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Here, we report the closure resistance of a soft-
material bilayer orifice increases against external
pressure, along with ruga-phase evolution, in contrast
to the conventional predictions of the matrix-
free cylindrical-shell buckling pressure. Experiments
demonstrate that the generic soft-material orifice
creases in a threefold symmetry at a limit-load
pressure of p/μ≈ 1.20, where μ is the shear modulus.
Once the creasing initiates, the triple crease wings
gradually grow as the pressure increases until the
orifice completely closes at p/μ ≈ 3.0. By contrast,
a stiff-surface bilayer orifice initially wrinkles with
a multifold symmetry mode and subsequently
develops ruga-phase evolution, progressively reduc-
ing the orifice cross-sectional area as pressure
increases. The buckling-initiation mode is determined
by the layer’s thickness and stiffness, and the pressure
by two types of the layer’s instability modes—the
surface-layer-wrinkling mode for a compliant and
the ring-buckling mode for a stiff layer. The ring-
buckling mode tends to set the twofold symmetry
for the entire post-buckling closure process, while the
high-frequency surface-layer-wrinkling mode evolves
with successive symmetry breaking to a final closure
configuration of two- or threefold symmetry. Finally,
we found that the threefold symmetry mode for
the entire closure process provides the orifice’s
strongest closure resistance, and human saphenous
veins remarkably follow this threefold symmetry ruga
evolution pathway.

1. Introduction
Biological orifices such as blood vessels and the
oesophagus are essential for human life [1–3]. This

2021 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Schematics of the orifice closure processes with continuous ruga-phase evolutions under external pressure from
p̄= 0 to p̄= ∞; (a) the closure process of a generic orifice exhibiting creasing collapse with the threefold-symmetry mode;
(b) the bilayer closure process displaying folding collapse with evolving mode; the stiffening layer is depicted by a red stripe.
(Online version in colour.)

class of anatomical features serves the vital function of regulating the transition objects or
material between two organs by expanding or shrinking the open cross-section of the orifice.
The open area of an orifice such as a vein, which often has an initially smooth interior surface,
is typically controlled by external pressure changes relative to the internal pressure. Throughout
this paper, we consider the static equilibrium configuration of the orifice, and the differential
external pressure will be simply denoted by external pressure. Such pressure differences in soft
biological systems can occasionally induce nearly complete closure of the orifice. The closure is
typically driven by time-dependent loading from muscle contraction [4], osmatic pressure [5],
internal pressure drop caused by blood-flow anomalies [6] or external impact which can lead
to bruising [7]. During the closure process, the orifice surface will buckle at a critical pressure,
then subsequently evolve into rich post-buckling ruga [8–11] morphologies that depend on the
orifice material properties and geometrical configuration [12–15]. Generic corrugated surface
morphologies of the ruga structures have been experimentally observed as creases [16], single-
period wrinkles [17], period-doubling wrinkles [18], folds [19,20], ridges and crumples [21] or
crinkles [22–24]. The orifice without a stiff-surface layer (hereafter called a stiffener) evolves
through a crease closure process, as shown in figure 1a; we denote the process as the generic
closure process of the orifice. The orifice with a stiffener typically buckles to a surface-wrinkling
mode, subsequently developing large-amplitude post-buckling ruga morphologies (figure 1b).
Since various functionalities of soft-material orifices are sensitive to the evolution of these ruga
morphologies, we study surface-ruga development pathways throughout the orifice closure
process caused by external pressure.

The closure process governs variation of the cross-sectional area of the orifice as a function
of external pressure. The external pressure can be used to control viscous fluid flow through
the orifice or configurational force exerted on a solid object in the orifice under an external
pressure gradient in the axial direction. Owing to the near incompressibility of the orifice matrix,
notable variations in the orifice cross-sectional area can be engendered by small displacements
at the external boundary. These attractive properties of the orifice closure process, manifesting as
ruga bifurcations under external pressure, provide valuable guidelines for designing functional
artificial soft-material orifices. In particular, the orifice closure process governs the compressibility
of soft composite materials reinforced by hollow tubes, a configuration often observed in
biological systems, such as tissues surrounding blood vessels [3,25]. When an external pressure
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compresses a soft-matrix composite with sparsely distributed tubes, each tube locally collapses
with buckling modes of a tube in an infinite medium in a process that does not lead to global
deformation instability of the matrix. By contrast, interactive collapse processes of densely
distributed tubes would elicit homogenized compressibility of the composite, which can induce
loss of ellipticity in its homogenized global deformation [26–29].

The orifice closure process is typically governed by ruga-phase evolution due to external
pressure increases [30] or internal pressure drops generated by internal fluid–structure
interactions [6]. The study of the former process has been initiated from the Timoshenko ring
buckling theory [31]. Since then, the matrix-free cylindrical-shell buckling model has been
extensively adopted for vein-collapse analysis. However, our analysis reveals that the closure
resistance is primarily determined by the nonlinear matrix behaviour, unlike the model prediction
of the matrix-free cylindrical-shell buckling. Here, we consider an individual orifice closure
process in an incompressible neo-Hookean solid as a generic unit process and investigate the
complete ruga-phase evolution pathways of the unit orifice closure process. The study of the unit
closure process is crucial to understand the deformation instability of soft-materials that host
hollow tubes. Thus, this study can inform safety assessments for human orifices and is critical to
design functionally controllable soft-material orifices.

This paper provides a systematic study on the soft-material orifice closure processes under
external pressure. Section 2 presents the generic orifice closure process without a stiffener,
including results from both experimental and finite-element method (FEM) analyses. This section
also includes a novel experiment for testing soft-material elastic modulus and an accurate
projection method to identify the subcritical-limit strain at creasing from experimental and FEM
analyses. Section 3 offers the analysis results on the effect of the stiffener on the orifice closure
process by constructing a series of ruga-phase diagrams (RPDs) and closure-area maps. The
results include an analytical expression of the critical initial-buckling pressure for an elastic
stiffener with a wide range of variation in the stiffness and thickness. The results also include the
construction of the pressure-dependent orifice-closure-area diagrams, which comprehensively
reveal the kinematic mechanisms and the associated energetics for the post-buckling symmetry-
breaking processes of the orifice closure.

2. Generic orifice closure processes of incompressible neo-Hookean solids
In this section, we investigate orifice closure processes of soft-materials under uniform external
pressure. Plane-strain deformation is assumed for the analysis throughout this paper. We study
generic symmetry-breaking mechanisms in the closure processes by depicting the soft-material
deformations as those of incompressible neo-Hookean solids. The strain energy, W, of an
incompressible neo-Hookean solid is given by Treloar [32],

W = μ

2

3∑
i=1

(λ2
i − 1), (2.1)

where μ is the shear modulus, and λi represents the principal stretches of the deformation, for
which a constraint of λ1λ2λ3 = 1 is imposed for incompressibility.

In the generic orifice closure process, see figure 1a, the orifice’s cross-sectional area first shrinks
without losing its circular-shape symmetry. At a critical pressure the circular configuration
bifurcates to a lower-energy creased configuration. Here, we study how a series of such crease
bifurcation processes determine the relationship between the normalized pressure, p̄ = p/μ, and
the normalized cross-sectional area, Ā = A/A0, for which A0 is the initial cross-sectional area. To
this end, we measure the orifice area Ā as a function of the applied pressure p̄, and compare the
experimental results with those of finite-element simulations. We demonstrate that this orifice-
area measurement is a novel method of identifying the critical crease strain and the shear modulus
of the soft material.
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(a) Experimental analysis of the generic orifice closure processes
The experimental apparatus is shown in figure 2a. In the experiment, axisymmetric and uniform
external pressure was imposed by a water-filled pressure vessel to compress an elastomer
specimen with a cylindrical orifice at its centre while enforcing plane-strain conditions. The
water pressure was quasi-statically controlled while imaging the orifice’s cross-section with a
scientific digital camera (Stingray F146B), through a clear acrylic top capping-plate. A small
orifice-pressure release port was included in the bottom capping-plate. The external pressure
data were recorded by a digital pressure transducer (Omega PX309-300GV). The pressure and the
image data acquisitions were synchronized, and the orifice area was measured from the camera
images. The cylindrical elastomer specimen with coaxial orifice was cast from a fully cured
rubbery polymer (Ecoflex 00–20, Smooth-On) with small-strain shear modulus approximately
14 kPa. The cavity diameter, 2a0, was 6.4 mm, the outer diameter, 2b0, was 95.3 mm and the height
was 38.1 mm. The ratio b0/a0 = 15 was sufficient to neglect the size effect from a finite specimen.
Glycerine was filled in concentric ring grooves moulded on the specimen’s top and bottom
surfaces to lubricate the interfaces between the specimen and the top and bottom capping-plates.

We carried out five independent experiments with five different Ecoflex 00–20 samples,
confirming the reproducibility of the pressure-dependent ruga-phase evolution. One set of the
experimentally imaged cross-sectional shapes of the orifice under increasing pressure are shown
in figure 2b. The initial circular cross-section of the orifice is shown in figure 2bi). When the applied
pressure is sufficient to shrink the orifice diameter to a/a0 ≈ 0.73, for example in figure 2bii, we
observe that the cross-sectional shape remains circular but with some undulations. We believe that
the undulations are caused by uneven lubrication at the interface between the specimen and the
acrylic top capping-plate. At a critical pressure, the orifice surface starts to crease at three evenly
spaced locations (figure 2biii). Owing to the subcritical nature of creasing, direct identification of
onset strain from experimental images may not be accurate. Therefore, we proposed a projection
method to identify the critical creasing strain and pressure, which will be discussed in detail
in §2c. As the pressure increases, the crease tips move into the matrix, leading to self-contact
of the orifice surface adjacent to the tips (figure 2biv). Upon further increase of the pressure up
to a threshold pressure, p̄ ≈ 2.18, the orifice area shrinks to Ā ≈ 0.08 in figure 2bv. Beyond this
pressure the area remains unchanged (figure 2bvi). In the experimental case, the orifice could not
completely close near the top and bottom capping-plates due to high interfacial friction above the
threshold pressure, p̄ ≈ 2.18. Experimentally observed cross-sectional shapes of the orifice at six
different pressure levels (figure 2bi–bvi) are compared with those of FEM simulations in figure 2c,d
with good agreement. Details of the FEM analysis are presented in §2b. The measured area Ā is
plotted as a function of the pressure p̄ together with the results of FEM simulations in figure 2e,
again with the good agreement until the closure in the experiment becomes friction-limited.

Employing the pressure, p̄, measured as a function of the area Ā before the orifice surface
creases, we can evaluate the neo-Hookean shear modulus μ of the matrix with a least-squares fit
of the FEM results as

μ =
∫Ā2

Ā1
pexpdĀ

∫Ā2

Ā1
p̄FEMdĀ

. (2.2)

As a convenient approximation, the shear modulus can be estimated with the analytical
solution of the pressure p̄th, for an orifice in an infinite medium of incompressible neo-Hookean
solid, in place of p̄FEM in equation (2.2). The analytical solution of the external pressure was
obtained in terms of the cross-sectional area by Zhu et al. [33], which leads to a non-dimensional
expression,

p̄th = 1
2

(
1
Ā

− β2

β2 + Ā − 1
+ ln

β2 + Ā − 1

β2Ā

)
. (2.3)

where β = b0/a0. When β → ∞ equation (2.3) reduces to,

p̄∞
th = 1

2

(
1
Ā

− lnĀ − 1
)

. (2.4)
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Figure 2. (a) Schematics of generic orifice closure test apparatus under plane-strain conditions; (b) experimental images
of orifice cross-sections with a scale bar of 2.5 mm; FEM evaluations of (c) maximum principal logarithmic strain εmax

pcpl;

(d) normalized axial stress σ̄z , on the deformed configuration; (e) comparisons of normalized orifice area Ā as a function of
normalized pressure among analytical, FEM and experimental evaluations. The experimental data represent the mean and
standard deviation of three experiments with continuous error bars (one standard deviation) shown in the shaded area;
( f ) comparisons of normalized area Ā as a function of normalized pressure p̄ among three different orifice-creasing symmetries.
(Online version in colour.)
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The shear modulus μ of the elastomer, Ecoflex 00–20, used in our experiment is evaluated
by equation (2.2) as 14.32 kPa. Simple-tension data for Ecoflex 00–20 was reported by Zhang
et al. [34], and the data closely fits the incompressible neo-Hookean model with μ= 14.21 kPa
± 1.00 kPa for the tensile stretch ratio up to 2.1. The simple-tension stretch ratio 2.1 is energetically
equivalent to two plane-strain stretch ratios of 0.49 and 2.03 in equation (2.1). Based on our finite-
element model, the maximum in-plane principal stretch arising during the entire orifice closure
process is less than 1.82, well below 2.03, as shown in figure 2c, and thus simulating the orifice
closure process with an incompressible neo-Hookean model is valid and accurate. Furthermore,
the minimum principal stretch at the onset of creasing is approximately 0.64, well above 0.49.
Thus, the orifice-closure test based on equation (2.2) provides a convenient way of measuring the
neo-Hookean shear modulus of an elastomer.

(b) FEM analysis of the generic orifice closure processes
In this subsection, we simulate the generic orifice closure processes of soft-materials with the
Abaqus/Standard FEM package [35]. The soft-material is modelled as an incompressible neo-
Hookean solid. The geometry of the specimen is meshed into approximately 1500 circumferential
elements in five layers along the radial direction near the orifice surface, while the rest of
the domain up to R = 15a0 is filled with approximately 22 500 gradient-mesh elements. Those
elements are plane strain 4-node bilinear hybrid elements with reduced integration (CPE4RH).
All solutions reported in this paper are the final convergent solutions checked by mesh sensitivity
tests. As mentioned in the previous section, our five independent experiments always exhibited
crease initiation with threefold symmetry. We believe that the crease initiation caused by
the three-dimensional distribution of imperfections on the orifice’s interior surface allows the
emergence of the lowest energy mode—the two-dimensional threefold symmetry. However,
this three-dimensional crease-initiation process cannot be simulated by two-dimensional FEM
analysis. Therefore, we trigger crease initiation with half-mesh-size defects as initial geometrical
imperfections at three evenly spaced locations on the orifice surface in our simulation. If the
imperfections were not introduced, it would crease at a local surface strain close to the Biot [36,37]
critical strain of smooth-surface creasing, 0.456.

The FEM simulation results of the cross-sectional orifice morphology with associated
distributions of maximum principal logarithmic strain, εmax

pcpl, and axial stress, σ̄z, normalized
to the shear modulus, are shown in figure 2c,d, respectively. The orifice morphologies in the
simulations agree well with the experimental results shown in figure 2b except for p̄ > 2.18. As
we increase the pressure from the stress-free state, figure 2ci,di, distributions of εmax

pcpl and σ̄z keep
axi-symmetry, figure 2cii,dii, up to the onset of symmetry breaking at p̄ ≈ 1.20.

At p̄ ≈ 1.20, the orifice surface begins to crease at the sites of artificial imperfection, focusing
εmax

pcpl and σ̄z distributions at the crease tips. Identification of the critical creasing pressure, p̄FEM
cr ≈

1.20, will be discussed in detail in §2c. It is distinctly notable in figure 2ciii–cv and diii–dv that
creasing relaxes σ̄z along the traction-free orifice boundary of flattened or reversed curvature.
At p̄ ≈ 2.0, much of the open orifice surface becomes almost flat, figure 2civ and div, leading to
curvature reversal of the entire orifice surface. During the orifice closure process, εmax

pcpl near the
orifice surface initially increases until the surface begins to crease. Subsequently, εmax

pcpl decreases
beyond the creasing point. In particular, εmax

pcpl almost vanishes along curvature-reversed zones
of traction-free orifice surface. As the orifice closes further, the εmax

pcpl starts to concentrate at
bisecting nodes between the crease tips as seen in figure 2cv. The σ̄z in each nodal region increases
after the curvature reversal, figure 2dv. Under sufficiently large pressure, i.e. p̄ = 5.0, the orifice
closes almost completely, concentrating deviatoric strain at the three bisecting nodes with the
maximum principal stretch λmax ≈ 1.81, figure 2cvi, and focusing the axial stress σ̄z at the crease
tips, figure 2dvi. This result implies that an elastomer can fail by local tension at a bisecting node
of the threefold crease, even if the orifice is hydrostatically compressed at the far-field. However,
it is almost stretch free on the self-contacting orifice surface, figure 2cvi.
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Experimental measurements of p̄ versus Ā are compared with FEM analyses that employ two
different normalized damping viscosities [14] in figure 2e. One corresponds to a low viscosity
of 2 × 10−5 loss tangent and the other a relatively high viscosity of 2 × 10−4. The FEM analysis
with the relatively high damping viscosity matches well with the experimental results up to p̄ ≈
2.18 beyond which the friction at the interface of the specimen and the capping-plate restricts
interfacial slip. The pressure–area relations obtained by FEM analyses are plotted in figure 2f
for three different creasing modes, N = 2, 3 and 4. The analysis results in figure 2f show that
crease with threefold symmetry is the lowest energy configuration right after the crease initiation;
however, the energy of the twofold symmetry crease quickly become lower than the threefold as
the pressure increases. The results are consistent with those in [38]. The threefold symmetry crease
seems to remain a stable mode once triggered. Transition from a three- to a twofold creasing seems
to have high activation barrier, requiring a self-contact slip of the orifice surface. By contrast, the
transition from a four- to a twofold does not. In the four- to the twofold transition, a diagonal
pair of crease wings open, reducing their self-contact areas, while the other diagonal pair close,
increasing the pair’s self-contact zone sizes. Indeed, figure 2f shows a spontaneous transition from
a four- to a twofold creasing in our FEM analyses. These phenomena indicate that an initial N-
fold creasing will likely reduce to a two- or a threefold by opening crease tips at the final stage of
orifice closure, while minimizing energy dissipation caused by slipping at self-contact surfaces.
The threefold crease is in a metastable state; however, the energy barrier of the twofold crease
is typically too large to make the transition to a twofold crease. The metastable twofold crease
provides a significant closure resistance of the orifice against a twofold crease collapse.

(c) Identification of subcritical-crease limit strain with a projection method
Owing to the subcritical nature of creasing, measuring the accurate onset strain for the creasing
of an elastomer is non-trivial. Biot [36,37] evaluated the critical crease strain of a neo-Hookean
solid as εcrease

cr ≈ 0.456 in his regular perturbation analysis. However, Gent & Cho [16] observed
creasing at a strain, εcrease

initiation ≈ 35% ± 7%, on surfaces of bent rubber strips. Afterward, Hohlfeld
and colleagues [39–41] revealed that the creasing strain of Gent and Cho is close to the post-
bifurcation lower-limit strain of subcritical crease, εcrease

subcr ≈ 35.4%. Subsequently, Hong et al.
[42] showed, in their FEM analysis, that a crease could be critically grown out of a singular
imperfection, at εcrease

initiation ≈ 35%. Recently, the initiation strain of creasing, εcrease
initiation, on a silicone

rubber surface was observed at a uniaxial-compression strain of 36% [43]. Since the crease
initiation strain is sensitive to geometrical imperfections [44], and presumably to certain material
properties, such as surface tension [45] and compressibility [46], it is difficult to identify the
initiation strain as the post-bifurcation lower-limit strain of subcritical creasing. Therefore, here,
we introduce a novel projection method of orifice compression to identify the limit strain of
subcritical crease.

In this method, we assume that the local limit strain of subcritical creasing on the orifice
surface hardly depends on the radius of the orifice, since the surface energy over the product
of the modulus and the radius, γ /μa0, is much smaller than unity. It is less than 0.02 for the
orifices in our specimens. The experimental results show that the orifice compression test is
an ideal method of experimentally measuring the limit strain of subcritical creasing. As shown
in figure 3a of our experimental analysis, the cross-sectional area of the orifice, Ā, decreases
monotonically when the external pressure increases up to p̄ ≈ 1.2. However, it is challenging
to read out the critical creasing pressure directly from the dataset. Therefore, we only use the
data with certainty in the pre-creasing range of 0.19 ≤ p̄ ≤ 1.06 and the post-creasing range of
1.27 ≤ p̄ ≤ 2.16 to obtain the area–pressure relations, Ā−(p̄) and Ā+(p̄), respectively. Then, we best
fit the data to quadratic forms, Ā±(p̄) = a±p̄2 + b±p̄ + c±, with three coefficients each (a±, b±, c±)
in the respective regions, and extrapolate Ā±(p̄) into the excluded range, 1.06 < p̄ < 1.27, to be
intersected at the crease initiation point. Then, the intersection point (p̄exp

cr , Āexp
cr ) is identified as the

limit point of subcritical creasing, and we get ε
exp
cr ≈ 1 −

√
Āexp

cr = 36.10% ± 1.44% at p̄exp
cr = 1.24.
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Figure 3. Novel projection method of identifying the subcritical-limit crease strain from (a) experimental and (b) FEM
simulation data of the orifice-closure test, using two best-fit polynomials. (Online version in colour.)

The projection error, δε
exp
cr is evaluated from the root mean square (RMS) error of the quadratic

fitting, which is provided in appendix A.
FEM evaluation using the same projection method is shown in figure 3b, which gives

εFEM
cr = 35.27% ± 0.54% at p̄FEM

cr = 1.20. Equation (2.4) gives the critical creasing pressure of a
generic orifice in an infinite medium of an incompressible neo-Hookean solid as p̄th = 1.15.
The FEM analysis employed negligible viscous damping to stabilize the simulation while the
experimental specimen, Ecoflex 00–20, exhibited considerable viscosity, as shown in figure 2e.
Additionally, Ecoflex 00–20 is not strictly incompressible. The differences in viscosity and
compressibility make the general trends of Ā±(p̄) variations notably different between the
experiment and the FEM analysis, as shown in figure 3, while respective creasing strains are
very close. In other words, despite the uncertainties in incompressibility and viscosity, the
experimental and FEM evaluations of the subcritical-limit strains are within the range of reported
values around 35–36% [16,39,42,43].

3. The role of the stiffening layer on bilayer-orifice closure processes
In the previous section, we studied the generic orifice closure process without a stiffener and
found that the orifice area during the post-creasing closure process is dependent on the multi-fold
symmetry of creasing. Triggering of the multifold creasing is sensitive to imperfections in loading,
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orifice geometry and material properties, and thus it is difficult to control the symmetry of
creasing. However, a thin layer attached to the orifice surface can regulate a multifold symmetry
of wrinkling, which controls the crease modes of the matrix in the post-buckling process of
the stiffened orifice. Therefore, in this section, we analyse orifice closure processes controlled
by the initial wrinkling wavenumber of a thin stiffening layer with uniform thickness t and
shear modulus μl on the orifice surface. For simplicity, in this paper, we only consider a bilayer
orifice without a mismatch strain. For the sake of compact presentation of a RPD, we employ a
convenient layer’s compliance index, k̄ = (3μ/μl)1/3 [10,47], and a normalized external pressure,
p̄ = p/ μ. With this normalization, the critical pressure for various ruga-phase transitions, p̄cr,
becomes a function of k̄ and t̄(= t/a0). Then, the parametric function’s trajectories, k̄(p̄cr; t̄), on
the (p̄cr, k̄) plane constitute the ruga-phase boundaries on the diagram. In our FEM simulation, the
embedding medium radius is chosen as 15a0 to approximate the infinite medium condition, where
a0 is the orifice internal radius. With this approximation, even in the final stages of the orifice
closure the displacement decays rapidly along the radial direction. Nevertheless, the lowest
closure mode of the displacement field persists to a small extent up to the external boundary.
A small sinusoidal perturbation with amplitude 0.001Λ in the radial direction is implemented on
the layer surface as an initial geometric imperfection of period N to trigger the initial buckling,
where the wavelength Λ = 2πa0/N. We used a Fast Fourier Transform algorithm to accurately
identify criticalities of all bifurcations appearing in the simulations.

(a) Ruga-phase diagrams of bilayer soft-material orifices
Extensive FEM simulations are performed to construct the RPDs for orifice systems with a
stiffener under external pressure. It is known that period multiplication of large-amplitude ruga
structures exhibits subtle hysteresis in morphology evolution in globally planar geometries [11].
However, our FEM analysis shows no jump of the area measure along the area–pressure-relation
curve, implying that the irreversibility of the area–pressure relationship in the loading and
unloading cycle is negligible. Therefore, the RPD constructed for the ruga evolution pathways
with monotonic pressure increase well represents the state of orifice cross-sectional area versus
pressure. From these diagrams, we can observe the effect of the stiffness mismatch and the
geometry on the entire ruga-phase evolution, thus guiding our understanding of the role of the
stiffener on the orifice closure process.

In a generic orifice closure process, the orifice surface without a stiffener snaps to an
instantaneous-creasing mode at the critical bifurcation pressure. However, in a bilayer-orifice
closure process, the thin elastic layer often wrinkles before crease initiation. The delay from
wrinkling to creasing grows until the wrinkle amplitude reaches a critical value, as the stiffness
ratio increases. Such delayed creasing preceded by layer wrinkling is called setback-creasing
[8]. If the layer is stiff enough, the wrinkles can fold before crease initiation at the folds’
troughs. Although creasing is typically preceded by wrinkling in bilayer-orifice closure processes,
the wrinkle initiation pressure can be much smaller than the crease initiation pressure of the
matrix’s generic orifice. In turn, the matrix creasing pressure of a bilayer orifice can be lower
than the crease initiation pressure of the generic orifice for specific ranges of the stiffness
ratio and the thickness of the layer. In other words, particular parameter choices for the stiff
layers can prematurely trigger the matrix creasing rather than stiffening the orifice. Therefore,
in this subsection, we construct comprehensive RPDs of bilayer orifices to understand the
entire bilayer-orifice closure processes. Our FEM simulations reveal five distinct pathways of
the bilayer-orifice’s morphological evolution during the orifice closure process, depending on
the stiffness ratio, μ̄l (≥ 1), and the normalized thickness, t̄, in the range of 1/60 ≤ t̄ ≤ 1/3. The
morphologies of the five pathways are (i) instantaneous-creasing, (ii) wrinkling/setback-creasing,
(iii) wrinkling/period-doubling/creasing, (iv) wrinkling/period-doubling/folding/creasing and
(v) wrinkling/period-doubling/folding. FEM simulation results for these five pathways from
initial buckling to 90%-area-closure configurations for t̄ = 1/40 are shown in figure 4a. Our FEM
simulations reveal that, unlike a flat bilayer ruga evolution, the surface of a neo-Hookean layer
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on a curved surface of an orifice can crease after the layer folds in the orifice-ruga evolution
pathway (iv).

A number of post-buckling morphologies at various pressures were computed for six different
thickness ratios, t̄ = 1/3, 1/5, 1/10, 1/20, 1/40, 1/60, for 1 ≤ μ̄l < ∞ (or 0 < k̄ = (3/μ̄l)1/3 ≤ 31/3).
Among them, the computational results of t̄ = 1/5, 1/10, 1/20, 1/40 are used to construct four
different bilayer-orifice RPDs, as shown in figure 4b. The phase diagrams show that the critical
pressure is sensitive to the relative layer thickness t̄ for a fixed compliance index k̄. When the
thickness of the layer is relatively thin, say t̄ ≤ 1/10, all the five morphological pathways are
distinctly observed. If the surface layer is not stiff enough, the orifice surface develops creases
instead of wrinkles at a critical pressure. This critical point, which depends on t̄, is denoted as w+
in figure 4b, where k̄ is approximately 1.2. Within the parameter range, 1/60 ≤ t̄ ≤ 1/3 and 1 ≤ μ̄l,
period quadrupling did not occur, although it was observed in the primary bilayer (PB) RPD of a
flat bilayer [10]. We anticipate that period quadrupling can occur in the orifice bilayer if the layer is
thinner than a quadrupling thickness, t̄q < 1/60. The set of bilayer-orifice-ruga phases and triple
points for a fixed t̄ is a subset of the eleven PB ruga phases with five triple points [10,11], and
we were unable to find new ruga morphologies in our bilayer-orifice configurations. However,
introducing mismatch strains may yield new morphologies [14,15]. A large mismatch strain can
stimulate formation of ridges, instead of creases, which can transform periodic ruga morphologies
into a disordered crumpling phase. The crumpling is crucial in understanding ruga morphologies
of growing layers on biological surfaces.

(b) Onset of initial buckling: surface-layer-wrinkling versus ring buckling
As discussed above, the initiation of wrinkling can accelerate the orifice closure process.
Therefore, understanding the initial buckling pressure will help us explore the layer’s role as
a stiffener during the closure process. Interestingly, the RPDs show that for every thickness ratio
t̄, there exists a critical compliance index k̄c for which the compliance-index dependent pressure of
buckling initiation exhibits its minimum value p̄min. When the layer becomes stiffer or softer than
this critical stiffness value, it becomes more difficult to buckle the bilayer orifice. In this subsection,
we derive the analytical solution of buckle-initiation pressure p̄bi(k̄, t̄) for bilayer orifices.

As the orifice remains circular before it buckles, application of equation (2.3) to the layer and
the matrix with traction and displacement continuities at the layer/matrix interface provides the
pre-buckling pressure–area relation as

p̄ = 1
2

[
−Ā + 1

Ā + (t̄ + 1)2 − 1
+ ln

{
(t̄ + 1)2

Ā + (t̄ + 1)2 − 1

}]

− 3

2k̄3

[
(t̄ + 1)2

Ā + (t̄ + 1)2 − 1
− 1

Ā
+ ln

{
(t̄ + 1)2Ā

Ā + (t̄ + 1)2 − 1

}]
. (3.1)

At the onset of initial buckling of a thin surface layer, the buckle-initiation strain on the
stiffening layer, εbi, is related to the buckle-initiation compliance index, k̄bi, as [10]

k̄bi = 2(1 + 0.15 εbi)
√

εbi , (3.2)

where εbi is related to Ābi as

εbi ≈ 1 −
√

Ābi. (3.3)

Then, the buckle-initiation pressure p̄bi(k̄, t̄) for a bilayer orifice can be obtained implicitly from
equations (3.1)–(3.3).

With equations (3.1)–(3.3), we can extend the experimental method introduced in §2 to
evaluating the modulus of the stiffening layer with extra measurement of the layer thickness. We
can first precisely measure the critical buckling area Ābi and buckling pressure pexp

bi of the orifice
with the stiffener with unknown stiffness using the projection method proposed in §2c. Then we
can obtain the buckle-initiation compliance index k̄bi or the stiffness ratio μ̄l for the orifice system.
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Figure 4. (a) FEM simulation results for five ruga-phase evolution pathways from initial buckling to 90%-area-
closure configurations for t̄ = 1/40. Prescribed external pressure increases from left to right, and stiffness ratio
from top to bottom; (ai) instantaneous-creasing of generic orifice (k̄ = 1.44); (aii) wrinkling/setback-creasing
(k̄ = 1); (aiii) wrinkling/period-doubling/creasing (k̄ = 0.754); (aiv) wrinkling/period-doubling/folding/creasing
(k̄ = 0.45); (av) wrinkling/period-doubling/folding (k̄ = 0.196). (b) Ruga-phase diagrams of bilayer orifices for
t̄ = (bi) 1/5; (bii) 1/10; (biii) 1/20; (biv) 1/40. (I) fundamental phase; (II) single-mode wrinkle phase; (IIIA), (IIIB),
(IIIC ) and (IIID) four types of crease phase; (IV) double-period wrinkle phase; (V) fold phase; (Vc) fold/crease
phase. The superscript ‘+′ represents a beginning bifurcation point for a new phase; the superscript ‘−′

represents an ending bifurcation point for a phase; W+, D+ and Cf denote three triple points. (Online version in
colour.)
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Finally, we can use the least-squares fit of p̄th, equation (3.1), and pexp to find the matrix modulus
μs, and hence obtain the modulus of the stiffener μf .

Now, we consider two limiting cases of buckle-initiation pressure p̄bi(k̄, t̄). First, when the layer
thickness is much smaller than the orifice radius, i.e. t̄ → 0, the behaviour of a bilayer orifice is
analogous to that of a flat PB. In this limit, the bilayer-orifice buckles in a surface-layer wrinkling
mode, for which the buckle-initiation pressure can be derived from equation (3.1) as

p̄sl
bi(k̄

sl
bi) = lim

t̄→0
p̄bi(k̄, t̄)|k̄=k̄sl

bi
= 1

2

[
1

Ābi
− ln Ābi − 1

]
, (3.4)

where Ābi is related to k̄sl
bi through equations (3.2) and (3.3).

Second, when the layer is exceedingly stiff as k̄ → 0, the orifice layer acts as if a rigid ring is
surrounded by a soft medium subjected to hydrostatic pressure. Therefore, a ring-buckling mode
of symmetry breaking dominates in this limit. The buckle-initiation pressure of the ring-buckling
mode, p̄rb

bi can be derived as

p̄rb
bi (k̄rb

bi , t̄) = Lim
k̄→0

p̄bi(k̄, t̄)|k̄=k̄rb
bi

= 3t̄(t̄ + 2)

2k̄rb
bi (t̄ + 1)2 . (3.5)

By contrast to the buckle-initiation pressure, equation (3.5), of a stiff layer on a neo-Hookean
solid cavity, the mode-dependent buckling pressure of a ring under direct external pressure was
traditionally analysed as

p̄(n)(k̄, t̄) = (n2 − 1)
(

t̄

k̄

)3

, (3.6)

where n is the mode number [31]. In equation (3.6), p̄(n)(k̄, t̄) and k̄ are the critical buckling pressure
and the compliance index normalized by an arbitrary reference modulus. The lowest ring-
buckling pressure, p̄(2)(k̄, t̄), has been often used to estimate the buckling pressure of biological
orifices [3,25]. However, the buckling mode number of a biological orifice is set by matrix-
property dependent k̄ and t̄, and p̄(2)(k̄, t̄) is much lower than p̄rb

bi (k̄rb
bi , t̄) predicted by equation (3.5),

in the physically relevant range of k̄ and t̄. If an extremely stiff layer is considered, the lowest-
mode ring-buckling pressure p̄(2)(k̄, t̄) is higher than p̄rb

bi (k̄rb
bi , t̄) of equation (3.5) in the range of

k̄ < t̄(t̄ + 1)/
√

t̄/2 + 1; then, equation (3.6) is valid to get the buckling pressure.
The theoretical buckling pressure [p̄bi(k̄, t̄); equations (3.1)–(3.3)], the surface-layer-wrinkling

pressure [ p̄sl
bi(k̄); equation (3.4)], the ring buckling pressure [p̄rb

bi (k̄, t̄); equation (3.5)], and the
FEM predictions are plotted in figure 5a–e for five different thicknesses. The p̄bi(k̄, t̄) is consistent
with the FEM results for all thicknesses considered. When the layer is relatively soft, the p̄bi(k̄, t̄)
approaches the Biot limit of creasing pressure, 1.80, which can be obtained from equation (2.4)
by inserting λ2

Biot in place of Ā with Biot’s critical creasing stretch ratio, λBiot = 0.544. The results
in figure 5a–e show that [ p̄sl

bi(k̄); equation (3.4)] and [p̄rb
bi (k̄, t̄); equation (3.5)] are lower bounds

of [p̄bi(k̄, t̄); equations (3.1)–(3.2)]. The results show that the layer-curvature effect on the layer’s
buckling resistance increases with the stiffness and thickness of the layer. When the buckling
mode number decreases down to two, the buckle-initiation pressure approaches to the ring-
buckling pressure p̄(2)(k̄, t̄). For the buckling mode number greater than two, the soft matrix
plays a significant role in resisting layer buckling by enforcing that the layer buckles in a
higher mode. The wrinkle-mode buckling tends to decrease the buckle-initiation pressure as
the compliance index, k̄, decreases from 31/3. By contrast, the ring-buckling mode increases the
buckle-initiation pressure as k̄ decreases to approach the value (k̄ 
 1) of mode-2 ring buckling.
The two mechanisms of buckling set the minimum buckle-initiation pressure p̄min at a critical
k̄c. Understanding the conditions of getting p̄min is essential to design buckle-resistant bilayer
orifices. The p̄min and k̄c are plotted in figure 5f as a function of t̄. Both p̄min and k̄c monotonically
increase from zero with t̄, meaning that the thinner the layer, the lower the p̄min and k̄c will be.
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Figure 5. Buckle-initiation pressure depending on compliance index k̄ for different stiffener thickness t̄, presentedwith surface-
layer-wrinkling and ring buckling asymptotes: (a) t̄ = 1/5; (b) t̄ = 1/10; (c) t̄ = 1/20; (d) t̄ = 1/40; (e) t̄ = 1/60; (f ) critical
characteristic wavenumber k̄c and the minimum wrinkling pressure p̄min as a function of stiffener thickness t̄.(Online version
in colour.)

(c) Post-buckling closure resistance of soft-material bilayer orifices
As shown in §3a, after the initial buckling of the stiffener, the orifice cross-sectional area
is significantly reduced during subsequent symmetry-breaking orifice closure processes. To
characterize the role of the stiffener on the orifice closure processes, finite-element analysis is
used to construct the pressure-dependent closure-area diagrams for five different configurations,
as displayed in figure 6. In each diagram, the corresponding points of p̄ for Ā = 0.7, 0.4, and 0.1
are collected to generate 30%-, 60%- and 90%-closure contour lines. Analytical expressions of the
pressure–area relations for orifice closure that keeps circular cross-sectional symmetry without
symmetry breaking are plotted for Ā = 0.7, and 0.4 in dashed lines as reference lines. It is distinctly
notable that buckling of the layer markedly elevates the post-buckling orifice-closure rate in the
entire range of t̄ and k̄. However, we also note that the closure rate is substantially retarded by
relatively compliant layers, showing strong closure resistance.
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Figure 6. Pressure-dependent orifice-closure area diagrams for (a) t̄ = 1/3; (b) t̄ = 1/5; (c) t̄ = 1/10; (d) t̄ = 1/20;
(e) t̄ = 1/40. Discrete dots represent FEM results for Ā= 0.7, Ā= 0.4 and Ā= 0.1. Solid lines stand for contours of 30%, 60%
and 90%orifice closures constructed by FEM simulations. Thick dotted lines represent theoretical pressure area relationwithout
buckling for Ā= 0.7, and Ā= 0.4. Thin dotted lines denote ruga-phase boundaries of buckle initiation shown in figure 4. The
shaded region in (a) corresponds to the k̄ range of the human saphenous vein system (0.924≤ k̄ ≤ 1.186). Particular points are
labelled in (a) and (b) for explanatory convenience in the main text. (Online version in colour.)

In figure 6a, contour lines of constant Ā abruptly kinks at k̄ ≈ 0.78 for an orifice with a thick
stiffener (t̄ = 1/3), kinking the contour lines of 60% and 90% closures from S1 and Q1 to S2 and
Q2, respectively. The orifice wrinkles at w1 for k̄ ≈ 0.78. In the range of k̄ < 0.78, relatively stiff
stiffeners significantly accelerate the area reduction rate in the post-buckling process, despite
that the stiffeners delay buckling initiation to p̄bi > 1.5 from p̄cr ≈ 1.2 of the generic orifice. With
k̄ approaching 0.78 from below, the fraction of orifice closure increases from 30% (w1) to 90%
(Q2) with only an approximately 10% increment in external pressure. By contrast, in the range
of 0.78 < k̄ < 1.44(or 1 < μ̄l < 6), relatively compliant stiffeners exhibit strong resistance against
orifice closure. The k̄ range of strong closure resistance substantially varies with the stiffener
thickness, as shown in figure 6b–e. In these closure resistant ranges, the orifice area Ā hardly
changes with k̄.

The apparent closure-resistance phenomenon is caused by the final closure mode of threefold
symmetry, triggered by the eigenmode of the initial layer wrinkling. Figure 7a shows the orifice
configuration evolving into the final threefold symmetry for k̄ = 0.79 and t̄ = 1/3, exhibiting strong
closure resistance in figure 6a. By contrast, the orifice collapses with twofold symmetry for k̄ = 0.75
and t̄ = 1/3, as shown in figure 7b, presenting negligible closure resistance in figure 6a. Similarly,
for t̄ = 1/5, the orifice collapses with threefold symmetry exhibiting strong closure resistance for
0.6 < k̄ < 1.0, figure 7cii, but with twofold symmetry for k̄ < 0.6, figure 7ciii, and 1.0 < k̄ < 1.44,
figure 7ci, exhibiting strong resistance for the threefold symmetry. For the k̄ value of 0.6, the
contour lines of 30%, 60% and 90% closures of the orifice kink from w2, S1 and Q1 to w′

2, S2 and
Q2, correspondingly, while the contour line of 90% closure also kinks from Q0 to Q′

0 for the k̄ value
of 1.0, in figure 6b. The 30%-closure contour also kinks at w1. In figure 7ci, the four-fold symmetry
of creasing evolves into the lower-energy closure mode of twofold symmetry. In figure 7cii, the
threefold symmetry stiffens the orifice to resist closure, requiring 40% more pressure to reach 90%
closure than that of the twofold symmetry.

Here, as a biological example of orifice-closure resistance, we consider the functional
properties of a vein, a vital orifice in the human body. A vein often experiences higher external
pressure than the internal pressure, and is susceptible to buckling-induced injuries [3,25]. Taking
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(b)

(c) (i)
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(iii)

Figure 7. Orifice morphologies at various external pressure levels, collapsing with (a) threefold symmetry for t̄ = 1/3 and
k̄ = 0.79(μ̄l = 6), passing Q1 in figure 6a; (b) twofold symmetry for t̄ = 1/3 and k̄ = 0.75(μ̄l = 7), passing Q2 in figure 6a.
For (c), t̄ = 1/5 with (ci) k̄ = 1.14(μ̄l = 2); (cii) k̄ = 0.75(μ̄l = 7); (ci) k̄ = 0.31(μ̄l = 100), showing collapse processes
with four-fold/twofold creasing, threefold wrinkle-creasing and twofold folding symmetries correspondingly. Contours of
logarithmic strain are rescaled in each plot for visualization. (Online version in colour.)

the human saphenous vein (SV) as a specific example, the measured wall thickness of the
SV is 0.51 ± 0.03 mm and the outer diameter 4.2 ± 0.6 mm [48], which yields t̄ in the range
of approximately 0.25 to 0.43. Thus, we select t̄ = 1/3 as a representative thickness ratio of
the SV. The circumferential elastic modulus of the SV at zero internal pressure is evaluated
as Eθ = 16.8 ± 6 kPa from the experimental data reported in [49], for which the stress–strain
relation is represented by σθ = μθ (λ2

θ − λ−4
θ ) with λθ the circumferential stretch. Then, the range

of the SV’s shear moduli becomes, μθ = Eθ /6 = 2.8 ± 1 kPa. The shear modulus of human tissue
surrounding the SV was estimated as μt = 1 kPa [50]. Thus, the typical k̄v range for the SV is,
0.924 < k̄v < 1.186 (1.8 < μ̄l < 3.8), which is marked in figure 6a in the shaded area. Remarkably,
this k̄v range falls in the range of the strong closure-resistance region. The results indicate that
vein-stiffening pathologies can yield 40% loss of vein’s capacity to resist easy closure under
external pressure.

4. Conclusion
In this paper, we have discussed the closure processes of generic and bilayer circular orifices
in soft-material matrices under external pressure. As this soft-orifice deformation is steered
by response-symmetry of finite elasticity, the incompressible neo-Hookean model is employed
in both our theoretical and FEM analyses, which were directly compared to experimental
measurements.

The theoretical and FEM analysis results on the orifice area versus pressure relation of a generic
orifice closely match experimental measurements. For the experiment, an innovative orifice
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closure test apparatus was designed and used to measure area and shape variations of a circular
orifice in a soft elastomer as external pressure was gradually applied. During the closure process,
the circular symmetry breaks when the orifice surface strain reaches approximately 0.36, and the
orifice creases with threefold symmetry. The final 40% closure area strongly depends on the initial
mode number of creasing. Unlike half-space surface creasing, the radially growing orifice crease
is highly stable, and crease localization is limited. Consequently, metastable threefold-symmetric
creasing is unwavering up to complete closure of the orifice, despite that twofold-symmetric
creasing of complete closure is globally more stable. When the orifice is closed with threefold
symmetry, the periphery of the orifice almost fully recovers its original length upon complete
closure. In this study, we measured the neo-Hookean shear modulus and the subcritical-limit
crease strain of Ecoflex 00–20 as 14.32 kPa and 36.10 ± 1.44%, respectively, employing the orifice
closure test and a novel projection method of data processing.

Considering a bilayer orifice, the stiffener delays or promotes symmetry-breaking bifurcation
of orifice closure, depending on the compliance index k̄ and the thickness t̄ of the layer. The
stiffener’s initial buckling mode determines the post-buckling bilayer-orifice closure processes.
To comprehensively understand the stiffener’s role, we have constructed a series of bilayer
RPDs in the phase plane of (p̄, k̄; t̄) through FEM simulations. On the phase diagram, five typical
ruga-phase evolution pathways are found. We have derived analytical solutions, equations
(3.1)–(3.3), for the buckle-initiation pressure, p̄bi(k̄, t̄), which agree well with FEM solutions. The
analyses reveal two limiting buckling mechanisms of surface-layer-wrinkling and ring-buckling
modes, which elucidate the minimum initial buckling pressure p̄min. We found the matrix-free
ring-buckling pressure, p̄(2)(k̄, t̄), which has been continuously used to estimate the buckling
pressure of biological orifices [3,25] is much lower than p̄rb

bi (k̄rb
bi , t̄) which consider the physically

relevant range of matrix properties. Once the stiffener buckles, post-buckling symmetry-breaking
processes drastically elevate the orifice-closure rate in the entire range of k̄ and t̄. However,
the closure rate is substantially retarded by relatively compliant layers, showing strong closure
resistance that comes from the final closure mode of threefold symmetry. The closure resistance of
final orifice collapse with threefold symmetry is substantially higher than that with the twofold
symmetry employed in the conventional matrix-free cylindrical-shell buckling analyses [3,6].
Applying the ruga-mechanics theory of soft orifices developed in this paper, we found that
the compliance index of human SVs, 0.924 < k̄v < 1.186, remarkably lies in the range of the
exceptionally strong closure resistance.

Data accessibility. Neo-Hookean model fitting data for Ecoflex-0020, experimental data, modulus estimation
codes, post-processing codes, error analysis data and examples of FEM data are available from the Brown
Digital Repository at https://doi.org/10.26300/7fc7-dp10.
Authors’ contributions. H.J. carried out the FEM analysis. H.J. and A.K.L. performed the experiments. H.J. and
K.-S.K. conceived and implemented the analytical models. K.-S.K. supervised the work. All authors
contributed to interpret the results and draft the manuscript. All authors gave final approval for the
publication.
Competing interests. We have no competing interests.
Funding. This work was supported by U.S. National Science Foundation (Awards CMMI-1563591 and 1934314,
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Appendix A. Error analysis for identification of subcritical-crease limit strain
In this appendix, we present an error analysis in evaluating the subcritical-limit crease strain
εcr from experimental or computational-simulation data of the soft-orifice closure test. An error
function to be minimized for the errors between the quadratic fitting polynomials introduced in
§2c and the dataset can be written as

E± =
N±∑
i=1

(a±p̄2
i + b±p̄i + c± − Āi)

2, (A 1)
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where the subscripts − and + represent pre-creasing and post-creasing domains, respectively.
The subscript i corresponds to the ith data point and N± the total number of data points in the
respective domains.

Writing the minimizing condition, ∂E±/∂a± = ∂E±/∂b± = ∂E±/∂c± = 0, into a matrix form
yields

M

⎡
⎢⎣a±

b±
c±

⎤
⎥⎦ =Q, (A 2)

where M =
⎡
⎣ p̄4

i p̄3
i p̄2

i

p̄3
i p̄2

i p̄i

p̄2
i p̄i 1

⎤
⎦, and Q=

⎡
⎣ Āip̄2

i

Āip̄i

Āi

⎤
⎦. The overbar ′ ′ represents the average value over all

data points in each pre- and post-crease domain, except for the variable Ā which is defined as the
normalized area.

Thus, the coefficient error can be expressed as⎡
⎢⎣δa±

δb±
δc±

⎤
⎥⎦ =M−1

⎡
⎢⎣

δĀip̄2
i

δĀip̄i

δĀi

⎤
⎥⎦ , (A 3)

where δĀi represents the difference between the interpolation and the measured data for the
ith data point of the orifice area. Then, the error in estimating the creasing orifice area can be
expressed in terms of the coefficient errors in each pre- and post-creasing domain as

δĀcr± = δa±p̄2
cr + δb±p̄cr + δc±. (A 4)

Thereafter, we can get the evaluation errors of the creasing strain by taking the variation of
εcr =

√
Ācr − 1 as

δεcr± = |δĀcr±|
2
√

Ācr
. (A 5)

Then, the total projection error in evaluating the subcritical-limit crease strain is

δεcr =
√

(δεcr−2 + δεcr+2)/2. (A 6)
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