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In this brief Perspective we analyze the present status of the field of defect engineering of oxide
surfaces. In particular we discuss the tools and techniques available to generate, identify, quantify,

and characterize point defects at oxide surfaces and the main areas where these centers play a role in
practical applications.



1. Introduction and definitions

Defects, with their variable nature, concentration, and complex kinetic behavior, largely determine
the functionality, durability, and properties of oxide-based devices [1]. This holds true for both
extended and point defects. These latter are particularly difficult to identify due to their reduced
dimensionality and low concentrations. Defects can exist in various charge states and can act as
electrons/holes traps or recombination centers [2], thus altering the electrical, optical, magnetic, and
chemical properties of a material. Even mechanical and thermal properties can be affected by the
presence of defects [3]. On the side of applications, the nature and concentration of defects in oxides
affect the efficiency, stability, and lifetime of a device. For instance, ion segregation to surfaces and
interfaces may depend on the presence of point defects and can lead to performance degradation.
Particularly relevant is the role of point defects at the surface of oxides (solid/gas or solid/liquid
interface) [4,5,6] or at the junction between two materials (solid/solid interface) [ 7].

In this Perspective article we discuss the present status of use, creation, and characterization of defects
on oxide surfaces, with particular attention to new approaches and techniques. The focus is on point
defects: cation or anion vacancies, anti-site defects, impurity atoms, surface irregularities, low-
coordinated atoms (corners, kinks), hydroxyl or peroxo groups, etc. Extended defects, dislocations,
grain boundaries, etc. are not included in the discussion. We reiterate that the focus here is not on the
emerging area of defects in two dimensional materials which has already shown to lead to very
interesting chemical [see e.g. ref. 8] and physical [see e.g. ref. 9] consequences. Finally, one has also
to mention that a distinction between surface and bulk defects is often difficult at the experimental
level, and that many properties are determined by bulk more than by surface defects.

The article does not have the ambition to provide a comprehensive view of the field, but rather to
focus on the state-of-the-art knowledge with a concise analysis of the tools available for the study
and use of point defects at oxide surfaces. The aim is to establish where we are in terms of capability
of identifying and counting point defects at oxide surfaces and of exploiting them in practical
applications. The article is organized in three sections: (a) role and use, (b) generation, and (c)
characterization of surface defects. For each section we provide a list of examples and a brief
description, including a few representative references.

2. Potential use of defects at oxide surfaces

The most relevant impact of surface defects is on the chemistry, Table 1. Not surprisingly, the largest
part of studies dealing with this topic refer to modifications of catalytic, photocatalytic or
electrocatalytic properties of oxide materials [10,11,12,13,14,15]. As McFarland and Metiu wrote in
a seminal review on this subject “it is very likely that doped oxide catalysts have been used before
the concept was formulated explicitly [...] It is possible that catalysis by doped oxides is as old as
catalysis by oxides, but we were not aware of the fact” [16]. In recent years the interest towards
controlling surface defects for chemical properties has increased and has involved defects engineering
for cathode materials for fuel cells [17], properties of photocatalytic systems [11,13], electrodes in
batteries and supercapacitors [18,19,20], etc.

A separate discussion should be dedicated to the exploding field of single atom catalysts (SAC).
These are catalytic systems consisting of a transition metal atom bound to an oxide support either by
new chemical bonds or directly replacing a lattice atom [21]. Before the introduction of the term
SAC, these entities were simply classified as impurity atoms or extrinsic defects, as they possess the
typical characteristics of dopants in a host material. The reader is referred to the abundant literature
on this specific topic [21].



The other classical field where surface defects play a dominant role is gas sensors [22,23]. For
instance, the ability of the surface to incorporate oxygen depends on the availability of oxygen-
accommodating vacant lattice or interstitial defect sites [22]. But more in general, the adsorption of
gas-phase molecules largely depends on the presence of active sites related to surface defects. These
can also affect the electrical conductivity of the material, another essential characteristic of sensors
[23].

The presence of surface defects is not always beneficial and may result in deterioration of the
properties. Recently, new approaches have been proposed to passivate surface defects by adsorption
of specific molecular complexes [24,25]. For instance, this is relevant to reduce perovskite defects
and suppress ion movement, improving the performances [24].

Not less important from a technological point of view, are the studies of surface defects that affect
conductive properties [26,27]. Here particularly relevant is the role of oxygen vacancies at the
interface of materials forming the active part of memristor devices; ion diffusion processes are
relevant for resistive switches and memristors [28,29]. An interesting possibility is the use of external
electric fields to induce formation of oxygen vacancies with direct effects on the metal/insulator
transition [30,31,32]. Finally, oxide point defects have an important role for ferroelectric domain
walls nanoelectronics [33].

Table 1 — Processes related to point defects at oxide surfaces

Brief description of role of defects Ref

Chemical properties

Thermal catalysis - Change of surface reactivity

- Charging of adsorbed species

- Induce presence of radical species or sites

- Doping with heteroatoms (including single-atom catalysts)
- Promoting (or inhibiting) effects

- Stabilize surface species (supported metal particles)

[16,10,11]

Photocatalysis - Change optical absorption [11,13]
- Affect electron-hole recombination
- Increase photocatalytic activity

Electrocatalysis

Charging and activation of adsorbed species
Induce band bending

[14,15]

Electrodes for fuel cells,
batteries, supercapacitors

Modify ionic and electronic conductivity
Enhances oxygen reduction

[17,18,19,20]

Gas sensors Modulate amount of surface adsorbed species [22,23]
Modify electrical conductivity
Defect passivation Passivation by adsorbed functional groups [24,25]
Physical properties
Conductivity, Introduce donor levels in the gap; free electrons are [26,27]
semiconductors produced by thermal activation
Formation of bands at high vacancy concentration
Introduce high mobility species
Memristors ITon or vacancy diffusion processes for resistive switches [28,29]
Metal/insulator transition Induce sharp change in resistivity as function of temperature | [30,31,32]
Reversible transition as a function of vacancies
concentration
Band gap opening
Ferroelectric domain walls Induce local bending in domain walls [33]

Act as charge traps
Tune transport properties




3. Generation of surface defects

When talking of “defects engineering” one should not forget that the preferential sites where defects
form in a material depend on their thermodynamic stability. For instance, while an oxygen vacancy
prefers to form on the surface layer of the rutile TiO2(110) surface, the same defect forms
preferentially in sub-surface layers of the (101) surface of the anatase TiO> polymorph [34]. Thus,
the idea of “defect engineering” cannot be disjoint from the intrinsic preference of some defects to
segregate in the bulk rather than on the surface. Another aspect to consider is that methods to generate
defects may result in high damage of the surface, with moderate control on the final structure,
amorphization, formation of voids, etc.

Classical approaches to generate defects are based on chemical methods, some of which are
summarized in Table 2. These include introduction of aliovalent atoms with consequent formation of
vacancies to keep charge neutrality [35,36], oxygen desorption by thermal treatment in vacuum or in
hydrogen atmosphere [12,37], chemical or electrochemical reduction [38,39], etc. Oxygen vacancies
can also form as a result of chemical etching with reductive agents such as sodium borohydride and
hydrazine hydrate [40]. In recent years it has become increasingly clear that oxygen vacancies may
form in the course of a reaction at the periphery of supported metal particles, indicating a preferential
removal of oxygen from these sites [41].

Other approaches to create defects imply irradiating the surface with UV-light [42,43] or with
electrons [44,45,46], bombarding the surface with ions of variable kinetic energy [47,48,49,50], or
by mechanical action with consequent rupture of chemical bonds [51,52]. These techniques lead to a
variable level of control of position and number of oxygen defects at the surface. For instance, by
UV-irradiation one can remove just a few O atoms from the surface or can reduce the system to the
point that a two-dimensional electron gas forms, as for UV-irradiated SrTiOs; [42]. Using ion
bombardment or mechanical activation the surface is often highly damaged [53].

Completely different is the case of surface manipulation with STM and AFM tips, an area where
substantial progress has been made in recent years [54]. For instance, using the tip of a non-contact
AFM oxygen vacancies can be reversibly created on rutile TiO> by means of a voltage pulse [55], a
process that can be simulated using accurate pair potentials [56]. These techniques are highly
sensitive and site-specific but can be applied only to well defined surfaces and are relevant for model
studies. Nevertheless, they provide information on the atomistic structure of defects and on their
mobility that were simply unthinkable up to twenty years ago.

Table 2 — Methods and techniques to generate surface point defects

Method or technique Brief description Ref

Chemical methods

Metal/non metal doping - Generate charge unbalance; defects form to keep [35,36]
electroneutrality

- Introduce heteroatoms at the surface (surface segregation)
- Deposition of surface atomic species from
impregnation/reduction

Vacuum thermal annealing - Oxygen desorption and O vacancies formation [37]

Hydrogen thermal treatment - H adsorption followed by H,O desorption and O [12]
vacancies formation
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Chemical reduction - Molecular adsorption followed by thermal annealing with | [38,39]
formation of O vacancies

- Microwave assisted hydrothermal treatment

- Electrochemical reduction

Chemical etching - reductive chemical agents (NaBH,4) [40]
Reaction produced defects - Reduced O vacancy formation energy at periphery of [41]
(metal/oxide interfaces) supported metal particles

- Formation of O vacancies due to O incorporation in an
organic substrate (MvK mechanism of oxidation in

catalysis)
Light irradiation
UV-irradiation - UV-induced O vacancy formation [42,43]

- Change in resistance and 2D electron-gas from O

desorption
Surface damage
Electron irradiation and electron Selective removal of surface ions (formation of O [44,45,46]
bombardment vacancies)
Swift-ion bombardment - Bombardment with ions with high kinetic energy [47,48]

- Induce damage, amorphization, defects clustering
- Modulate defect formation by tuning energy of impacting
ions

Ar" ion bombardment - Bombardment with low-energy Ar* ions [49,50]
- Selective formation of O vacancies
- Formation of sub-oxides in surface region

Mechanical activation - Electron release under ball milling due to vacancy [51,52]
(mechanochemistry) formation (even in nonreducible oxides)
- Solvent-free, low temperature treatment

Atomistic manipulation

STM and AFM induced defects - Atoms selectively removed or displaced by STM or AFM | [55,54]
tip
- Works for model studies only

4. Characterization of surface defects

Point defects are, by definition, elusive species. Since they are present in small amounts, their
detection requires sophisticated and very sensible techniques (see Table 3). Of the three areas
discussed in this Perspective, characterization is probably where progress has been most substantial.
For instance, it has become common practice to combine a variety of techniques, each providing a
specific piece of information, and to compare the results with supporting theoretical modeling, mostly
based on DFT [57,58] leading to an atomistic representation of the defect and of its properties.

Impressive advances have been made in the imaging of materials with high-resolution microscopies.
Aberration correction TEM [59,60] and STEM [61,62] have become standard approaches to visualize
defects in the bulk or at the interface of materials. On model systems, the use of STM and AFM
microscopies [63,64], sometimes in a combined mode, produce spectacular views of point defects
and their surroundings. With an STM tip one can also do single-site spectroscopy, invaluable to study
the spectroscopic features of an isolated defect [65].

On the non-local scale, beside the widely adopted UV-vis [66,67], photoluminescence [68,69], FT-
IR [70,71,72], IRAS [73] and Raman [74,75] techniques, relevant information on the dynamics of
surface defects can be obtained with photo-induced enhanced Raman spectroscopy (PIERS) [76].
Surface vibrations associated to defects can be detected using EELS [77,78] and REELS [79,80] in
which the electron beam does not strike the sample but interacts with it via the long-ranged Coulomb
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interaction. A novel sophisticated vibrational technique to detect defects is Surface action
spectroscopy (SAS) [81]. This is based on the exposure of a surface at low-temperature and in UHV
conditions to a messenger species (e.g. Ne or Ar); this species is then desorbed via absorption of IR
light from a free-electron laser. The desorption rate at a given IR frequency provides specific
information on surface structure and defect sites.

The role of EPR to identify paramagnetic impurities on oxide surfaces has grown since, beside the
classical continuous wave EPR, high spectral resolution can be attained with pulse EPR at Q band
frequency [82,83]. Recently even NMR spectra have been used to identify surface defects with high
precision [84,85].

Widely used are X-ray absorption, X-ray emission [86,87,88], and photoemission (XPS, UPS)
spectroscopies [87,88,89,90]. In particular, EXAFS is essential to determine the bond length and
coordination number of atoms in the lattice while XANES provides invaluable information about the
coordination number and oxidation state of impurity atoms.

Information on defects can also be obtained with less common techniques such as the Positron
annihilation lifetime spectroscopy (PALS) [91,92] and the Metastable impact electron spectroscopy
(MIES) [93,94]. This latter is particularly relevant since it is highly sensitive to surface species. The
panorama is completed by diffraction and scattering techniques (X-ray [95,96] and neutron [97]
diffraction, He scattering [98]).

Of particular relevance is the study of the dynamics of oxygen vacancies, a phenomenon crucial in
catalysis [99], memristor devices [ 100], dielectric breakdown in insulating oxides [101], etc. There
are various methods to follow the dynamical behavior of vacancies. PIERS allows for the evaluation
of atomic V, dynamics in metal oxide surfaces [76]. Dielectric spectroscopy is employed to probe
high and low resistance states related to oxygen migration and to understand the dynamics of oxygen
vacancies in memristors [100]. One can track the dynamic oxygen vacancy behavior with STEM,
obtaining atomic-level quantitative information on phase transformation and oxygen diffusion [ 102].
Recently, specific doping by Gd ions of CeO: has been used to transform mobile oxygen vacancies
into clustered or immobile vacancies [99], showing the possibility to control, to a certain extent, the
mobility of these centers.

All these methods are complemented and supported by increasingly sophisticated quantum-chemical
approaches either based on periodic [36,103] or on local cluster models [104,105]. Probably, the
combined use of spectroscopic and microscopic measurements with well-defined structural models
represents the most relevant advance in the field of defects engineering in recent years.

Table 3 — Characterization methods of surface defects

Method or technique Brief description Ref
Microscopies
Aberration corrected high-resolution - Atomic resolution, imaging of surfaces, including | [59,60]
transmission electron microscopy dopants and vacancies
(HRTEM)
Scanning transmission electron - Atomic resolution (with annular dark field (ADF) | [61,62]
microscopy (STEM) and annular bright field (ABF) detectors)
Scanning tunneling microscopy (STM) - Atomic resolution, vacancies and impurities [65,63]
and scanning tunneling spectroscopy - Requires a conducting planar support
(STS) - Allows manipulation of defects

- Not only microscopy, also spectroscopy
Atomic force microscopy (AFM) - Atomic resolution, vacancies and impurities [54,64]
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Can be used also with insulating supports

Spectroscopies
UV-visible (UV-vis) Coordinatively unsaturated sites, trapped charges | [66,67]
Photoluminescence Intra-band-gap states associated with localized [68,69]

defects

Fourier transform infra-red (FT-IR),
Infrared reflection absorption
spectroscopy (IRAS)

Adsorbed probe molecules (CO, CO,,
phosphines), functional groups (OH, peroxo, etc.)
Highly sensitive to local coordination

[70,71,72,73]

Raman spectroscopy Lattice defects [74,75]
Vibrational properties of molecules adsorbed on
surface defects

Photo-induced enhanced Raman Evaluation of atomic dynamics of O vacancies in | [76]

spectroscopy (PIERS)
Surface enhanced Raman spectroscopy
(SERS)

oxide surfaces
Stability of atomic defects at ambient pressure
and under operando conditions

Electron energy loss spectroscopy
(EELS)

Reflection electron energy loss
spectroscopy (REELS)

Surface vibrations
Oxidation states of host cations
Detect localized electronic states in band gap

[77,78,79,80]

Surface action spectroscopy (SAS) Structural information independent of long-range | [81]
order of the sample
Requires a free-electron laser
Electron paramagnetic resonance Trapped electrons, transition metal impurities, [82,83]
(EPR) paramagnetic F centers
Surface radical species
Highly sensitive to electron localization
Solid state Nuclear magnetic resonance Magic-angle spinning NMR spectroscopy of [84,85]
(NMR) adsorbed probe molecules
Highly sensitive to low amounts of dopants
X-ray absorption spectroscopy (XAS), Info on local structure, coordination, bond [86,87,88]

extended X-ray absorption fine
structure (EXAFS), X-ray absorption
near edge structure (XANES), etc.

distances
Single atom catalysts, dopants

X-ray photoemission spectroscopy
(XPS), Ultraviolet photoemission
spectroscopy (UPS), Resonant

Vacancies, interstitials, dopants
Chemical composition, oxidation state
Not very sensitive to low amounts of defects

[87,88,89,90]

photoemission
Positron annihilation lifetime Electron-positron annihilation photons allow [91,92]
spectroscopy (PALS) measurement of the lifetime of positrons,
providing information on defects
Metastable impact electron Surface sensitive technique, uses excited helium [93,94]
spectroscopy (MIES) atoms as a surface probe
Sensitive to small amounts of defects
Diffraction, scattering
X-ray diffraction (XRD), Synchrotron Atomically resolved structural model for oxide [95,96]
X-ray diffraction (SXRD) surface, lattice constants
Defect induced lattice strain
Neutron diffraction Hydrogen impurities, oxygen defects, oxygen [97]
sublattice
He atom scattering Hydrogen on oxide surfaces [98]
Quantum theory
Periodic approaches (density functional Electronic structure of vacancies and impurities [36,103]
theory, DFT) Theoretical spectroscopic properties
Defect formation energies
Local cluster model approaches (ab High-level computational spectroscopy [104,105]

initio methods)




5. Computational studies of surface defects

Computational characterization of defects on oxide surfaces has relied on methods based on
density functional theory with the aim of increasing the accuracy of the approach [57, 103-107].
While DFT has had amazing success in providing insights into factors that control the nature of
point defects at surfaces, it has well known limitations such as underestimation of band gaps and
overestimation of electron delocalization and metallic character of systems, as summarized in Ref.
106. These limitations are particularly important for materials with f'electrons, as the role of electron
correlation becomes increasingly important and methods beyond DFT need to be invoked. A number
of beyond DFT methods have thus been introduced to overcome these limitations for oxides,
including DFT+U, application of a variety of hybrid functionals, a quantum many-electron approach
[108] and dynamical mean field theory combined with DFT [109] with good success in describing
characteristics of oxides that have long alluded researcher. The computational demand set by the
beyond DFT approaches (except for DEFT+U), however, still poses technical challenges in addressing
inhomogeneities in the computational super cell as introduced by surfaces with point defects. The
recent successful application of the multireference density matrix embedding theory to point defects
on several oxides [101] is very encouraging.

6. What next?

Novel and advanced preparation, characterization, and simulation tools offer the potential to
investigate defects in great detail, not only identifying their local environment, but also their temporal
evolution during chemical reactions, the kinetics of formation and annealing, the electronic
properties, the associated gap states, the absorption and emission characteristics, the capability to trap
charges, etc. While this provides an unprecedented arsenal of approaches to generate and characterize
point defects, it becomes increasingly clear that, due to their small dimensionality, defect properties
are highly sensitive to the chemical surrounding. This is the essence of coordination chemistry, where
the features of a transition metal atom can be modified by changing the ligands around the metal
center. Impurity atoms or missing ions (vacancies can be considered as pseudo-atoms) may exhibit
radically different properties depending on the specific structure. Even the smallest change of
coordination, for instance by displacing the defect from a terrace to a step, can produce radically
different properties. Despite the enormous progress done in the past twenty years, the precise
identification of the defect structure still represents a challenge for theory and experiment.

Even more difficult is to generate defects with a specific and desired chemical environment. Here the
progress has been marginal. Most of the methods used largely rely on tuning the preparation
conditions to obtain a more or less defective sample or require to severely damage the surface with
post-synthetic treatments in order to generate the defects. On the other hand, great advances have
been made in model systems thanks to the use of scanning probe spectroscopies or microscopies.

There is growing evidence that defects at oxide surfaces can be exploited to improve a variety of
properties, both chemical and physical. For the future what is needed is to improve measurement
techniques for operation at high temperatures and complex environments, thereby enabling
characterization under in situ conditions in which oxides are often used.

In summary, the capability to control defects at oxide surfaces, which is the basis of the defect
engineering concept, has done significant progress but can be further improved. Given the importance
that these species have in several applied fields, there is little doubt that this objective will be at the
center of research interest in the next years.
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