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Abstract
Flexoelectricity in multilayer graphene (MLG) buckling can stimulate kink-shaped crinkle formation. In the process, the bifurcation becomes subcritical 
and the suspended-MLG’s crinkle curvature is localized to a narrow band of ∼ 2nm width. We extend the study to flexoelectric layers bonded to a soft 
elastic substrate. Elastic substrates can guide the morphology of MLG and produce periodic patterns. We show that MLG’s flexoelectricity together 
with substrate elasticity can produce periodic crinkles, which qualitatively explains the grade-dependent mosaic spreading in highly oriented pyrolytic 
graphite (HOPG). Experimental measurements of HOPG’s surface-slope variations indeed confirm curvature localization at the crinkle valleys and ridges.

Introduction
Recent works have highlighted a new form of electromechani-
cal coupling in 2D materials, known as quantum flexoelectric-
ity, which couples polarization to the curvature of the layer.[1–4] 
The origin of this coupling, as the name suggests, lies in the 
distortion of electron cloud upon bending of the layer, which 
makes flexoelectricity a universal phenomenon that can occur 
in all dielectric materials. In particular, quantum flexoelectricity 
in graphene has attracted a lot of attention due to the already 
impressive range of properties of graphene that hold immense 
promise for high-end technologies.[5,6]

Authors have previously investigated the effect of flexo-
electric coupling on the buckling of free-standing multilayer 
graphene (MLG) through a combination of experiments, DFT, 
and continuum modeling.[2–4] While a single layer graphene 
(SLG) indeed shows the supercritical sinusoidal buckling with 
gently varying curvature, i.e., a wrinkle [Fig. 1(a)],[7] MLG 
can show a new subcritical crinkle mode, which localizes the 
surface curvature in a narrow region of width ∼ 2 nm and gives 
the appearance of triangular kink-like mode [Figs. 1(b1) and 
(b2)]. The flexoelectric polarization, localized near the ridges, 
serves to reduce the overall potential energy of the system by 
enhancing intralayer and interlayer attractive interactions.

The unique combination of localized curvature and localized 
polarization make graphene crinkles a powerful tool to manipu-
late charged and polarizable molecules by means of macro-
scopic strain control. In Kothari et al.[4] authors have demon-
strated the potential of this technique in two proof-of-concept 
experiments. Firstly, the authors showed the self-assembly of 
buckyballs (C60) molecules along crinkle valleys. Secondly, 
the authors also showed the self-assembly of DNA molecules 
along crinkle valleys in long straight segments. While these 

experiments clearly showcase the potential of graphene crin-
kles for self-assembly applications, moving beyond proof-of-
concept experiments necessitates development of techniques 
that can create many crinkles in a pre-programmed fashion and 
provide an easy way to control them simultaneously.

We introduce a new methodology to address this challenge 
by extending our analysis to MLG bonded to a softer elastic 
substrate. The addition of the substrate brings in a new length 
scale into the system and gives rise to periodic buckling pat-
terns when the assembly is laterally compressed. Without elec-
tromechanical coupling, the layer-on-substrate system with 
a stiffer layer is known to show wrinkles of a characteristic 
wavelength.[8–10] We will focus on studying how the supple-
ment of flexoelectricity in the layer affects the stability of the 
system and the buckling mode. In particular, we will show the 
range of material parameters for which the crinkle bifurca-
tion exists. In Kothari et al.[3] we introduced a wrinkle-crinkle 
phase diagram of MLGs [Fig. 1(c)] which revealed that the 
shorter the span of a free-standing MLG, the more it tends to 
crinkle than wrinkle. This result implies that an MLG wrinkle 
on a substrate with a wavelength shorter than the critical value 
would lead to crinkle bifurcation. These findings suggest that 
bonding MLG to soft elastic substrates can be an effective 
way to program the self-organization of large number of MLG 
crinkles.

The organization of the paper is as follows. In Sect. Meth-
odology: theoretical formulation, we develop the theoretical 
formulation for the stability analysis. We discuss the results 
in Sect. A word on the length scales, followed by reporting 
experimental observations in Sect. Results and discussion. 
We conclude the work with a discussion of open challenges in 
Sect. Experimental observations.
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Methodology: theoretical formulation
In this section, we will analyze the compressive buckling of 
a flexoelectric bilayer, e.g, a bilayer graphene (BLG), that 
is perfectly bonded to a soft elastic substrate, as depicted in 
[Fig. 1(d1) and (d2)]. The choice of bilayer is made for analyti-
cal convenience. The analysis can be extended to N-layers in an 
analogous way without any qualitative changes in the results. 
We will consider a plane-strain setting.

We introduce the following notation: Qb is the bending stiff-
ness per unit width of the individual layer, µ is the interlayer 

shear stiffness, E and ν are the Young’s modulus and Poisson’s 
ratio of the substrate, respectively, a is the interlayer spac-
ing, f  is the lateral constraint force, w(x) denotes the vertical 
displacement of the free surface (Fig. 2), and T (x) denotes the 
normal traction at the interface between the bilayer and the 
substrate. We will assume the following kinematic assump-
tions: (a) layers are inextensible as ET /µ ≫ 1 , where ET  and 
µ are MLG’s in-plane tensile and interlayer shear stiffness, 
respectively, and (b) both the layers of the bilayer deform in 
an identical fashion and maintain translational symmetry in 

Figure 1.   (a) Simulated SLG ( Qb = 1.0eV ) wrinkle on a PDMS substrate ( µ = 0.3MPa) (b1) MLG over PMMA groves (b2) MLG crinkle. (c) 
Wrinkle-crinkle phase diagram of freely suspended MLG. Schematics of (d1) BLG wrinkles and (d2) BLG crinkles for µ1 < µ2.

Figure 2.   A schematic of the plane-strain setup.
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the thickness direction, as EN /µ ≫ 1 , where EN  is MLG’s 
plane-normal tensile modulus.

We focus the analysis on classifying the buckling mode(s) 
and how they depend on the substrate stiffness. The equilib-
rium configurations of the system are those that minimize 
the total energy of the system, and can be obtained by the 
Euler–Lagrange equation for this system.

The total energy functional, � , comprised mechanical and 
flexoelectric contribution from the flexoelectric bilayer, and 
mechanical contribution from the substrate. The energy con-
tribution of the bilayer is

Here, the mechanical energy from bending and interlayer 
shearing is given as

Uelec is the electrostatic interaction energy in the bilayer (for a 
detailed discussion, refer to[3]) and is given as

where ∈(2) and β∗
(2) are the average permittivity and the effective 

flexoelectric constant of the bilayer, respectively. g(2)(x − ξ) is 
the dipole–dipole interaction kernel for bilayer and is given as1

θ(x) = w
′(x) is the slope angle the layer makes with the x-axis, 

and r0 is the cut-off radius of the interaction integration and is 
taken to be 0.15 nm for graphene.

Finally, the contribution of the substrate is given as

The total potential energy � is given by adding the energy 
contributions together with the inextensibility constraint,
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We employ here the bifurcation analysis technique that was 
first introduced in.[3] By analyzing the Fourier Transform of 
the Euler–Lagrange equation for real and complex roots, we 
probe the bilayer for the existence of wrinkle or crinkle bifur-
cations.2 If the roots are real, the bifurcation modes are sinu-
soidal, indicating wrinkle formation. If the roots are complex, 
some imaginary parts give exponentially decaying solutions 
of the curvature, implying curvature localization, i.e., crinkle 
formation.

Under the assumption of small displacements, the 
Euler–Lagrange equation is then obtained and its Fourier-
transformed3 form becomes

where T̂ (k) = Ekŵ(k) , E = E/2
(
1− ν2

)
.[11]

Fourier transform of the interaction kernel is given as

The critical bifurcation wavenumber and the critical load 
can be found by recasting Eq. (7) as

and subsequently minimizing f  with respect to k  . After we 
obtain fcr , we plug it back into Eq. (7) and look for the solu-
tions. Thus, the existence of complex roots of kcr in physically 
meaningful range will indicate the existence of a crinkle bifur-
cation. As a consistency check, as the flexoelectricity vanishes, 

the critical load is given as f0 = µa+ 6Qb

(
E

4Q
b

) 2

3 and the cor-

responding wavenumber is given as k0 =
(
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1/3

 , which are 

in agreement with classical (i.e., without flexoelectricity) 
results on wrinkling.[5,6] A more general critical wavenumber 
of an N-layer film with vanishing flexoelectricity on a neo-

Hookean substrate is derived from[9] ask0 = �

{(
1+�2
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b

} 1
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 , 

where µNH is the neo-Hookean shear modulus and � the pre-
stretch of the substrate. Once again, for an N-layer film, our 
solution converges to k0 in the absence of flexoelectricity.
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1  The function q(ξ , x) is designed to exclude |ξ − x| < r0 for singular 
intralayer interactions, with r0 being the cut-off radius.

2  Fourier Transform of the Euler–Lagrange equation for small 
deflection w(x) leads to A(k)ŵ(k) = 0 , where k is the wavenumber, 
ŵ(k) is the Fourier transform of w(x) , and A(k) is obtained to be (7). 
Then, the roots of A(k) = 0 for nontrivial ŵ(k) provide the bifurca-
tion wavenumbers.
3  Fourier transform is defined as φ̂(k) =

∫∞
−∞e

−ikxφ(x)dx.
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A word on the length scales
Prior to the analysis and interpretation of the results, it is 
instructive to examine the various length scales that appear in 
this problem. Interlayer spacing a is a material length scale for 
graphene. Since we employ a cut-off radius formulation for 
counting intralayer energy interactions, we introduce a length 
scale r0 which is taken to be same as the lattice parameter for 
graphene. Consideration of the substrate adds a new length 
scale to the problem that typically decides the periodicity of 
the surface pattern as is well known from the study of layer-
on-substrate elastic systems.[8] In analyzing the results from 
bifurcation analysis, it is important to note that the range of 
wavelength of interest is decided by two length scales—lower 
limit is the cut-off radius and the upper limit is the maximum 
wavelength predicted for layer-on-substrate system.[8] Thus, 
for physically meaningful results, we restrict our range of inter-
est to ũ ∈ (0, 4.3), ṽ ∈ (−5, 5) , where k = u+ iv and (̃) denotes 
nondimensionalization of wavenumber with a , which for gra-
phene is taken to be 0.34 nm.

Results and discussion
In this section, we will focus on the onset of bifurcation and 
how the characteristic wavenumber changes with the inclu-
sion of flexoelectricity and substrate. We start by looking at the 

variation of fcr as the effective flexoelectric coefficient changes. 
Figure 3(a) shows that with increasing β∗ , fcr increases mono-
tonically for different substrate stiffnesses. The indicator line 
marks β∗ for graphene. We noticed that if the flexoelectric 
constant is increased beyond a certain limit, the fcr becomes 
negative indicating that layer can spontaneously buckle and is 
unstable in its flat state, but that region is beyond the scope of 
our current treatment.

The incipient wavenumber for the purely mechanical case, 
ignoring any flexoelectric interactions, is given as k0 =

(
E

4Q
b

)
1/3

 
as discussed in the previous section. As β∗ is increased beyond 
zero, the real solutions of Eq. (7) show a bifurcation as shown in 
[Fig. 3(b)]. The plot shows non-dimensionalized real roots of 
Eq. (7) for different substrates. At zero flexoelectric coefficient, 
there is a repeated root that bifurcates into two branches as the 
flexoelectric coefficient increases. One branch shows a smaller 
wavenumber than the purely mechanical case and the other 
branch shows a larger wavenumber. In addition to that, we inves-
tigate Eq. (7) for complex roots to probe the existence of crinkle 
bifurcation. Note that the imaginary part of the complex root 
controls the local exponential decay of the curvature, whereas 
the real part controls the local periodicity. Figure 3(c1) shows a 
very interesting picture of the bifurcation landscape. We recall 
here that our range of interest is ũ ∈ (0, 4.3), ṽ ∈ (−5, 5) . As β∗ 
increases beyond zero, Eq. (7) starts to show complex roots as 

Figure 3.   (a) Evolution of non-dimensional critical load. (b) Bifurcation of the real wavenumbers with the bifurcation parameter β∗ . (c1) 
Complex wavenumbers and (c2) real wavenumbers given by the solution of (7) for different substrate stiffness. (c1) shows the existence of 
crinkle bifurcation for BLG. Material parameters are chosen as reported in[3]: Qb = 1.0eV , interlayer shear stiffness µ = 4GPa, a = 0.34nm . 
E units in Pa.

a b

c1 c2
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well in addition to two real roots. However, those roots are out 
of the physically admissible range. When β∗ approaches a critical 
value that depends on E  , the complex roots begin to appear in 
our range of interest. This shows the clear existence of crinkle 
bifurcation for a flexoelectric bilayer attached to a softer sub-
strate (arrows mark the bilayer graphene (BLG) case). For the 
range of E shown in [Fig. 3(c1)], the critical β∗ ∼ 0.15e . The 
flexoelectric coefficient for BLG is ∼ 0.23e . As the flexoelectric 
coefficient increases beyond graphene’s value, ũ remains nearly 
constant around ∼ 1.8 for E < 10

8
Pa, while ṽ decreases, thus 

making the oscillation persists over a longer width near the crin-
kle ridges or valleys. For higher E

(
∼ 10

10
Pa

)
 , we note that both 

ũ and ṽ decrease indicating that wavelength of oscillations and 
the decay length become wider with increasing flexoelectricity. 
Figure 3(c2) shows the evolution of real roots concurrently. The 
visible gap in [Fig. 3(c1)] between E ≤ 10

8
Pa and E = 10

10
Pa 

trends show that for higher E  , the competition between substrate 
elasticity and flexoelectricity determines the periodicity  ũ  , 
whereas for smaller E  , flexoelectricity dominates substrate elas-
ticity, and therefore, ũ remains nearly unaffected by changes in 
E.

We speculate that the post-buckling morphology will display 
a global periodicity dictated by the real roots [Fig. 3(c2)], and 
locally, the complex roots [Fig. 3(c1)] will serve to concentrate 
the curvature.

The bifurcation described in [Fig. 3(c1)] originates from 
the flexoelectricity of graphene layers. As the layers undergo 

buckling, they develop curvature, which in turn creates flexoe-
lectric dipoles normal to the bent layer (see also Fig. 4(b) in[3]). 
These flexoelectric dipoles interact with each other—within 
the same layer as well as across layers; these interactions can 
be attractive (or repulsive), which will reduce (or increase) the 
total potential energy of the system (see also Fig. 3(f) in[3]). The 
unique complex bifurcation observed in crinkles, which local-
izes the surface curvature to a narrow width (controlled by the 
imaginary part of the wavenumber) together with the curvature 
reversal (controlled by the real part of the wavenumber), ena-
bles them to reduce the potential energy of the system signifi-
cantly as compared to a wrinkle mode bifurcation, which does 
not localize surface curvature and shows only real solutions.

As described by the authors previously,[3] a flexoelectric 
crinkle parameter governs the existence of crinkles. We expect 
the parameter to have a similar effect even in the layer-on-
substrate case. Figure 3 shows that for smaller flexoelectric 
constants, the complex solutions are outside of the range of 
interest. Speaking in physical terms, the flexoelectric interac-
tions are not strong enough to cause crinkles to form, and the 
mechanical modality dominates. As the flexoelectricity effect 
becomes stronger, the system starts to show crinkle bifurcation.

Experimental observations
The MLG crinkle configurations could be observed with 
AFM imaging for relatively thick suspended MLGs as seen in 
Fig. 2(a-2) and (b-2) in [2]. A schematic of a MLG crinkle ridge 
is shown in [Fig. 4(a)]. However, the bluntness of the AFM 
tip and the attraction force of the MLG’s flexoelectric surface 
charge prevent accurate tracing of the surface profile near the 
curvature-localized valleys and ridges of the crinkle. TEM or 
SEM imaging would be distorted by the crinkle charges as well. 
So far, the most accurate measurement of the crinkle surface 
profile near the MLG crinkle’s curvature localization could 
be made with an AFM atomic lattice interferometry (ALI).[14] 
Here, we present the AFM-ALI measurement of the surface-
slope variations across the valleys and ridges of HOPG crin-
kles, i.e., boundaries of mosaic patterns, in Fig. 4(b).

Regarding MLG films on an elastic substrate, a wide variety 
of graphene corrugation morphologies on different substrates 
were reviewed in [12]. The most noticeable crinkle morphology 
observed in nature is the mosaic patterns on an HOPG surface. 
A schematic of a crinkle ridge on a grade ZYH HOPG with the 
mosaic spread[13] of ~ 3.5◦ ± 1.5

◦ is illustrated in Fig. 4(a). The 
wavelength of the crinkle mosaic pattern is measured ~ 70 nm 
in our AFM measurements (not shown here). The AFM-ALI 
measurements show that the surface-slope angle varies approxi-
mately from +3.0

◦ to −3.0

◦ across a ridge of a ~ 3 nm localized-
curvature crinkle. In contrast, the slope changes approximately 
from −2.2

◦ to +2.2

◦ across a crinkle valley. These variations 
are within the mosaic spread bounds measured by the crystal-
lographic X-ray peak spreading of the Cu-Kα rocking curve [13]. 
Figure 4(c) illustrates a schematic of the HOPG surface crinkle 
pattern. Higher grades, ZYA and ZYB, of HOPG have much 

Figure 4.   (a) A schematic of crinkles on a grade III HOPG. (b) 
Experimental measurement surface slopes across crinkle ridges 
and valleys. (c) A schematic of the grade III HOPG crinkles with 
different ridge and alley angles.
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smaller mosaic spread angles, ~ 0.4◦ ± 0.1

◦ and ~ 0.8◦ ± 0.2

◦ , 
respectively, with longer crinkle wavelengths than those of 
ZYH.

Considering the mean defect-free depth (MDFD) of the 
HOPG near its surface as an effective thickness of an MLG 
film on an elastic substrate, the MDFD of the HOPG is thicker, 
i.e., the effective N is larger, and the corresponding wavelength 
is longer for higher grades. The grade-dependent crinkle wave-
length and the surface slope angle variations are qualitatively 
consistent with the analytical prediction of the wavelength and 
the decay length dependence on the effective number of layers, 
N. However, it is left for future work to quantitatively model 
MLG buckling on an anisotropic elastic substrate and evaluate 
the effective compressive film stresses developed during the 
high-temperature manufacturing process of HOPG.

Conclusion and outlook
We carried out the bifurcation onset analysis and predicted 
the critical wavelength for layer-on-soft-substrate system in 
this chapter. To comment on the nature of the bifurcation, it is 
important to analyze the post-buckling evolution as well. Free 
standing crinkles show a subcritical bifurcation, and we expect 
the substrate stiffness to possibly alter it for certain range of 
stiffness. A finite element modeling of this system would help 
characterize the post-buckling evolution accurately and can 
handle large deformations as well as extensibility and inter-
layer normal compliance. To the best of our knowledge, such 
a study has not been previously conducted. This work can also 
be extended to other 2D materials beyond graphene by carry-
ing out atomistic studies to characterize flexoelectricity and 
subsequently analyzing the bifurcation landscape using the 
machinery developed in this work.

Addition of the substrate into the framework adds another 
length scale that depends on E  . The authors have previously 
developed a quantum flexoelectric crinkle parameter that arises 
out of combination of bending and flexoelectricity-induced 
stiffness. Another non-dimensional parameter[3] comprising 
flexoelectricity and substrate properties can be formulated and 
subsequently used to study the crinkle-wrinkle transition in the 
layer-on-substrate case. Lastly, we note that soft substrates typi-
cally demonstrate dielectricity, and therefore, a more refined 
formulation must consider the dielectric interactions between 
the layer and the substrate. Nevertheless, the results of the sim-
plified model are consistent with experimental measurements 
of HOPG’s surface slope variations and qualitatively elucidate 
the grade-dependent mosaic spreading in HOPG which could 
not be explained previously.
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