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Abstract—We consider reinforcement learning (RL) in Markov
Decision Processes in which an agent repeatedly interacts with
an environment that is modeled by a controlled Markov process.
At each time step t, it earns a reward, and also incurs a
cost-vector consisting of M costs. We design model-based RL
algorithms that maximize the cumulative reward earned over a
time horizon of T time-steps, while simultaneously ensuring that
the average values of the M cost expenditures are bounded by
agent-specified thresholds cubi , i = 1, 2, . . . ,M . The consideration
on the cumulative cost expenditures departs from the existing
literature, in that the agent now additionally needs to balance
the cost expenses in an online manner, while simultaneously
performing the exploration-exploitation trade-off that is typically
encountered in RL tasks. This is challenging since the dual
objectives of exploration and exploitation necessarily require the
agent to expend resources.

In order to measure the performance of a RL algorithm
that satisfies the average cost constraints, we define an M + 1
dimensional regret vector that is composed of its reward regret,
and M cost regrets. The reward regret measures the sub-
optimality in the cumulative reward, while the i-th component of
the cost regret vector is the difference between its i-th cumulative
cost expense and the expected cost expenditures Tcubi .

We prove that the expected value of the regret vector is upper-

bounded as Õ
(

T 2/3
)

1, where T is the time horizon. We further

show how to reduce the regret of a desired subset of the M
costs, at the expense of increasing the regrets of rewards and
the remaining costs. To the best of our knowledge, ours is the
only work that considers non-episodic RL under average cost
constraints, and derive algorithms that can tune the regret vector
according to the agent’s requirements on its cost regrets.

I. INTRODUCTION

Reinforcement Learning (RL) [1] involves an agent repeat-

edly interacting with an environment modelled by a Markov

Decision Process (MDP) [2]. More specifically, consider a

controlled Markov process [2] st, t = 1, 2, . . . , T . At each

discrete time t, an agent applies control at. State-space, and

action space are denoted by S and A respectively, and are

assumed to be finite. The controlled transition probabilities

are denoted by p := {p(s, a, s′) : s, s′ ∈ S, a ∈ A}. Thus,

p(s, a, s′) is the probability that the system state transitions to

state s′ upon applying action a in state s. The probabilities

p(s, a, s′) are not known to the agent. At each discrete time
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1Here Õ(·) hides factors that are logarithmic in T .

t = 1, 2, . . . , T , the agent observes the current state of the

environment st, applies control action at, and earns a reward

rt that is a known function of (st, at). When the agent applies

an action a in the state s, then it earns a reward equal to

r(s, a) units. The agent does not know the controlled transition

probabilities p(s, a, s′) that describe the system dynamics

of the environment. The performance of an agent or a RL

algorithm is measured by the cumulative rewards that it earns

over the time horizon.

However in many applications, in addition to earning re-

wards, the agent also incurs costs at each time. The underlying

physical constraints impose constraints on its cumulative cost

expenditures, so that the agent needs to balance its reward

earnings with the cost accretion while also simultaneously

learning the choice of optimal decisions, all in an online

manner. As a motivating example, consider a single-hop

wireless network that consists of a wireless node that transmits

data packets to a receiver over an unreliable wireless channel.

The channel reliability, i.e., the probability that a transmission

at time-step t is successful, depends upon the instantaneous

channel state cst and the transmission power at. Thus, for

example, this probability is higher when the channel is in a

good state, or if transmission is carried out at higher power

levels. The transmitter stores packets in a buffer, and its queue

length at time t is denoted by Qt. The wireless node is battery-

operated, and packet transmission consumes power. Hence, it

is desired that the average power consumption is minimal. An

appropriate performance metric for networks [3] is the average

queue length
(

E
∑T

t=1 Qt

)

/T , and hence it is required that

the average queue length stays below a certain threshold.

The AP has to choose at adaptively so as to minimize the

power consumption
(

E
∑T

t=1 at

)

/T , or equivalently maxi-

mize
(

E
∑T

t=1 −at

)

/T , while simultaneoulsy ensure that the

average queue length is below a user-specified threshold, i.e.
(

E
∑T

t=1 Qt

)

/T ≤ cub. In this example, the state of the

“environment” at time t is given by the queue length and the

channel state (Qt, cst). Thus, it might be “optimal” to utilize

high transmission power levels only when the instantaneous

queue length Qt is large or the wireless channel’s state cst is

good. Such an adaptive strategy saves energy by transmitting

at lower energy levels at other times. Since channel reliabilities

are typically not known to the transmitter node, it does

not know the transition probabilities p(s, a, s′) that describe

the controlled Markov process (Qt, cst). Hence, it cannot

compute the expectations of the average queue lengths and

average power consumption for a fixed control policy, and

needs to devise appropriate learning policies to optimize its

performance under average-cost constraints. RL algorithms

that we propose in this work solve exactly these classes of
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problems.

Many important network control problems can be solved

within the framework of constrained Markov decision pro-

cesses (CMDPs). For example, [4], [5] utilize CMDPs in

order to maximize the throughput offered by a stochastic

network, where the network operator wants to simultaneously

satisfy constraints on delays, while [6] designs control policies

that make dynamic decisions regarding network access in

networks shared by different types of traffic. Similarly, the

framework of CMDPs has been used in [7], [8] in order to

maximize the timely throughput2 in stochastic networks. The

work [9] addresses the issue of admission control and routing

in networks shared by mutiple flows in which the goal is to

maximize the weighted sum of customers served, while simul-

taneously satisfying constraints on the blocking probability. If

the network/system parameters are known, then a CMDP can

be posed as a linear program (LP), and solved efficiently.

However, in practice, network parameters are seldom known to

the network operator, and it needs to design algorithms which

“learn” the optimal policies in an “optimal” manner. Our work

addresses precisely this issue.

II. PREVIOUS WORKS AND OUR CONTRIBUTIONS

RL Algorithms for unconstrained MDPs: RL problems with-

out constraints are well-understood by now. [10] develops

UCRL2 algorithm using the Upper Confidence Bounds (UCB)

strategy [11], while [12] uses the Reward Biased Maximum

Likelihood Estimation (RBMLE) approach [13], and [14] uses

Thompson Sampling. UCRL2 [10] is a popular RL algorithm

that has a regret bound of Õ(D(p)S
√
AT ), where D(p) is the

diameter [10] of the MDP p; the algorithms proposed in this

work are based on UCRL2.

RL Algorithms for Constrained MDPs: [15] is an early

work on optimally controlling unknown MDPs under average

cost constraints. It utilizes the certainty equivalence (CE)

principle, i.e., it applies controls that are optimal under the

assumption that the true (but unknown) MDP parameters are

equal to the empirical estimates, and also occasionally resorts

to “forced explorations.” This algorithm yields asymptotically

(as T → ∞) the same reward rate as the case when the

MDP parameters are known. However, analysis is performed

under the assumption that the CMDP is strictly feasible. More-

over the algorithm lacks finite-time performance guarantees

(bounds on regret). Unlike [15], we do not assume strict

feasibility; infact we show that the use of confidence bounds

allows us to get rid of the strict feasibility assumption. [16]

derives a learning scheme based on multi time-scale stochastic

approximation [17], in which the task of learning an optimal

policy for the CMDP is decomposed into that of learning

the optimal value of the dual variables, which correspond to

the price of violating the average cost constraints, and that

of learning the optimal policy for an unconstrained MDP

parameterized by the dual variables. However, the proposed

scheme lacks finite-time regret analysis, and might suffer from

a large regret. Prima facie, this layered decomposition might

2Throughput derived from those packets which reach their destination
within their deadline.

not be optimal with respect to the sample-complexity of the

online RL problem. Recent works [18], [19] have obtained

concentration bounds for two time-scale stochastic approxi-

mation algorithms, which could be used for deriving regret

bounds. The works [20]–[23] design policy-search algorithms

for constrained RL problems. However unlike our work, they

do not utilize the concept of regret vector, and their theoretical

guarantees need further research. After the first draft of our

work was published online, there appeared a few manuscripts/

works that address various facets of learning in CMDPs, and

these have some similarity with our work. For example [24]

considers episodic RL problems with constraints in which the

reward function is time-varying. Similarly, [25] also considers

episodic RL in which the state is reset at the beginning of each

episode. In contrast, we deal exclusively with non-episodic

infinite horizon RL problems. In fact, as we show in our

work, the primary difficulty in non-episodic constrained RL

arises due to the fact that it is not possible to simultaneously

“control/upper-bound” the reward and M costs during long

runs of the controlled Markov process. Consequently, in order

to control the regret vector, we make the assumption that the

underlying MDP is unichain. However, this problem does not

occur in the episodic RL case [24], [25] since the state is

reset periodically. Secondly, unlike the algorithms provided in

our work [24], [25] do not allow the agent to tune the regret

vector. Very recently, we came to know that [26] has derived

RL algorithms for CMDPs that have Õ(
√
T ) regret guarantees,

and hence improve upon the bounds derived in this work. [27]

also derives model-free learning algorithms for infinite-horizon

average reward CMDPs, and shows that their reward and cost

regrets are Õ(T 5/6). The work [28] claims to attain O(
√
T )

regrets for CMDPs, however unfortunately there seems to be

an error in the derivations of their proofs. More specifically,

in Lemma 11 they bound the span of the CMDP by diameter.

Though this argument works for MDPs [10], it is not true

for CMDPs since now not only does the decision maker

optimize rewards, it also has to satisfy cost constraints. [29]

considers an episodic setup, and derives algorithms which have

Õ(
√
K) reward regret, with a bounded expected number of

constraint violations. [30] proposes a primal-dual algorithm for

discounted RL for CMDPs, and shows that its convergence rate

is O(1/
√
T ). The work [31] summarizes recent approaches to

RL in CMDPs, while [32] applies RL for CMDPs to make

dynamic decisions in network slicing applications.

Our contributions are summarized as follows.

1) We initiate the problem of designing RL algorithms that

maximize the cumulative rewards while simultaneously

satisfying average cost constraints. We propose an al-

gorithm which we call UCRL for CMDPs, henceforth

abbreviated as UCRL-CMDP. UCRL-CMDP is a mod-

ification of the popular RL algorithm UCRL2 of [10]

that utilizes the principle of optimism in the face of

uncertainty (OFU) while making decisions. Since an

algorithm that utilizes OFU does not need to satisfy cost

constraints (this is briefly discussed at the end of this

section), we modify OFU appropriately and derive the

principle of balanced optimism in the face of uncertainty
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(BOFU). Under the BOFU principle, at the beginning of

each RL episode, the agent has to solve for (i) an MDP,

and (ii) a controller, such that the average costs of a

system in which the dynamics are described by (i), and

which is controlled using (ii), are less than or equal to

the cost constraints. This is summarized in Algorithm 1.

2) In order to quantify the finite-time performance of an

RL algorithm that has to perform under average cost

constraints, we define its M + 1 dimensional “regret

vector” that is composed of its reward regret (8) and M
cost regrets (9). More precisely, considering solely the

reward regret (as is done in the RL literature) overlooks

the cost expenditures. Indeed, we show in Theorem 2

that the reward regret can be made arbitrary small (with

a high probability) at the expense of an increase in the

cumulative cost expenditure. Thus, while comparing the

performance of two different learning algorithms, we

also need to compare their cost expenditures. The reward

regret of a learning algorithm is the difference between

its reward and the reward of an optimal policy that

knows the MDP parameters, while the i-th cost regret

is the difference between the total cost incurred until

T time-steps, and the budget on the i-th expected cost

cubi T .

3) We ask the following question in the constrained

setup: What is the set of “achievable” M + 1 dimen-

sional regret vectors? In Theorem 1 we show that the

components of the regret vector of UCRL-CMDP, can

be bounded as Õ(T 2/3).
4) We show that the use of BOFU allows us to over-

come the shortcomings of the CE approach that were

encountered in [15], i.e., there are arbitrarily long time-

durations during which the CMDP in which the sys-

tem dynamics are described by the current empirical

estimates of transition probabilities is infeasible, and

hence the agent is unable to utilize these estimates in

order to make control decisions. As a by-product, BOFU

also allows us to get rid of “forced explorations,” i.e.,

employing randomized controls occasionally, that were

utilized in [15].

5) Analogous to the unconstrained RL setup, in which one

is interested in quantifying a lower bound on the regret

of any learning algorithm, we provide a partial charac-

terization of the set of those M + 1-dimensional regret

vectors, which cannot be achieved under any learning

algorithm. More specifically, in Theorem 3 we show

that a weighted sum of the M +1 regrets is necessarily

greater than O
(

D(p)S
√

AT log(T )
)

, where D(p) is

the diameter of the underlying MDP, and S,A is the

number of states and control actions respectively.

6) In many applications, an agent is more sensitive to the

cost expenditures of some specific resources as com-

pared to the rest, and a procedure to “tune” the M + 1
dimensional regret vector is essential. In Section VI,

we consider the scenario in which the agent can pre-

specify the desired bounds on each component of the

cost regret vector, and introduce a modification to the

UCRL-CMDP that allows the agent to keep the cost

regrets below these bounds.

Failure of OFU in constrained RL problems: Consider a two-

state S = {1, 2}, two-action A = {0, 1} MDP in which

the controlled transition probabilities p(1, 1, 1) = 1 − θ
and p(1, 1, 2) = θ are unknown, while remaining probabil-

itites are equal to .5. Assume that r(1, a), c(1, a) ≡ 0 and

r(2, a), c(2, a) ≡ 1, i.e., reward and cost depend only upon

the current state. Assume that θ > .5, and the average cost

threshold satisfies cub < 2θ/(1 + 2θ). Since state 2 yields

reward at the maximum rate, and θ > .5 this means that the

optimal action in state 1 is 1. Let θ̂t and εt denote the empirical

estimate of θ, and the radius of confidence interval respectively

at time t. Then UCRL2 sets the optimistic estimate of θ equal

to θ̂t + εt and then implements the control that is optimal

when the true parameter value is equal to this estimate. Thus,

if θ̂t + εt ≥ .5, then it chooses action 1 in state 1. Since with

a high probability we have θ̂t + εt ≥ θ, and θ̂t + εt → θ as

T → ∞ [10], we have that when the index of the RL episode

is sufficiently large, the agent implements action 1 in state 1.

Since the average cost of this policy is 2θ/(1+2θ), this means

that UCRL2 violates the average cost constraint.

III. PRELIMINARIES

In our setup, at each time t the agent earns a reward and

also incurs M costs. Reward and cost functions are denoted

by r, {ci}Mi=1,S×A 7→ R. Thus, the instantaneous reward ob-

tained upon taking an action a in the state s is equal to r(s, a),
while the i-th cost is equal to ci(s, a). A controlled Markov

process in which the agent earns reward and incurs M costs is

defined by the tuple CMP = (S,A, p, r, c1, c2, . . . , cM ). The

controlled transition probabilities p(s, a, s′) are not known to

the agent, while the reward and cost functions r, {ci}Mi=1 are

known to the agent. We will now briefly discuss some notions

and results on MDPs. Let P
(t)
π,p,s denote the t-step probability

distribution when the policy π is applied to the MDP p and the

initial state is s, while Pπ,p be the corresponding stationary

measure 3. For two measures µ1, µ2, we let ‖µ1−µ2‖V denote

the total variation distance [33] between µ1 and µ2.

Definition 1: (Unichain MDP) The MDP p is unichain if

under any stationary policy there is a single recurrent class. If

an MDP is unichain [2], then for the Markov chain induced

by any stationary policy π, we have

‖P (t)
π,p,s − Pπ,p‖TV ≤ Cρt, ∀s ∈ S, (1)

where C > 0, 1 > ρ > 0 are constants. Let Ts,s′ denotes the

time taken by the Markov chain induced by a stationary policy

to hit state s′, when it starts in state s. The mixing time of an

MDP p is defined as TM (p) := maxπ,s,s′ Eπ,pTs,s′ , where the

sub-script denotes the fact that the expectation is taken with

respect to the measure induced by π when it is applied to the

MDP p. We will occasionally omit its dependence upon p and

denote it by TM .

Definition 2: (Control Policy) Let ∆(A) :=
{

x ∈ R
|A| :

∑|A|
i=1 xi = 1, xi ≥ 0

}

be the |A|-simplex

3Under the assumption that a unique stationary measure exists.
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and Ft denote the sigma-algebra [34] generated by the

random variables {(s`, a`)}t−1
`=1 ∪ st. A stationary policy

π : S 7→ ∆(A) prescribes randomized controls on the basis

of the current state st. Thus, under policy π, we have that at
is chosen according to the probability distribution π(·|st).

A. Notation

Throughout, we use bold font for denoting vectors; for

example the vector (x1, x2, . . . , xN ) is denoted by x. We

use N to denote the set of natural numbers, R
M to denote

the M dimensional Euclidean space, and R
M
+ to denote non-

negative orthant of R
M . Inequalities between two vectors

are to be understood component-wise. If E is an event [34],

then 1(E) denotes its indicator function. For a control policy

π,4 r̄(π) := limT→∞
1
T Eπ

∑T
t=1 r(st, at) , and 5 c̄i(π) :=

limT→∞
1
T Eπ

∑T
t=1 ci(st, at). For x ∈ R

N , we let ‖x‖1
denote its 1-norm and ‖x‖∞ be the infinity norm. 0M denotes

the M -dimensional zero vector consisting of all zeros. For

x, y ∈ R, we let x∨y := max{x, y}. Throughout, for M ∈ N,

we abbreviate [M ] := {1, 2, . . . ,M}, S := |S|, A := |A|.

B. Constrained MDPs

We now present some definitions and standard results per-

taining to constrained MDPs. These can be found in [35].

Definition 3 (Occupation Measure): Consider the con-

trolled Markov process st evolving under the applica-

tion of a stationary policy π. Its occupation measure

µπ = {µπ(s, a) : (s, a) ∈ S ×A} is defined as µπ(s, a) :=

limT→∞
1
T Eπ

(

∑T
t=1 1 (st = s, at = a)

)

, and describes the

average amount of time that the process (st, at) spends on

each possible state-action pair.

Definition 4 (SR(µ)): Consider a vector µ =
{µ(s, a) : (s, a) ∈ S ×A} that satisfies the constraints (6)

and (7) below. Define SR(µ) to be the following stationary

randomized policy. When the state st is equal to s, the policy

chooses the action a with a probability equal to
µ(s,a)∑

a′∈A
µ(s,a′)

if
∑

a′∈A µ(s, a′) > 0. However, if
∑

a′∈A µ(s, a′) = 0, then

the policy takes an action according to some pre-specified

rule (e.g. implement at = 0).

Constrained Markov Decision Process (CMDP): The follow-

ing dynamic optimization problem is a CMDP [35],

max
π

lim inf
T→∞

1

T
Eπ

T
∑

t=1

r(st, at) (2)

s.t. lim sup
T→∞

1

T
Eπ

T
∑

t=1

ci(st, at) ≤ cubi , i ∈ [M ], (3)

where the maximization above is over the class of all history-

dependent policies, and cubi denotes the desired upper-bound

on the average value of i-th cost expense. The optimal average

reward rate of the CMDP is equal to the optimal value of the

above LP, and is denoted by r?.

Linear Programming approach for solving CMDPs: When

the controlled transition probabilities p(s, a, s′) are known, and

4In case limit does not exist, lim should be replaced by lim inf .
5In case limit does not exist, lim should be replaced by lim sup.

p is unichain, an optimal policy for the CMDP (2)-(3) can be

obtained by solving the following LP [35],

max
µ={µ(s,a):(s,a)∈S×A}

∑

(s,a)∈S×A

µ(s, a)r(s, a), (4)

s.t.
∑

(s,a)∈S×A

µ(s, a)ci(s, a) ≤ cubi , i ∈ [M ] (5)

∑

a∈A

µ(s, a) =
∑

(s′,b)∈S×A

µ(s′, b)p(s′, b, s), ∀s ∈ S, (6)

µ(s, a) ≥ 0, ∀(s, a) ∈ S ×A,
∑

(s,a)∈S×A

µ(s, a) = 1. (7)

If µ? is a solution of the above LP, then SR(µ?) solves (2)-

(3). Moreover, it can be shown that the average reward and M
costs of SR(µ?) are independent of the initial starting state

s0 if the MDP is unichain [35].

C. Learning Algorithms and Regret Vector

We will develop RL algorithms to solve the finite-time

horizon version of the CMDP (2)-(3) when the probabilities

p(s, a, s′) are not known to the agent. A learning policy π
chooses action at on the basis of past operational history

of the system. In order to measure the performance of a

learning algorithm, we define its reward and cost regrets. The

“cumulative reward regret” until time T , denoted by ∆(R)(T ),
is defined as,

∆(R)(T ) := r? T −
T
∑

t=1

r(st, at), (8)

where r? is the optimal average reward of the CMDP (2)-(3)

when controlled transition probabilities p(s, a, s′) are known.

Note that r? is the optimal value of the LP (4)-(7). The

“cumulative cost regret” for the i-th cost until time T is

denoted by ∆(i)(T ), and is defined as,

∆(i)(T ) :=

T
∑

t=1

ci(st, at)− cubi T. (9)

IV. UCRL-CMDP: A LEARNING ALGORITHM FOR

CMDPS

We propose UCRL-CMDP to adaptively control an un-

known CMDP. It is depicted in Algorithm 1. UCRL-CMDP

maintains empirical estimates of the each transition probability

p(s, a, s′) as follows,

p̂t(s, a, s
′) =

{

Nt(s,a,s
′)

Nt(s,a)
if Nt(s, a) > 0

1
S otherwise,

(10)

where Nt(s, a) and Nt(s, a, s
′) denote the number of visits to

(s, a) and (s, a, s′) until t respectively.

Confidence Intervals: Additionally, it also maintains confi-

dence interval Ct associated with the estimate p̂t as follows,

Ct :=
{

p′ :
∑

s′∈S

p′(s, a, s′) = 1 ∀(s, a), p′(s, a, s′) ≥ 0,

|p′(s, a, s′)− p̂t(s, a, s
′)| ≤ εt(s, a), ∀(s, a)

}

, (11)
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Algorithm 1 UCRL-CMDP

Input: State-space S , Action-space A, Confidence param-

eter δ, Time horizon T

Initialize: Set t := 1, and observe the initial state s1.

for Episodes k = 1, 2, . . . do

Initialize Episode k:

1) Set the start time of episode k, τk := t. For all state-

action tuples (s, a) ∈ S × A, initialize the number of

visits within episode k, nk(s, a) = 0.

2) For all (s, a) ∈ S×A set Nτk(s, a), i.e., the number of

visits to (s, a) prior to episode k. Also set the transition

counts Nτk(s, a, s
′) for all (s, a, s′) ∈ S ×A× S .

3) Compute the empirical estimate p̂t of the MDP as

in (10).

Compute Policy π̃k:

1) Let Cτk be the set of plausible MDPs as in (11).

2) Solve (12)-(16) to obtain π̃k.

3) In case (12)-(16) is infeasible, choose π̃k to be some

pre-determined policy (chosen at time t = 0).

Implement π̃k:

while t− τkt
< dTαe do

1) Sample at according to the distribution π̃k(·|st). Ob-

serve reward r(st, at), and observe next state st+1.

2) Update nk(st, at) = nk(st, at) + 1.

3) Set t := t+ 1.

end while

end for

where εt(s, a) :=
√

2 log(T b|S||A|)
Nt(s,a)∨1 , b > 1 is an agent-specified

constant.

Episode: UCRL-CMDP proceeds in episodes, and utilizes

a single stationary control policy within an episode. Each

episode is of duration dTαe steps6. Let τk denote the start

time of episode k. k-th episode is denoted by Ek :=
{τk, τk + 1, . . . , τk+1 − 1}, and comprises of τk+1 − τk con-

secutive time-steps. Denote by kt the index of the ongoing

episode at time t. At the beginning of Ek, the agent solves

the following constrained optimization problem in which the

decision variables are (i) Occupation measure µ = {µ(s, a) :
(s, a) ∈ S×A} of the controlled process, and (ii) “Candidate”

MDP p′,

max
µ,p′

∑

(s,a)∈S×A

µ(s, a)r(s, a), (12)

s.t.
∑

(s,a)∈S×A

µ(s, a)ci(s, a) ≤ cubi , i ∈ [M ] (13)

∑

a∈A

µ(s, a) =
∑

(s′,b)

µ(s′, b)p′(s′, b, s), ∀s ∈ S, (14)

µ(s, a) ≥ 0 ∀(s, a),
∑

(s,a)

µ(s, a) = 1, (15)

p′ ∈ Cτk . (16)

6If x ∈ R, we let dxe be the least integer greater than or equal to x.

The maximization with respect to p′ denotes that the agent

is optimistic regarding the belief of the “true” (but unknown)

MDP p, while that with respect to µ ensures that the agent

optimizes its control strategy for this optimistic MDP. The

constraints (13) ensure that the cost expenditures do not exceed

the thresholds {cubi }Mi=1, and hence ensure that the agent

also balances the cost expenses while being optimistic with

respect to the rewards about the choice of the MDP thereby

taking a balanced approach to optimism when the underlying

MDP parameters are unknown. If the constraints (13) were

absent, we would recover the UCRL2 algorithm of [10] that

is based on the OFU principle [11]. However, as is shown in

Section II, the OFU principle might fail when it is applied

for learning the optimal controls for CMDPs. Indeed, as is

shown in the example in Section II, the limiting average

cost is greater than the threshold value of cost. The BOFU

principle proposed in this work is a natural extension of the

OFU principle to the case when the agent has to satisfy certain

constraints on costs, in addition to maximizing the rewards. In

case the problem (12)-(16) is feasible, let (µ̃k, p̃k) denote a

solution. The agent then chooses at according to SR(µ̃k)
within Ek. However, in the event (12)-(16) is infeasible, the

agent implements an arbitrary stationary control policy that

has been chosen at time t = 0. In summary, it implements

a stationary controller within Ek, which is denoted by π̃k.

We make the following assumptions on the MDP p while

analyzing UCRL-CMDP.

Assumption 1:

1) The MDP p = {p(s, a, s′) : s, s′ ∈ S, a ∈ A} is

unichain. Thus, under any stationary policy π we have

‖P (t)
π,p,s − Pπ,p‖TV ≤ Cρt, t = 1, 2, . . . , s ∈ S, (17)

where C > 0, 0 ≤ ρ < 1.

2) The CMDP (2)-(3) is feasible.

3) Without loss of generality, we assume that the magnitude

of rewards and costs are upper-bounded by 1, and hence

r? < 1 as well as {cubi }Mi=1 can be taken to be less than

1.

We establish the following bound on the regrets of UCRL-

CMDP. It is proved in the next section.

Theorem 1: Consider the UCRL-CMDP (Algorithm 1) ap-

plied with δ = 1/T 1/3, α = 1/3 to an MDP p that satisfies

Assumption 1. The reward and cost regrets can be bounded as

follows,

E∆(R)(T ),E∆(i)(T ), i ∈ [M ] ≤ 4TM (p)
√

2 log (T b|S||A|)

× ((
√
2 + 1)

√
SAT + T 2/3

√

log(SAT 4/3))

+
CdT 2/3e
1− ρ

+ T 2/3 +
2

T 2b−2|S||A| . (18)

A detailed proof is provided in Section V. Over here, we

only provide a proofsketch.

Proofsketch: We show that the proposed algorithm can

be interpreted as an “index policy” in which it assigns an

index (20) to each policy that is calculated on the basis of

operational history, and then plays the policy with the highest

index. We use this characterization in order to analyze the
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behaviour of the algorithm on the “good set,” G (21) on which

the following two occur: (i) concentration of the empirical

estimate of p, and (ii) the number of times (s, a) is visited

is proportional to the numer of times those set of policies

are implemented under which (s, a) is visited with a positive

probability. In Lemma 1 and Lemma 2 we show that G occurs

with a high probability; since the regret on Gc is bounded as

O(T ), it suffices to analyze the algorithm on G. Lemma 7

shows that the instantaneous regrets depends on the radius

of the confidence ball. The behaviour of the radius of ball

upon playing a sub-optimal policy is then used to complete

the proof.

Remark 1: In comparison with the Õ(
√
T ) regret bounds

for unconstrained RL our bounds for the constrained case

are Õ(T 2/3). The reason for this is that the proof techniques

of [10] cannot be applied. More specifically, for the former

case, one is able to relate the diameter D(p) of the MDP to a

bound on the span of the relative value function hk(·), of the

optimistic MDP obtained during the k-th episode7 as follows:

Suppose that hk(s)−hk(s
′) > D(p), then one would obtain a

contradiction since we can construct a policy for the extended

MDP, which starts in state s′ and reaches s in D(p) steps

(in expectation), so that the “missed rewards” on account of

starting in s′ (as opposed to starting in s) is upper-bounded

by D(p). Indeed, one could always choose the true transition

probabilities p at every step, and implement a policy which

takes from s′ to s in D(p) steps (that such a policy exists,

follows from definition of the diameter). However, in the case

of CMDP the agent is not only maximizing rewards, but also

making sure that the cost expenditures are below their respec-

tive thresholds, i.e. it is solving a multi-objective optimization

problem and it is not clear how to convert this multiobjective

criteria to a scalar objective function. One could argue that

consideration of the Lagrangian would allow us to “scalarize”

this problem, so that we could derive an upper-bound on the

span of the bias function associated with the extended MDP

that maximizes r(x(t), u(t)) +
∑

i λici(x(t), u(t)). However,

this result will then depend upon the values of Lagrange

multiplers λi, i = 1, 2, . . . ,M , and in order for such upper-

bounds to be useful, we would have to derive bounds on these

multiplers. It is not clear how such a bound could be derived.

In order to overcome this difficulty, we instead view UCRL-

CMDP as an index policy, derive upper and lower bounds on

the indices of stationary policies, and upper-bound the number

of times “sub-optimal policy” is played.

V. PROOF OF THEOREM 1

We begin by introducing few notation. If B denotes a

subset of S , then we let ΠB be the set of those stationary

policies for which Pπ,p(s) > 0 for all s ∈ B. Let Bπ denote

the set of states for which Pπ,p(s) > 0. We now derive a

few preliminary results that are used while proving the main

result. The following result can be shown by an application of

Azuma-Hoeffding inequality [36].

Lemma 1: Define G1 :=
{

p ∈ Cτk , ∀k =

1, 2, . . . ,K
}

. Then, P(G1) ≥ 1− 1
T b−1−(1−α) .

7See [10] for more details.

Lemma 2: Let nk(s, a) denote the number of visits to (s, a)
during Ek, and β > 1/2 satisfy 2β − α = 1. Define

G2 :=

{

K
∑

k=1

nk(s, a)− E(nk(s, a)|Fτk)
√

Nk(s, a)
≤ T β

√

√

√

√log

(

SAT

δ

)

,

∀(s, a) ∈ S ×A
}

, (19)

where K is the total number of episodes. We have P(G2) ≥
1− δ

T .

Proof: Note that
nk(s,a)−E(nk(s,a)|Fτk

)√
Nk(s,a)

, k = 1, 2, . . . ,K

is a martingale difference sequence. Furthermore, since the

duration of each episode is dTαe, and
√

Nk(s, a) ≥
1, we have

nk(s,a)−E(nk(s,a)|Fτk
)√

Nk(s,a)
≤ dTαe. By apply-

ing Azuma-Hoeffding’s inequality to this martingale dif-

ference sequence, we get that the probability of the

event
∑K

k=1

nk(s,a)−E(nk(s,a)|Fτk
)√

Nk(s,a)
≥ T β

√

√

√

√log

(

SAT
δ

)

can be upper-bounded by exp
(

− T 2β

T 1−αT 2α log SAT
δ

)

=

exp
(

−T 2β−(1+α) log SAT
δ

)

. Since 2β−(1+α) = 0, the above

bound reduces to δ
SAT . The proof then follows by using union

bound for all state-action pairs (s, a).

Lemma 3: If s ∈ Bπk
, then8

E (nk(s, a)|Fτk) ≥
⌊

dTαe
2TM (p)

⌋

× πk(a|s)
2

.

Proof: Within this proof we use TM to denote

TM (p). Since we have Eπ,pTs′,s ≤ TM , ∀s′ ∈ S , it

follows from Markov’s inequality that the probability with

which st does not hit the state s in 2TM steps, is less

than 1/2, or equivalently the state s is visited atleast

once with a probability greater than 1/2, which yields us

mins′∈S Eπ

(

∑2TM

t=1 1{st = s}|s0 = s′
)

≥ 1
2 . The proof is

then completed by dividing the total time of dTαe steps in an

episode into “mini-episodes” of 2TM steps each, and noting

that nk(s, a) is equal to the sum of the number of visits to

(s, a) during each such mini-episode.

We begin by giving an equivalent characterization of the

UCRL-CMDP rule. At each τk, it assigns an index Ik(π) to

each stationary policy π as follows,

Ik(π) := max
θ∈Cτk

{

r̄(π, θ) : c̄i(π, θ) ≤ cubi , i ∈ [M ]
}

. (20)

In case the above optimization problem is infeasible, i.e.

c̄i(π, θ) > cubi , ∀θ ∈ Cτk for some i, then the policy is

assigned an index of −∞. UCRL-CMDP implements a policy

with the largest index during Ek.

Define the “good set”

G := G1 ∩ G2. (21)

8For x ∈ R we let bxc be the greatest integer less than or equal to x.
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Lemma 4: On the set G we have the following for θ ∈ Cτk ,

|r̄(π, p)− r̄(π, θ)|, |c̄i(π, p)− c̄i(π, θ)|, i ∈ [M ]

≤ 2max
s

∑

a∈A

π(a|s)ετk(s, a). (22)

Proof: Note that P
(1)
π,p,s is the vector of transition proba-

bilities from state s of the Markov chain that results when

the policy π is applied to the MDP p. Consider an MDP

θ ∈ Cτk . Since on G, we have p ∈ Cτk , we have ‖P (1)
π,p̂τk

,s −
P

(1)
π,p,s‖1, ‖P (1)

π,p̂τk
,s−P

(1)
π,θ,s‖1 ≤∑a∈A π(a|s)ετk(s, a), where

π(a|s) is the probability with which the policy implements a

in state s. From triangle inequality we have that ‖P (1)
π,p,s −

P
(1)
π,θ,s‖1 ≤ 2

∑

a∈A π(a|s)ετk(s, a). (22) then follows from

Corollary 3.1 of [37].

For a stationary policy π, we say r? − r̄(π, p) is its instanta-

neous reward regret, and c̄i(π, p)−cubi is its instantaneous cost

regret for the i-th cost. We now show that if the instantaneous

reward regret, or an instantaneous cost regret of a policy is

greater than a certain threshold, this threshold depends upon

the radius of the confidence ball at time τk, then it is not

played during Ek. For a stationary policy π, define

δk(π) := 2max
s∈Bπ

∑

a∈A

π(a|s)ετk(s, a).

Consider the following two possibilities.

Case A) c̄i(π, p) > cubi + δk(π) for some i: From (22)

we have that |c̄i(π, p) − c̄i(π, θ)| ≤ δk(π) which implies

c̄i(π, θ) > cubi for all θ ∈ Cτk . Thus Ik(π) = −∞.

Case B) From (22) we have that |r̄(π, p)− r̄(π, θ)| ≤ δk(π)
for all θ ∈ Cτk , so that the index Ik(π) is bounded by r̄(π, p)+
δk(π).

The following result summarizes this discussion.

Lemma 5: Let π be a stationary randomized policy. On

the set G we have that Ik(π) = −∞ if c̄i(π, p) > cubi +
δk(π), for some i ∈ [M ]. Also, Ik(π) ≤ r̄(π, p) + δk(π).

We now show that if a stationary policy is feasible for the

MDP p, i.e. c̄i(π, p) ≤ cubi , ∀i, then its index Ik(π) is lower-

bounded by r̄(π, p).
Lemma 6: If π is feasible for the true MDP, i.e. it satisfies

c̄i(π, p) ≤ cubi , ∀i ∈ [M ], then on G its index satisfies

Ik(π) ≥ r̄(π, p). With π set equal to the policy which

solves the CMDP maxπ
{

r̄(π, p) : c̄i(π, p) ≤ cubi , ∀i ∈ [M ]
}

,

we obtain that the index of an optimal policy is greater than

r?.

Proof: Note that on the set G, the true MDP p always

belongs to Cτk . If c̄i(π, p) ≤ cubi , ∀i ∈ [M ], we have Ik(π) =
maxθ∈Cτk

{

r̄(π, θ) : c̄i(π, θ) ≤ cubi , i ∈ [M ]
}

≥ r̄(π, p).

Upon combining Lemma 5 and Lemma 6, we obtain the

following result.

Lemma 7: On the set G, the instantaneous regrets during Ek
can be bounded by δk(πk).

Proof: We begin by bounding cost regrets. Consider a

stationary policy π. In case c̄i(π, p) > cubi + δk(πk), then it

follows from Lemma 5 that Ik(π) = −∞. However, it is

shown in Lemma 6 that there is a policy π̃, that is feasible

for the true MDP, and whose index is greater than r?. In case

the index of π is less than the index of π̃, the policy π would

not be played by UCRL-CMDP. This means that in order for

π to be a candidate to be played during Ek, we must have

c̄i(π, p) ≤ cubi +δk(πk), or equivalently the instantaneous cost

regret of π must be bounded by δk(πk).

In order to bound the reward regret, we note that it was

shown in Lemma 6 that the index of an optimal policy is

greater than r?, and since the index Ik(πk) must be greater

than or equal to the index of an optimal policy, we must

have Ik(πk) ≥ r?. From Lemma 5 we have Ik(πk) ≤
r̄(π, p)+δk(πk). Upon combining these inequalities, we obtain

r̄(π, p) + δk(πk) ≥ r?, or r̄(π, p) ≥ r? − δk(πk). This shows

that the instantaneous reward regret r? − r̄(π, p) is bounded

by δk(πk).

We now use the result on instantaneous regrets in order to

bound the cumulative regrets of UCRL-CMDP.

Proof of Theorem 1: We will only derive

upper-bound on the reward regret, since the bound

on cost regrets can be derived by following

similar steps. Now, E
(
∑

t∈Ek
r? − r(st, at)

)

=

E

(

E

{

∑

t∈Ek
r? − r̄(πk, p) + r̄(πk, p)− r(st, at)

∣

∣

∣
Fτk

})

.

It follows from (17) that we have

E
{
∑

t∈Ek
r̄(πk, p)− r(st, at)|Fτk

}

≤ C
1−ρ , and

hence the expected regret during Ek can be bounded

by E

(

E

{

∑

t∈Ek
r? − r̄(πk, p)

∣

∣

∣
Fτk

})

+ C
1−ρ . Let

∆
(R)
k := E

{
∑

t∈Ek
r? − r̄(πk, p)|Fτk

}

denote the regret

incurred during the k-th episode. Thus, the cumulative

expected regret can be bounded as follows,

E∆(R)(T ) ≤ E

(

K
∑

k=1

∆
(R)
k

)

+K
C

1− ρ
, (23)

where K is the total number of episodes. Henceforth we will

focus on bounding the first term
∑K

k=1 ∆
(R)
k in the r.h.s.

above. This is bounded separately on the sets G,Gc
1,Gc

2.

We begin by bounding
∑K

k=1 ∆
(R)
k on G. Since from

Lemma 7 the instantaneous regret on G during Ek can be

bounded by δk(πk), we have,

∆
(R)
k ≤ δk(πk)|Ek|

≤ 4TM

∑

(s,a):s∈Bπk

E(nk(s)|Fk)
πk(a|s)

√

2 log (T b|S||A|)
√

Nk(s, a)

+ 4TM

∑

(s,a):s∈Bπk

{ |Ek|
2TM

1

2
− E(nk(s)|Fk)

}

×

πk(a|s)
√

2 log (T b|S||A|)
√

Nk(s, a)

≤ 4TM×
∑

(s,a):s∈Bπk

E(nk(s)|Fk)
πk(a|s)

√

2 log (T b|S||A|)
√

Nk(s, a)
, (24)

where the last inequality follows from Lemma 3. We will now

bound the term
∑K

k=1

∑

(s,a):s∈Bπk

E(nk(s)|Fk)πk(a|s)√
Nk(s,a)

. We
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have

K
∑

k=1

E(nk(s)|Fk)πk(a|s)
√

Nk(s, a)
=

K
∑

k=1

E(nk(s, a)|Fk)
√

Nk(s, a)

=

K
∑

k=1

nk(s, a)
√

Nk(s, a)
+

K
∑

k=1

E(nk(s, a)|Fk)− nk(s, a)
√

Nk(s, a)
(25)

As is shown in [10, p. 1578], the term
∑K

k=1

∑

(s,a)
nk(s,a)√
Nk(s,a)

can be bounded by (
√
2 + 1)

√
SAT on each sample

path, while from (19) we have that on G2, the term

∑K
k=1

E(nk(s,a)|Fk)−nk(s,a)√
Nk(s,a)

is bounded by T β

√

√

√

√log

(

SAT
δ

)

.

It follows from (25) and the discussion above that on G
we have

∑

(s,a):s∈Bπk

∑K
k=1

E(nk(s)|Fk)πk(a|s)√
Nk(s,a)

≤ (
√
2 +

1)
√
SAT + T β log1/2(SAT/δ). Upon summing (24) over

episodes, and using the above inequality, we obtain that the

regret on G can be bounded as follows,

K
∑

k=1

∆
(R)
k ≤ 4TM

√

2 log (T b|S||A|)×

((
√
2 + 1)

√
SAT + T β log1/2(SAT/δ)). (26)

This completes the analysis on G.

We now analyze the regret on Gc
2. From Lemma 2, the

probability of Gc
2 is bounded by δ. On Gc

2, the sample path

regret
∑K

k=1 ∆
(R)
k can be trivially bounded by T , so that its

contribution to the expected regret is bounded by δT .

To analyze the regret on Gc
1 we note that if the confidence

ball Cτk at time τk fails, then the regret during Ek can be

bounded by the duration of Ek. Since τk+1 − τk = dTαe, the

regret during Ek is bounded by dTαe. From Lemma 1 we have

that the probability with which confidence ball fails at time t
is upper-bounded by 2

T 2b−1|S||A|
. Hence, the expected regret

from the failure of ball (in case an episode starts at t) at time

t is bounded by
2dTαe

T 2b−1|S||A|
, so that the cumulative expected

regret is bounded by 2
T 2b−2|S||A|

.

VI. LEARNING UNDER BOUNDS ON COST REGRET

The upper-bounds for the regrets of UCRL-CMDP in Theo-

rem 1 are the same for reward and M costs regrets. However,

in many practical applications, an agent is more sensitive to

over-utilizing certain specific costs, as compared to the other

costs. Thus, in this section, we derive algorithms which enable

the agent to tune the upper-bounds on the regrets of different

costs. We also quantify the reward regret of these algorithms.

A. Modified UCRL-CMDP

Throughout this section we assume that p satisfies the

following condition.

Assumption 2: For the MDP p, there exists a stationary

policy under which the average costs are strictly below the

thresholds {cubi : i = 1, 2, . . . ,M}. More precisely, there

exists an ε > 0 and a stationary policy πfeas. such that we

have c̄i(πfeas.) < cubi − ε, ∀i ∈ [M ]. Define

η := min
i∈[M ]

{

cubi − ε− c̄i(πfeas.)
}

. (27)

The modified algorithm maintains empirical estimates p̂t and

confidence intervals Ct (11) in exactly the same manner as

UCRL-CMDP (Algorithm 1) does. It also proceeds in episodes

of duration dTαe steps, and uses a single stationary control

policy within an episode. However, at the beginning of each

episode k, it solves an optimization problem which is a modi-

fication of (12)-(16). More concretely, the cost constraints (13)

are replaced by the following modified constraints,
∑

(s,a)∈S×A

µ(s, a)ci(s, a) ≤ cubi − di, i ∈ [M ],

where, di := biε, i ∈ [M ], and the parameters bi ∈
(0, 1), i ∈ [M ] are chosen by the agent. If this problem is

feasible, let µ̃k be an optimal occupation measure obtained

by solving it. In this case, the agent implements SR(µ̃k)
within Ek. However, in case the problem is infeasible, then

it implements a stationary controller that has been chosen at

time t = 0. We derive upper-bounds on the regrets of the

modified UCRL-CMDP algorithm in the following result.

Theorem 2: Consider the modified UCRL-CMDP algorithm

with δ = 1/T 1/3, α = 1/3 applied to an MDP p that satisfies

Assumption 1 and Assumption 2. Then, the expected reward

regret can be upper-bounded as follows:

E∆(R)(T )

≤ 4TM ((
√
2 + 1)

√
SAT + T 2/3

√

log(SAT 4/3))

+
CdT 2/3e
1− ρ

+ T 2/3 +
2

T 2b−2|S||A| + zT, (28)

where z = (maxi bi)
η̂
η ε, η is as in (27) and

η̂ := max
(s,a)∈S×A

r(s, a)− min
(s,a)∈S×A

r(s, a). (29)

The expected cost regret can be upper-bounded as follows:

E∆(i)(T ) ≤ 4TM

√

2 log (T b|S||A|)×

((
√
2 + 1)

√
SAT + T 2/3

√

log(SAT 4/3))

+
CdT 2/3e
1− ρ

+ T 2/3 +
2

T 2b−2|S||A| − biεT, i ∈ [M ], (30)

Remark 2: Note that the prefactor in the O(T ) term in (28)

depends upon ε linearly, and this quantity can be tuned by the

agent. When ε = T−1/3, then E∆(R)(T ) can be bounded as

O(T 2/3).

VII. PROOF OF THEOREM 2

Proof closely follows the proof of Theorem 1, hence we

point out only the key differences. The modified UCRL-

CMDP algorithm assigns the following modified index9 to

policy π,

Ik(π) := max
θ∈Cτk

{

r̄(π, θ) : c̄i(π, θ) ≤ cubi − di, i ∈ [M ]
}

.

9To avoid introducing unnecessary notation, we continue to use the same
notation for denoting the modified indices as that used to denote the indices
of UCRL-CMDP.
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If for some i we have c̄i(π, θ) > cubi − di, ∀θ ∈ Cτk , then we

set Ik(π) = −∞.

The proof of next result is omitted since it is similar to that

of Lemma 5.

Lemma 8: Let π be a stationary randomized policy. On the

set G we have that Ik(π) = −∞ if c̄i(π, p) > cubi − di +
δk(π) for some i ∈ [M ]. Also, Ik(π) ≤ r̄(π, p) + δk(π).

The following result allows us to derive bounds on the

instantaneous regrets.

Lemma 9: If a stationary policy π satisfies c̄i(π, p) ≤ cubi −
di, ∀i ∈ [M ], then on G its index satisfies Ik(π) ≥ r̄(π, p).
With π set equal to the policy which solves the CMDP

maxπ r̄(π, p) such that c̄i(π, p) ≤ cubi − di, ∀i ∈ [M ], on

G the index of such a policy satisfies Ik(π) ≥ r? − z, where

z is as in Theorem 2.

Proof: We note that on the set G, the true MDP p always

belongs to Cτk . Since c̄i(π, p) ≤ cubi −di, ∀i ∈ [M ] this means

that the index of π satisfies

Ik(π) = max
θ∈Cτk

{

r̄(π, θ) : c̄i(π, θ) ≤ cubi − di, i ∈ [M ]
}

≥ r̄(π, p).

It follows from Lemma 14 that the optimal value of the CMDP

maxπ r̄(π, p), such that c̄i(π, p) ≤ cubi − di, ∀i ∈ [M ], is

greater than or equal to r? − z. Hence, it follows from the

discussion above that the index of the policy which is optimal

for this CMDP is greater than or equal to r? − z.

As earlier, we bound the regret on the sets G,Gc
1 and Gc

2

separately. On G, the regret is bounded by the time spent

playing sub-optimal policies.

Lemma 10: For the modified UCRL-CMDP algorithm, on

the set G the instantaneous reward regret during Ek can be

bounded by δk(πk) + z, while the instantaneous cost regret

associated with the i-th cost can be bounded by δk(πk)− di.
Proof: Consider a stationary policy π for which

c̄i(π, p) > cubi − di + δk(πk). It follows from Lemma 8 that

the index of this policy satisfies Ik(π) = −∞. However, it

is shown in Lemma 9 that there is a policy π̃ that has index

greater than r? − z. Since Ik(π) is less than the index of π̃,

π will not be played by UCRL-CMDP during Ek. Thus, in

order π to be a c means that c̄i(π, p) ≤ cubi − di + δk(πk),
which shows that the instantaneous cost regret is bounded by

δk(πk)− di.
In order to bound the instantaneous reward regret, note that

it was shown in Lemma 9 that there is a policy with index

greater than r? − z. Hence, the index of πk is necessarily

greater than r? − z. Since from Lemma 8 we have that the

index of πk is upper-bounded by r̄(π, p) + δk(πk), we must

have r̄(π, p)+δk(πk) ≥ r?−z, or equivalently r?− r̄(π, p) ≤
δk(πk)+ z. This shows that the instantaneous reward regret is

bounded by δk(πk) + z.

Proof of Theorem 2: Since the proof closely follows that

of Theorem 1, we only point out the key differences. The

regret decomposition result (23) holds for reward as well cost

regrets. Similarly, the regrets on Gc
2 and Gc

1 can be bounded

by δT and 2
T 2b−2|S||A|

respectively. The only difference from

proof of Theorem 1 arises while bounding the terms
∑

k ∆
(R)
k

and
∑

k ∆
(i)
k . It follows from Lemma 10 that the bound on

∑

k ∆
(R)
k differs from (24) by an additional term zT , and

similarly the bound on
∑

k ∆
(i)
k differs from the earlier bound

by an additional term εbiT . The proof is then completed by

summing the bounds on regrets over the sets G,Gc
1,Gc

2.

VIII. ACHIEVABLE REGRET VECTORS

Let λ ≥ 0M . Consider the Lagrangian relaxation of (2)-(3),

L(λ;π) := lim inf
T→∞

Eπ

∑T
t=1 r(st, at) + λ ·

(

c
ub − c(st, at)

)

T
,

where c(st, at) is the vector that consists of costs

ci(st, at), i ∈ [M ]. Consider its associated dual function [38],

D(λ) := maxπ L(λ;π), and the dual problem

min
λ≥0

D(λ). (31)

Define the diameter D(p) of MDP p as follows, D(p) :=
maxs,s′ minπ Eπ,pTs,s′ . D(p) is finite if p is communicat-

ing [2].

Theorem 3: There is a problem instance such that the regrets

∆(R)(T ), {∆(i)(T )}Mi=1 under any learning algorithm φ satisfy

Eφ∆
(R)(T ) +

M
∑

i=1

λ?
iEφ∆

(i)(T ) ≥ .015 ·
√

D(p)SAT ,

(32)

where λ
? is an optimal solution of the dual problem (31),

and sub-script denotes that expectation is taken with respect

to probability measure induced by φ.

Proof: We begin by considering an auxiliary reward

maximization problem that involves the same MDP p, but in

which the reward received at time t by the agent is equal to

r(st, at)+λ ·
(

c
ub − c(st, at)

)

instead of r(st, at). However,

there are no average cost constraints in the auxiliary problem.

Let φ′ be a history dependent policy for this auxiliary problem.

Denote its optimal reward by r?(λ). Then, the regret for cumu-

lative rewards collected by φ′ in the auxiliary problem is given

by r?(λ) T −Eφ′

[

∑T
t=1 r(st, at) + λ ·

(

c
ub − c(st, at)

)

]

. It

follows from Theorem 5 of [10] that the controlled transi-

tion probabilities p(s, a, s′) of the underlying MDP can be

chosen so that this regret is greater than .015
√

D(p)SAT ,

i.e., r?(λ) T−Eφ′

[

∑T
t=1 r(st, at) + λ ·

(

c(st, at)− c
ub
)

]

≥
.015

√

D(p)SAT . We observe that any valid learning algo-

rithm for the constrained problem is also a valid algorithm for

the auxiliary problem. Thus, if φ is a learning algorithm for

the problem with average cost constraints, then we have

r?(λ) T − Eφ

[

T
∑

t=1

r(st, at) +
M
∑

i=1

λi

(

cubi − ci(st, at)
)

]

≥ .015
√

D(p)SAT . (33)

We now substitute (34) in the above to obtain Eφ ∆(R)(T ) +
∑M

i=1 λi Eφ ∆(i)(T ) ≥ .015
√

D(p)SAT + r?T − r?(λ) T .

Since the r.h.s. is maximized for values of λ which are

optimal for the dual problem (31), we set it equal to λ
?,

and then use Lemma 11 in order to obtain Eφ ∆(R)(T ) +
∑M

i=1 λiEφ ∆(i)(T ) ≥ .015
√

D(p)SAT .
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IX. SIMULATION RESULTS

We compare the performance of the proposed UCRL-CMDP

algorithm with the Actor-Critic algorithm for CMDPs that was

proposed in [16]. Actor-Critic algorithms are a popular class of

online learning algorithms [39]–[41] that are based on multi-

time-scale stochastic approximation [42]. Note that since the

algorithms proposed in [24], [25] are for an episodic RL setup,

we do not compare the performance of UCRL-CMDP with

algorithms proposed therein.

Experiment Setup: We consider the single-hop wireless

network that was discussed in Section I. For simplicity, we

let the action set A be binary, and take the channel state to

be static. Thus, at = 0 means no packet was transmitted,

while at = 1 means one packet is attempted. Let At ∈
{0, 1, 2, 3} be the number of packet arrivals, that are assumed

i.i.d. across times with mass function (.65, .2, .1, .05) for the

experiments shown in Fig. 1, Fig. 2. Queue length evolves

as Qt+1 = (Qt +At −Dt)
+ ∧ B, t = 0, 1, 2, . . . , where B

is the capacity of the buffer10, while Dt is the number that are

delivered to destination at time t. In our experiments we use

B = 6, and take the channel reliability as .9.

Actor-Critic Algorithm for CMDPs: Let a(n) = 1/
n, b(n) = 1/(n log n) and c(n) = 1/(n log2 n). Let

Q :=
{

x ∈ R
|A|−1 : xi ≥ 0 ∀i,∑|A|−1

j=1 xj ≤ 1
}

denote

the simplex of subprobability vectors. Let Γ(·) denote the

map that projects a vector onto Q. It begins by replacing

the original constrained MDP by an unconstrained one

by imposing a penalty upon constraint violation. The

instantaneous reward for this modified MDP is equal

to r(st, at) − λ̃t

(

c(st, at)− cub
)

where λ̃t ≥ 0 is the

price associated with the constraint violation. In order

to solve this unconstrained MDP, the algorithm keeps

an estimate of the value function Vt : S 7→ R, which

is updated as Vt+1(s) = Vt(s) + a(Nt(s))1{st =

s}
(

r(s, ut) + λ̃tc(s, ut)− Vt(s)− Vt(s
?) + Vt(st+1)

)

,

where s? is a designated state. Let πt(a|s) denote

the probability with which action a is implemented in

state s at time t. Let a? be a designated action. These

probabilities are generated as follows. The algorithm

maintains vectors π̂t(s) = {π̂t(a|s) : a ∈ A}, s ∈ S , and

updates it as π̂t+1(s) = Γ
(

π̂t(s) + ?
)

, t = 1, 2, . . . , where,

? =
∑

a 6=a? b(Nt(s, a)) × 1 {st = s, at = a} π̂t(s, a) ×
[

Vt(s) + Vt(s
?) − r(s, a) + λ̃tc(s, a) − Vt(st+1)

]

ej ,

where ea is the unit vector with a 1 in the place

corresponding to action a11. The probability for action

a? is computed as π̂t(a
?|s) = 1 −

∑

a 6=a? π̂t(a|s). The

action probabilities πt are then generated from π̂t as

πt(a|s) = (1 − εt)π̂t(a|s) + εt
|A| , a ∈ A, where

εt → 0. Finally, the price λ̃t is updated as

λ̃t+1 =
[

λ̃t + γt

(

c(st, at)− cub
)]+

, where cub is the

threshold on average queue length. In our experiments we

use s? = B, a? = 0 and εt = 1/t.

10For x ∈ R, we let (x)+ := max{x, 0}, x ∧B := min{x,B}
11We enumerate the available actions as 1, 2, . . . , |A|.

Results: Fig. 1 compares the cumulative regrets incurred

by these algorithms. We observe that the reward regret as

well as the cost regret of UCRL-CMDP are low. We ob-

serve the following drawback of the Actor-Critic algorithm’s

performance, that the cost regret is prohibitively high. We

then vary the budget cub on the average queue length. These

results are shown in Fig. 2. Once again, we make a similar

observation, that UCRL-CMDP is effective in balancing both,

the reward regret ∆(R)(t) and the cost regret ∆(1)(t), while

the Actor-Critic algorithm yields a high cost regret. In both

of these experiments the probability vector of arrivals was

held fixed at (.65, .2, .1, .05). We vary this probability vector,

and plot the regrets in Fig. 3. Once again, UCRL-CMDP

outperforms the Actor-Critic algorithm. Though the reward

regret of Actor-Critic algorithm is lower than that of the

UCRL-CMDP algorithms, this occurs at the expense of an

undesireable much larger cost regret. In contrast, the reward

regret as well as the cost regret of UCRL-CMDP is low. All

plots are obtained after averaging over 100 runs.
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Fig. 1: Plot of the reward regret (a) and cost regret (b) for the

network in which the and desired delay is cub = 4.5.
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Fig. 2: Plot of the normalized reward regret (a) and cost regret

(b), as the desired delay cub is varied.
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Fig. 3: Plot of the reward regret (a) and cost regret (b), as the

probability distribution of the arrivals is varied. The probability

vector of At is equal to (.65− .02i, .2, .1+ .01i, .05+ .01i), where

the parameter i is varied from 0 to 9. The desired delay cub is held

fixed at 4.5, and channel reliability at .9.
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X. CONCLUSIONS AND FUTURE WORK

In this work, we initiate a study to develop learning

algorithms that simultaneously control all the components

of the regret vector while controlling unknown MDPs. We

devised algorithms that are able to tune different components

of the cost regret vector, and also obtained a non-achievability

result that characterizes those regret vectors that cannot be

achieved under any learning rule. In our work, we assume

that the underlying MDP is unichain. An interesting research

problem is to characterize the set of achievable regret vectors

under the weaker assumption that the underlying MDP is

communicating.

APPENDIX A

RESULTS USED IN THE PROOF OF THEOREM 3

Lemma 11: Consider the dual problem (31) associated with

the CMDP (2)-(3), and let λ
? be a solution of the dual

problem. If Assumption 2 holds true, then D(λ?) = r?.

Proof: Under Assumption 2, the CMDP (2)-(3) is strictly

feasible, so that Slater’s constraint [43] is satisfied, and conse-

quently strong duality holds true. Thus, if λ? solves the dual

problem (31), we then have that D(λ?) = r?.

Lemma 12: Let λ ≥ 0M and φ be a learning algorithm for

the problem of maximizing cumulative rewards under average

cost constraints. We then have the following,

Eφ

T
∑

t=1

(r(st, at) +
M
∑

i=1

λi(c
ub
i − ci(st, at)))

= r?T − Eφ∆
(R)(T )−

M
∑

i=1

λiEφ ∆(i)(T ). (34)

Proof: We have, Eφ

∑T
t=1(r(st, at) +

∑M
i=1 λi(c

ub
i − ci(st, at))) = Eφ

∑T
t=1 r(st, at) +

∑M
i=1 λi Eφ

∑T
t=1

(

cubi − ci(st, at)
)

= r?T − Eφ∆
(R)(T ) −

∑M
i=1 λiEφ ∆(i)(T ).

APPENDIX B

PERTURBATION ANALYSIS OF CMDPS

We derive some results on the variations in the value of

optimal reward of the CMDP (2)-(3) as a function of the

cost budgets c
ub. Consider a vector ĉ

ub of cost budgets that

satisfies

cubi − ε ≤ ĉubi ≤ cubi , ∀i ∈ [M ], (35)

where ε > 0. Now consider the following CMDP in which the

upper-bounds on the average costs are equal to {ĉubi }Mi=1.

max
π

lim inf
T→∞

1

T
Eπ

T
∑

t=1

r(st, at) (36)

s.t. lim sup
T→∞

1

T
Eπ

T
∑

t=1

ci(st, at) ≤ ĉubi , i ∈ [1,M ]. (37)

Lemma 13: Let the MDP p satisfy Assumption 1 and

Assumption 2. Let λ? be an optimal dual variable/Lagrange

multiplier associated with the CMDP (36)-(37). Then, λ
?

satisfies
∑M

i=1 λ
?
i ≤ η̂

η , where the constant η is as in (27),

while η̂ is as in (29).

Proof: Within this proof, we let π?(ĉub) denote an

optimal stationary policy for (36)-(37). Recall that the policy

πfeas. that was defined in Assumption 2 satisfies c̄i(πfeas.) ≤
cubi − η. We have

max
(s,a)∈S×A

r(s, a) ≥ r̄(π?(ĉub))

= r̄(π?(ĉub)) +

M
∑

i=1

λ?
i

(

ĉubi − c̄i(π
?(ĉub)

)

≥ r̄(πfeas.) +
M
∑

i=1

λ?
i

(

ĉub − c̄(πfeas.)
)

≥ min
(s,a)∈S×A

r(s, a) +
M
∑

i=1

λ?
i

(

ĉub − c̄(πfeas.)
)

≥ min
(s,a)∈S×A

r(s, a) + η

M
∑

i=1

λ?
i ,

where the second inequality follows since a policy that is

optimal for the problem (36)-(37) maximizes the Lagrangian

r̄(π) +
∑M

i=1 λi

(

ĉubi − c̄i(π)
)

when the Lagrange multiplier

λ is set equal to λ
? [38]. Rearranging the above inequality

yields the desired result.

Lemma 14: Let the MDP p satisfy Assumption 1 and As-

sumption 2. If r?(ĉub) denotes optimal reward value of (36)-

(37), and r? is optimal reward of problem (2)-(3), then we

have that r?− r?(ĉub) ≤
(

maxi∈[1,M ]

{

cubi − ĉubi
})

η̂
η , where

η̂ is as in (29), η is as in (27), and ĉ satisfies (35).

Proof: As discussed in Section III-B, a CMDP can be

posed as a linear program. Since under Assumption 2, both

the CMDPs (2)-(3) and (36)-(37) are strictly feasible, we can

use the strong duality property of linear programs [38] in order

to conclude that the optimal value of the primal and the dual

problems for both the CMDPs are equal. Thus,

r? = sup
π

inf
λ

r̄(π) +

M
∑

i=1

λi

(

cubi − c̄i(π)
)

, (38)

r?(ĉub) = sup
π

inf
λ

r̄(π) +

M
∑

i=1

λi

(

ĉubi − c̄i(π)
)

. (39)

Let π(1), π(2) and λ(1), λ(2) denote optimal policies

and vector consisting of optimal dual variables for

the two CMDPs. It then follows from (38) and (39)

that, r? ≤ r̄(π(1)) +
∑M

i=1 λ
(2)
i

(

cubi − c̄i(π
(1))
)

, and

r?(ĉub) ≥ r̄(π(1)) +
∑M

i=1 λ
(2)
i

(

ĉubi − c̄i(π
(1))
)

. Sub-

tracting the second inequality from the first

yields r? − r?(cub) ≤
∑M

i=1 λ
(2)
i

(

cubi − ĉubi
)

≤
(

maxi∈[1,M ]

{

cubi − ĉubi
})

(

∑M
i=1 λ

(2)
i

)

≤
(

maxi∈[1,M ]

{

cubi − ĉubi
})

η̂
η , where the last inequality

follows from Lemma 13. This completes the proof.
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