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Abstract

Flexoelectricity in multilayer graphene (MLG) buckling can stimulate kink-shaped crinkle formation. In the process, the bifurcation becomes subcritical
and the suspended-MLG’s crinkle curvature is localized to a narrow band of ~ 2nm width. We extend the study to flexoelectric layers bonded to a soft
elastic substrate. Elastic substrates can guide the morphology of MLG and produce periodic patterns. We show that MLG’s flexoelectricity together
with substrate elasticity can produce periodic crinkles, which qualitatively explains the grade-dependent mosaic spreading in highly oriented pyrolytic
graphite (HOPG). Experimental measurements of HOPG’s surface-slope variations indeed confirm curvature localization at the crinkle valleys and ridges.

Introduction

Recent works have highlighted a new form of electromechani-
cal coupling in 2D materials, known as quantum flexoelectric-
ity, which couples polarization to the curvature of the layer.!'
The origin of this coupling, as the name suggests, lies in the
distortion of electron cloud upon bending of the layer, which
makes flexoelectricity a universal phenomenon that can occur
in all dielectric materials. In particular, quantum flexoelectricity
in graphene has attracted a lot of attention due to the already
impressive range of properties of graphene that hold immense
promise for high-end technologies.>*!

Authors have previously investigated the effect of flexo-
electric coupling on the buckling of free-standing multilayer
graphene (MLG) through a combination of experiments, DFT,
and continuum modeling.>*! While a single layer graphene
(SLG) indeed shows the supercritical sinusoidal buckling with
gently varying curvature, i.c., a wrinkle [Fig. 1(a)],l’! MLG
can show a new subcritical crinkle mode, which localizes the
surface curvature in a narrow region of width ~ 2 nm and gives
the appearance of triangular kink-like mode [Figs. 1(b;) and
(b,)]. The flexoelectric polarization, localized near the ridges,
serves to reduce the overall potential energy of the system by
enhancing intralayer and interlayer attractive interactions.

The unique combination of localized curvature and localized
polarization make graphene crinkles a powerful tool to manipu-
late charged and polarizable molecules by means of macro-
scopic strain control. In Kothari et al.l* authors have demon-
strated the potential of this technique in two proof-of-concept
experiments. Firstly, the authors showed the self-assembly of
buckyballs (Cg;) molecules along crinkle valleys. Secondly,
the authors also showed the self-assembly of DNA molecules
along crinkle valleys in long straight segments. While these

experiments clearly showcase the potential of graphene crin-
kles for self-assembly applications, moving beyond proof-of-
concept experiments necessitates development of techniques
that can create many crinkles in a pre-programmed fashion and
provide an easy way to control them simultaneously.

We introduce a new methodology to address this challenge
by extending our analysis to MLG bonded to a softer elastic
substrate. The addition of the substrate brings in a new length
scale into the system and gives rise to periodic buckling pat-
terns when the assembly is laterally compressed. Without elec-
tromechanical coupling, the layer-on-substrate system with
a stiffer layer is known to show wrinkles of a characteristic
wavelength.[*1% We will focus on studying how the supple-
ment of flexoelectricity in the layer affects the stability of the
system and the buckling mode. In particular, we will show the
range of material parameters for which the crinkle bifurca-
tion exists. In Kothari et al.’) we introduced a wrinkle-crinkle
phase diagram of MLGs [Fig. 1(c)] which revealed that the
shorter the span of a free-standing MLG, the more it tends to
crinkle than wrinkle. This result implies that an MLG wrinkle
on a substrate with a wavelength shorter than the critical value
would lead to crinkle bifurcation. These findings suggest that
bonding MLG to soft elastic substrates can be an effective
way to program the self-organization of large number of MLG
crinkles.

The organization of the paper is as follows. In Sect. Meth-
odology: theoretical formulation, we develop the theoretical
formulation for the stability analysis. We discuss the results
in Sect. A word on the length scales, followed by reporting
experimental observations in Sect. Results and discussion.
We conclude the work with a discussion of open challenges in
Sect. Experimental observations.
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Figure 1. (a) Simulated SLG (Qp = 1.0eV) wrinkle on a PDMS substrate (1 = 0.3MPa) (b;) MLG over PMMA groves (b,) MLG crinkle. (c)
Wrinkle-crinkle phase diagram of freely suspended MLG. Schematics of (d4) BLG wrinkles and (d,) BLG crinkles for 11 < po.

Figure 2. A schematic of the plane-strain setup.

Methodology: theoretical formulation
In this section, we will analyze the compressive buckling of
a flexoelectric bilayer, e.g, a bilayer graphene (BLG), that
is perfectly bonded to a soft elastic substrate, as depicted in
[Fig. 1(d,) and (d,)]. The choice of bilayer is made for analyti-
cal convenience. The analysis can be extended to N-layers in an
analogous way without any qualitative changes in the results.
We will consider a plane-strain setting.

We introduce the following notation: Qp is the bending stiff-
ness per unit width of the individual layer, u is the interlayer
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shear stiffness, £ and v are the Young’s modulus and Poisson’s
ratio of the substrate, respectively, « is the interlayer spac-
ing, f is the lateral constraint force, w(x) denotes the vertical
displacement of the free surface (Fig. 2), and 7' (x) denotes the
normal traction at the interface between the bilayer and the
substrate. We will assume the following kinematic assump-
tions: (a) layers are inextensible as E7/u > 1, where E7 and
wu are MLG’s in-plane tensile and interlayer shear stiffness,
respectively, and (b) both the layers of the bilayer deform in
an identical fashion and maintain translational symmetry in
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the thickness direction, as Ey/u > 1, where Ey is MLG’s
plane-normal tensile modulus.

We focus the analysis on classifying the buckling mode(s)
and how they depend on the substrate stiffness. The equilib-
rium configurations of the system are those that minimize
the total energy of the system, and can be obtained by the
Euler—Lagrange equation for this system.

The total energy functional, I, comprised mechanical and
flexoelectric contribution from the flexoelectric bilayer, and
mechanical contribution from the substrate. The energy con-
tribution of the bilayer is

l_Ibilayer = Upech + Uelec (1)
Here, the mechanical energy from bending and interlayer
shearing is given as

193 > pa fdw\?
Umech=/( (dx2> +7(E) )dx. (2)
—L

U.lec 1 the electrostatic interaction energy in the bilayer (for a
detailed discussion, refer tol*!) and is given as

Vot = 5 6(2()2) / / 000 @& —0dsds, ()

where €(2) and ;) are the average permittivity and the effective
flexoelectric constant of the bilayer, respectively. gy (x — &) is
the dipole—dipole interaction kernel for bilayer and is given as'

—(¢ —x)?+d*
{ —x)? +a2}2

2{1 —q(, )}
T2 “

g —x) =

>

4Ex) = { 1/2, for |x — &| > rg

L, for|x — &l < ro

0 (x) = w'(x) is the slope angle the layer makes with the x-axis,
and ry is the cut-off radius of the interaction integration and is
taken to be 0.15 nm for graphene.

Finally, the contribution of the substrate is given as

L

1
Usup = 5 / T (x)w(x)dx. Q)

—L

The total potential energy I1 is given by adding the energy
contributions together with the inextensibility constraint,

Q 2 d 2
H_[< b<dx2> %a<”7:) (©)
—f(m— 1>)dx + Uetec + Usub.

! The function ¢ (£, x) is designed to exclude |& — x| < rg for singular
intralayer interactions, with rp being the cut-off radius.

We employ here the bifurcation analysis technique that was
first introduced in.”¥) By analyzing the Fourier Transform of
the Euler—Lagrange equation for real and complex roots, we
probe the bilayer for the existence of wrinkle or crinkle bifur-
cations.” If the roots are real, the bifurcation modes are sinu-
soidal, indicating wrinkle formation. If the roots are complex,
some imaginary parts give exponentially decaying solutions
of the curvature, implying curvature localization, i.e., crinkle
formation.

Under the assumption of small displacements, the
Euler—Lagrange equation is then obtained and its Fourier-
transformed® form becomes

205k* = K*(f — pa) — ﬂ( 2 e e + =0, (1
where 7'(k) = Ekw(k), E = E/2(1 — v?).11]
Fourier transform of the interaction kernel is given as
A _ . 2cos(kr
8o (k) = mlkle Al 77\ k| — 24kSi(kro) — % ®)

The critical bifurcation wavenumber and the critical load
can be found by recasting Eq. (7) as

*2 F
f=na+ (2Qb - 'Bfg(z (k)> K+ - )

and subsequently minimizing f with respect to k. After we
obtain f;,-, we plug it back into Eq. (7) and look for the solu-
tions. Thus, the existence of complex roots of &, in physically
meaningful range will indicate the existence of a crinkle bifur-
cation. As a consistency check, as the flexoelectricity vanishes,

_ 2
the critical load is given as fy = pa + 6Qp (&) * and the cor-

—\1/3
responding wavenumber is given as kg = (f@) , which are

in agreement with classical (i.e., without flexoelectricity)
results on wrinkling.!>* A more general critical wavenumber
of an N-layer film with vanishing flexoelectricity on a neo-

1
(1+A )MNH } 3
b

Hookean substrate is derived from!®! asky = A{
2NO,

where g is the neo-Hookean shear modulus and A the pre-
stretch of the substrate. Once again, for an N-layer film, our
solution converges to kg in the absence of flexoelectricity.

2 Fourier Transform of the Euler-Lagrange equation for small
deflection w(x) leads to A(k)w(k) = 0, where k is the wavenumber,
w(k) is the Fourier transform of w(x), and 4(k) is obtained to be (7).
Then, the roots of A(k) = 0 for nontrivial w(k) provide the bifurca-
tion wavenumbers.

3 Fourier transform is defined as ¢ (k) = = e ™ g (x)dx.
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Figure 3. (a) Evolution of non-dimensional critical load. (b) Bifurcation of the real wavenumbers with the bifurcation parameter g*. (c4)
Complex wavenumbers and (c,) real wavenumbers given by the solution of (7) for different substrate stiffness. (c,) shows the existence of
crinkle bifurcation for BLG. Material parameters are chosen as reported inf Qp = 1.0eV, interlayer shear stiffness u = 4GPa,a = 0.34nm.

E units in Pa.

A word on the length scales

Prior to the analysis and interpretation of the results, it is
instructive to examine the various length scales that appear in
this problem. Interlayer spacing a is a material length scale for
graphene. Since we employ a cut-off radius formulation for
counting intralayer energy interactions, we introduce a length
scale rg which is taken to be same as the lattice parameter for
graphene. Consideration of the substrate adds a new length
scale to the problem that typically decides the periodicity of
the surface pattern as is well known from the study of layer-
on-substrate elastic systems.™) In analyzing the results from
bifurcation analysis, it is important to note that the range of
wavelength of interest is decided by two length scales—lower
limit is the cut-off radius and the upper limit is the maximum
wavelength predicted for layer-on-substrate system.’™ Thus,
for physically meaningful results, we restrict our range of inter-
esttoz € (0,4.3),v € (—5,5), where k = u + iv and () denotes
nondimensionalization of wavenumber with a, which for gra-
phene is taken to be 0.34 nm.

Results and discussion

In this section, we will focus on the onset of bifurcation and
how the characteristic wavenumber changes with the inclu-
sion of flexoelectricity and substrate. We start by looking at the
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variation of f,, as the effective flexoelectric coefficient changes.
Figure 3(a) shows that with increasing 8*, f;, increases mono-
tonically for different substrate stiffnesses. The indicator line
marks 8* for graphene. We noticed that if the flexoelectric
constant is increased beyond a certain limit, the f. becomes
negative indicating that layer can spontaneously buckle and is
unstable in its flat state, but that region is beyond the scope of
our current treatment.

The incipient wavenumber for the purely mechanical ca§e§
ignoring any flexoelectric interactions, is given as ko = (f@) !
as discussed in the previous section. As 8* is increased beyond
zero, the real solutions of Eq. (7) show a bifurcation as shown in
[Fig. 3(b)]. The plot shows non-dimensionalized real roots of
Eq. (7) for different substrates. At zero flexoelectric coefficient,
there is a repeated root that bifurcates into two branches as the
flexoelectric coefficient increases. One branch shows a smaller
wavenumber than the purely mechanical case and the other
branch shows a larger wavenumber. In addition to that, we inves-
tigate Eq. (7) for complex roots to probe the existence of crinkle
bifurcation. Note that the imaginary part of the complex root
controls the local exponential decay of the curvature, whereas
the real part controls the local periodicity. Figure 3(c;) shows a
very interesting picture of the bifurcation landscape. We recall
here that our range of interest is u € (0,4.3),v € (—5,5). As *
increases beyond zero, Eq. (7) starts to show complex roots as
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Figure 4. (a) A schematic of crinkles on a grade Il HOPG. (b)
Experimental measurement surface slopes across crinkle ridges
and valleys. (c) A schematic of the grade Ill HOPG crinkles with
different ridge and alley angles.

well in addition to two real roots. However, those roots are out
of the physically admissible range. When 8* approaches a critical
value that depends on E, the complex roots begin to appear in
our range of interest. This shows the clear existence of crinkle
bifurcation for a flexoelectric bilayer attached to a softer sub-
strate (arrows mark the bilayer graphene (BLG) case). For the
range of E shown in [Fig. 3(c,)], the critical 8* ~ 0.15e. The
flexoelectric coefficient for BLG is ~ 0.23e. As the flexoelectric
coefficient increases beyond graphene’s value, u remains nearly
constant around ~ 1.8 for £ < 108Pa, while ¥V decreases, thus
making the oscillation persists over a longer width near the crin-
kle ridges or valleys. For higher E (~ 10'°Pa), we note that both
u and v decrease indicating that wavelength of oscillations and
the decay length become wider with increasing flexoelectricity.
Figure 3(c,) shows the evolution of real roots concurrently. The
visible gap in [Fig. 3(c,)] between E < 103Paand E = 10'°Pqa
trends show that for higher E, the competition between substrate
elasticity and flexoelectricity determines the periodicity u,
whereas for smaller £, flexoelectricity dominates substrate elas-
ticity, and therefore, # remains nearly unaffected by changes in
E.

We speculate that the post-buckling morphology will display
a global periodicity dictated by the real roots [Fig. 3(c,)], and
locally, the complex roots [Fig. 3(c,)] will serve to concentrate
the curvature.

The bifurcation described in [Fig. 3(c,)] originates from
the flexoelectricity of graphene layers. As the layers undergo

buckling, they develop curvature, which in turn creates flexoe-
lectric dipoles normal to the bent layer (see also Fig. 4(b) inl*l).
These flexoelectric dipoles interact with each other—within
the same layer as well as across layers; these interactions can
be attractive (or repulsive), which will reduce (or increase) the
total potential energy of the system (see also Fig. 3(f) inl*l). The
unique complex bifurcation observed in crinkles, which local-
izes the surface curvature to a narrow width (controlled by the
imaginary part of the wavenumber) together with the curvature
reversal (controlled by the real part of the wavenumber), ena-
bles them to reduce the potential energy of the system signifi-
cantly as compared to a wrinkle mode bifurcation, which does
not localize surface curvature and shows only real solutions.
As described by the authors previously,®! a flexoelectric
crinkle parameter governs the existence of crinkles. We expect
the parameter to have a similar effect even in the layer-on-
substrate case. Figure 3 shows that for smaller flexoelectric
constants, the complex solutions are outside of the range of
interest. Speaking in physical terms, the flexoelectric interac-
tions are not strong enough to cause crinkles to form, and the
mechanical modality dominates. As the flexoelectricity effect
becomes stronger, the system starts to show crinkle bifurcation.

Experimental observations
The MLG crinkle configurations could be observed with
AFM imaging for relatively thick suspended MLGs as seen in
Fig. 2(a-2) and (b-2) in [\, A schematic of a MLG crinkle ridge
is shown in [Fig. 4(a)]. However, the bluntness of the AFM
tip and the attraction force of the MLG’s flexoelectric surface
charge prevent accurate tracing of the surface profile near the
curvature-localized valleys and ridges of the crinkle. TEM or
SEM imaging would be distorted by the crinkle charges as well.
So far, the most accurate measurement of the crinkle surface
profile near the MLG crinkle’s curvature localization could
be made with an AFM atomic lattice interferometry (ALI).l'¥]
Here, we present the AFM-ALI measurement of the surface-
slope variations across the valleys and ridges of HOPG crin-
kles, i.e., boundaries of mosaic patterns, in Fig. 4(b).
Regarding MLG films on an elastic substrate, a wide variety
of graphene corrugation morphologies on different substrates
were reviewed in ['?]. The most noticeable crinkle morphology
observed in nature is the mosaic patterns on an HOPG surface.
A schematic of a crinkle ridge on a grade ZYH HOPG with the
mosaic spread'3 of ~3.5° £ 1.5" is illustrated in Fig. 4(a). The
wavelength of the crinkle mosaic pattern is measured~70 nm
in our AFM measurements (not shown here). The AFM-ALI
measurements show that the surface-slope angle varies approxi-
mately from +3.0" to —3.0° across a ridge of a~3 nm localized-
curvature crinkle. In contrast, the slope changes approximately
from —2.2" to +2.2" across a crinkle valley. These variations
are within the mosaic spread bounds measured by the crystal-
lographic X-ray peak spreading of the Cu-Ka rocking curve 3],
Figure 4(c) illustrates a schematic of the HOPG surface crinkle
pattern. Higher grades, ZYA and ZYB, of HOPG have much
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smaller mosaic spread angles, ~0.4" £0.1"and~0.8" £0.2°,
respectively, with longer crinkle wavelengths than those of
ZYH.

Considering the mean defect-free depth (MDFD) of the
HOPG near its surface as an effective thickness of an MLG
film on an elastic substrate, the MDFD of the HOPG is thicker,
i.e., the effective N is larger, and the corresponding wavelength
is longer for higher grades. The grade-dependent crinkle wave-
length and the surface slope angle variations are qualitatively
consistent with the analytical prediction of the wavelength and
the decay length dependence on the effective number of layers,
N. However, it is left for future work to quantitatively model
MLG buckling on an anisotropic elastic substrate and evaluate
the effective compressive film stresses developed during the
high-temperature manufacturing process of HOPG.

Conclusion and outlook

We carried out the bifurcation onset analysis and predicted
the critical wavelength for layer-on-soft-substrate system in
this chapter. To comment on the nature of the bifurcation, it is
important to analyze the post-buckling evolution as well. Free
standing crinkles show a subcritical bifurcation, and we expect
the substrate stiffness to possibly alter it for certain range of
stiffness. A finite element modeling of this system would help
characterize the post-buckling evolution accurately and can
handle large deformations as well as extensibility and inter-
layer normal compliance. To the best of our knowledge, such
a study has not been previously conducted. This work can also
be extended to other 2D materials beyond graphene by carry-
ing out atomistic studies to characterize flexoelectricity and
subsequently analyzing the bifurcation landscape using the
machinery developed in this work.

Addition of the substrate into the framework adds another
length scale that depends on E. The authors have previously
developed a quantum flexoelectric crinkle parameter that arises
out of combination of bending and flexoelectricity-induced
stiffness. Another non-dimensional parameter!*! comprising
flexoelectricity and substrate properties can be formulated and
subsequently used to study the crinkle-wrinkle transition in the
layer-on-substrate case. Lastly, we note that soft substrates typi-
cally demonstrate dielectricity, and therefore, a more refined
formulation must consider the dielectric interactions between
the layer and the substrate. Nevertheless, the results of the sim-
plified model are consistent with experimental measurements
of HOPG’s surface slope variations and qualitatively elucidate
the grade-dependent mosaic spreading in HOPG which could
not be explained previously.
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