number of functions invoked,
then the predicted concurrency by the FIP is less than the actual
invocation concurrency. The FIP would have a high true negative
rate in this case. Functions observing high true negative rates are
prone to observe increased service time due to more cold starts.
Hence, IceBreaker increases the utility score of these functions by
a factor equal to the true negative rate (𝑇𝑛), which is given by the
ratio of the number of observed cold starts to the total number of
invocation of a function within the local time window (i.e., past
one hour).

False positive prediction rate. This is the opposite case when
IceBreaker warms up more number of instances of a function than
the number of actual invocations. These functions increase the
keep-alive cost, resulting from high false positive prediction rate.
The false positive rate (𝐹𝑝) is calculated as a ratio of the number of
function instances warmed up but not invoked to the total number
of invocations of a function within the local time window. Ice-
Breaker assigns a lower utility score for functions with high false
positive rates, and vice-versa.

Note, a function with a high false positive rate at a certain time
interval may observe a high true negative rate at some other in-
terval, and vice-versa. These rates are direct measurements of the
performance of IceBreaker’s FIP.

Inter-server speedup. Execution on high-end server affects func-
tions differently. Some might experience a higher speedup than
others. IceBreaker favors functions with higher speedups for a

758

IceBreaker: Warming Serverless Functions Better with Heterogeneity ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

warm up on high-end servers. The inter-server speedup (𝐼𝑠) is cal-
culated as ratio of the sum of execution time and cold start time on
a high-end server to their sum on a low-end server (wait time does
not affect it).

Memory Footprint. It is costly towarm up functions that consume
a large memory. This is because the same amount of memory could
have been otherwise used to warm up multiple other functions
with lower memory requirements. The memory footprint (𝑀𝑟) is
the memory used to warm up a function as a fraction of maximum
allowed by the serverless provider (e.g., 10 GB on AWS Lambda).
Functions that consume large memory are given less priority in
obtaining a high utility score. However, functions that have a large
memory requirement and also experience a high speedup on high-
end servers can still achieve a high utility score due to their inter-
server speedup. IceBreaker designs safeguards (discussed in Sec. 3.3)
to give a fair chance of warm ups to functions that have a large
memory footprint but low speedup.

Using the above four components (true negative rate (𝑇𝑛), false
positive rate (𝐹𝑝), inter-server speedup (𝐼𝑠), and memory footprint
(𝑀𝑟)), the utility score (𝑆𝑢) is calculated at every time interval for
every function as follows:

𝑆𝑢 =

𝑇𝑛 + (1 − 𝐹𝑝) + (1 − 𝐼𝑠) + (1 −𝑀𝑟)

4
(1)

The components of 𝑆𝑢 undergomin-max normalization to ensure
that all of them range between 0 and 1.

How are functions warmed up based on their utility score?

As shown in Algorithm 1, if 𝑆𝑢 is greater than the high-end cut-off
(𝐻𝐸) for a function at a time interval, then it is warmed up on a
high-end server. If 𝑆𝑢 lies between high-end cut-off and low-end

cut-off (𝐿𝐸), then the function is warmed-up on a low-end server.
Else, the function is not warmed up. IceBreaker sets the base values
of high-end and low-end cut-offs to be 2/3 and 1/3, respectively.
However, these are not hard cut-offs and they change dynamically.
If IceBreaker observes that the memory on the high-end servers is
vacant, but the low-end servers are getting filled with warm ups,
it reduces the high-end cut-off, and vice versa. The cut-offs are
changed in proportion to the fraction of vacant memory on the
servers.

But, what if the utility scores of the functions are higher than the
respective cut-offs, but there remains no memory left to warm them
up? Based on the utility score, if such functions are supposed to be
warmed up on a high-end server (or a low-end server), IceBreaker
searches for vacant memory in a low-end server (or high-end server)
to warm them up. Priority is given to the functions with higher
utility scores.

How does PDM benefit serverless users? The PDM identifies
the most promising functions in terms of their utility score. It
identifies functions of which it can improve the service time using
warm starts and high-end servers, while reducing the overall keep-
alive cost. This directly relates back to the motivation for IceBreaker
of having a heterogeneous mix of low and high-end servers, which
benefits both serverless users (due to reduction in service time) and
service providers (due to reduction in keep-alive cost).

Algorithm 1 IceBreaker’s Placement Decision Maker

1: Initialize the high and low-end servers, 𝑓 (𝑡) ← Prediction
concurrency, 𝑆𝑢 ← Utility score

2: for Every time interval 𝑡 do
3: for Every time function do

4: 𝐼𝑠 ← Inter-server speedup,𝑀𝑟 ←Memory
5: 𝑓 (𝑡) ← 𝑎𝑡2 + 𝑏𝑡 + 𝑐 +

∑𝑛
𝑖=1 𝑐𝑜𝑠 (2𝜋 𝑓𝑖𝑡 + 𝜃𝑖)

6: if 𝑓 (𝑡) > 0 then

7: Update 𝐹𝑝 , 𝑇𝑛 , 𝐻𝐸 , 𝐿𝐸
8: 𝑆𝑢 ←

[

𝑇𝑛 + (1 − 𝐹𝑝) + (1 − 𝐼𝑠) + (1 −𝑀𝑟)
]

/4

9: if 𝑆𝑢 > 𝐻𝐸 then Warm up on high-end server
10: else if 𝑆𝑢 < 𝐿𝐸 then Do not warm up
11: elseWarm up on low-end server

12: if A function is invoked and server is available then
13: Execute it with warm or cold start

3.3 IceBreaker: Miscellaneous Design
Considerations

Here we describe the reason for several design considerations of
IceBreaker and how it handles corner cases.

IceBreaker provides safeguards to avoid ping-ponging of

functions among the servers for warmup. If the utility score of
a function changes in a manner that its warm up keeps alternating
between low- and high-end servers, then this is called ping-ponging.
This puts unnecessary stress on the memory sub-system, which is
shared among all functions executing on a server. To mitigate this,
IceBreaker ensures that the warm up location does not change in
the next time interval if the utility score of a function in the local
time window has not changed by more than 10%. At the end of the
local time window, IceBreaker again decides on the server type for
the function based on its utility score.

Functions with large memory requirements and low inter-

server speedup rate are given chance to have warm starts by

IceBreaker Recall from Sec. 3.2 that these kinds of functions may
have a lower probability of receiving a high utility score. Tomitigate
this, IceBreaker ensures that functions which have high memory
requirements and only underwent a warm up on a low-end server
in the last local time window (if at all), then for the next local
window they are always warmed up on a high-end server, even if
they should be warmed up on a low-end server as per their utility
score.

IceBreaker is scalable by design. IceBreaker avoids having any
centralized controller in its design. The FIP and PDM are run per
function in a parallel manner. The overhead to perform these steps
does not scale up with the number of running functions or the
number of low and high-end servers.

What is the life-cycle of a function invocation? If no warmed
up instance of the invoked function is found in any of the servers,
the function undergoes a cold start, else it has a warm start. If all the
servers are fully occupied, the invoked function waits until a spot
is available, resulting in some wait time. The combined effect of
IceBreaker’s FIP and PDM is to reduce the wait time as IceBreaker

759

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari

aims to maximize the number of functions that undergo warm starts
and minimize memory wastage of warming up false positives.

3.4 IceBreaker: Implementation

IceBreaker uses Apache OpenWhisk [40], a widely used open-
source serverless deployment for creating a serverless platform
on reserved servers. IceBreaker uses two types of servers (low-
and high-end) with a master node to control function placement.
IceBreaker is implemented using a two level design stack: (1) Inter-
server dispatcher, (2) OpenWhisk controller.

Inter-server dispatcher level. As shown in Fig. 3, this is the level
where the logic of IceBreaker is implemented, and it takes place
in the master node. This node has the information of all function
characteristics and their corresponding FIP performance. From
these, it calculates the utility score and decides where to warm up
a function. When a function is invoked, the request arrives at the
master node, which then dispatches it to execute on low- or high-
end servers. The logic for this level is written in Python3.6, and
includes numpy and boto3 as the only external dependencies. It can
be readily installed in the master node of a serverless deployment
platform to control function execution and warm ups.

OpenWhisk controller level. If the inter-server dispatcher de-
cides to execute or warm up a function on a high-end server, then
the OpenWhisk controller decides where among all the high-end
servers should the function be scheduled, and same for the low-end
servers. This decision is made based on the capacity and utilization
of the servers. IceBreaker’s design has two OpenWhisk controllers,
one for all the high-end servers, another for all the low-end servers.
Using OpenWhisk, functions are executed on Docker containers.
By default, OpenWhisk keeps these containers warm for 10 minutes
after an invocation. However, we modified this to keep functions
warm for any period of time as decided by the inter-server dis-
patcher.

4 EXPERIMENTAL METHODOLOGY

Experimental Platform. A real-system implementation of Ice-
Breaker requires control over function placement, warm up timing,
and function-specific keep-alive period. These controls are not ex-
posed to users on commercial platforms (e.g., AWS Lambda, Google
Functions and Azure Functions). Therefore, we implemented and
evaluated IceBreaker on an OpenWhisk-based setup. OpenWhisk
is one of the most widely used serverless workload manager and is
adopted by several production serverless providers including IBM
Cloud [10].

IceBreaker spawns serverless functions via Docker containers
on a heterogeneous mix of servers. This heterogeneous mix is com-
posed of two types of servers: high-end (more expensive and higher
performing) and low-end (cheaper and low performing). High-end
servers correspond to AWS general purpose m5n instances (usage
cost: $0.01475/GB/hour) and low-end servers correspond to AWS
general purpose t4g instances (usage cost:$0.0084/GB/hour). How-
ever, IceBreaker’s results are not dependent on the type of instances,
and we evaluate it to show similar benefits on other general pur-
pose instances (a1, t3a, and t2) with different cost ratios. We ensure

that we do not report results during the burst period of the VMs,
by evaluating only after the burst period is exhausted.

For simplicity, in our default evaluation set-up, we divide the
total capital budget equally between high-end and low-end servers
ś this corresponds to ten high-end and eighteen low-end servers.
For completeness, in our evaluation, we demonstrate that (1) Ice-
Breaker is effective in the full range of high-end and low-end server
configurations (i.e., their relative numbers in the cluster), and (2)
IceBreaker benefits are portable to other ratios of their relative cost.
Our evaluation includes 11 different configurations, consisting of
different numbers of high and low-end servers, including the two
extreme cases where all servers are of one type (homogeneous case)
ś one configuration with 20 high-end servers and another with 35
low-end servers. Experimentally, we observed that the amount of
memory consumed and slowdown due to cold start remains similar
for high-end and low-end servers. However, IceBreaker benefits
are not dependent on them.

Workloads. IceBreaker evaluation is driven by representative
serverless applications and workload traces. In particular, we use
applications from the ServerlessBench benchmark suite [71]. Server-
lessBench consists of benchmarks covering a wide range of real-
world serverless applications including image processing, data ana-
lytics, online compiling, and linear algebra operations. These bench-
marks also cover a wide-variety of serverless-specific character-
istics, including the cold-start overhead. To represent production-
like workload arrival pattern and characteristics, we use Microsoft
Azure Function trace [57]. It consists of serverless invocation data
of two weeks on Microsoft production systems. The trace provides
the inter-arrival time of functions, the memory allocated for the
function and its execution time. IceBreaker follows the same inter-
arrival pattern of functions as the Azure trace. From the memory
allocated and execution time information of all the functions in
the trace, we find the nearest match of a corresponding benchmark
from our benchmark pool to represent the corresponding function
behavior.

Competing Strategies.We compare IceBreaker with the follow-
ing state-of-the-art serverless function warm up strategies: (a)
Serverless in the wild (Wild) [57] (ATC’ 20): It employs a hy-
brid histogram-based approach for predicting the inter-arrival time
of different serverless functions, including the ARIMA model for
functions with heavy histogram tail; (b) FaasCache [19] (ASP-

LOS’ 21): FaasCache uses greedy caching approach to predict and
decide which functions to keep-alive; (c) OpenWhisk [40]: The
native policy in OpenWhisk is to keep-alive the function for 10
minutes after its invocation. But, it does not predict when the next
invocation will occur. Similar strategy is followed by other commer-
cial serverless providers like AWS, Google, and Azure functions. All
the performance metrics are reported as a percentage improvement

over OpenWhisk.

We note that the competing techniques were not developed
to employ heterogeneity to reduce the keep-alive cost ś this is
central to IceBreaker only. But, we modified the competing tech-
niques to make them heterogeneity-aware such that it improves
their effectiveness. We experimentally observed that the compet-
ing techniques achieve their best performance when functions are

760

IceBreaker: Warming Serverless Functions Better with Heterogeneity ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Ice
-

Br
ea

ke
r

Fa
as

-
Ca

ch
e

W
ild

(a)

0
25
50
75

100

Ke
ep

-a
liv

e
Co

st
(%

 Im
pr

ov
em

en
t

ov
er

 O
pe

nW
hi

sk
)

Or
ac

le

Ice
-

Br
ea

ke
r

Fa
as

-
Ca

ch
e

W
ild

(b)

0
25
50
75

100

Se
rv

ice
 T

im
e

(%
 Im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

)
Figure 6: IceBreaker improves overall keep-alive cost (a),

and service time (b), significantly more than the competing

techniques.

prioritized to execute or warm-up on high-end servers. Only when
the high-end servers do not have vacancy, it places the function on
the low-end servers. This strategy is better than placing functions
randomly.

Finally, we compare IceBreaker with the Oracle strategy. This
strategy has the Oracle knowledge of all future invocations of all
functions (i.e., 100% prediction accuracy). It warms up all functions
just-in-time before its invocations, and hence, incurs zero keep-
alive cost. This results in the minimum service time of a function
as all invocations always experience a warm start, if the system has
the required unoccupied memory to run the function. While it is
not feasible to implement this strategy online on a real system, but
this offline strategy is designed to estimate the upper bound on the
service time improvement.

Metrics. Two major metrics of interest are the total service time
and the keep-alive cost. Total service time is the sum of cold-start
time, execution time, and wait time. If the function is invoked while
it has a warmed up instance, it incurs zero cold-start time. The
execution time depends on the type of server (low or high-end).
If the system has enough capacity to execute new functions, the
wait time is zero. Keep-alive cost is the total monetary cost that the
service provider incurs in keeping the function alive (in memory).
Note that the keep-alive cost is dependent on whether the server
is low-end or high-end (e.g., keeping a function alive on high-end
servers incurs relatively more $/GB/hr expense).

5 EVALUATION AND ANALYSIS

In this section, we analyze IceBreaker and compare its performance
with the competing strategies.

Keep-alive cost. IceBreaker reduces the overall keep-alive cost in-

curred by the service provider by more than 60% over the baseline,

and outperforms existing state-of-the-art approaches by more than

45% points.

Fig. 6(a) shows the improvement in overall keep-alive cost for dif-
ferent competing schemes on the base heterogeneous configuration
compared to the baseline scheme (OpenWhisk’s static ten-minute
keep-alive policy after a function execution ends; no warm up).
First, we observe that prior schemes including Wild and FaasCache
provide some improvement over the baseline strategy. This is be-
cause, unlike OpenWhisk’s static policy, these schemes become
adaptive to the behavior of different applications and perform in-
telligent function warm ups. Second, we observe that IceBreaker

−25 0 25 50 75 100
Service Time

(% Improvement
over OpenWhisk)

0
25
50
75

100

%
 o

f F
un

ct
io

ns

Low-end server

−25 0 25 50 75 100
Service Time

(% Improvement
over OpenWhisk)

High-end server
Oracle
Wild
FaasCache
IceBreaker

Figure 7: IceBreaker improves the service time on both low-

end servers and high-end servers.

significantly outperforms both state-of-the-art schemes (Wild and
FaasCache) and provides 66% improvement over the baseline. There
are two key contributing factors. First, IceBreaker is able to reduce
the keep-alive cost because IceBreaker attempts to make the keep-
alive cost for each function invocation proportional to its utility
score (e.g., warming and keeping alive functions with lower utility
scores on the low-end servers). Second, IceBreaker’s function invo-
cation prediction scheme is more effective at predicting the next
invocation. Hence, IceBreaker reduces the number of warm ups
of functions which are not invoked, compared to the competing
strategies. This further reduces the keep-alive cost.

Service time. IceBreaker reduces the average service time of functions

by over 40% over the baseline and outperforms all existing state-of-

the-art approaches.

Fig. 6(b) show the average service time normalized to Open-
Whisk’s baseline policy. IceBreaker outperforms existing state-of-
the-art techniques and performs similar to the Oracle scheme. Recall
that the Oracle scheme is practically infeasible since it requires fu-
ture knowledge that is not available to IceBreaker. Despite that, the
gap between IceBreaker and Oracle is small (54% vs 40% improve-
ment over the baseline). The next best technique provides only 13%
improvement in service time. This improvement in service time
is because IceBreaker’s function invocation prediction scheme is
better at avoiding cold starts than the competing techniques. The
success of IceBreaker’s utility score based scheduling is dependent
on function properties (e.g., memory footprint and inter-server
speedup) being consistent across invocations. This holds true in
practice ś on an average, memory footprint of a function changes
by only 0.77% and inter-server speedup by only 1.1% across all
invocations.

Tail and median latency improvements. IceBreaker’s bene-
fits are not only limited to themean values of themetrics. IceBreaker
provides 68% and 42% improvement over baseline in median latency
(versus 20% and 18% improvement by the next best technique, Faas-
Cache) for keep-alive cost and service time, respectively. IceBreaker
also provides 53% and 36% improvement in tail latency (95𝑡ℎ per-

centile), versus 17% and 19% improvement by the next-best technique

(FaasCache) for keep-alive cost and service time, respectively.

Why does IceBreaker outperform existing strategies?

To understand the reason behind IceBreaker’s performance im-
provement over the competing techniques, let us look into the
distribution of service time in the heterogeneous mix of servers

761

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari

Or
ac

le
Ice

-
Br

ea
ke

r
Fa

as
-

Ca
ch

e
W

ild
−25

0
25
50
75

100

(%
 Im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

) Execution Time

Or
ac

le
Ice

-
Br

ea
ke

r
Fa

as
-

Ca
ch

e
W

ild

Cold Start Time

Or
ac

le
Ice

-
Br

ea
ke

r
Fa

as
-

Ca
ch

e
W

ild

Wait Time

Figure 8: IceBreaker primarily improves the cold start time

and wait time components of the service time.

(Fig. 7). We observe that IceBreaker consistently provides reduc-
tion in service time to almost all functions (>98%) compared to
the baseline and its service time improvement CDF curve is closer
to the Oracle scheme. In comparison, other competing techniques
(Wild and FaasCache) result in service time degradation for more
than 25% functions and magnitude of improvement even for the
most-benefiting functions are lower compared to IceBreaker.

To dig deeper, we analyze the service time distribution of func-
tions individually in the high and low-end servers of the heteroge-
neous mix. From Fig. 7, we observe that the improvement in service
time is higher for the high-end servers than the low-end servers
(through the maximum possible improvement is similar in both the
server types). This is because IceBreaker’s function placement is
guided by the utility score ś which aims to place the most promis-
ing functions on the high-end servers. Functions that have higher
chances of invocation and achieve most benefit from warm ups on
high-end servers are considered to be the most promising functions.
These functions contribute the most toward improving the average
service time, and help IceBreaker to reduce the overall keep-alive
cost. However, IceBreaker also consistently improves the service
time for most of the functions (> 98%) in both type of clusters.

Next, we analyze the reason for IceBreaker’s effectiveness to-
ward reducing the service time. Recall that the service time is made
up of three components ś execution time, cold start time, and wait
time. The execution time depends on the type of cluster where a
function is running, and since all the competing techniques and
IceBreaker uses both the high and low-end servers, there is only
minor difference in execution time among all the techniques (Fig. 8).
However, IceBreaker improves the net service time over the com-
peting techniques as it achieves a higher improvement in cold start
time and wait time. The improvement in cold start time is observed
because IceBreaker’s invocation prediction mechanism correctly
identifies the functions to be invoked. This helps to avoid cold starts
and hence, IceBreaker achieves a performance almost similar to
Oracle (only 6% difference). Wait time is improved because Ice-
Breaker’s function warm up is based on utility score that selects
functions that are more likely to be invoked.

To understand the reason behind the keep-alive cost reduction,
we look at two key metrics: (1) Successful warm-up cost: It is the
cost of warming up a function that does get invoked. (2)Wasteful

warm-up cost: It is the cost of the memory wasted when a function
is warmed up but not invoked.

From Fig. 9(a), we observe that IceBreaker reduces the cost of
successful warm-up by more than 10% on both low- and high-end
servers compared to the competing techniques. This is because

Ice
-

Br
ea

ke
r

Fa
as

Ca
ch

e
W

ild

−5
0
5

10

Su
cc

es
sf

ul
 W

ar
m

up
 C

os
t

(%
 Im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

)

Low-end
Server

Ice
-

Br
ea

ke
r

Fa
as

Ca
ch

e
W

ild

−25
0

25
50

High-end
Server

(a)

Ice
-

Br
ea

ke
r

Fa
as

Ca
ch

e
W

ild

−5
0
5

10

W
as

te
fu

l W
ar

m
up

 C
os

t
(%

 Im
pr

ov
em

en
t

ov
er

 O
pe

nW
hi

sk
)

Low-end
Server

Ice
-

Br
ea

ke
r

Fa
as

Ca
ch

e
W

ild

−25
0

25
50

High-end
Server

(b)

Figure 9: IceBreaker reduces the cost of successful (a), and

wasteful (b), warm-ups on both high- and low-end servers.

0 200 400 600
Time (minutes)

0

5

Co
nc

ur
re

nc
y

0 200 400 600
Time (minutes)

−5
0
5

Er
ro

r

ARIMA IceBreaker

Figure 10: IceBreaker’s prediction works better than

ARIMA.

IceBreaker’s function invocation prediction scheme is better than
the competing techniques (improves service time by more than
40% over the baseline v/s only 13% improvement with the next
best technique). From Fig. 9(b), we see that IceBreaker reduces
the cost of wasteful warm-up on both types of servers. This result
also supports that IceBreaker’s invocation prediction scheme is
better than competing techniques in detecting functions that are not
invoked. For high-end servers, the improvement in wasteful warm-
up cost is more than 65% over OpenWhisk. This large improvement
is because IceBreaker’s utility score ensures to place functions with
the highest probability of invocation on high-end servers.

This reduction in keep-alive cost helps IceBreaker reduce the
memory wastage due to wasteful warm up. On high-end servers,
IceBreaker reduces more than 20% memory wastage compared to
the next best technique (Wild). This free memory helps IceBreaker
to quickly allocate and execute other functions and reduce their
wait time. This memory can also be used by the cloud provider to
allocate more functions in the cluster.

In addition, recall that in IceBreaker’s design (Sec. 3) we observed
that existing techniques for invocation concurrency prediction us-
ing ARIMA (Wild [57]) has significant error when a function’s
invocation periodicity changes. Using the same example as Fig. 4,
we confirm that IceBreaker is more effective at prediction, achieving
lower prediction error, and faster convergence (Fig. 10).

Overhead. IceBreaker incurs minimal overhead. This increases its

suitability for practical deployment.

IceBreaker has two sources of overhead at the start of every time
interval (configured to be one minute in our setup): (1) prediction
of whether the function should be warmed up, and (2) where it
should be warmed up. The second decision may involve moving a
function between two different types of servers. In our experiments,
we measured that IceBreaker incurs an overhead of less than 30ms
for the first part. This overhead is on the critical path only if the

762

IceBreaker: Warming Serverless Functions Better with Heterogeneity ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

1x 3x 9x 27
x

81
x

24
3x

LSTM Overhead (Expressed as the Number of Times of IceBreaker's Overhead)

0

25

50

Se
rv

ice
 T

im
e

(%
 Im

pr
ov

em
en

t
Ov

er
 O

pe
nW

hi
sk

)

Service Time of
IceBreaker

1x 3x 9x 27
x

81
x

24
3x

0
25
50
75

100

Ke
ep

al
iv

e
Co

st
(%

 Im
pr

ov
em

en
t

Ov
er

 O
pe

nW
hi

sk
)

Keepalive Cost of IceBreaker

Figure 11: Complex learning-based prediction mechanism

provide marginal improvement, but incur prohibitive over-

head.

function is invoked in the first 30ms of the one-minute-long time
interval (1000 ms), otherwise its latency can be hidden. However,
to provide a more conservative estimate, all our results include this
overhead and treat this on the critical path even if the function is
invoked after 30ms during the same minute. Competing schemes
(Wild and FaasCache) have overhead in the same order (10-20ms),
but provide lower benefit.

The second overhead is similar to cold-start and occurs when the
function is invoked before IceBreaker’s prediction mechanism can
warm up a function. This overhead component is also accounted for
in our evaluation. Our evaluation trace consists of 1.2% of functions
that execute for less than 100milliseconds on high-end servers. Even
these extremely short-running functions observe more than 22%
reduction in average service time after accounting for all overheads
pessimistically ś confirming that IceBreaker’s overhead is practical
even for millisecond-range applications.

While it is possible to achieve higher reduction in overall keep-
alive cost and service time by using more complex deep learn-
ing techniques, they have very high overhead in the context of
serverless platforms. For example, Fig. 11 shows that replacing
IceBreaker’s relative simple prediction mechanism with a com-
plex long short term memory (LSTM) model yields higher benefits.
However, the overheads are higher (243×), but for only marginal
improvement over the benefits IceBreaker already provides.

Effectiveness on different cluster compositions and cost ra-

tios. IceBreaker is effective across different compositions of the cluster

and different cost ratios of high-end to low-end servers.

Earlier, we had demonstrated that IceBreaker provides service
time and keep-alive cost improvements for our base heterogeneous
configuration which uses the low-end and high-end servers such
that the aggregate cost of each type of servers is equal. To fur-
ther evaluate IceBreaker’s robustness, we performed a complete
sweep of configurations ś that is, we experiment with different
combination of servers from only high-end servers (leftmost bars
in Fig. 12) to only low-end servers (rightmost bars in Fig. 12) such
that the total expense of building the heterogeneous mix of servers
remains equal to the capital cost of high-end homogeneous servers.
All configurations in between the two homogeneous ends corre-
spond to a heterogeneous configuration. We have purposely kept
the capital cost of building the server configurations the same dur-
ing this sweep to demonstrate that IceBreaker’s observed benefit
in reducing the keep-alive cost is not a side-effect of changing the
total capital cost of the server itself.

Fig. 12 shows that IceBreaker is effective across all compositions
of low-end and high-end servers. In particular, this result shows
that IceBreaker consistently outperforms all existing schemes and
provides close-to-optimal service time improvements. The fact that
IceBreaker provides benefit over competing schemes even in the
two homogeneous ends reflects the fact that IceBreaker’s function
invocation prediction scheme is better at detecting function invoca-
tions. IceBreaker also outperforms all existing schemes and provides
close-to-optimal service time improvements in terms keep-alive
cost.

The only exception is observed on high-end homogeneous
servers. This is because the high-end homogeneous configuration
has lower number of servers and lower amount of memory to warm
up functions than other configurations. When the memory is lower,
it is harder to achieve more warm starts. IceBreaker’s invocation
prediction scheme works better than the competing techniques and
it achieves a higher improvement in service time (53% on homo-
geneous high-end v/s 32% on homogeneous low-end servers) on
the high-end servers. However, IceBreaker has to pay the price for
this large improvement in service time by increasing the keep-alive
cost by 25% on homogeneous high-end servers. Overall, we note
that availing IceBreaker’s benefits does not require determining
the optimal ratio of low-end to high-end servers. While targeting
optimal capacity planning of low and high-end servers, we learned
that keeping the heterogeneity ratio similar to the cost ratio is quite
effective; although not always optimal, it provides a good first-order
estimate for planning.

Similar to cluster composition, we perform sensitivity analysis w.r.t.

cost ratio of high-end to low-end servers. Recall that in our default set-
up, it was 1.8× (that is, the high-end server is 1.8× more expensive
than a low-end server). This ratio was not actively chosen by us, but
instead determined via various constraints (e.g., number of nodes in
the real-system cluster, budget for the experiment, available nodes
instances on AWS, etc.). Therefore, to test robustness, during our
sensitivity analysis, we varied this ratio from 1.3× to 2.4×.

Our results (Fig. 13) confirmed that IceBreaker continues to pro-
vide significant benefit at other ratios too. For a 1.28× ratio between
m5a and t4g instances, IceBreaker achieves 22% improvement in
keep-alive cost and 18% improvement in service time over the base-
line (the next best technique, FaasCache, provides 11% and 8% point
improvement in keep-alive cost and service time, respectively). Ice-
Breaker also outperforms competing techniques at lower ratios.
For a cost ratio of 1.23× between t3 (high-end) and t4g (low-end),
IceBreaker achieves 17% improvement in keep-alive cost and 14%
improvement in service time over the baseline (FaasCache provides
1% and 6% point improvement in keep-alive cost and service time,
respectively). For a 1.5× cost ratio, IceBreaker achieves 33% and
21% points-improvement in keep-alive cost and service time, re-
spectively over the next best technique, FaasCache. As expected,
when the ratio is closer to one (i.e., homogeneous cluster), the
improvements come only from the invocation prediction scheme.

Hard-to-predict and infrequent functions. IceBreaker is effec-

tive for both hard-to-predict and infrequent function types.

Previous works have shown that a sizeable fraction of functions
invocation are infrequent (e.g., occurring only once a day) and have

763

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari

20
/0

18
/4

16
/7

14
/11

12
/14

10
/18 8/2

1
6/2

5
4/2

8
2/3

2
0/3

5

Number of High-end Servers/Number of Low-end servers

0

25

50

Se
rv

ice
 T

im
e

Oracle IceBreaker FaasCache Wild OpenWhisk

20
/0

18
/4

16
/7

14
/11

12
/14

10
/18 8/2

1
6/2

5
4/2

8
2/3

2
0/3

5

Number of High-end Servers/Number of Low-end servers

0
25
50
75

100

Ke
ep

al
iv

e
Co

st

Figure 12: IceBreaker is effective across different compositions of the servers (% improvement over OpenWhisk at 20/0).

1.3/1.0 1.8/1.0 2.4/1.00
25
50
75

100

Se
rv

ice
 T

im
e

(%
 Im

pr
ov

em
en

t
Ov

er
 O

pe
nW

hi
sk

)

Cost of High-end Servers/ Cost of Low-end servers

Oracle IceBreaker FaasCache Wild

1.3/1.0 1.8/1.0 2.4/1.00
25
50
75

100

Ke
ep

al
iv

e
Co

st
(%

 Im
pr

ov
em

en
t

Ov
er

 O
pe

nW
hi

sk
)

Figure 13: IceBreaker is effective across different cost ratios

of high-end to low-end servers.

−25 0 25 50
0
5

10
15

%
 o

f F
un

ct
io

ns

Infrequent Functions Oracle
Wild
FaasCache
IceBreaker

−25 0 25 50
0

5

10

15

%
 o

f F
un

ct
io

ns

Service Time (% Improvement over OpenWhisk)

Hard to Predict Functions

Figure 14: IceBreaker reduces service time and keep-alive

cost for both hard-to-predict and infrequent functions.

difficult to detect re-invocation patterns (e.g., missed by time-series
based ARIMA predictions [57, 65]). These works have noted the
importance of improving the quality of prediction and reducing the
keep-alive cost for such functions. Hence, we evaluated IceBreaker’s
effectiveness for both hard-to-predict and infrequent functions.

Hard-to-predict functions are the ones whose invocations re-
ceive the least successful warm-ups and hence, incur the relatively
highest cold-start times. For demonstration, 15% of all the functions
which have the highest average cold-start time are treated as hard-
to-predict functions. Similarly, infrequent functions are the 15% of
all the functions which are invoked least frequently. Fig. 14 shows
that IceBreaker provides service time improvement and reduces the
keep-alive cost for such functions too. On average, existing schemes
yield better service time compared to OpenWhisk’s baseline, but
they are not always effective for hard-to-predict and infrequent
functions as observed in the left tail in Fig. 14. IceBreaker improves
this situation due to its better prediction scheme, resulting in lesser
number of cold starts for such functions. Also, by warming up such
functions judiciously on low-end servers, IceBreaker reduces the
overall keep-alive cost. Among all schemes, IceBreaker is the closet
to the Oracle strategy.

One might think that what prevents IceBreaker from experiencing

oscillations by constantly scheduling incorrectly between low-end and

high-end servers, especially for hard-to-predict functions with invo-

cation spikes? The answer to that is IceBreaker makes scheduling
decisions based on its utility score, which considers inter-server

speedup and memory footprint. These components prevent the
utility score from changing drastically for even hard-to-predict
functions. Among the hard-to-predict functions, the utility score
changes by more than 10% in the local time window only 13% of
the times (mean value of utility score change for hard-to-predict
functions is only 6.3%).

We clarify that IceBreaker’s scope is not limited to functions that

are hard-to-predict. IceBreaker is even more effective for functions
that are invoked frequently (e.g., 51% and 33% average points im-
provement in keep-alive cost and service time, respectively over the
next best technique, FaasCache, for the top 15% most frequent func-
tions). IceBreaker also outperforms competing techniques under
most challenging scenarios ś functions with unexpected invocation
concurrency spikes. For example, for the top 15% of the functions
with the highest spikes in invocation concurrency, IceBreaker has
18% and 11% points improvement in keep-alive cost and service
time, respectively over the next best technique, FaasCache, com-
pared to baseline.

Effect of heterogeneity on economy of scale and hardware

resource fungibility.

By design, IceBreaker relies on heterogeneity in server nodes
to reduce the keep-alive cost and service time. However, we note
this is not a new constraint, rather seizing an existing opportu-
nity. With prevalent heterogeneity in processors, data centers often
already have heterogeneous and multi-generational computer hard-
ware [8, 14, 64] ś IceBreaker demonstrates how to leverage this
existing opportunity. Besides reducing keep-alive cost, IceBreaker
also reduces the average service time. Even a small reduction in
service time allows businesses to generate significant revenue ś
potentially compensating the capital and operating expense of het-
erogeneous systems and potential reduction in hardware resource
fungibility [26, 39, 46]. IceBreaker opens up a new research avenue
of heterogeneous serverless computing. For example, determining
optimal capacity planning to maximize IceBreaker’s benefits.

6 RELATED WORKS

In addition to the works that IceBreaker is evaluated against, there
are other works that characterize serverless platforms.

Workload characterization. There have been studies that have
captured the behavioral trends of commercial serverless plat-
forms, both from the user side by running representative bench-
marks [24, 41, 45, 65, 71], and also from the serverless provider side
by examining workload traces [56, 57, 66, 68]. These studies have
captured several trends of serverless computing, like scheduling ef-
fects, invocation patterns, and I/O patterns [20, 36ś38, 44, 48]. Even

764

IceBreaker: Warming Serverless Functions Better with Heterogeneity ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

local deployments of serverless results in service time degradation
due to cold starts [9, 42]. Overall, prior works confirm the severity
of cold start time and keep-alive cost [16, 24, 50, 59, 62].

Cold start and keep-alive cost mitigation. Multiple works
have attempted to address the cold start challenges in various
ways [2, 12, 19, 23, 33, 48, 58ś61]. For example, Mohan et al. [50]
propose pre-allocating network interfaces and bind them to func-
tion containers to start them faster. When an application consists of
multiple functions, SAND [3] uses sand-boxing techniques to warm
up subsequent invocations of a function within the application.
SOCK [51] caches commonly used Python libraries, and Kesidis et
al. [34] overbook function instances to ensure warm starts. Previous
works have demonstrated some similarities and distinguishing fea-
tures of why cold start overhead cannot be appropriately mitigated
by caching solutions alone ś primarily due to the keep-alive cost.

Unlike conventional caching, serverless computing’s charge
model is based on resource allocated per unit time [22, 35, 47, 53].
Thus, cold start mitigation strategies should prioritize unloading
functions from memory when they are less likely to be invoked,
rather than unloading them only when other functions need space.
Hence, as demonstrated by other approaches on managing variable
sized caches, Time-to-Live caches cannot be applied [4ś6, 52, 69].
Also, traditional caching algorithms depends on the hit and miss ra-
tios of all objects [13, 17], whereas such a centralized control will not
scale well for serverless functions. Nevertheless, we quantitatively
comparewith themost recent work in this area [19] which is primar-
ily based on caching principles but with additional improvements
for the serverless-specific case. Finally, prior approaches attempting
to mitigate the cold start overhead, tend to either increase the capi-
tal cost, or increase the keep-alive cost [1, 15, 20, 29, 30, 54, 63, 67].
In contrast, IceBreaker tries to address cold starts by reducing keep-
alive cost, while maintaining the same capital expenditure.

7 CONCLUSION

IceBreaker is a novel mechanism that reduces the service time and
keep-alive cost of serverless functions by accurately predicting
the invocation concurrency and arrival time in a heterogeneous
server system. To the best of our knowledge, this is the first work
to introduce heterogeneous servers for the execution of serverless
functions to improve both performance and cost-effectiveness. Ice-
Breaker reduces keep-alive cost by 45% and service time by 27%
over the state-of-the-art approaches. IceBreaker can be deployed in
any cluster with a serverless workload manager and is beneficial for
both end-users and service providers. IceBreaker is open-sourced
for community adoption: https://zenodo.org/record/5748667.

ACKNOWLEDGMENTS

We thank David Meisner (our shepherd) and anonymous reviewers
for their valuable feedback. This work is supported by NSF Award
1910601, 1920020, and 2124897, and Northeastern University.

A ARTIFACT APPENDIX

A.1 Abstract

IceBreaker is technique that reduces the service time and keep-alive
cost of serverless functions, which are executed on a heterogeneous

system consisting of costly and cheaper nodes. IceBreaker’s design
consists of two major components: (1) Function Invocation Pre-
diction Scheme (FIP), and (2) Placement Decision Maker (PDM).
The FIP uses a Fourier transform based approach to determine the
invocation concurrency of a function. The PDM decides where to
warm up a serverless function: on a high-end server, or on a low-
end server, or no warm up at all. This decision is made based upon
an utility score which is calculated by considering several factors
like probability of function invocation, speedup of a function on a
high-end server, etc. Our artifact packages the scripts for setting
up and invoking IceBreaker. It also contains the data obtained in
our experimentation. The artifact is available at the following link:

https://zenodo.org/record/5748667
It includes the following:

• The framework to set up IceBreaker on AWS EC2 virtual
machines (VMs).
• Scripts to set up the invocation scheme of IceBreaker which
is ran from a local environment.
• Scripts and instructions to set up the benchmarks and server-
less invocation trace.
• Keep-alive cost data of executing IceBreaker and other com-
peting techniques.
• Service time data of executing IceBreaker and other compet-
ing techniques
• Data of executing IceBreaker and other competing tech-
niques for different number of combinations of high-end
and low-end servers.

Multiple runs are performed for each of the experiments. Ice-
Breaker is evaluated based on the Microsoft Azure function invoca-
tion trace. IceBreaker can be set up for all or any individual function
from the trace.

A.2 Artifact check-list (meta-information)
• Algorithm: A Fourier transform based FIP. PDM decides the loca-
tion of a function warm up.
• Program: Benchmarks from SeverlessBench were used to evaluate
IceBreaker.
• Data set: The data set consists of Microsoft Azure serverless func-

tion trace. This trace provides 2 weeks of serverless invocation data.
From this trace, per function invocation concurrency is obtained,
per time interval.
• Run-time environment: Python3.6 with boto3, paramiko and
awscli. AWS is used for spawning serverless functions and setting
up EC2 VMs from a Ubuntu 18.04.4 LTS server. EC2 VMs are installed
with docker for the operation of IceBreaker.
• Hardware: AWS EC2 VMs with different node counts, ranging
upto 35.
• Metrics: Service time, and keep-alive cost are the major metrics
of evaluation. Along with these, the prediction accuracy of FIP is
important for the operation of IceBreaker.
• Output: Service time and keep-alive cost.
• Experiments: The experiments measure the keep-alive cost and

service time per serverless function, per time interval. In our evalu-
ation, we have experimented with the entire sweep of server con-
figurations ś from 35 low-end servers and 0 high-end servers, to
20 high-end servers and 0 low-end servers. The configurations are
chosen to maintain an equal capital cost across all of them.
• How much disk space required (approximately)?: 7 GB

765

 https://zenodo.org/record/5748667
https://zenodo.org/record/5748667

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari

• Publicly available?: Yes
• Archived (DOI)?: https://zenodo.org/record/5748667

A.3 Description
This artifact provides the framework of IceBreaker, which proposes the idea
of having a heterogeneous cluster for intelligently warming up serverless
functions. The goal of IceBreaker is to jointly minimize service time and
keep-alive cost by avoiding cold starts. As an input, IceBreaker requires
the benchmarks and the invocation trace which will be used to spawn the
benchmarks. The user also needs to specify the family of the EC2 VMs to use
as high-end and low-end servers. Different parameters related to IceBreaker,
like the number of harmonics to consider for the Fourier transform of the
FIP, how much ping-ponging of functions can be allowed, etc. are other
parameters that can be modified in the implementation of IceBreaker.

A.4 Methodology
IceBreaker is implemented in Python3.6 and it can be easily portable to use
with multiple cloud providers. As a dependency, it requires the command
line interface (CLI) of the respective cloud provider to be installed and
configured with the user account credentials. According to the user’s chosen
high-end and low-end VM families, IceBreaker sets up EC2 servers to form a
heterogeneous cluster. Then IceBreaker spawns the serverless benchmarks
on those VMs based on an invocation trace of serverless functions. These
serverless functions run as docker containers. The FIP of IceBreaker predicts
which of the serverless functions to warm up, along with the concurrency.
Based on FIP’s prediction accuracy and several factors like relative speedup
of functions on high-end servers, decision is made by the PDM on where
(high-end or low-end) to warm up a serverless function. When a function
is warmed up, its docker image is already fetched and a container is already
created, ready for execution. If a function undergoes cold start, the whole
process of fetching the docker image and creating a container from that
image occurs, resulting in an increased function start-up time.

A.5 Installation
To set up the trace, benchmarks, and the framework of IceBreaker, boto3
must be installed and awscli should be configured with the user’s AWS
account credentials. This will allow the user’s local environment to directly
communicate with AWS. This will aid in the process of setting up EC2
VMS, and running serverless functions on them. Before running IceBreaker,
docker must be installed and configured as the serverless functions run
as docker containers on the EC2 VMs. The installation process consists
of setting up the user’s local environment, and the AWS EC2 VMs. More
details on installation is provided in the README.txt file in the artifact.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-
weight virtualization for serverless applications. In 17th {usenix} symposium on
networked systems design and implementation ({nsdi} 20). 419ś434.

[2] Siddharth Agarwal, Maria A Rodriguez, and Rajkumar Buyya. 2021. A Reinforce-
ment Learning Approach to Reduce Serverless Function Cold Start Frequency.
In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 797ś803.

[3] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}: Towards High-
Performance Serverless Computing. In 2018 {Usenix} Annual Technical Confer-
ence ({USENIX}{ATC} 18). 923ś935.

[4] Waleed Ali, Siti Mariyam Shamsuddin, Abdul Samad Ismail, et al. 2011. A survey
of web caching and prefetching. Int. J. Advance. Soft Comput. Appl 3, 1 (2011),
18ś44.

[5] Abdullah Balamash and Marwan Krunz. 2004. An overview of web caching
replacement algorithms. IEEE Communications Surveys & Tutorials 6, 2 (2004),
44ś56.

[6] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and Ramesh
Sitaraman. 2017. Adaptive TTL-based caching for content delivery. In Proceed-
ings of the 2017 ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems. 45ś46.

[7] René Johan Beerends, Henricus G ter Morsche, JC Van den Berg, and EM Van de
Vrie. 2003. Fourier and Laplace transforms.

[8] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, et al. 2018. Google workloads for consumer devices: Mitigating
data movement bottlenecks. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. 316ś331.

[9] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky. 2018. Putting
the" micro" back in microservice. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 645ś650.

[10] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2017.
Serverless programming (function as a service). In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2658ś2659.

[11] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2019.
The rise of serverless computing. Commun. ACM 62, 12 (2019), 44ś54.

[12] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu: Mitigat-
ing cascading cold starts in serverless function chain deployments. In Proceedings
of the 21st International Middleware Conference. 356ś370.

[13] Mostafa Dehghan, Laurent Massoulie, Don Towsley, Daniel Sadoc Menasche, and
Yong Chiang Tay. 2019. A utility optimization approach to network cache design.
IEEE/ACM Transactions on Networking 27, 3 (2019), 1013ś1027.

[14] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias, Boon Thau
Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When Idling is Ideal: Optimiz-
ing Tail-Latency for Heavy-Tailed Datacenter Workloads with Perséphone. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
621ś637.

[15] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467ś481.

[16] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup. 2020. Server-
less applications: Why, when, and how? IEEE Software 38, 1 (2020), 32ś39.

[17] Andrés Ferragut, Ismael Rodríguez, and Fernando Paganini. 2016. Optimizing TTL
caches under heavy-tailed demands. ACM SIGMETRICS Performance Evaluation
Review 44, 1 (2016), 101ś112.

[18] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From laptop to lambda:
Outsourcing everyday jobs to thousands of transient functional containers. In
2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19). 475ś488.

[19] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 386ś400.

[20] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 3ś18.

[21] Alim Ul Gias and Giuliano Casale. 2020. COCOA: Cold Start Aware Capacity
Planning for Function-as-a-Service Platforms. In 2020 28th International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, 1ś8.

[22] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan Kandemir,
Bhuvan Urgaonkar, George Kesidis, and Chita Das. 2019. Spock: Exploiting
serverless functions for slo and cost aware resource procurement in public cloud.
In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE,
199ś208.

[23] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C Nachiappan,
Mahmut Taylan Kandemir, and Chita R Das. 2020. Fifer: Tackling resource
underutilization in the serverless era. In Proceedings of the 21st International
Middleware Conference. 280ś295.

[24] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidamabaram
Nachiappan, Ram Srivatsa Kannan, Mahmut Taylan Kandemir, and Chita R Das.
2020. Characterizing Bottlenecks in Scheduling Microservices on Serverless
Platforms. In 2020 IEEE 40th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 1197ś1198.

[25] MG Habib, DR Thomas, et al. 1986. Chi-Square Goodness-if-Fit Tests for Ran-
domly Censored Data. The Annals of Statistics 14, 2 (1986), 759ś765.

[26] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.

766

https://zenodo.org/record/5748667

IceBreaker: Warming Serverless Functions Better with Heterogeneity ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Applied machine learning at facebook: A datacenter infrastructure perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620ś629.

[27] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless com-
puting: One step forward, two steps back. arXiv preprint arXiv:1812.03651 (2018).

[28] Sanghyun Hong, Abhinav Srivastava, William Shambrook, and Tudor Dumitras, .
2018. Go serverless: Securing cloud via serverless design patterns. In 10th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 18).

[29] MohammadReza HoseinyFarahabady, Javid Taheri, Zahir Tari, and Albert Y
Zomaya. 2017. A dynamic resource controller for a lambda architecture. In 2017
46th International Conference on Parallel Processing (ICPP). IEEE, 332ś341.

[30] M Reza HoseinyFarahabady, Albert Y Zomaya, and Zahir Tari. 2017. A model
predictive controller for managing QoS enforcements andmicroarchitecture-level
interferences in a lambda platform. IEEE Transactions on Parallel and Distributed
Systems 29, 7 (2017), 1442ś1455.

[31] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal
foundations of serverless computing. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1ś26.

[32] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[33] Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. 2019. Centralized
core-granular scheduling for serverless functions. In Proceedings of the ACM
Symposium on Cloud Computing. 158ś164.

[34] George Kesidis. 2019. Overbooking Microservices in the Cloud. arXiv preprint
arXiv:1901.09842 (2019).

[35] Young Ki Kim, M Reza HoseinyFarahabady, Young Choon Lee, and Albert Y
Zomaya. 2020. Automated fine-grained cpu cap control in serverless computing
platform. IEEE Transactions on Parallel and Distributed Systems 31, 10 (2020),
2289ś2301.

[36] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta: Heterogeneous
cloud storage configuration for data analytics. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 759ś773.

[37] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. 2018. Understanding ephemeral storage for serverless
analytics. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18).
789ś794.

[38] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic ephemeral storage for server-
less analytics. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18). 427ś444.

[39] Ashwin Kumar Kulkarni and B Annappa. 2019. Context aware VM placement
optimization technique for heterogeneous IaaS cloud. IEEE access 7 (2019), 89702ś
89713.

[40] Aleksandr Kuntsevich, Pezhman Nasirifard, and Hans-Arno Jacobsen. 2018. A dis-
tributed analysis and benchmarking framework for apache openwhisk serverless
platform. In Proceedings of the 19th International Middleware Conference (Posters).
3ś4.

[41] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. 2018. Evaluation of production
serverless computing environments. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). IEEE, 442ś450.

[42] Zijun Li, Quan Chen, Shuai Xue, Tao Ma, Yong Yang, Zhuo Song, and Minyi Guo.
2020. Amoeba: QoS-Awareness and Reduced Resource Usage of Microservices
with Serverless Computing. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 399ś408.

[43] Changyuan Lin and Hamzeh Khazaei. 2020. Modeling and Optimization of
Performance and Cost of Serverless Applications. IEEE Transactions on Parallel
and Distributed Systems 32, 3 (2020), 615ś632.

[44] Xiayue Charles Lin, Joseph E Gonzalez, and JosephMHellerstein. 2020. Serverless
boom or bust? An analysis of economic incentives. In 12th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 20).

[45] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep Pallickara.
2018. Serverless computing: An investigation of factors influencing microservice
performance. In 2018 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 159ś169.

[46] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. 2020. Prague: High-
performance heterogeneity-aware asynchronous decentralized training. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 401ś416.

[47] Kunal Mahajan, Daniel Figueiredo, Vishal Misra, and Dan Rubenstein. 2019.
Optimal pricing for serverless computing. In 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 1ś6.

[48] NimaMahmoudi and Hamzeh Khazaei. 2020. PerformanceModeling of Serverless
Computing Platforms. IEEE Transactions on Cloud Computing (2020).

[49] Nima Mahmoudi and Hamzeh Khazaei. 2020. Temporal Performance Modelling
of Serverless Computing Platforms. In Proceedings of the 2020 Sixth International

Workshop on Serverless Computing. 1ś6.
[50] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,

and Vadim Sukhomlinov. 2019. Agile cold starts for scalable serverless. In 11th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 19).

[51] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. {SOCK}: Rapid task provi-
sioning with serverless-optimized containers. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 57ś70.

[52] Stefan Podlipnig and Laszlo Böszörmenyi. 2003. A survey of web cache replace-
ment strategies. ACM Computing Surveys (CSUR) 35, 4 (2003), 374ś398.

[53] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19). 193ś206.

[54] Aakanksha Saha and Sonika Jindal. 2018. EMARS: efficient management and
allocation of resources in serverless. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). IEEE, 827ś830.

[55] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J Yadwadkar, Raluca Ada Popa, Joseph EGonzalez, Ion Stoica, andDavid A
Patterson. 2021. What serverless computing is and should become: The next
phase of cloud computing. Commun. ACM 64, 5 (2021), 76ś84.

[56] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
implications of function-as-a-service computing. In Proceedings of the 52ndAnnual
IEEE/ACM International Symposium on Microarchitecture. 1063ś1075.

[57] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20). 205ś218.

[58] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for
efficient stateful serverless computing. In 2020 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 20). 419ś433.

[59] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020. Prebaking Func-
tions to Warm the Serverless Cold Start. In Proceedings of the 21st International
Middleware Conference. 1ś13.

[60] Khondokar Solaiman and Muhammad Abdullah Adnan. 2020. WLEC: A Not So
Cold Architecture to Mitigate Cold Start Problem in Serverless Computing. In
2020 IEEE International Conference on Cloud Engineering (IC2E). IEEE, 144ś153.

[61] Amoghvarsha Suresh and Anshul Gandhi. 2019. Fnsched: An efficient scheduler
for serverless functions. In Proceedings of the 5th International Workshop on
Serverless Computing. 19ś24.

[62] Davide Taibi, Josef Spillner, and Konrad Wawruch. 2020. Serverless computing-
where are we now, and where are we heading? IEEE Software 38, 1 (2020), 25ś31.

[63] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling quality-of-service in serverless computing. In Proceedings
of the 11th ACM Symposium on Cloud Computing. 311ś327.

[64] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-
Balter, and Gregory R Ganger. 2016. TetriSched: global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In Proceedings of the Eleventh
European Conference on Computer Systems. 1ś16.

[65] Dmitrii Ustiugov, Plamen Petrov,Marios Kogias, Edouard Bugnion, and Boris Grot.
2021. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 559ś572.

[66] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba
Li, Rui Du, and Yue Cheng. 2021. FAASNET: Scalable and Fast Provisioning
of Custom Serverless ContainerRuntimes at Alibaba Cloud Function Compute.
arXiv preprint arXiv:2105.11229 (2021).

[67] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable execution
optimized for page sharing for a managed runtime environment. In Proceedings
of the Fourteenth EuroSys Conference 2019. 1ś16.

[68] LiangWang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, andMichael Swift.
2018. Peeking behind the curtains of serverless platforms. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 133ś146.

[69] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo, Akanksha Jain,
and Calvin Lin. 2019. Temporal prefetching without the off-chip metadata. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 996ś1008.

[70] Zhengjun Xu, Haitao Zhang, Xin Geng, Qiong Wu, and Huadong Ma. 2019.
Adaptive function launching acceleration in serverless computing platforms.
In 2019 IEEE 25th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 9ś16.

[71] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing serverless plat-
forms with serverlessbench. In Proceedings of the 11th ACM Symposium on Cloud
Computing. 30ś44.

767

	Abstract
	1 Introduction
	2 IceBreaker: Background and Motivation
	3 IceBreaker: Key Ideas and Design
	3.1 IceBreaker: The Function Invocation Predictor
	3.2 IceBreaker: The Placement Decision Maker
	3.3 IceBreaker: Miscellaneous Design Considerations
	3.4 IceBreaker: Implementation

	4 Experimental Methodology
	5 Evaluation and Analysis
	6 Related Works
	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Methodology
	A.5 Installation

	References

