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Abstract— The goal of this paper is to use graph theory
network measures derived from non-invasive electroencephalog-
raphy (EEG) to develop neural decoders that can differentiate
Parkinson’s disease (PD) patients from healthy controls (HC).
EEG signals from 27 patients and 27 demographically matched
controls from New Mexico were analyzed by estimating their
functional networks. Data recorded from the patients during
ON and OFF levodopa sessions were included in the analysis
for comparison. We used betweenness centrality of estimated
functional networks to classify the HC and PD groups. The
classifiers were evaluated using leave-one-out cross-validation.
We observed that the PD patients (on and off medication)
could be distinguished from healthy controls with 89% accuracy
– approximately 4% higher than the state-of-the-art on the
same dataset. This work shows that brain network analysis
using extracranial resting-state EEG can discover patterns
of interactions indicative of PD. This approach can also be
extended to other neurological disorders.

I. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder
that predominately affects dopamine-producing (“dopamin-
ergic”) neurons in a specific area of the brain called sub-
stantia nigra, which impacts communication pathways of
the brain. PD affects the lives of more than 10 million
people worldwide and is expected to become more prevalent
in the future [1]. The main symptoms of PD are tremor,
muscle stiffness, bradykinesia (slowness of movement), un-
stable posture, balance and gait abnormalities, and dysphonia
(voice disorders). Non-motor symptoms can range from mild
cognitive impairment (MCI) to dementia.

Diagnosis of PD remains complicated, especially in pa-
tients without severe symptoms. Accuracy of gold-standard
clinical diagnosis is only about 80% and has not improved
in the last 30 years [2]. Considering that most PD patients
develop dementia in 15-20 years, there is an urgent need
to identify biomarkers for early diagnosis, monitor disease
progression, and establish efficacious therapies. It is estab-
lished that cognitive dysfunction in neurological disorders
can be described as aberrant patterns of interactions between
neural elements in a large-scale brain network [3]–[6]. We
hypothesize that network analysis may hold the key to
understanding the electrophysiological basis of PD.

Although functional network analysis of Parkinson’s was
addressed in past literature, majority of these studies are
limited to functional magnetic resonance imaging (fMRI)
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[7]–[10]. Scalp EEG is optimal for clinical, commercial,
and research purposes because of its non-invasive nature
and wide availability. More importantly, EEG can sample
neural activity at 100–1000x higher time resolution than
fMRI, making it more suitable to assess temporal dynamics.
Previous EEG research on Parkinson’s was focused on spec-
tral features, or event-related potentials [11]–[15]. However,
these approaches do not consider simultaneous interactions
between multiple brain areas, i.e., EEG network functional
connectivity.

This paper presents a functional network analysis to de-
code scalp EEG signals and detect node centrality modula-
tions indicative of PD. Recent studies demonstrated statistical
differences in network measures such as node centrality
between PD patients and healthy controls [16]–[19]. Here,
we present perhaps the first EEG-based machine learning
analysis that utilizes node centrality features to differentiate
between Parkinson’s patients and healthy controls to the best
of our knowledge.

The rest of the paper is organized as follows. Section
II describes the data and methods. Section III presents the
results. The results are discussed in Section IV. Section V
concludes the paper.

II. MATERIALS AND METHODS

A. Data

The data analyzed in this paper were reported in previ-
ous studies [11], [20], [21], and can be downloaded from
https://narayanan.lab.uiowa.edu/article/datasets. The data in-
cluded scalp EEG recordings from 27 patients with PD who
were recruited from the Albuquerque, New Mexico com-
munity and an equal number of demographically matched
(sex and age) controls. All participants were evaluated using
Mini-Mental State Exam (MMSE) and achieved a score
above 26. The PD and control groups did not differ on
any education or premorbid intelligence measurements. All
procedures were approved by the University of New Mexico
Office of the Institutional Review Board, and the participants
were paid $20/hour. Each PD patient visited the lab twice:
on medication (PD-ON) and off medication (PD-OFF). In
the PD-OFF phase, the patients took their most recent dose
of dopaminergic medicines at least 12 hours before the
experiment.

The EEG was recorded from Ag/AgCl electrodes with
a sampling rate of 500 Hz on a 64-channel Brain Vision
system. The signals were referenced to the ‘CPz’ channel,
resulting in 63 timeseries. The original dataset consisted of
two one-minute segments per subject: eyes-open and closed
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(a) Healthy controls (HC) (b) Parkinson’s– on medication (PD-ON) (c) Parkinson’s– off medication (PD-OFF)

Fig. 1: Scalp topographical maps of average betweenness centrality.

conditions. This analysis uses resting-state EEG signals of
one-minute duration recorded under the eyes-open condition.
Power line noise and its harmonics were removed using 6th
order IIR filters.

B. Feature Extraction Using Network Analysis

Functional Networks were constructed by computing ab-
solute Pearson’s correlation coefficient between all pairs
of channels. In this case, each EEG channel is a node.
Therefore, an edge with high connectivity displays a strong
correlation between the interacting channels. Since a value
between 0 and 1 represents each connection, these are
weighted-undirected networks.

For each subject, the one-minute recording was divided
into 11 30-second segments with 90% overlap. Functional
networks for each of the 11 segments were computed.
The final representative network was the mean of these 11
networks. The mean networks were considered to minimize
the effects of non-stationarity.

The node centrality of a given node measures its impor-
tance within the network. We compute three node centrality
metrics: betweenness centrality, node degree, and eigenvector
centrality. Betweenness centrality measures the extent to
which a given node falls in the shortest path between any
two other nodes [22]. Node degree quantifies the number of
connections to a node. Eigenvector centrality is a measure
of the influence a node has on a network and was found to
be linked to firing rates of neurons [23]. The node centrality
values were used as features for classification.

Fig. 1 shows the two-dimensional scalp topographic maps
depicting the average betweenness centrality of nodes in the
three groups: healthy controls (HC), PD-ON, and PD-OFF.
All three scalp maps were plotted on the same scale for
comparison. We observe that the betweenness centrality in
HC is higher in the mid-frontal region compared to PD-ON
and PD-OFF.

C. Feature Selection and Classification

Naive Bayes classifiers with Gaussian kernel were trained
to differentiate PD patients from healthy controls. The clas-
sifiers were modeled separately for PD-ON and PD-OFF
patients. For single-channel classification, the betweenness

centrality of a single node was used as the input feature. For
multi-channel classification, sequential forward feature selec-
tion was employed to select the optimal features/channels.
That is, we first start with an empty candidate set. In each
iteration, a new feature is sequentially added to the set to
minimize classification error. The process is stopped when
the accuracy cannot be improved further [4], [24].

The classifiers were evaluated using leave-one-subject-out
cross-validation. The cross-validation prevents overestimat-
ing the accuracy due to over-fitting of training data and
ensures the models were evaluated on all subjects.

III. RESULTS

A. Single-Channel Classification

Fig. 2(a) and Fig. 2(b) depict single-channel classification
performance for HC vs. PD-ON and HC vs. PD-OFF, re-
spectively. Each value is the mean cross-validation accuracy.
The best HC vs. PD-ON accuracy was 75.93% for channel
C2. For HC vs. PD-OFF, the highest accuracy of 79.63%
was attained by channel PO7.

B. Multi-Channel Classification

The results presented here are based on Naive Bayes
classifiers with Gaussian kernels. We observed that these
models performed the best with minimal overfitting com-
pared with other machine learning models such as support
vector machines, linear discriminant analysis, and decision
trees. The receiver operating characteristic (ROC) curves
comparing the three node-centrality measures are depicted in
Fig. 3. ROC curve can be used to evaluate the performance
of binary classifiers. The higher the area under the ROC
curve (AUC), the better the models distinguish between the
two classes. The plots illustrate that betweenness centrality
differentiates the healthy subjects from PD patients, with
the highest AUC in PD-ON and PD-OFF conditions. The
betweenness centrality-based classifiers achieved an AUC
of 91.63% and 88.6% for HC vs. PD-ON and PD-OFF,
respectively.

The individual classification results are presented in Table
I. It can be observed that betweenness centrality (BC) out-
performs node degree (ND) and eigenvector centrality (EC)
in both cases. For HC vs. PD-ON, the accuracy, sensitivity,
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(a) Healthy controls vs. PD-ON

(b) Healthy controls vs. PD-OFF

Fig. 2: Single-channel classification performance compari-
son.

and specificity were 88.9% each. Betweenness centrality of
nodes represented by EEG electrodes FT9, PO5 and PO7
were the most discriminatory between the two classes. In
the case of HC vs. PD-OFF, the accuracy, sensitivity, and
specificity were 88.89%, 92.59%, and 88.6%, respectively.
Betweenness centralities of P5, PO7 and PO3 were chosen
as the optimal features for HC vs. PD-OFF.

IV. DISCUSSION

There is a growing consensus in modern neuroscience
that human brain function is encoded as complex small-
world networks. In other words, functional brain networks
contain a combination of dense local connectivity and sparse
yet efficient long-distance (global) connectivity. Some nodes
are more important (hub nodes) than other as a result of
this small-worldness. This node importance can be measured
using node centrality metrics such as betweenness centrality.
Our work showed that betweenness centrality differenti-
ates PD patients from age-matched controls. We also show
that this effect is independent of the patients’ medication
status. Besides PD, modulated betweenness centrality has
been also implicated in other neurological disorders such as
Alzheimer’s, Schizophrenia and Epilepsy [3], [25]–[27].
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(a) Healthy controls vs. PD-ON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s

it
iv

e
 r

a
te

Betweenness

Node Degree

Eigen Vector

(b) Healthy controls vs. PD-OFF

Fig. 3: Receiver operating characteristic (ROC) curves com-
parison between 3 node centrality measures.

Our method achieved higher leave-one-out cross-
validation accuracy (88.9%) than the state-of-the-art
(85.2%) on this dataset [11]. The decoders in [11] are based
on spectral properties of individual channels but do not take
into account the interactions between the channels. One
limitation of the proposed approach is that the neural activity
is recorded from the scalp. Scalp EEG is typically affected
by confounding factors such as volume conduction. Also,
compared to fMRI, EEG has a lower spatial resolution,
making it difficult to localize the source of the activity.
However, the proposed approach is amenable to real-time
applications since it only requires 1-minute resting-state
EEG recordings. All existing methods use longer recordings
or employ computationally complex algorithms like deep
learning [11], [14], [28]. Also, PD-ON scalp plots in Fig.
1 appear closer to HC than PD-OFF, leading to a higher
accuracy for HC vs. PD-OFF. We attribute this to the fact
that the data consists of resting state activity, which does
not account for any motor symptoms usually affected by
medication.

V. CONCLUSION

This work demonstrates that metrics like betweenness
centrality can measure how functional networks encode PD.
We employed graph analysis to develop neural classifiers that
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TABLE I: Leave-one-subject-out cross validation results
summary for HC vs. PD classification. Sensitivity and
specificity represent the healthy control and PD accuracies,
respectively. Random label-assignment would result in a
baseline accuracy of 50%.

Classifier HC vs. PD-ON HC vs. PD-OFF HC vs. PD
(ON+OFF)

Features BC ND EC BC ND EC LEAPD [11]
Accuracy(%) 88.9 74.1 83.3 88.9 83.3 63 85.2
Sensitivity(%) 88.9 63 85.2 92.6 77.8 63 88.9
Specificity(%) 88.9 85.2 81.5 88.2 88.9 63 81.5

AUC(%) 91.6 63.92 77.2 88.6 82.7 61.2 93.8
Abbreviations: HC=Healthy controls, PD=Parkinson’s disease, BC =
Betweenness centrality, ND=Node degree, EC=Eigenvector centrality,

LEAPD=Linear-predictive-coding EEG Algorithm for PD [11]

accurately separate PD patients from healthy age-matched
controls regardless of their medication status. Such decoders
can assist clinicians as a cost-effective diagnostic tool, crucial
for prognostic and therapeutic purposes. These decoders
can also be used to find biomarkers of PD for developing
interventional therapies such as adaptive deep-brain stimu-
lation or transcranial direct-current stimulation [29]. Future
research will be directed towards causal network analysis
and validating the approach on multiple datasets [30]. Also,
methods to attenuate the effects of volume conduction such
as spatial filters or source-level connectivity can be explored.

REFERENCES

[1] [Online]. Available: https://www.parkinson.org/
[2] G. Rizzo, M. Copetti, S. Arcuti, D. Martino, A. Fontana, and

G. Logroscino, “Accuracy of clinical diagnosis of parkinson disease,”
Neurology, vol. 86, no. 6, pp. 566–576, 2016.

[3] C. J. Stam, “Modern network science of neurological disorders,”
Nature Reviews Neuroscience, vol. 15, no. 10, pp. 683–695, 2014.

[4] B. Sen, G. A. Bernstein, B. A. Mueller, K. R. Cullen, and K. K.
Parhi, “Sub-graph entropy based network approaches for classifying
adolescent obsessive-compulsive disorder from resting-state functional
MRI,” NeuroImage: Clinical, vol. 26, p. 102208, 2020.

[5] T. Xu, K. R. Cullen, B. Mueller, M. W. Schreiner, K. O. Lim,
S. C. Schulz, and K. K. Parhi, “Network analysis of functional
brain connectivity in borderline personality disorder using resting-state
fMRI,” NeuroImage: Clinical, vol. 11, pp. 302–315, 2016.

[6] S. Avvaru, N. Provenza, A. Widge, and K. K. Parhi, “Decoding
human cognitive control using functional connectivity of local field
potentials,” in 43rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Oct 31st –
Nov 1st 2021.

[7] L.-l. Gao and T. Wu, “The study of brain functional connectivity in
parkinson’s disease,” Translational neurodegeneration, vol. 5, no. 1,
pp. 1–7, 2016.

[8] L. Sang, J. Zhang, L. Wang, J. Zhang, Y. Zhang, P. Li, J. Wang,
and M. Qiu, “Alteration of brain functional networks in early-stage
parkinson’s disease: A resting-state fMRI study,” PLOS ONE, vol. 10,
no. 10, pp. 1–19, 10 2015.

[9] A. Tessitore, M. Cirillo, and R. De Micco, “Functional connectivity
signatures of parkinson’s disease,” Journal of Parkinson’s disease,
vol. 9, no. 4, pp. 637–652, 2019.

[10] C. Gratton, J. M. Koller, W. Shannon, D. J. Greene, B. Maiti, A. Z.
Snyder, S. E. Petersen, J. S. Perlmutter, and M. C. Campbell, “Emer-
gent Functional Network Effects in Parkinson Disease,” Cerebral
Cortex, vol. 29, no. 6, pp. 2509–2523, 05 2018.

[11] M. F. Anjum, S. Dasgupta, R. Mudumbai, A. Singh, J. F. Cavanagh,
and N. S. Narayanan, “Linear predictive coding distinguishes spectral
eeg features of parkinson’s disease,” Parkinsonism & Related Disor-
ders, vol. 79, pp. 79–85, 2020.

[12] B. Klassen, J. Hentz, H. Shill, E. Driver-Dunckley, V. Evidente,
M. Sabbagh, C. Adler, and J. Caviness, “Quantitative EEG as a
predictive biomarker for parkinson disease dementia,” Neurology,
vol. 77, no. 2, pp. 118–124, 2011.

[13] M. Chaturvedi, F. Hatz, U. Gschwandtner, J. G. Bogaarts, A. Meyer,
P. Fuhr, and V. Roth, “Quantitative eeg (QEEG) measures differen-
tiate parkinson’s disease (PD) patients from healthy controls (HC),”
Frontiers in Aging Neuroscience, vol. 9, 2017.

[14] R. Yuvaraj, U. R. Acharya, and Y. Hagiwara, “A novel parkinson’s
disease diagnosis index using higher-order spectra features in EEG
signals,” Neural Computing and Apps., vol. 30, no. 4, pp. 1225–1235,
2018.

[15] C. Lainscsek, M. Hernandez, J. Weyhenmeyer, T. Sejnowski, and
H. Poizner, “Non-linear dynamical analysis of EEG time series dis-
tinguishes patients with parkinson’s disease from healthy individuals,”
Frontiers in Neurology, vol. 4, 2013.

[16] R. L. Utianski, J. N. Caviness, E. C. van Straaten, T. G. Beach, B. N.
Dugger, H. A. Shill, E. D. Driver-Dunckley, M. N. Sabbagh, S. Mehta,
C. H. Adler, and J. G. Hentz, “Graph theory network function in
parkinson’s disease assessed with electroencephalography,” Clinical
Neurophysiology, vol. 127, no. 5, pp. 2228–2236, 2016.

[17] J. Fang, H. Chen, Z. Cao, Y. Jiang, L. Ma, H. Ma, and T. Feng,
“Impaired brain network architecture in newly diagnosed parkinson’s
disease based on graph theoretical analysis,” Neuroscience Letters, vol.
657, pp. 151–158, 2017.

[18] H. Liao, J. Yi, S. Cai, Q. Shen, Q. Liu, L. Zhang, J. Li, Z. Mao,
T. Wang, Y. Zi, M. Wang, S. Liu, J. Liu, C. Wang, X. Zhu, and
C. Tan, “Changes in degree centrality of network nodes in different
frequency bands in parkinson’s disease with depression and without
depression,” Frontiers in Neuroscience, vol. 15, 2021.

[19] H.-C. Baggio, R. Sala-Llonch, B. Segura, M.-J. Marti, F. Valldeoriola,
Y. Compta, E. Tolosa, and C. Junqué, “Functional brain networks
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