
Hybrid Digital-Digital In-Memory Computing
Muhammad Rashedul Haq Rashed⇤, Sumit Kumar Jha†, Fan Yao⇤, and Rickard Ewetz⇤

⇤Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA
†Department of Computer Science, University of Texas at San Antonio, San Antonio, USA

rashed09@knights.ucf.edu, sumit.jha@utsa.edu, {fan.yao, rickard.ewetz}@ucf.edu

Abstract—In-memory computing (IMC) using emerging non-

volatile memory promises exascale computing capabilities for a

number of data-intensive workloads. The state-of-the-art solution

to accelerating high assurance applications is based on digital in-

memory computing. Digital in-memory computing can be WRITE-

based or READ-based, i.e., logic is evaluated while switching or

without switching the state of the non-volatile resistive devices. All

prominent studies for accelerating matrix-vector multiplication

(MVM) based applications utilize a single digital logic style.

However, we observe that WRITE-based and READ-based digital

in-memory computing are advantageous for dense and sparse

matrices, respectively. In this paper, we propose a new comput-

ing paradigm called hybrid digital-digital in-memory computing

paradigm. The paper also introduces automated synthesis tool for

mapping computation to a hybrid architecture. The key idea is

to first decompose the matrix into dense and sparse blocks. Next,

bit-slicing is used to further decompose the dense blocks into

sparse and dense parts. The dense (sparse) blocks are mapped

to WRITE-based (READ-based) digital in-memory accelerators.

The proposed paradigm is evaluated using 12 applications from

various domains. Compared with WRITE-based IMC, the hybrid

digital-digital paradigm improves energy and speed with 13X and

20X at the expense of increasing the area with 151X. Compared

with READ-based IMC, the hybrid paradigms improves energy,

speed, and area with 264X, 198X, and 2996X, respectively.

I. INTRODUCTION

Exascale simulation is a pathway to continued scientific
progress. However, scientific computing is facing energy-
efficiency and data movement challenges [13]. With limited
performance improvements expected from further technology
scaling, emerging computing paradigms have recently attracted
an immense amount of attention.

In-memory computing (IMC) using non-volatile memory
is viewed as one of the most promising approaches to ac-
celerate exascale computing applications in the near few
years. Non-volatile memory are two terminal devices with
programmable resistance, including resistive random access
memory (ReRAM), phase change memory (PCM), spin-transfer
torque magnetic random access memory (STT-MRAM) [12].
By integrating the memory devices into dense crossbar ar-
rays, various mathematical kernels can be executed extremely
energy-efficiently. Accelerating matrix-vector multiplication
(MVM) operations are of particular interest as they are the
dominating workload of most scientific computing applications.
The simulation of physical systems is modeled using partial
differential equations (PDEs). In each time step, a system of
linear equations is required to be solved using Kyrlov subspace

This work was in part supported by NSF awards CNS-1908471,
CNS-2008339, CCF-1822976, CCF-2113307, DARPA cooperative agreement
#HR00112020002 and ONR grant #N000142112332.

methods, which involve iteratively performing matrix-vector
multiplication operations [5].

Noteworthy efforts have been devoted to accelerating MVM
operations using analog and digital in-memory computing
paradigms [3, 4, 8, 11]. While analog in-memory computing
is extremely energy-efficient, it cannot deliver the determin-
istic precision required by scientific computing applications.
A number of digital logic styles have been developed for
accelerating MVM operations with high precision. The logic
styles specify how Boolean logic is encoded using the state
of the non-volatile devices and the analog input/output signals.
Logic styles for digital in-memory computing are either READ-
based or WRITE-based [3, 8]. WRITE-based logic styles
involve switching the state of the non-volatile memory devices,
whereas READ-based styles are capable of evaluating the logic
without switching the state. While previous studies have mainly
focused on determining the ideal logic style and architecture for
accelerating MVM operations, we instead observe that READ-
based and WRITE-based IMC are advantageous for different
types of matrices. WRITE-based IMC performs very well for
dense matrices, while READ-based IMC performs well for
sparse matrices. Consequently, we speculate that it would be
advantageous to combine READ-based and WRITE-based in-
memory computing.

In this paper, we propose a new computing paradigm called
hybrid digital-digital in-memory computing. We also present an
automated synthesis tool capable of mapping computation to an
in-memory computing platform. The synthesis tool first decom-
poses matrix-vector multiplication into dense and sparse parts
using a blocking algorithm. Next, the dense parts are further
decomposed into dense and sparse parts in the value domain
using bit-slicing. The sparse and dense parts are accelerated
using READ-based and WRITE-based computing, respectively.
The experimental evaluation is performed using 12 applications
from the SuiteSparse matrix collection [2]. Compared with
READ-based computing, the hybrid digital-digital paradigm
improves energy, speed, and area with 264X, 198X, and 2996X.
Compared with WRITE-based computing, the hybrid digital-
digital paradigm improves energy and speed with 13X and 20X
at the expense of 151X overhead in area.

The remainder of the paper is organized as follows: prelim-
inaries are provided in Section II. The hybrid digital-digital
in-memory computing paradigm is outlined in Section III.
Section IV discusses the synthesis tool. The experimental
results are detailed in Section V. The paper is concluded in
Section VI.



II. PRELIMINARIES

In this section, we first explain the WRITE-based in-memory
computing and the READ-based in-memory computing. Next,
we exemplify a dense system and a sparse system and evaluate
the systems using the two in-memory logic styles.

(a) (b)

Fig. 1: Evaluation of Boolean logic using (a) WRITE-based
MAGIC logic family and (b) READ-based OR-plane logic
family. Each block represents a memristor inside the crossbar.

A. WRITE-based digital in-memory computing

Figure 1(a) illustrates a WRITE-based in-memory computing
style – MAGIC [8]. MAGIC is an in-situ computation method,
where the input and output operands are stored inside the
memory. A MAGIC operation has two steps: an initialization
step and an execution step. In the initialization step, the input
operands are stored into the same memory row and the output
operands are initialized to 1. In the execution step, controlled
voltages are applied and Boolean logic gates are realised by
switching of the state of the output memristors, i.e., using a
special WRITE operation. Figure 1(a) shows the execution of
a two-input NOR gate and an inverter.

B. READ-based digital in-memory computing

Figure 1(b) illustrates a READ-based in-memory computing
style – the OR-plane logic [3]. The OR-plane logic realizes
an arbitrary input OR gate by first setting the memristors in
a bitline either to the low resistance state (LRS) or the high
resistance state (HRS). Next, the input operands are applied as
binary voltages to the wordlines of the crossbar to evaluate the
intrinsic OR-gates. An inverter in the peripheral can realize an
arbitrary input NOR gate. Hence, the NOR-gates are evaluated
using READ operations.

C. Case studies with dense and sparse systems

We make the observation that different in-memory com-
puting paradigms perform differently for dense and sparse
matrices. The WRITE-based MAGIC computing is ideal for
dense matrices where high order of parallelism is offered. State-
of-the-art MAGIC synthesis tools achieves high throughput by
performing single instruction, multiple data (SIMD) operations
in parallel [1]. On the other hand, the size of the computational
kernel and the routing cost both scale up very rapidly for the
READ-based in-memory computing while evaluating a dense
system. However, the WRITE-based computing cannot avoid
redundant multiplications with zeros within sparse system.
Therefore, READ-base computing can achieve superior energy-
latency performance by reducing the computational workload.

(a) (b)

Fig. 2: Systems from SuiteSparse matrix collection [2]: (a) a
dense system and (b) a sparse system.

Using the experimental setup explained in Section V, we
perform a case study of associated energy and latency cost of
in-memory computing for the systems in Fig. 2. Fig. 2(a) shows
a dense system with 78.5% non-zero values. And, Fig. 2(b)
illustrates a sparse system with only 1.4% non-zero values. The
evaluation results are presented in Figure 3.

(a) (b)

Fig. 3: Comparative energy and latency overhead for the
systems in Fig. 2: (a) the Journals benchmark and (b) the
GD99 c benchmark.

For the dense Journals system, the results show that the
WRITE-based computing achieves 12X and 9X energy and
latency improvements respectively over the READ-based com-
puting. Conversely, for the sparse GD99 c system, the READ-
based computing is 64X and 99X more energy and latency
efficient respectively over the WRITE-based computing. Note
that, the READ-based computing is always more expensive in
terms of area due to its lower cell utilization and no cell-reuse.

The results indicate that neither of the two in-memory
computing approaches is best for all the physical systems.
Additionally, many physical systems have localized dense and
sparse segments, as shown by an example system in Fig. 4(a).
This motivates us to develop a hybrid digital-digital in-memory
computing platform, where we evaluate the dense segments
using WRITE based in-memory computing and the sparse
segments using READ based in-memory computing.

III. HYBRID DIGITAL-DIGITAL IN-MEMORY COMPUTING

The overview of the hybrid computational decomposition is
illustrated in Figure 4(b). We propose a two-level decomposi-
tion scheme for the hybrid paradigm.

Most physical systems, while being sparse overall, contain
localized dense areas. We define these areas as blockable
dense segments. In the first level of hybridization, we extract
these dense segments through blocking, which is explained
in Section IV-A. This leaves us with a very sparse original
matrix, which is an automatic candidate for the READ-based
in-memory computing. Next, the intuitive choice for the dense
blocks is the WRITE-based in-memory computing. However,



(a) (b)

Fig. 4: (a) System with localized dense and sparse segments.
(b) Hybrid digital-digital computational decomposition.

we make the observation that a dense matrix segment in a
physical system can be further decomposed into a sparse most-
significant bits (MSBs) matrix and a dense least-significant bits
(LSBs) matrix. We achieve this by bit-slicing the operands
of the original dense matrix [4]. Finally, we map the sparse
MSB matrix into READ-based in-memory computing kernel
and the dense LSB matrix into the WRITE-based in-memory
computing kernel. In the following section, we develop the
synthesis for the hybrid digital-digital in-memory computing.

IV. SYNTHESIS

Our synthesis flow consists of a computational decomposi-
tion stage and a hardware binding stage. The computational
decomposition stage can be further divided into two hybridiza-
tion steps: one blocking step and one bit-slicing step.

A. Hybridization level 1: blocking
The aim of the blocking step is to extract the localized dense

blocks from the original systems. The synthesis tool adopts a
O(nz) blocking algorithm similar to [4], where nz is the number
of non-zero operands in the original matrix.

The synthesis tool takes the system matrix M, operands bit-
precision n, a fixed blocking size (k⇥ l) and a block density
threshold d as inputs. The density threshold parameter, d, is
a design choice which dictates the total number of blocks
and the density quality of the blocks extracted. To find a
potential block, the synthesis tool traverses through the system.
This traversal is very efficient for a sparse matrix because the
tool navigates the original matrix only in its non-zero operand
locations. When the synthesis tool selects a non-zero element
of index (i, j), it explores a block space of (k ⇥ l) starting
from the location of (i, j). If the selected block space meets
the density threshold requirement d, the algorithm extracts the
block from the original matrix and moves to the second layer
of hybridization, which is explained in the next section. If the
density threshold is not met, the algorithm moves onto the
next non-zero operands. At the end of the block extraction, the
remaining sparse matrix M is forwarded to the READ based
in-memory computing kernel.

B. Hybridization level 2: bit-slicing
The goal of the bit-slicing step is to decompose a dense

matrix into a sparse MSB matrix and a dense LSB matrix. Next,
the matrices are mapped into the READ-based and WRITE-
based in-memory computing kernels respectively.

We speculate that, different bit-slicing methods will yield
different overall energy costs. Let us assume that the operands
of the dense matrix are represented using n bits. When we
extract p MSBs from the matrix operands, where p⌧ n, we get
a sparse MSB matrix and a dense LSB matrix. With ascending
values of p, the MSB matrix converts from a very sparse matrix
to an incrementally denser matrix. We show an example of
different bit-slicings with the Journals benchmark in Figure 5.
The Figure shows the sparsity patterns of the MSB matrix that
is extracted from the “originally” dense matrix for variable
values of p. Our aim is to select a pair of MSB and LSB
matrices so as to minimize the overall energy cost.

Fig. 5: Sparsity patterns of the MSB elements of Journals
benchmark for variable bit-slicing width, p.

We perform a case study and evaluate the associated energy-
latency cost of different bit-slicings for the Journals benchmark.
We present the results of the case-study in Fig. 6. The results
show that an energy minima occurs for bit-slicing the original
matrix at p = 7. The synthesis tool aims to determine this
minima point for each incoming dense blocks. Note that, the
area overhead always increases with increment of p, as more
area-expensive READ-based in-memory computing kernels are
introduced.

To select a bit-slicing width p that yields the energy minima,
the synthesis tool performs a binary search. The energy pa-
rameter, E, is initially set to infinity. Next, the function selects
p= n/2 and performs a bit-slicing. The energy cost is estimated
for the resultant MSB and LSB matrices and E is updated with
this new value. Then, the binary search is continued in the
direction, ∂E

∂ p < 0.
Upon termination, the synthesis tool returns an energy-

optimized MSB matrix and an LSB matrix, which are then
hardware bound into the READ and the WRITE-based in-
memory computing kernels respectively.

C. Hardware binding
In this section, we describe the hardware binding method

of the decomposed sparse and dense kernels of the hybrid

(a) (b)

Fig. 6: Overhead of Journals benchmark for different bit-slicing
widths, p: (a) normalized energy vs. p and, (b) normalized
latency vs. p. All results are normalized with respect to purely
WRITE-based computing. The energy minima occurs at bit-
slicing width, p = 7.



TABLE I: Overview of SuiteSparse benchmarks [2].

Applications Systems Matrix Dimensions #Non-zeros

bcsstk34 Structural Problem 588⇥588 21418
eris1176 Power Network Problem 1176⇥1176 18552
mycielskian12 Undirected Graph 3071⇥3071 407200
raefsky1 Computational Fluid Dynamics 3242⇥3242 293409
fxm3 6 Optimization Problem 5026⇥5026 94026
benzene Theoretical/Quantum Chemistry 8219⇥8219 242669
bcsstk33 Structural Problem 8738⇥8738 591904
graham1 Computational Fluid Dynamics 9035⇥9035 335472
net25 Optimization Problem 9520⇥9520 401200
bundle1 Computer Graphics/Vision 10581⇥10581 770811
Si10H16 Theoretical/Quantum Chemistry 17077⇥17077 875923
pkustk06 Structural Problem 43164⇥43164 2571768

computing paradigm. The synthesis tool evaluates the de-
composed dense blocks using the WRITE-based MAGIC in-
memory computing. To bind the dense block computations
into hardware, we utilize the state-of-the-art row-wise MAGIC
mapping algorithm developed in [1]. For evaluating the sparse
matrices using the READ-based in-memory computing, the
synthesis tool utilizes the OR-plane logic based STREAM
framework [10]. The STREAM framework optimizes the sparse
MVM computation by converting the baseline netlist into high
fan-in OR/NOR gates using the DAGON algorithm [7]. Next,
the OR/NOR gates are mapped into OR-plane logic.

V. EXPERIMENTAL EVALUATION

We evaluate the hybrid paradigm with a number of bench-
marks from various domains of physical systems. We compare
the performance of the proposed paradigm with purely READ-
based in-memory computing and purely WRITE-based in-
memory computing paradigms.

The overall hybrid architecture consists of several hybrid
accelerators, each divided into a READ-based in-memory
computing kernel and a WRITE-based in-memory computing
kernel. The WRITE and READ kernels adopt the state-of-the-
art row-parallel SIMPLER [1] framework and the staircase
structured STREAM framework [10] respectively. The archi-
tectural area and power costs are appropriately adapted from
[6, 9, 11].

For hybridization level 1, we set a block size of 128⇥ 128
in accordance with the crossbar size to ensure maximum
parallelism opportunity for dense blocks. We set the density

Fig. 7: Evaluation on SuiteSparse benchmarks.

threshold d = 10%. For fixed-point arithmetic, we set the pre-
cision n= 32 bits for the matrix-vector multiplication operands.

For experimental evaluation of physical systems, we select
12 benchmarks from the SuiteSparse matrix collection [2]. The
overview of the benchmarks are presented in Table I. All of
the systems are sparse, but contain localized dense segments.

We evaluate the energy and latency cost of the benchmarks
using the WRITE-based MAGIC logic, READ-based OR-
plane logic and the proposed hybrid digital-digital platform.
The results of the evaluation are presented in Figure 7. The
experimental results show that the hybrid paradigm achieves
13X and 20X improvements of energy and latency over the
WRITE-based in-memory computing, at the expense of 151X
overhead in area. Also, the hybrid paradigm achieves 264X,
198X and 2996X improvements of energy, latency and, area
respectively over the READ-based in-memory computing. The
experimental results confirm that the proposed hybrid paradigm
is significantly more efficient than the state-of-the art READ
and WRITE-based in memory computing platforms for evalu-
ating the applications from physical systems.

VI. SUMMARY AND FUTURE WORK

In this paper, we present the observation that the READ-
based in-memory computing is more efficient in evaluating
sparse systems and the WRITE-based in-memory computing
has superior performance for dense systems. We exploit this
insight to propose a hybrid digital-digital in-memory computing
platform that can evaluate physical systems more efficiently
than both the state-of-the-art READ/WRITE based in-memory
computing platforms. In future work, we aim to explore hy-
bridization of different logic styles for new applications.

REFERENCES
[1] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled, and

S. Kvatinsky. Simpler magic: Synthesis and mapping of in-memory logic executed in
a single row to improve throughput. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(10):2434–2447, 2019.

[2] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.

[3] A. Dehon. Nanowire-based programmable architectures. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 1(2):109–162, 2005.

[4] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek. Enabling
scientific computing on memristive accelerators. In 2018 ACM/IEEE 45th ISCA,
pages 367–382. IEEE, 2018.

[5] M. R. Hestenes, E. Stiefel, et al. Methods of conjugate gradients for solving linear
systems, volume 49. NBS Washington, DC, 1952.

[6] M. Imani, S. Gupta, Y. Kim, and T. Rosing. Floatpim: In-memory acceleration of
deep neural network training with high precision. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA), pages 802–815. IEEE,
2019.

[7] K. Keutzer. Dagon: Technology binding and local optimization by dag matching. In
Proceedings of the 24th ACM/IEEE Design Automation Conference, pages 341–347,
1987.

[8] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser. Magic—memristor-aided logic. IEEE Transactions on Circuits
and Systems II: Express Briefs, 61(11):895–899, 2014.

[9] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny. Vteam: A general
model for voltage-controlled memristors. IEEE Transactions on Circuits and Systems
II: Express Briefs, 62(8):786–790, 2015.

[10] M. R. H. Rashed, S. Thijssen, S. K. Jha, F. Yao, and R. Ewetz. Stream: Towards read-
based in-memory computing for streaming based data processing. In Proceedings
of the 27th Asia and South Pacific Design Automation Conference, 2022.

[11] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture
News, 44(3):14–26, 2016.

[12] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The missing
memristor found. nature, 453(7191):80–83, 2008.

[13] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news, 23(1):20–24, 1995.


