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Abstract—The time required for training the neural networks increases
with size, complexity, and depth. Training model parameters by back-
propagation inherently creates feedback loops. These loops hinder effi-
cient pipelining and scheduling of the tasks within the layer and between
consecutive layers. Prior approaches, such as PipeDream, have exploited
the use of delayed gradient to achieve inter-layer pipelining. However,
these approaches treat the entire backpropagation as a single task; this
leads to an increase in computation time and processor underutilization.
This paper presents novel optimization approaches where the gradient
computations with respect to the weights and the activation functions are
considered independently; therefore, these can be computed in parallel.
This is referred to as intra-layer optimization. Additionally, the gradient
computation with respect to the activation function is further divided
into two parts and distributed to two consecutive layers. This leads
to balanced scheduling where the computation time of each layer is
the same. This is referred to as inter-layer optimization. The proposed
system, referred to as LayerPipe, reduces the number of clock cycles
required for training while maximizing processor utilization with minimal
inter-processor communication overhead. LayerPipe achieves an average
speedup of 25% and upwards of 80% with 7 to 9 processors with less
communication overhead when compared to PipeDream.

I. INTRODUCTION

Deep neural networks (DNNs) are omnipresent in our daily
lives due to their ability to solve a wide range of complex real-
world problems. DNNs form the backbone for many tasks such as
image recognition, language translation, autonomous driving, and
recommendation systems [1]–[6]. The DNN models are trained once
and repeatedly used for inference. However, because of the large
computations associated with training, the computation time of the
training is orders of magnitude larger than that of the inference. The
massive surge in data center workloads that involve deep learning has
led to new devices such as Google’s TPU [7], [8], NVidia’s Tesla [9],
or Xilinx Alveo [10] in addition to custom accelerators [11]–[15].

Prior works have optimized training using parallel computations
such as data parallelism [16] which replicates the DNN model
across processors, splits the data into multiple smaller batches, and
distributes the computational workload of the model across different
processors. However, data parallelization suffers from significant
inter-processor communication overhead. In addition, with larger and
more complex models with model parameters requiring storage in the
range of GigaBytes [17], it becomes challenging to store the model
as a whole in a single processor. To overcome the issues with data
parallelization, the use of delayed gradients [18] have been exploited
to achieve pipelining in [19], [20] as a viable alternative. However,
while these techniques effectively improve training times, they do
not achieve their maximum potential due to pipeline imbalance
issues and processor underutilization. This has resulted in pipeline
parallelization techniques resorting back to data parallelization [20]
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Fig. 1. A sample four-layer network showing the individual operation
in the forward and backward passes. a) Conventional abstraction into 3
operations: Forward, Backward and Weight update. b) Detailed view of
different operations in forward and backward. The critical loop of the network
is highlighted.

for pipeline balancing. In this work, we propose novel intra-layer and
inter-layer optimization techniques to achieve maximum processor
utilization with minimal inter-processor communication overhead.

Fig. 1(a) shows a sample four-layer network highlighting funda-
mental operations of layers in the forward (F) and backward (B)
passes during training. These layers can be either convolutional layers
or fully-connected (FC) layers. During training, the system computes
the forward pass to generate the outputs, calculates the error using
ground truth, and then propagates the error backwards through the
network. Fig. 1(b) highlights the critical loop during training which
is a severe bottleneck in the computation time of DNN training.
Unlike [19], [20] that treat the backward computations as a single
computation block as shown in Fig. 1(a), we split the backward
pass into its fundamental operations, which involve the calculation
of gradients of the error with respect to weight (G) and with respect
to the activation function (δ) as shown in Fig. 1(b). These two
gradients can be computed in parallel using different processors. This
is referred to as intra-layer parallelism. Additionally, the computation
of δ is further divided into two parts which are distributed to two
consecutive layers. This is referred to as inter-layer optimization.

This paper makes three key contributions listed below.

1) A formal derivation of pipeline models in PipeDream [20] using
concepts such as pipelining, retiming, and delayed gradients.

2) A novel intra-layer optimization technique where the gradients
of the error with respect to the weights and activation functions
can be computed in parallel, reducing computation time and
increasing processor utilization efficiency.

3) A novel fine-grain inter-layer pipelining by dividing the gra-



dient computation of the error with respect to the activation
function into two parts and distributing the two parts to two
consecutive layers. This leads to a balanced inter-layer pipeline
and reduction of total system latency with negligible inter-
processor communication overhead.

The rest of this paper is organized as follows: Section II presents
fundamental concepts of backpropagation, data, and pipeline paral-
lelism. Section III describes the LayerPipe framework for efficient
pipeline parallelism using proposed intra-layer and inter-layer op-
timizations. Finally, section IV evaluates and compares LayerPipe
against PipeDream, a state-of-the-art pipelined accelerator architec-
ture for training DNNs [20].

II. BACKGROUND AND PRIOR WORK

To optimize training time, we examine the operations within the
backpropagation algorithm.

A. Backpropagation

We deconstruct the backpropagation algorithm into its primary
operations to better understand how it can be implemented and
optimized. The training loop for any supervised learning problem
has two parts: a forward pass or inference and a backward pass for
training. Fig. 1(b) illustrates the data-flow graph of these operations
on a sample four-layer neural network. The lower half of the data-
flow graph shows the forward pass computations, while the upper
half shows the backward pass computations. As shown in Fig. 1
there exist multiple nested feedback loops in the network. This is
the main reason why system-level techniques such as pipelining are
not straightforward, as delays cannot be introduced into a feedback
loop system without affecting the output. The forward and backward
operations are summarized by Eqs. (1) to (5). In the forward pass,
the weights W l and the activation output, al−1, from the preceding
layer are used to compute zl and al. The activation function f()
refers to non-linear activation functions such as ReLU, sigmoid or
tanh. W l represent the weights or filters, also referred to as model
parameters, associated with the layer l, zl is the output of the
convolution operation in the convolutional layer or linear operation in
the FC layer. The output al represents the activation output at layer l.
The backward pass consists of two operations: G calculation, and δ
calculation. Gl is the gradient of the error function, E, with respect
to the weights W l at layer l, and it is computed from δl and al−1. δl

is the gradient of the error function with respect to the activations of
the layer l and is backpropagated to the previous layer. The notation
� represents the Hadamard product of matrices.

z(l) =W (l)a(l−1) (1)

a(l) = f(z(l)) (2)

δ(l−1) =
∂E

∂a(l−1)
� f ′(z(l−1)) (3)

where
∂E

∂a(l−1)
= (W (l)T δ(l)) (4)

G(l) =

(
∂E

∂W (l)

)
= δ(l)a(l−1)T (5)

Training neural networks are characterized by the presence of
several large feedback loops in the design. For example, literature
has identified three fundamental lockings for the backpropagation
algorithm [21]. First is forward locking, where a layer cannot be
executed unless all the previous layers in the directed forward graph
are executed. Second, update locking, a layer cannot be updated until

all dependent operations have been executed in the forward pass. Last,
backward locking, a layer cannot be updated before all the dependent
operations are executed in forward and backward passes. Among the
three, the backward locking problem has been identified as a severe
bottleneck for training and therefore has been the focus of several
efforts [19]–[25].

B. Prior work on parallelism

Given that training times have been increasing with network size
and complexity, several methods have been proposed to parallelize
training. These techniques can be broadly classified as intra-batch
parallelism, and inter-batch parallelism [20]. Intra-batch parallelism is
the most common form of parallelism currently deployed to accelerate
training [16]. In intra-batch parallelism, a single iteration of training
is split across available processors. Intra-batch techniques can be
further classified into two categories: data parallelism and model
parallelism [16], [26]. The first approach, data parallelism, distributes
the workload by replicating the model and splitting the input mini-
batch among different processors. Each model trains independently,
and the gradients are updated several times before the weights. In
the second approach, model parallelism, a large model is split into
multiple processors [1]. Furthermore, model parallelism can split the
computations along different dimensions such as channel (C), width
(W), or height (H). Lastly, a subcategory of model parallelism is
layer parallelism [21], [22] where the computation is split along the
depth of the architecture. Model parallel approaches limit the size of
the network to be stored in the processor; however, they incur large
communication overheads for transferring the intermediate results, a
limiting factor in systems that are communication-bounded.

Recently, pipeline parallelism has emerged as a popular technique
for speeding up backpropgation [20]. Inter-batch pipeline parallelism
processes multiple mini-batches of the data in parallel over multiple
iterations of the backpropagation algorithm. Intra-batch pipeline
parallelism [19], however, splits a mini-batch into smaller micro-
batches to achieve the same goal. Inter-batch pipeline parallelism
is advantageous as it avoids low processor utilization by frequent
synchronization. However, significant drawbacks of pipeline paral-
lel designs include large communication overheads and difficulty
balancing the workload between processors due to coarse-grained
pipelining. PipeDream, for example, uses dynamic programming to
find the optimal workload partition on a per-layer basis. Further works
have attempted to address the workload balancing issues with fine-
grain pipelining and allocation [23], [24]. However, while relying
on precedence graphs to derive the schedule, existing approaches do
not fully exploit the precedence constraints to derive partitions that
minimize communication overhead.

III. LAYERPIPE: THEORY AND ALGORITHM

The limitation of existing pipelined parallel algorithms in DNNs
is that they do not tackle the problem from the fundamental level.
This may lead to inefficient algorithms and inaccuracies as it does
not account for all critical factors. However, recent improvements
to tackle this problem, such as weight stashing and activation re-
computation, are often rooted in rudimentary intuition and are not
based on any formal theory of such systems. The following section
identifies the need to formally derive these pipelined models and set
up a systematic approach. From Fig. 1, we can observe the parallels
with traditional signal processing architectures, allowing us to exploit
the existing well-established architecture optimizations [27].
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Fig. 2. Step-by-step derivation (a– f) of pipeline stages in a 2-layer design.
a) Insertion of delays at feedforward cutsets and adding delayed gradients. b)
Defining retiming cutsets 1 and 2 for the first stage. c) Pushing the delays
through the retiming cutsets. d) Defining retiming cutsets 3 and 4 for stage
2. e) Pushing the delays through the retiming cutsets. f) Final pipelined DFG
with two pipelined stages.

A. Pipelining and retiming the backpropagation algorithm using
delayed gradients: intra-layer optimization

Prior work on this topic has primarily designed the system with
an intuition of how the variables should behave when pipeline stages
are added. For example, weight stashing [20] or activation stashing
is the concept where the weights or activations are stored locally
within a processor during the forward pass till the corresponding data
reaches the same processor in the backward pass. In some instances,
if the forward pass is computationally cheap, the activations are re-
computed [19]. Using the architecture optimization techniques from
DSP systems [27], we define two processes that must be followed
to derive pipelined models: i) Locations in a system where delays
can be legally inserted; ii) Necessary conditions for moving delays
between edges on the data-flow graph (DFG). For the derivation, we
use a delay element to represent inter-iteration dependency [28]. Here
the delay element does not refer to a physical delay but a conceptual
delay. The delay holds the data for an iteration or the transition or
pipeline stage that transfers data to the adjacent processor.

In the first process, there are only two legal locations for delay

Fig. 3. Delay insertion in DLMS algorithm [18].

placement within the system. Delays may be inserted through pipelin-
ing on all feedforward cutsets; a cutset is a line that cuts along a set of
edges such that it divides a graph into two subgraphs. A feedforward
cutset is one where all the edges along the cutset are in the same
direction. In the case of neural networks, the only feedforward cutsets
are at the inputs and outputs of the network as highlighted in Fig. 2.
Delays cannot be inserted in non-feedforward cutsets barring some
exceptions. One such exception is the case of slowly varying weights
in neural networks analogous to the delayed least mean squares
(DLMS) algorithm [18]. The weight update step may use an older
version of the gradients in gradient descent algorithms like the DLMS
algorithm. It is assumed that due to the small step size, the change in
the weight with each iteration is gradual. Thus using an older or stale
version of the weights or gradients will not significantly affect the
convergence characteristics of the learning process. This idea forms
the basis of PipeDream. We point out its equivalence with DLMS
algorithm that has been widely analyzed and applied in adaptive filter
applications. The weight update equation for a DLMS based approach
is given by:

W (n) =W (n− 1)− ηG(n−M) (6)

where W (n) is the weight parameter as sample n, G is the gradient
of the error with respect to the weight parameter at sample n, M
corresponds to the degree of staleness, η is the step size or learning
rate, and n is the current iteration. The F block computes the forward
filter and the G block computes the gradient using the input X(n) and
the error e(n). The error is the difference between the output and the
ground truth (the desired value d(n)). This leads to the second legal
location for placement of delays, between the gradient calculation
and weight update states using delayed gradients. With the addition
of M delay elements within the feedback loop in Eq. (6), the system
can use these elements for pipelining. As there is no synchronization
step in every block, DLMS does not suffer from any overheads for
the weight update operation. This process of using delayed gradients
is shown in Fig. 3, where MD refers to the M delays in Eq. (6).

The second process uses retiming [29] to move delays in the DFG
to the desired location. One delay can be inserted in each outward
edge of a feedback cutset during retiming if one delay is removed
from each inward edge and vice-versa. Feedback cutsets are cutsets
with at least one edge in both directions. At a node level, this
could be the operation’s outputs and inputs. Thus we can use the
two processes defined above to illustrate a step-by-step process for
deriving a pipelined model as shown in Fig. 2. Two intermediate
layers of the network are chosen as a representative set for the entire
network. The aim is to eventually insert a pipeline stage after the
forward pass of the layer and before the backward pass of the layer.

The first step in the process is to insert the required number of
delays in the network as shown in Fig. 2(a). At each feedforward



Fig. 4. Layer-wise communication overhead for VGG16.

cutset, the total number of delays added via pipelining is the number
of pipeline stages required, two in this example. At the location of
delayed gradients, the number of delays to be added is twice the
number of pipeline stages (or layers) after the current layer, i.e., four
delays and two delays for layers 1 and 2, respectively, in this example.

The second step uses retiming to push the required number of
delays to the first pipeline stage, as shown in Figs. 2(b) and (c). We
define two retiming cutsets, 1 and 2, to retime the delays highlighted
in red and blue. Retiming cutset 1 pushes two delays from each
outgoing edge into each incoming edge. Similarly, retiming cutset 2
pushes two delays from each incoming edge into each outgoing edge.

Finally, in the third step, we again use retiming to move the
required number of delays to the second pipeline stage, as shown
in Figs. 2(d) and (e). We define two retiming cutsets, 3 and 4, used
to retime the delays highlighted in red and blue. Retiming cutsets
3 and 4 are identical to cutsets 1 and 2 except that these shift one
delay instead of two. Using this, we can generalize retiming in a
layer using cutsets like 1 and 2, where each cutset shifts N delays,
where N is the number of pipeline stages after the layer.

The final pipelined DFG is shown in Fig. 2(f) with its two pipelined
stages and associated delay elements. The consequence of retiming
was the insertion of delays between the W and δ operation. Similarly,
delay elements are inserted between a and the backward pass calcula-
tions. These delays correspond to the weight stashing technique used
by PipeDream and the activation stashing/recomputation as shown in
PipeDream/Gpipe. Thus retiming, pipelining, and delayed gradients
can be used to derive any pipelined model formally. Additionally,
this novel method can precisely determine how many cycles the
intermediate values should be stored for multiple iterations, a result
that prior works had arrived at with intuition.

B. Pipeline balancing with parallelism: inter-layer optimization

With a formal derivation of the pipelined model, the next task is to
balance the workload across multiple operations. One of the critical
challenges for pipelined models is that the network architecture is
not uniform, and the computation requirements across layers can
vary significantly. Thus any distribution of layers across multiple
processors will inevitably be imbalanced. The drawback of prior
approaches is that they often lump the entire backward pass into
a single operation [19], [20]. Furthermore, even when fine-grain
pipelining is applied [23], [24], these approaches do not exploit
the characteristics of the data-flow graph (DFG) to find optimal
distribution strategies.

An examination of the data-flow graph shows that the cost to
move an operation to the adjacent processor is not the same for all
backpropagation operations. For example, Fig. 4 shows the communi-
cation overheads associated with moving variables between different
processors in the convolutional layers of VGG16. It is observed that
moving δ or a between processors leads to significant communication
overhead in the order of MBs. However, communicating the filters

Fig. 5. Block diagram of operation parallelism and its impact on scheduling.
a) Original DFG with each operation mapped to its corresponding layer
processor. b) Proposed DFG where δ′′ computation is moved to the ad-
jacent processor. c) Imbalanced processor workloads in the original DFG.
d) Balanced processor workloads due to the proposed DFG. The notation
nFp indicates the forward computations for minibatch n that are assigned
to Processor p. Similarly, nBp follows the same notation for the backward
computations. nBp can be further subdivided into nBpG, nBpδ′, and
nBpδ′′.

is insignificant as this transfer is in the order of KBs. In pipelined
designs, at the pipeline boundaries, variables a and δ have to be
transferred between the processors, leading to a mandatory overhead.
Any load balancing attempt will require the existing mandatory
overhead, in addition to the communication required to transfer
its inputs and outputs to the layers. Analyzing the backward pass
in Fig. 1, we can observe the input dependencies of all the operations.
Gl computation at layer l requires al−1 and δl, and δ as shown
in Eq. (5). Specifically Eq. (4) requires δl and W l. Note that δl is
computed in layer l + 1. Using the example of a 2-layer network
mapped to 2 processors, we explore the feasibility of shifting the
computation of the backward pass of the central processor to its
adjacent processors. Shifting the G computation of processor k to
processor k+1 will incur significant overhead as ak, activation output
from processor k, will have to be broadcast to both processors k and
k + 1. Similarly, shifting to processor k − 1 is infeasible due to the
overhead of δk+1, δ output from (k + 1)th processor. Shifting the
computation of δk to processor k+1 will place the computation in the
same processor as its input ak+1. Also, communication of G between
the processors is insignificant compared to the mandatory overheads.
Furthermore, the computation result is not consumed within processor
k and can be directly forwarded to the destination. Thus δ is a prime
candidate to distribute with its adjacent processor at k + 1.

Fig. 5 summarizes the steps required to divide δ and transfer it
to the adjacent processor. In the original DFG from Fig. 1, δ com-
putations are split into 3-parts. δ′ is the portion of the computation
that remains within layer l. δ′′ is the portion of the computation that
is shifted to layer l + 1. In essence, layer l + 1 borrows as much
computation from layer l as needed to balance the computations of
consecutive processors. As δ is parallelizable in the input and output
channel dimensions, it would be simple to parallelize the operation
and split it between processors. This technique of dividing the δ and
merging it with the adjacent layer enables inter-layer optimization.
This approach is used to derive a load-balanced DFG as shown
in Fig. 2(b). In this example, the total completion time of processor 1
is much longer than processor 2, which leads to underutilization and



Fig. 6. Contrast of scheduling approaches for PipeDream and LayerPipe.

idle time for processors. In Fig. 5(b), we use retiming once again
to place the delays such that δ′ and δ′′ are computed in adjacent
processors. The current depiction highlights simple layer connections;
however, there can be multiple ways these brain-inspired neural
networks can be connected [30], including divergent or convergent
paths. In examples such as ResNet or U-net [31] with convergent
paths for δ, an additional summation step is required before the result
can be used; thus, δ′′ would only be moved to the processor that
computes this step.

Figs. 5(c) and (d) represent the comparison between a layer-based
coarse and fine-grained layer parallelism. In Fig. 5(c), the difference
in computation times between the processors is approximately a third
of the computation time of δ. Therefore, δ is partitioned such that
δ′ computes two-thirds of the output channels and δ′′ computes
one-third of the output channels. The W parameters required for
the operation are transferred to Processor 2, and δ′′ is computed in
Processor 2. Thus we observe that Fig. 5(d) has a perfectly balanced
pipeline, leading to an increase in throughput and reduction in latency.

C. Scheduling and partitioning algorithms

The heart of the problem is designing an algorithm to process
a data-flow graph (DFG) and generate a schedule in a processor-
constrained environment. The algorithm is designed to augment or
improve upon existing parallelization techniques like PipeDream and
GPipe by providing a more theoretical basis for partitioning the
network. The algorithm serves two purposes. First, coarse-grained
partitioning based on layers and inter-layer pipelining maximize
throughput and minimize communication overhead. Second, a fine-
grained schedule based on precedence graph and critical path mini-
mizes latency.

The proposed layer partitioning scheme can be described by Al-
gorithm 1. The proposed algorithm leverages the techniques in the
MARS algorithm [32] to schedule feedback loops. The first step in
the process is to evaluate and find all layers (L) and all the critical
loops in the DFG (line 1). The critical loop, along with its path, can
be found in O(ded) time using the minimum cycle mean (MCM)
algorithm [33], where d is the number of delays in the DFG and
ed are all edges between the delays. In the second step, we run
a profiler over the network and calculate the computation times,
communication overhead, and memory overhead of each layer in the
network. We then classify computations as movable or immovable
based on the constraints on communication and memory (line 4).
If a computation’s communication overhead and overhead memory
fall below a threshold, we classify that computation as movable;

Algorithm 1 Partitioning algorithm for balanced pipeline generation.
Input: DFG of DNN, #processors (Np), processors
Output: Critical loops Cl, processor allocation Pa

1: //Step 1: Find all Cloops and DNN layers L in the DFG
2: Cl, L = find critical loops(DFG)
3: //Step 2 starts here
4: //Profile: For each DNN layer l in DFG find layer compute time tc, fixed computation

time tfix, and flexible computation time tflex. Store in Tc, Tfix, and Tflex

5: Tc, Tfix, Tflex = profile(DFG)
6: Ttot = for i in Tc[i] do sum(T[i])
7: //Find maximum processor time Tp

8: Tp = Ttot
Np

9: //Step 3 starts here
10: //Initialize flag, processor index pidx to 0 and processor idle time Tidle to Tp

11: flag = 0
12: while flag = 0 do
13: pidx = 0; Tidle = Tp

14: for each l in reversed(L) do
15: if Tflex[l] < Tidle then
16: allocate Tflex[l] to processors[pidx] and update Pa

17: Tidle = Tidle − Tflex[l]
18: else
19: // Partition Tflex[l] (δ) to δ′ and δ′′ with operational parallelism (OP)
20: δ′, δ′′ = OP(Tidle, Tflex[l])
21: allocate δ′′ to processors[pidx] and update Pa

22: pidx = pidx +1
23: allocate δ′ to processors[pidx] and update Pa

24: Tidle = Tp − δ′

25: end if
26: if Tfix[l] > Tidle then
27: pidx = pidx +1
28: end if
29: allocate Tfix[l] to processors[pidx] and update Pa

30: Tidle = Tidle − Tfix[l]
31: end for
32: if pidx > Np then
33: //Relax the max processor time constraint and flags stays 0
34: Tp = α× Tp

35: else
36: flag = 1
37: end if
38: end while
39: return Lc, Pa

otherwise, it is immovable. We return time taken for all movable
computations as Tflex and immovable computations as Tfix. For
simplicity, we assume only movement from layer l to layer l + 1 is
allowed. Taking the total computation time of the network (Ttot), we
can determine the target workload of each processor or the maximum
processor time (Tp) for the required number of processors (Np) in
lines 6 and 8 of Algorithm 1.

In the third step of Algorithm 1 (line 9), we iterate through
all the layers of the network in reverse and try to allocate it to
processors as follows. As the flexible portion, Tflex[l], can only be



TABLE I
NETWORK ARCHITECTURE FOR SAMPLE 4 CONVOLUTION LAYER DESIGN.

Layer Filter size Input channels Output channels Padding Stride
1 5 3 32 2 2
2 5 32 64 2 2
3 3 64 128 1 2
4 3 128 128 1 1

TABLE II
SUMMARY OF COMPUTATION TIMES AND COMMUNICATION OVERHEADS

FOR THE SAMPLE 4-LAYER NETWORK.

Layer 1 2 3 4
Computation time (cycles)

FP 1.20× 106 5.02× 106 1.81× 106 3.63× 106

BP G 2.16× 106 5.63× 106 2.11× 106 3.92× 106

BP δ 4.01× 107 2.01× 107 7.23× 106 3.63× 106

Total 4.35× 107 3.07× 107 1.12× 107 1.12× 107

Communication overhead
FP Overhead 12.69MB 6.57MB 3.29MB 3.52MB
BP Overhead 4.59MB 12.25MB 6.13MB 3.06MB

Additional Overhead 0.07KB 0.78KB 0.56KB 1.13KB

allocated to layer l + 1, this is allocated first. If the computation
can be accommodated entirely in the current processor pidx, i.e.,
Tflex[l] < Tidle we allocate this computation to the current processor,
processors[pidx] (line 16). If this is not possible, we use operational
parallelism to partition δ (Tflex[l]) into δ′ and δ′′ such that δ′′ fits
within the remaining workload available in the processor. We then
move to the next processor and assign the remaining computation
δ′. We then try to allocate the fixed portion of the computation in a
similar manner. If the computation can be accommodated entirely
in the current processor pidx, i.e., Tflex[l] < Tidle, we allocate
this computation to the current processor with index pidx. If this
is not possible, we move to the next processor and assign the
computation (lines 26–30). This process is repeated until all layers
of the network have been assigned. If more processors are needed
than those available, we relax the target workload requirements of
each processor by a factor of α (line 34) to allow for longer compute
times and restart at step 3. This process is repeated until the number
of processors assigned matches the number of processors targeted.

Fig. 6 summarizes the differences between a traditional pipeline
parallel schedule like PipeDream and a balanced, fine-grained
pipeline schedule like LayerPipe. In the first stage, we derived the
allocations of each processor, including the suggested operational
parallelism from Algorithm 1. Using the information from the critical
loops, we derive a schedule that prioritizes computations along the
critical loop. Note that the critical loops generally run through the
δ computation (Fig. 1) and the G computation does not appear in
the critical loop except in the first layer. Furthermore, as the only
dependence of δl−1 in layer l from layer l + 1 is δl we need not
wait for the G computation from layer l + 1 to complete before
starting layer l. Therefore, we can derive a schedule that prioritizes
the δ computations over G computations allowing for fine-grained
pipelining that reduces the overall latency of the system. When
operational parallelism is active, the two partitions δ′ and δ′′ are
independent; therefore, these can be computed in parallel, further
reducing the system latency.

IV. EXPERIMENTAL EVALUATION

A. Methodology

In order to test the effectiveness of the proposed system, we bench-
mark the performance of LayerPipe against the standard pipeline
parallelism algorithm, PipeDream [20]. The system simulated consists
of multiple Processors that can communicate intermediate results

TABLE III
COMPARISON OF COMPUTATION TIMES IN CYCLES OF PIPELINE

PARALLELISM ALGORITHMS FOR THE SAMPLE FOUR-LAYER NETWORK.

Processors 1 2 3
PipeDream 4.35× 107 3.07× 107 2.23× 107

LayerPipe
Assigned computation 3.22× 107 2.09× 107 2.23× 107

Borrowed computation 0.00× 100 1.13× 107 9.86× 106

Total 3.22× 107 3.22× 107 3.22× 107

Fig. 7. Comparison of speedups between LayerPipe and PipeDream with
different number of processors on the convolutional layers of VGG16.

among themselves without any external memory. The algorithm is
evaluated by varying the number of processors while balancing the
pipelines. Each processor consists of a single systolic array within
a TPU or neural processing unit inside a GPU. For this experiment,
it is assumed the systolic array is operated in a weight-stationary
data-flow [34]; however, the same techniques are applicable for other
data-flows. In order to model the systolic array, we developed a
python simulator based on the SCALESim [35] library to estimate the
computation times and communication requirements of the systolic
array. The new simulator was validated against SCALESim, a cycle-
accurate systolic array simulator verified against RTL simulations.

To account for communication overheads, the simulator keeps
track of two kinds of overheads. First, mandatory overheads, such as
communication of activations and δ between processors, are required
irrespective of the algorithm for any pipeline parallel design. Second,
the additional overheads introduced by the LayerPipe algorithm
are calculated. These overheads account for additional inputs that
processors must communicate to support the LayerPipe algorithm,
such as layer weights.

The simulator tests whether the proposed algorithm is hardware
agnostic by varying the systolic array size and batch size. The results
are then averaged to obtain the final network performance results.

TABLE IV
COMPARISON BETWEEN THE THEORETICAL SPEEDUP OF LAYERPIPE

VERSUS PIPEDREAM FOR THE CONVOLUTION LAYER OF VGG16. THE
RESULTS ARE AVERAGED ACROSS SYSTOLIC ARRAY AND BATCH SIZES.

Processor LayerPipe PipeDream Improvement Communication Overhead
2 1.93 1.80 7.2% 0KB
3 2.75 2.32 18.4% 0KB
4 3.59 2.73 31.7% 0KB
5 4.35 3.10 40.2% 0.26KB
6 5.01 3.10 61.8% 0.01KB
7 5.55 3.10 79.0% 0.01KB
8 5.69 3.10 83.5% 0.01KB
9 6.24 3.47 80.0% 2.73KB
10 6.69 4.37 52.9% 2.61KB
11 6.88 6.13 12.4% 1.49KB
12 6.88 6.13 12.4% 0KB

B. Sample four-layer network

The proposed algorithm is first evaluated on a simple network con-
sisting of four convolutional layers of different sizes. This provides
a detailed demonstration of how the workload is scheduled between
processors leading to a balanced schedule. The parameters of the
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c)

b)
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Fig. 8. Performance comparison between LayerPipe and PipeDream for different number of processors on the convolutional layers of a) VGG16 b) ResNet50.
The results were averaged over various batch sizes, systolic array sizes, and normalized to a single processor’s performance. The individual distributions for
VGG16 is shown for c) array size and d) batch size.

architecture of the sample network in Fig. 1 are described in Table I.
Here the filter size, input channels, output channels, padding, and
stride represent the parameters of the convolution layer. The input to
the system is a 224×224 image with 3 channels. The system consists
of three systolic arrays, each with 32 processing elements, and the
minibatch size is 32. The computation times for each of the layers
and the communication overheads are listed in Table II. FP refers to
the forward pass, BP G and BP δ refer to the calculation of G and
δ in the backward pass. FP and BP overheads indicate how much
additional communication is required if a pipeline stage is added
immediately after and before the layer, respectively. These overheads
are mandatory for any pipeline parallel design and are unavoidable.
The additional overhead is the additional communication overhead
required to support the LayerPipe algorithm. As shown in Table II,
the additional communication overhead of LayerPipe is insignificant.

Table III compares LayerPipe, the proposed operation scheduling,
against PipeDream, a traditional pipeline parallel design for the
sample network in a three-processor system. In PipeDream, layers
1 and 2 are mapped to their own processor, while layers 3 and 4 are
assigned to the third processor. This assignment leads to severely
imbalanced pipelines, as seen in the computation times of each
processor in Table III. LayerPipe balances the workload across the
processors by borrowing computation time from the previous layer. In
this sample network, the computation available to borrow is sufficient
to balance the pipelines. This results in a 26% improvement in the
system throughput (3.22×107 versus 4.35×107) with an additional
communication overhead of 2.54KB.

C. Convolutional neural networks

Extending the sample four-layer network analysis, we perform a
detailed comparison between LayerPipe and PipeDream for VGG16
and ResNet50. The tests were performed by sweeping the systolic
array size from 32 × 32 to 256 × 256 and the minibatch size
from 16 to 256 in powers of 2. Table IV compares the speedup
and communication overhead between LayerPipe and PipeDream.
LayerPipe achieves on average 43% improvement over PipeDream
with a maximum increase of 2.73KB in the communication overhead.

Additionally, it achieves greater than 80% improvement with 8
processors. Note, after 11 processors, the ideal time for a single
processor is less than the fixed computation time that cannot be
borrowed from a layer. Therefore, this level provides the maximum
speedup achievable, and further pipelining is no longer advantageous
in both PipeDream and LayerPipe, as shown by the saturated curve
in Fig. 7.

Fig. 8 summarizes the performance of LayerPipe versus PipeDream
by varying the batch and systolic array sizes and testing it on VGG16
and ResNet50. Figs. 8(a) and (b) show the speedup comparison be-
tween LayerPipe and Pipedream by varying the number of processors
from 2 to 12 while averaging the results across batch and array sizes.
LayerPipe consistently outperforms PipeDream on all benchmarks.
Fig. 8(c) summarizes the performance of the two methods across
different systolic array sizes for the processors. It is seen that using
processors with smaller arrays improves the performance of both
PipeDream and LayerPipe, but LayerPipe performance improvement
is far more significant. A similar analysis in Fig. 8(d) for batch size
shows that the performance remains constant for the range of batch
sizes tested. This indicates that the pipeline is very susceptible to the
systolic array’s size but independent of the batch size.

V. CONCLUSION

This paper presented LayerPipe, a novel approach to achieve intra-
layer and inter-layer optimization to generate balanced schedules
for the pipelined design. LayerPipe achieves an average speedup
of 25% and upwards of 80% with 7 to 9 processors with an
insignificant communication overhead compared to PipeDream. The
use of delayed gradient may lead to some performance degradation.
Since the computations in PipeDream are functionally equivalent to
the LayerPipe, any performance degradation in LayerPipe will be the
same as in PipeDream. It has been shown that the use of relaxed look-
ahead can overcome any degradation in delayed LMS [36]. Future
work will design accelerators that incorporate relaxed look-ahead,
can adapt to multi-GPU clusters, incorporate complex hierarchical
communication models for overhead computations, and will address
a detailed analysis of branches for complex DNN topologies.
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