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A Switched Lyapunov-Passivity Approach to
Motorized FES Cycling Using Adaptive
Admittance Control
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Abstract— For individuals with neuromuscular disorders (NDs)
affecting the coordination and control of their legs, motorized
functional electrical stimulation (FES) cycling serves as a rehabil-
itation strategy and offers numerous health benefits. A motorized
FES cycle is an example of a hybrid exoskeleton involving
cooperative physical human-robot interaction where both the
cycle’s motor and rider’s muscles (through electrical stimulation)
must be controlled to achieve desirable performance. A robust
sliding-mode cadence controller is developed for the rider’s
muscles, while an adaptive admittance controller is employed on
the cycle’s motor to preserve rider comfort and safety. A switched
systems stability analysis using Lyapunov and passivity-based
methods is conducted to ensure global asymptotic stability of
the admittance error system and that the cadence error system
remains passive. Experiments are conducted on one able-bodied
participant and four participants with NDs to illustrate the
performance of the control design. For the participants with NDs,
the controller achieved an average admittance tracking error of
—0.08 £ 1.05 rpm at an average cadence of 47.85+1.13 rpm for
the desired cadence of 50 rpm.

Index Terms— Admittance, functional electrical stimulation
(FES), Lyapunov, nonlinear control, rehabilitation.

I. INTRODUCTION

OR the millions of Americans physically impacted by

neuromuscular disorders (NDs), such as spinal cord
injury, traumatic brain injury, and stroke [1]-[3], functional
electrical stimulation (FES) cycling offers a promising reha-
bilitation strategy. FES cycling improves various neurologi-
cal, physiological, and psychological measures [4]-[6], but
its metabolic efficiency is lower than volitional cycling [7]
due to poor muscle control, unfavorable biomechanics,
nonphysiological muscle recruitment, and other factors
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(see [8]-[11]). To improve the overall performance and bene-
fits of FES-generated movements, closed-loop control of FES
is warranted [12]. However, closed-loop control is challenging
because the FES muscle activation dynamics are nonlinear
and uncertain. Moreover, FES cycling includes a mix of
continuous and discrete dynamics due to the need to switch
between muscle groups in each limb [13]. Moreover, when the
FES cycle is motorized, the resulting physical human-robot
interaction must be carefully controlled not only to ensure
user safety but to also promote rehabilitation. Safe interaction
is particularly important for people with weakened or compro-
mised functions.

While traditional control approaches, such as position and
force control, have been employed on hybrid exoskeletons,
an increasingly popular choice is admittance control [14], [15],
developed by Hogan [16]. Because admittance control strikes
a balance between position and force control, it is more
concerned about behavioral regulation instead of explicit pre-
defined trajectory tracking [17] and is commonly used in
physical human-robot interaction tasks for user safety [18].

By appropriately designing an admittance controller,
an assist-as-needed control paradigm is evoked, designed
to assist or resist a person to accomplish some functional
task [19]. Moreover, admittance control is amenable to adap-
tation, and numerous studies have incorporated adaptation into
the inner loop position controller [19] or outer loop force
feedback [20], [21]. While admittance control is traditionally
viewed as a safer alternative than position/force control [14],
the physical human—robot interaction can destabilize a system,
and hence, a stability analysis derived control approach is
motivated to provide performance guarantees.

In the context of FES cycling, traditional passivity or
Lyapunov-based approaches are insufficient due to the
switched system dynamics present in the system [22], [23].
To the best of our knowledge, only results such as [24]-[26]
have utilized a switched systems stability analysis for FES
cycling. Because admittance and cadence control are both
predicated on position-based error systems, results that include
cadence and admittance tracking (see [27]) can benefit from
using both passivity and Lyapunov-based analyses to demon-
strate the stability of the two error systems. Namely, one
error system can be selected as the dominant (or conver-
gent) system, and the other can serve as a passive system.
An overview of passivity of switched systems is provided in
[23] and [28].
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In this article, an adaptive admittance controller is developed
for use on an FES cycle’s electric motor, and a robust
sliding-mode cadence controller is developed to stimulate
the rider’s muscles via FES. In addition to regulating an
admittance error system, the adaptive controller is designed
to compensate for the unknown nonlinear muscle control
effectiveness of the rider using a neural network and for the
dynamics that are able to be linearly parameterized (LP) using
a gradient adaptive component. By integrating an adaptive
control component through the cycle’s motor to the overall
control structure, the high-frequency and high-gain feedback
injected through the robustifying control components can
be offloaded into a feedforward signal, which decreases the
system’s susceptibility to noise and increases stability mar-
gins [29, p. 10]. To further motivate the use of adaptive
control, the high-gain and high-frequency feedback used on
the rider’s muscles (which is theorized to contribute to the
early onset of neuromuscular fatigue and rider discomfort)
can be reduced over time and help improve tracking errors.
Howeyver, as illustrated in Section II, the control effectiveness
that maps input stimulation to the rider’s output torque is
unknown, nonlinear, and discontinuous, representing a sig-
nificant challenge of adaptive control. Hence, the dynamic
coupling of the controllers can be leveraged such that adaptive
control is implemented through the cycle’s motor, as opposed
to the rider’s muscles, which then shares its adaptation with
the cadence controller.

Because the cycle and rider are physically coupled,
the admittance and cadence controllers interact and influence
each other. Both these controllers, however, utilize unique
(i.e., different) position-based error systems and represent con-
flicting control objectives, meaning that both error systems are
unable to be simultaneously driven to zero. Hence, one must be
prioritized over the other and selected as the convergent error
system. Because the FES cycle is designed to assist the rider
in accomplishing a rehabilitation task and uses adaptive admit-
tance control with the assist-as-needed control paradigm, it has
been selected as the dominant controller or the convergent
error system. Furthermore, because the FES cycle exhibits dis-
continuous behavior, a switched Lyapunov-passivity stability
analysis for nonstrict Lyapunov-like functions [30] is provided.
Through the stability analysis, the admittance error systems
are shown to be globally asymptotically convergent, where the
cadence error system remains passive for all time. Experimen-
tal results on four participants with NDs, including spinal cord
injury, spina bifida, and Parkinson’s disease, are provided to
illustrate the performance of the developed controller. For the
desired cadence of 50 rpm, the average admittance tracking
error was —0.08 £ 1.05 rpm at an average cadence of 47.85 &+
1.13 rpm, with an average max admittance error of 4.58 rpm,
and an average max cadence error of 6.90 rpm. To further
examine the effect of adding adaptation, comparative results
using various robust/adaptive controllers are included. These
results suggest that comparable results can be obtained using
a robust control development as opposed to a more complex
adaptive control development.

This article builds on the preliminary result in [24] and
includes similar control development; however, this article

provides a refined and more complete stability analysis, includ-
ing an analysis of both closed-loop error systems throughout
the entire crank cycle, as opposed to [24], which limited
the analysis to regions where full control authority exists.
In addition, this article includes the development of a dis-
continuous neural network to approximate the rider’s muscle
control effectiveness using jump approximation functions.
Moreover, the result in [24] used LaSalle—Yoshizawa corollar-
ies developed for nonsmooth systems in [31] to establish sta-
bility, whereas this article utilizes generalized invariance-like
results for switched systems [30] to prove stability. Finally,
this work provides a novel stability analysis and merges a
Lyapunov-based-based analysis with a passivity-based analysis
to conclude overall system stability. Compared to [24], which
provides results on one able-bodied participant, this work
also includes a full description of the experimental testbed
(i.e., the FES cycle) and experimental results on four partici-
pants with NDs.

II. DYNAMICS

The switched, nonlinear, uncertain cycle-rider dynamics are
modeled as! [13]

M(q)g + C(q,9)g + G(q) + P(q,q) +bg +d(1)
= Te(t) + Tm(q» q.’ t) (1)

where ¢ : R>,, — Q denotes the measurable crank angle,
the set Q € R contains all possible crank angles, ¢ : R>,, —
R denotes the measurable angular velocity (i.e., cadence), and
q : R-;, — R denotes the unknown angular acceleration. The
inertial, centripetal-Coriolis, and gravitational effects of the
combined cycle-rider system are denoted by M : Q — R, C :
OxR — R,and G : Q — R, respectively. The rider’s passive
viscoelastic tissue torques and the cycle’s friction are denoted
by P: QxR — R and b € R., respectively, while the
system disturbances are denoted by d : R, — R. The torque
from the cycle’s electric motor is denoted by 7, : R>,, — R
and defined as

7.(t) £ Bou,(t) )

where the known constant motor control effectiveness relating
the motor’s input current to output torque is denoted by B, €
R, and the subsequently designed motor control current is
denoted by u, : R>,, — R.

The combined torque from the rider’s stimulated muscle
groups is denoted by 7,, : @ X R x R>;, — R and defined as

(@402 D bulq. 9o (@un®) 3)
meM

where the unknown, nonlinear individual muscle control effec-
tiveness mapping between the FES input and the muscle
torque output is denoted by b, Q xR — R.p, and
the piecewise right-continuous switching signal for activating
individual muscle groups is denoted by o, : Q@ — {0, 1}
Vm € M, where M £ {RQ LQ RH LH RG LG}. The set
M includes the right (R) and left (L) quadriceps femoris (Q),

'For notational brevity, all explicit dependence on time, ¢, within the states
q(1), (1), G(r) is suppressed.
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hamstring (H), and gluteal (G) muscle groups (i.e., the stim-
ulated muscle groups). The subsequently designed muscle
control input is utilized by all muscle groups and is denoted
by uy : Rs,, — R. To facilitate further analysis, an unknown,
nonlinear, discontinuous lumped muscle control effectiveness
is denoted by B,, : Q@ x R — R.( and defined as

Bu(g:d) 2 D, bu(q, )on(q).

meM

“)

The switching signal o, in (3) and (4) used to activate and
deactivate each muscle group is defined as

1, g€ Qn
0, qg¢9n

Vm € M, where Q,, C Q denotes the regions in which
muscle group m is able to supply a positive torque about
the crank [13]. The regions are defined as Q, £ {¢ €
Q| Tnlg) = on} Vm € M, where T, Q9 —- R
denotes the torque transfer ratio of each muscle group about
the cycle’s crank. The selectable torque transfer threshold is
denoted by J,, € (0, max(7,(¢))] and dictates the angles at
which each muscle group is stimulated based on its respective
kinematic effectiveness (i.e., its ability to transfer positive
torque about the crank axis). Because the torque transfer
ratios are dependent on each rider’s leg geometry, they are
calculated independently for each rider and based on the result
in [13]. The torque transfer threshold is selected such that
backpedaling is prevented, stimulation is only applied when
each muscle group can positively contribute to the motion of
the crank (i.e., ,, > 0 Vm € M), and the onset of muscle
fatigue is delayed by only stimulating muscles in kinematically
efficient regions (i.e., 7,,(¢) > J,, Ym € M). The union of
all muscle stimulation regions establishes the FES region of
the crank cycle, defined as Q £ éJM Q,,, and the kinematic

deadzone (KDZ) region as the remainder Qg £ O\ Q. In the
KDZ, g € Qk, and each muscle group’s torque transfer ratio
is below its respective threshold (i.e., T,,(q) < J,, Ym € M);
therefore, no muscles are activated or receive the FES input
up because D, om(q) = 0. Hence, in the KDZ, the torque
generated by the rider’s muscles due to stimulation is zero
(i.e., 7, = 0) and has no influence on the dynamics or the
subsequently defined tracking objectives.

The switching signal 0,,(¢) Vm € M is discontinuous by
design and discretely transitions when the measurable crank
angle g is at specific known locations, e.g., when it becomes
kinematically inefficient to use muscle group m to apply
a positive torque about the crank. Because the position of
the crank ¢ is measurable, the switching signals are also
measurable, or observable, since the torque transfer thresholds
om Ym € M are selectable by design. As different muscles are
activated through their respective switching signals, the torque
input to the system discretely changes; however, the states
continuously evolve. The combination of discretely changing
control inputs with continuous state dynamics gives rise to
a state-dependent switched system. Although the functions
in (1) capture the torques affecting the dynamics of the
combined cycle-rider system, the exact functions are unknown

an(q) = )

for each rider. However, the subsequently designed controllers
only require known bounds on the aforementioned functions.
Specifically, the following properties are provided for the
switched system in (1).

Property 1: There exist known bounding constants
Cms €M, CC, CG, CpPl, Cp2, Cp, Cq € R.o for the dynamic
functions M, C, G, P, b, and d such that ¢,, < M < cy;
IC] < cclql; 1G| < cg; |P| < cp1 +cpalgl; b < cp; and
|d| < cq ¥Vt € Rs, [13], [29, p. 12], [32, p. 131], [33, p. 157],
[34, p. 42].

Property 2: Parametric uncertainties within the dynamic
functions M, C, G, and b are LP [29, p. 11].

Property 3: The  functions M and C
M —2C =0 [13].

Property 4: The individual muscle control effectiveness,
by, 1s subject to nonlinear activation dynamics and a muscle
fiber recruitment curve (commonly represented by a sigmoidal
function) [35], [36]. However, when ¢ € Qj, the lumped,
unknown muscle control effectiveness mapping the FES input
to the output muscle force is bounded by B, < B, < By,
where B,,, Bm € R.( are known constants [37].

satisfy

III. CONTROL DEVELOPMENT

In this section, two tracking objectives are presented and
two controllers are developed. First, a robust sliding-mode
controller is designed to activate the rider’s muscles via FES
for the purpose of regulating the cycle’s position and cadence
(i.e., the cadence controller). Second, an adaptive controller
is developed (combining a neural network feedforward term
to compensate for the rider’s muscle control effectiveness
and a gradient adaptive feedforward term to estimate the
LP dynamics) to activate the cycle’s motor and indirectly
regulate the interaction torque between the cycle and the
rider (i.e., the admittance controller). Because the admittance
controller is predicated on an inner loop position controller,
both the cadence and admittance controllers utilize unique
position-based error systems. Accordingly, the two unique
error systems are unable to simultaneously converge to zero.
Consequently, the admittance error system is selected as the
dominant, or convergent, error system, while the cadence error
system is shown to remain passive (see Section IV). Because
the two error systems are designed to be coupled, the con-
vergence of the admittance error system directly benefits the
cadence error system. A detailed overview of the control
development is provided in Table I.

A. Cadence Controller

Although the rider’s muscles are only active in the FES
regions, the cadence error system is active V¢ € R, and
quantified by the tracking errors e : R>;,, — R and r : Ry, —
R, defined as?3

(6)
@)

2For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.

3The cadence objective can be directly quantified in terms of the time
derivative of the position error system, é.

qa — 4
é+ae

1> 1>
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TABLE I
DETAILED CONTROL DEVELOPMENT

Subsystem Rider Cycle
Objective Cadence tracking Admittance tracking
Controller Robust sliding mode Adaptive neural network
Actuator(s) Leg muscles DC motor
Control input  Stimulation pulsewidth (us) Current (A)
Stability Passive Asymptotic

where g; : R>;,, — Q denotes the desired position, designed
to be C> (i.e., g4, Ga, Ga € Loo), and a € R.( denotes
a selectable constant control gain. The open-loop cadence
error system is obtained by taking the derivative of (7),
multiplying by M, adding and subtracting e, and substituting
(1) and (3)—(7) to yield

Myp =y, — Buyup, — 1, —Cr —e (8)

where the lumped auxiliary signal y; : Q@ x Rx Rs,) — R
is defined as

X1 2 MGy + ar —a’e) + C(ga + ae)
+G+P+b(Ga—r—+ae)+d+e. (9

Using Property 1, (9) can be bounded as | y;| < x(]|z]|), where
x : R — R denotes a positive, radially unbounded, strictly
increasing function, defined as

x(lizll) = e + eallzll + esllzl® (10)

where ¢y, ¢z, ¢3 € R.( are known constants, || -| denotes the
standard Euclidean norm, and the composite error vector z €
R? is defined as z £ [e r]”. Based on (8) and the subsequent
stability analysis, the cadence controller is designed as

1

up = — (kir + (ko + ksllzll + kallzl|*)sgn(r))  (11)

where k;, € R.g Vi € {1, 2, 3, 4} denotes constant
control gains, sgn(-) denotes the signum function, and B,, is
introduced in Property 4. Substituting (11) into (8) yields the
closed-loop cadence error system

. Bﬂl
Mr=xy1—17.—Cr—e— —
By

x (kir + (k2 + ksllzll + kallzl|P)sgn(r)).  (12)

B. Admittance Controller

While the rider’s muscles are stimulated via the cadence
controller to regulate the cycle’s cadence, an interaction torque
error is introduced, quantified by e, : R, — R, and defined
as

13)

A
e, =T —14

where 7, : R, — R denotes the desired bounded interaction
torque, and 7 : R., — R denotes the bounded measurable
interaction torque between the cycle and rider (i.e., 7 € Lo)

[21], [38]. By implementing an admittance filter, the interac-
tion torque error can be indirectly regulated and transformed
into an admittance error (i.e., a modified position and cadence
error), which can be directly regulated using an inner loop
position controller. The admittance filter is designed as

€ £ MaGa + Bdé]a (14)

where M;, B; € R.( denote the desired inertia and damping,
selected such that the transfer function of (14) is passive and
qa> Ga> Ga € Loo [39, p. 241, Lemma 6.4]. The terms denoted
by ¢4, Ga, Ga : Rs;, — R represent the generated admitted
position, velocity, and acceleration, respectively.

To track the admitted trajectory, an adaptive inner loop
position controller is designed to regulate the admittance error
system, quantified by £ : R>,, — Rand y : R, — R, and
defined as

15)
(16)

$=qit+qa—q
w & E4pE

where f € R.( denotes a constant control gain. Hence, if the
inner loop position controller can regulate the errors in (15)
and (16), the admittance controller will emulate the admitted
dynamics of the filter in (14) and accomplish its indirect torque
tracking objective. The open-loop admittance error system is
generated by taking the time derivative of (16), multiplying
by M, and substituting (1)—(3), (15), and (16) to yield

My
Yo

YO+d+ P —Cy — Byu, — Beu, (17)
M (o + Ga + By — B2E) + C(Ga + Ga + BE)

+G +b(Ga+ Ga — v + <)

[> 1

(18)

where ¥ : R xR-o — R!*7 denotes a computable regression
matrix, and 8 € R7*! denotes a matrix of constant unknown
system parameters.

Remark 1: To accurately compensate for the torque intro-
duced by the rider’s muscles, it is desirable to estimate the
rider’s muscle control effectiveness, B,,. However, because
this function is discontinuous and its parametric uncertainties
are nonlinear (i.e., non-LP), it is unable to be incorporated
into the regression matrix Y. Hence, a discontinuous neural
network is motivated to approximate B,,. However, the func-
tional dependencies of B, (g, ¢) do not exist on a compact
set, and therefore, the general neural network approximation
result for functions with jumps [34, p. 34, Th. 3.1.5] fails to
apply without assuming the trajectories are bounded a priori.
To circumnavigate this issue and facilitate the design of a
discontinuous neural network, the auxiliary function B,, 4 £
B (ga+qa, Ga+qa) is constructed. Given that ¢4, g, ga, and
g, are bounded and exist on compact sets, the general neural
network approximation result for functions with jumps holds
for B,, 4 and removes the restrictive requirement of a priori
bounded trajectories.

Let S be a compact simply connected set of R? with the
mapping B, 4 S — R. By [37] and Property 4, B, 4 is
continuous and analytic on the compact set S except at known
locations of discontinuities [i.e., when o, Ym € M transitions
based on the preset muscle activation strategy in (5)]. Accord-
ingly, based on the design of the discrete switching signals,
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B,,.q 1s right-continuous with finite jumps at known locations.
According to the general neural network approximation result
for functions with jumps [34, p. 34, Th. 3.1.5], there then
exist weights and thresholds such that the function B, 4 can
be represented by a discontinuous neural network consisting
of a combination of continuous basis functions and sigmoidal
jump basis functions as

Bua(xa) = Wl p(Vixa) + Way (Vi x4) + e(xa) (19

where x; = [l qa+4qa Ga+4al” € S; Vi € R¥E,
W, € REFDXI and W, e REHDXL are bounded unknown
constant ideal weight matrices of the neural network; and 2L
is the number of neurons in the hidden layer of the neural
network.* Accordingly, the weights V, € R3*L are fixed and
correspond to the known locations of the discontinuities® in
B4, introduced by the switching signal o,,.

The continuous basis function p : RF — RE*H! is defined
as p 2 [1pypa---pr1', where p; Vi € {1, 2,..., L}
represents the basis functions for L neurons, and the sigmoidal
jump basis function y : RI — RIH! is defined as y =
[1yyy2--- 9,17, where y; Vi € {1, 2,..., L} represents
the basis functions for L neurons. The function reconstruction
error is denoted by € : S — R.

Since the weights Wy, V|, and W, are unknown, an approx-
imated version of (19) is

lA?m,d e WlTp(VlTxd) + WZTV (Vszd) (20)

where Vi @ Ry, — R¥>E W, e: Ry, — REFDX! and
Wy e: Ry — READXT are the estimates of V;, W, and

W, respectively. To facilitate the following development, let
the notation (-) £ (-) — (*) denote estimation errors, and let
p(V['x4) be approximated using a Taylor series expansion as

p(Vixa) = p+p'Vi x4+ O

where p £ p(V/xa), p' = (@p(V{xa))/ @V x)lpr,
denotes the partial derivative, and O* denotes the higher order
terms of the expansion.

Assumption 1: The ideal weights, thresholds, and function
approximation error of (19) and higher order terms of (21) are
bounded by unknown constants [32, p. 30], [34, pp. 7 and 44],
[40]. This assumption is in typical NN literature although texts,
such as in [34], may also assume explicit knowledge of these
bounds. If the ideal weights are constrained to stay within
some predefined threshold, then the function reconstruction
error will be larger. Typically, this would yield a larger
ultimate steady-state (SS) bound. Yet, in the current result,
the mismatch resulting from limiting the magnitude of the
weights is compensated through the feedback structure of the
controller [40].

Returning to the open-loop admittance error system, (17)
is further modified by adding and subtracting B,, 4 and & to
yield

21

My =Y0+ yo—¢—Cy — Bt + Sup — By qu,  (22)
“#For simplicity, the numbers of neurons in the continuous and discontinuous
components of the neural network are selected equally as L but can be varied
without loss of generality.
SFor additional details and proofs, please see [34, Secs. 3.1.2 and 3.1.3].

where the auxiliary function S R? — R is defined as
S £ By« — By, and arises due to the mismatch introduced
between B,, and B, 4. The function S can be bounded as
|S| < ¢4, where ¢4 € R.( is a known constant defined as
¢y & Biy — B, and By and B, are defined in Property 4.
In (22), y» : @ xR x Rs;, — R is defined as

nEP+ELd (23)

and bounded by Property 1 as |y2| < c¢s5 + csll¢ll, where
cs, cs € R.g are known constants, the vector ¢ € R? is
defined as ¢ 2 [¢T 4,17, and the error ¢ € R? is defined as
CEE !

Based on (22) and the subsequent stability analysis,
the admittance controller is designed as

1 N N
Uy = E()/9 +ksy — By qup + (ke + k7|

+ kglunsgn(y))  (24)

where k; € Ry Vi € {5, 6, 7, 8} denotes constant control
gains, |u;,| is the absolute value of the control inputin (11), and
O : R, — R7*! denotes an estimate of the constant system
parameters. In (24), the neural network term represented by
Bm,duh is included to reject the rider’s muscle torque by
approximating the muscle control effectiveness (hence priori-
tizing the admittance tracking objective), and the sliding mode
term is included to compensate for the disturbances injected
through y, and for the reconstruction error of the neural
network. Substituting (24) into (22), adding and subtracting
(WIp+ WlTﬁ/VlTxd)uh, utilizing (21), and performing some
algebraic manipulation yields the closed-loop admittance error
system

My =Y0 —¢—Cy —ksy
— (ks + kalll + (ks + kol 1D s l)sgn(y)
~ n AT ~
— (W p+ W PV xg+ W'y —N)uy + 22 (25)

where § : R.,, — R7*! denotes the error between the actual
and estimated system parameters, y is abbreviated as y =
7 (VI x4), and the auxiliary function N : R® — R is defined
as

N2S—ec—W p'Vixy— WO (26)
By Property 4, Assumption I, and the use of a projection
algorithm, |N| < ¢7 for any combination of switching signals,
where ¢; € R. is a known constant. Based on the subsequent
stability analysis, the estimates for the system parameters
in (18) and the neural network weights in (20) are propagated
online via the designed update laws

6 £ proj(I' Y y) (27)
Wi 2 proj(—Tapuny) (28)
V1 2 proj( — Tsxauny WY j) (29)
Wa 2 proj(—I'sy uny) (30)

where '} € R77, T, € READXLAD 1y e R3*3 and Ty €
RE+Dx(L+D denote constant positive definite learning gains,
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and proj(-) denotes a smooth projection algorithm [33, p. 115].
The projection algorithm for @ is given as

YTy, if <0 <0

YTy, if6=0and YTy <0
O=1rY"y, if0=0and YTy >0 31)

0, if0=0and YTy >0

0, if0=0and YTy <0

where 0,0 € R7*! represent known upper and lower bounds
on the parametric uncertainties of M, C, G, and b by
Property 1. The projection algorithms for Wy, V;, and W, are
identical in structure to (31), with the upper and lower bounds
conservatively selected using Assumption 1.

IV. STABILITY ANALYSIS

Both the cadence controller and admittance controller
include position-based tracking errors. In the following,
the issue of conflicting tracking objectives is addressed by
leveraging stability results from both Lyapunov-based analysis
methods and passivity methods. By design, the admittance
error system is prioritized over the cadence error system.
Theorem 1 provides a Lyapunov-like switched system stability
analysis to illustrate global asymptotic convergence of the
closed-loop admittance error system in (25) and (27)—(30).
Subsequently, Theorem 2 utilizes a switched systems pas-
sivity analysis to prove that the closed-loop cadence error
system is passive when admittance tracking is prioritized.
Theorem 3 then merges Theorems 1 and 2 to conclude that
the overall combined system yields passive behavior while
simultaneously guaranteeing the admittance error ||| — O
as t — oo Vt € R, To facilitate the following development,
let Vo1 : ROEF!T — R denote a positive definite candidate
Lyapunov function defined as

1 1 1. .~ 1. .
Viai(n) = 552 + EMV/Z + EQTFI 0+ §W1Tr2 "Wy

(T )+ W ()
where tr(-) is the trace of a matrix, and 7 : R5, — RF!!
denotes a composite vector of the states of the admittance
error system, defined as n £ [& w 07 W[ vec(V]) WI'].
Note that the operator vec(-) stacks the columns of a matrix
A € R™" to form a column vector vec(A) € R™". In addition,
let V., : R? — R denote a positive definite storage function
defined as

Al o 1,
Via(2) = 2Mr + ¢
Theorem 1: The admittance controller in (24) yields global
asymptotic tracking in the sense that ||| — 0 as ¢t — oo,
provided that the following constant gain conditions are satis-
fied: k¢ > ¢5, k7 > c¢, and kg > c7.

Proof: Because the closed-loop error systems in (25)
and (27)—(30) are discontinuous, they do not admit clas-
sical solutions, and the following analysis will focus on
the generalized solutions of (25) and (27)—(30). Using [30]
as a framework, let the Filippov regularization of a

(33)

closed-loop error system be denoted by K[-] and the
solutions of the corresponding differential inclusions (i.e.,
after regularization) be referred to as generalized solutions.
Since (32) is continuously differentiable with respect to
the states, the Clarke gradient [41] (denoted by oV 1)
reduces to the standard gradient, ie., oVi i (y,t) =
{1 My 07T WITS! vee(VITY) WIT, (1/2)My? ).
Using the calculus of K[-] from [42], a bound on the regular-
ization of the closed-loop error systems in (25) and (27)—(30)
can be computed as G(y,t) < K[G(y,1)], where
G . BRU2 5 RMEF2 s defined as G(n,1) =
[&y T W vec(V))" Wl 117. Using [30, Definition 3],
a bound on the generalized time derivative of the candidate
Lyapunov function in (32), V1, can be computed as

max max (34)

plh.
pedVri(n,t) heK[G(n.1)]

VL,](”la 1) <

By inserting (16) and (25) and the update laws in (27)—(30),
employing Property 3, and performing cancellations, (34) can
be upper bounded as

Vii < —BE —ksy® + |y ol + 1y Nisup(K [u])
— (ke + k7||p|l + kslun])w K [sgn](w)

where K [u] = (1/By) (kir+(ky+ksl|zl| +kal|z]|*) K [sgnl(r)).
Using Property 1, (35) can be further bounded as

(35)

Via < —BE —ksy® — (1 + Aallpll + Aslunl)lw|  (36)

where sup(K[u,]) = |up| and 4; € R Vi € {1, 2, 3} are
defined as j.] £ k(, — Cs, 12 e k7 — Co, and 13 e kg — C7
(where ¢s5 and cg represent the bounding constants for |y»|,
and c; represents the bounding constant for |N|). Provided
A, A2, A3 > 0, then the generalized time derivative in (34)
can be upper bounded in both the FES and KDZ regions as

Vi < =& —ksy?

Vy e RMH and for almost all ¢ € R-,. Hence, (32)
has a common negative semidefinite derivative across both
the FES and KDZ regions. This establishes the candidate
Lyapunov function in (32) as a common Lyapunov function
across all regions, i.e., Vg € Q. By invoking [30, Th. 2] and
using (32) and (37), it can be concluded that all maximal
generalized solutions of the discontinuous closed-loop error
systems in (25) and (27)—(30) are complete, bounded, and
satisfy |E], |wl], ¢l = O as t — oco. Furthermore, since
Vii > 0 and V. ; < 0, it follows that V. € L.
Hence, &, w, 6 € Lo, which implies that ¢, 0 € L.
Since (14) is passive, ¢4, Ga, Ga € Loo, Which implies that
Y, lI¢ll, x4 € Loo- By (28) and (30), and because x4 € Lo,
then Bm,d € L. Moreover, because &, ¥, ¢4, Gu, Ga € Loo,
by (6) and (7), it can be concluded that e, r € L., and
consequently |z|| € Loo. By (11), u, € Lo, which implies
that u, € L4 (i.e., both the cadence and admittance controllers
are bounded). Hence, both error systems and both controllers
are bounded, ensuring rider safety. |

Remark 2: Although the admittance controller regulates
the admittance error systems in (15) and (16), because the

(37
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admittance error systems are coupled to the cadence error
systems in (6) and (7) through the relation

(38)
(39)

e=¢—qq
V/_’_(a_ﬁ)g_ﬂh_aéh

the admittance controller is able to ensure boundedness of
the cadence controller in (11) and ensure rider safety. This
fact exemplifies the assist-as-needed control scheme because
the admittance controller supports the cadence controller in
achieving the correlated control objectives.

Theorem 2: The closed-loop cadence error system in (12)
is passive from the bounded input |z,|, to the bounded output
lzIl, with the storage function V; , V¢ € R, provided that
the following constant gain conditions are satisfied: k, > ¢y,
k3 > ¢, and k4 > c3.

Proof: Similar to Theorem 1, because the closed-loop
error system in (12) is discontinuous, it does not admit
classical solutions, and the analysis will focus on the gen-
eralized solution of (12). To analyze the developed controller,
consider the storage function defined in (33). As before,
the storage function is continuously differentiable in terms of
the states, and the Clarke gradient reduces to the standard gra-
dient, i.e., 8V 2(z,1) = {[e Mr (1/2)Mr?]"}. Subsequently,
a bound using the regularization of the system in (12) can be
computed as F(z,t) € K[F(z,t)], where F R} —» R3
is defined as F(z,t) £ [éF 1]7. Using [30, Definition 3],
a bound on the generalized time derivative of the storage
function in (33), VL,z, can be computed as

r =

max max plh. (40)

VL,Z(Z’ t) <
pedVy2(z,t) heK[F(z,1)]

Using (7) and (12) and Properties 3 and 4, an upper bound
for (40) can be computed for the FES region (i.e., Vg € Q)
as

Vip < —ae® +Irllnl —kir + lzlllz|

— (k2 + ksllzll + kallzIP)Ir| - (41)

Vz € R? and for almost all ¢ € R-;,. Furthermore, (41) can be
bounded above using Property 1 as

S 2 2
Vip < —ae” —kir® — Aslr| — Aelr|llzl|

= Alrllizl® + lizlllze]  (42)

where s, lg, A7 € R are defined as As = ko—cy, 1g = k3—ca,
and 17 £ k4 —c3 (wWhere ¢|, ¢z, and c3 represent the bounding
constants for |y|). Provided 15, 4, 47 > 0, (42) can be
bounded as

Via < —ae* —kir* + ||z||z.]. (43)

The generalized time derivative in (43) can be used with
[39, Definition 6.3] to demonstrate the cadence error system is
output strictly passive with input |z,|, output ||z||, and storage
function Vi » Vg € Qu, for almost all € R5,.

When considering the KDZ region (i.e., Vg € Qk),
the rider’s muscles are not stimulated, and the generalized
derivative of (33) is upper bounded as

Vi < lzlix(lizl) + llzlllze| (44)

Vz € R? and for almost all ¢ € Rs,, where x(||z]|) was
defined in (10). According to [39, p. 236, Definition 6.3],
the bound in (44) represents an output-feedback passive sys-
tem. Although the motor is active in the KDZ region and
could be used for feedback, it has been assigned to regulate
the admittance error system and, therefore, is not available to
close the loop on the cadence error system. However, because
the closed-loop cadence error system in (12) is coupled to
the closed-loop admittance error system in (25), using (38)
and (39), and the result of Theorem 1, it can be shown that
k(]lz|]) is passive with respect to 7.. Hence, by (44), it can
be concluded that the cadence error system is not only an
output-feedback passive system but also the stronger result
of a passive system with input |z,.|, output ||z||, and storage
function V. » Vg € Qk. Furthermore, the result in (43) can be
upper bounded by the result in (44), which ensures a common
derivative and verifies (33) as a common storage function,
i.e., Vg € Q [43]. By Theorem 1, u,, ||z|| € L, which, by (2)
and (10), implies that 7., x(]|z]]) € L. Hence, the closed-
loop cadence error system is shown to be passive with the
bounded input |z, |, bounded output ||z||, and common storage
function Vi, Vg € Q. Moreover, the result in (44) can be
integrated to conclude passivity V¢ € R, . [ ]
Theorem 3: The connection of the closed-loop cadence and
admittance error systems in (12) and (25) is passive V¢ € Rx,,.
Proof: By treating (32) as a storage function and com-
bining it with the storage function in (33), a tertiary storage
function is created for the feedback connection of the two
closed-loop error systems, denoted by V3 : ROEFE — R,
and defined as Vi3 £ Vi + Vio. The results in (37)
and (44) can then be analyzed using [39, Th. 6.1] such that
Vii=Vei+ Vi, and

Vis < llzlicizl) + lizlllze] = p&* = ksy?

= llzlix(lizl) + llzlllzel (45)

Vq € Q. Hence, by taking V., 3 as the new storage function for
the feedback connection and combining the results from The-
orems 1 and 2, it can be shown that the closed-loop cadence
error system in (12) is passive with input |z.| and output ||z||,
the closed-loop admittance error systems in (25) and (27)—(29)
are asymptotically regulated, and ||, |w|, ||l — O as
t — 00. Subsequently, (45) can be integrated to show that
the result holds V¢ € R, . The feedback interconnection of
the closed-loop error systems is shown in Fig. 1. |

Remark 3: Theorem 1 states that the admittance controller
is an asymptotically stabilizing controller for the admittance
error signals ¢ and y; using Fig. 1 as a visual aid, the stability
result can then be relaxed to state ¢ and y are passive with
respect to 7,. Using Theorems 2 and 3 and the fact that the
cadence error signals e and r are embedded in &, v, and ||z||,
it can be concluded that e and r are passive with respect to z,.

V. EXPERIMENTS
A. Experimental Testbed

The motorized FES cycle was constructed by modifying
a recumbent tricycle (TerraTrike Rover) with sensors and
actuators. To measure interaction torque, the original bike
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Fig. 1. Feedback interconnection of the closed-loop error systems in (12)
and (25). The neural network and gradient feedforward terms, along with their
corresponding updates laws, are embedded within the admittance controller
block.

crank was replaced with a wireless SRM Science Road
Powermeter, and to measure angular position/cadence, a US
Digital H1 encoder was attached to the crank via spur gears.
A 24-V, 250-W motor (Unite Motor Company Ltd.,
MY 1016Z2) was attached to the drive chain and supplied
a control current dictated by (24) through an ADVANCED
Motion Controls® (AMC) PS300W24 power supply and AMC
AB25A100 motor driver. To reduce electrical noise on the
wireless power meter, an AMC FC15030 filter card was
added in-line with the motor. The rider’s feet were securely
attached to the cycle’s pedals with modified Orthotic boots
(Ossur Rebound Air Tall) to maintain sagittal alignment of
the legs and prevent dorsiflexion/plantarflexion of the ankles.
The cycle was made stationary using a trainer and riser rings.
The encoder, power meter, and motor driver were interfaced
with a desktop computer running MATLAB/Simulink/Quarc
through a Quanser Q-PIDe data acquisition board sampled at
500 Hz. A Hasomed Rehastim stimulator delivered symmet-
ric, biphasic, and rectangular pulses via bipolar self-adhesive
PALS’ electrodes to the rider’s quadriceps, hamstrings, and
gluteal muscle groups at respective amplitudes of 90, 80, and
70 mA at a frequency of 60 Hz. The pulsewidth was modulated
automatically by the cadence controller in (11). An emergency
stop button was attached to the cycle’s handle to allow the
rider to immediately halt the experiment. A rider seated on
the motorized FES cycle is depicted in Fig. 2.

B. Experimental Methods

Experiments were conducted on one male participant with
spina bifida (L5-S1, Arnold Chiari Malformation) (P1) aged
25, one female participant with a complete spinal cord injury
(AIS-A, T8, and T9) (P2) aged 26, one male participant with
Parkinson’s disease (P3) aged 64, and one male participant
with drug-induced Parkinsonism (P4) aged 57. P1 is familiar

S ADVANCED Motion Controls supported the development of this testbed
by providing discounts on their items.

7Surface electrodes for this study were provided compliments of Axelgaard
Manufacturing Company Ltd.

Fig. 2. Participant 1 seated on the motorized recumbent FES cycle. Label A
indicates the encoder, label B indicates the power meter, label C indicates the
electrodes, label D indicates the emergency-stop, label E indicates the filter
card, and label F indicates the stimulator. The electric motor is coupled to the
drive chain below the seat.

with FES, regularly participates in physical and occupational
therapy, uses a wheelchair part-time, and is community ambu-
latory with ankle-foot orthoses. P2 suffered her spinal cord
injury ten years prior, uses a wheelchair full-time, and has
previous experience with FES. P3 is highly active, participates
in recreational activities, including swimming and boxing, and
is familiar with FES. P4 had no previous exposure to FES and
reported low activity levels.

To analyze the developed controllers, all participants com-
pleted two FES cycling protocols in random order: Proto-
col A, which enabled the controllers in (11) and (24), and
Protocol B, which disabled both the neural network and
adaptive feedforward components of the admittance controller
in (24). By disabling adaptation, Protocol B utilized a robust
admittance controller, which assumed the form

1
u, = ;(ksw + (ke + k7llpll + kglupl)sgn(y)).  (46)

To further benchmark the developed controllers in (11)
and (24), two additional protocols (Protocols C and D) were
run on one 28 year old able-bodied participant (P5). Protocol
C disabled only the neural network component of (24) and
used the admittance controller defined as

| BN
ul = E(YH + ksy + (ke + k7llpll + kslunl)sgn(y)) — (47)

and Protocol D disabled only the gradient adaptive component
of (24) and used the admittance controller defined as

1 ~
ul = E(ksvl — By qup + (ke + k7l |l + kglup|)sgn(y)).
(48)

In addition to Protocols A and B, Protocols C and D allow for
further analysis of the adaptive components of the admittance
controller. The purpose of such a design was to isolate the
contribution of the feedforward components of the admittance
controller and determine the potentially beneficial effects of
adding adaption to the FES cycle.
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Each protocol had a total duration of 180 s, with the
first 30 s consisting of a smooth motor-only ramp to the
desired cadence using (24), i.e., with the admittance controller
active. While there is no clear consensus for the optimal
cadence of FES cycles for rehabilitation, it has been sug-
gested that lower cadences may be more ideal for torque
production, while higher cadences may be better for power
production [44]. However, without loss of generality and for
feasibility purposes, the desired cadence was set to 50 rpm (as
in [45] and [46]). After the initial ramp, the controller in (11)
was activated, the rider was stimulated, and SS errors were
recorded. Although the participants were asked to relax and
not contribute to the cycling task, some volitional contribution
is still possible. This contribution was not measured, and
although the participants were unaware of the desired trajecto-
ries, any voluntary contribution was only partially informed by
stimulation cues. To account for the electromechanical delay
present in the rider’s muscles, the stimulation was advanced
as a function of the cadence (i.e., ¢stim £ q + Tq), where
gsim : @ X R — Q was substituted for g when determining
o,, and where T € R.( denotes a constant estimate of the
muscle delay, selected as T = 0.1 s, based on the work in [47].
For participant comfort and safety, the stimulation input u;, to
the rider’s muscles was individually saturated for each muscle
group. The lower bound of the stimulation was set to zero,
and the upper bound was determined experimentally using a
series of pretests approved by the Institutional Review Boards
at the University of Florida and The University of Alabama.

For all experiments, the admittance parameters in (13)
and (14) were selected as B, = 2 [(Nm-s)/rad], M; =
2 [(Nm-s?)/rad], and 7, = 0 Nm.® The controller gains
in (7), (11), (16), (24), and (27)-(29) were selected as k; €
[2, 6], ko = ks = ks = 0.1, ks = 4, ke = k7 =
0.01, ks = 0.001, « € [1.0, 6.0], p = 0.1, I} =
y - diag(0.175,0.25,0.125, 0.5, 1.25,1.25,0.05), y € [1, 2],
I, = 107° - diag(1.5,1.0,0.9,0.75,0.5,2.0), and I'; =
diag(0.8, 4, 0.8). For simplicity, the neural network utilized
only continuous basis functions and not the discontinuous
basis function component of (20); the introduced mismatch
is then able to be included in the function approximation
error € in (19). The activation function of the neural network
was selected as the soft-plus function, p(V7x) £ In(1 +
exp(VTx)), and the number of neurons was set to 5 (i.e.,
L = 5). To disable each component of the controller in (24) as
dictated by the protocol design, the respective learning gains
(i.e., T'1, Tp, and TI'z) were set to zero. To avoid transient
effects from switching the admittance controller in (24) on
at + = 30 s, it was enabled for all time, but the update laws
were not activated until # = 30 s.

Although the aforementioned gain conditions in Theo-
rems 1 and 2 are sufficient to achieve stability for the largest
uncertainties on the system parameters, they represent the
most conservative gains required by the controllers in (11)
and (24). These gain conditions provided guidelines for the
initial gain selection [34, p. 48], and the gains were subse-
quently adjusted to achieve desirable performance (e.g., the

8Exceptions noted on Table IIL

sliding-mode gains were tuned to reduce chatter and improve
rider comfort). Although the listed gains were adjusted using
an empirical-based method, the gains could have been adjusted
using more methodical approaches. For example, the nonlinear
system in [48] was linearized at several operating points,
a linear controller was designed for each point, and the
gains were chosen by interpolating or scheduling the linear
controllers. In [49], a neural network is used to adjust the
gains of a PID controller. In [50], a genetic algorithm was
used to adjust the gains after an initial guess. Killingsworth
and Krstic [51] provide an extensive discussion on the use of
extremum seeking for tuning the gains of a PID controller.
In [34, pp. 48-49], the selection of parameters for tuning a
neural network is extensively discussed, including setting the
initial weights, learning gains, and selecting an appropriate
number of neurons.

For this work, tuning the controllers consisted of: 1) tuning
the proportional-derivative gains for desirable performance;
2) tuning the sliding-mode gains for improved performance;
3) tuning the gradient adaptive component of (24) to offload
the feedback component into the feedforward component
while maintaining desired performance; and 4) tuning the
neural network component of (24) for further improved perfor-
mance. The most sensitive parameters to tune were 'y and I',.
The learning gain I'; was tuned element-by-element, and ',
was tuned by setting all the weights inside the matrix to unique
random values and then tuning a scalar multiplied against the
matrix. In practice, the learning gains of the neural network
should be set to unique values to allow the network to evolve
using a number of rates and sensitivities.

The experimental protocols were approved by the Institu-
tional Review Boards at the University of Florida and The
University of Alabama.

C. Results and Discussion

Because the admittance controller tracks a generated admit-
tance trajectory, and the cadence controller tracks a set cadence
trajectory, the net achieved cadence is a function of the torque
generated by the rider and the selected admittance parameters.
Thus, if the rider is able to produce the desired amount of
interaction torque (through FES), the admittance trajectory
will closely align with the desired cadence trajectory, and both
controllers will work in conjunction to pedal the cycle at the
desired cadence. If the rider is unable to meet the desired
torque (due to stimulation comfort or strength limitations),
the achieved cadence will lag the desired cadence. Table II
provides details on the average, maximum, and standard
deviation of the measured cadence, admitted cadence, admitted
cadence error, and estimated power production by the rider.
The estimated power production is denoted by = : Rsp — R
and defined as & £ mean(q)(mean(zr) — 7,), where 7,
R-¢ — R denotes an estimate of the passive torque required
to actuate the combined rider-cycle system at the desired
cadence, collected during each trial for 4.8 s prior to controller
activation (i.e., approximately four crank cycles at 50 rpm).
Table II also provides the average percentage of the adaptive
feedforward components (comp) of the controller in (24) to
the entire control effort of (24).
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Fig. 3. PIA: (top) measured, admitted, and desired cadences; (middle)

measured cadence errors; and (bottom) calculated rms cadence errors.

In the following, the participants and protocols are denoted
by their respective number and letter; for example, P1 running
Protocol B is referred to as P1B. Numerical results for
P1-P4 are provided in Table II, calculated at steady state
(i.e., after the initial cadence ramp to 50 rpm). Fig. 3 displays
cadence tracking results, including errors and root-mean-
squared (rms) errors for P1A; for visual clarity, a 1.2 s moving
average filter was applied (i.e., approximately one crank cycle
at 50 rpm). Fig. 4 displays the control inputs to both the motor
and the rider’s muscle groups for P1A, and for visual clarity,
a 0.6 s moving average filter was applied (i.e., approximately
half of a crank cycle at 50 rpm).

Prior to the cadence controller in (11) being activated,
the rider’s legs are assumed to produce zero torque. Hence,
the rider’s legs act as a drag on the system and result in
a negative interaction torque. As the cycle’s crank rotates,
the legs effectively resist the cycle, arrest forward motion, and
therefore, decrease the admitted cadence, as depicted in Fig. 3.
Because only the admittance error system is being regulated
at this point, the position error system (i.e., e and r) begins
to accumulate; therefore, when the muscle controller in (11)
is activated, a nonzero stimulation is applied, as displayed
in Fig. 4. Furthermore, because the admittance controller
assists the cadence controller, low values of the derivative gain
were selected (i.e., k; € [2, 6] in the current development,
compared to k; € [20, 25] in [13]) to avoid sharp increases in
stimulation due to system disturbances and elicit a smoother
stimulation pattern. The position gain (i.e., @) on the cadence
error system heavily influences the stimulation increase over
time.

Because P1 was limited in terms of his ability to generate
torque from FES due to comfort thresholds, the neural net-
work estimate of the control effectiveness relating stimulation
input to torque output was near zero. However, as illustrated
in Table II, adaptation results in the admittance cadence error
being reduced by 11% on average, with the standard deviation
of the admittance cadence error being reduced by 3%, illus-
trating the effect of the gradient adaptive component of the
controller. It is also noted that P1 was unable to produce the
desired torque; hence, his measured cadence lagged the desired
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Fig. 4. P1A: (top) control input to the motor and (bottom) to the rider’s

quadriceps femoris, hamstrings, and gluteal muscle groups of the right leg.
Due to identical muscle gains (i.e., k,, Ym € {Q, H}), the quadriceps and
hamstring control inputs closely overlap. The input to the rider’s muscle
groups was subject to a saturation limit of 65 us.

for the duration of the experiment. However, the admittance
error system was regulated by the admittance controller. Due
to the position error accumulating, P1’s stimulation steadily
increased until it reached his comfort threshold, as depicted
in Fig. 4. Although P1 received the maximum stimulation
dictated by comfort thresholds, the cycle’s cadence was held
near the desired cadence because of the assistive behavior of
the admittance controller. As proven by the stability analysis
and indicated in Table II, the admittance error converges to
near-zero values, while the cadence error remains bounded.
It can be observed that the measured cadence and admitted
cadence fluctuate around the desired values throughout the
experiment. The cause of these fluctuations can arise from
system disturbances originating from the chain links, the rider,
inaccurate modeling, and so on.

Unlike P1, P2 was not limited by comfort thresholds but by
significant muscle atrophy occurring in the ten years since her
injury. Consequently, P2 was unable to produce much (if any)
torque elicited from the applied stimulation and consequently
relied exclusively on the electric motor to actuate the cycle at
a near-constant cadence. Fig. 5 displays the resulting cadence
and error systems for P2A. Because P2 had no sensation below
the mid-abdomen, the stimulation pulsewidth was allowed
to reach the hardware maximum of 500 us, as indicated
in Fig. 6. Despite the high stimulation level, according to
Table II, P2 was unable to produce any positive torque about
the crank; however, P2 did get the benefit of a range-of-motion
exercise on the FES cycle. Because of the lack of torque
production, the neural network estimate remained at near-zero
values throughout the experiment. According to Table II, using
adaptation on P2 did not result in any improvement in tracking
errors. Regardless, the error systems with and without adap-
tation remain stable in accordance with the stability analysis
in Section IV.

The experimental results for P3A are depicted in Figs. 7
and 8. Unlike previous results, Fig. 7 shows that the cycle’s
measured cadence is above the desired cadence and does not
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TABLE 11
TRACKING RESULTS FOR EACH PARTICIPANT

Participant  Protocol ¢ (RPM)T o (RPM) € (RPM) EW)  max (g) (RPM) max(¢) (RPM) FF Comp. (%)

. A 48.1441.13  -1.954021 -0.10+1.13  0.1441.09 437 639 91.67

B 48.1441.19 -2.044081 -0.1941.19  0.2441.04 7.64 938 0.00

) A 47564095 -2.5240.13  -0.084095 -0.1440.92 4.80 727 90.21
B 47484096 -257+0.13 -0.054£097 -0.1540.88 407 6.61 0.00

3 A 49044136 -094+077 0.01£1.08  3.70+3.13 498 5.88 97.44
B 48644143 -1474068 -0.114127 2.5342.67 4.17 5.94 0.00

. A 46.664+1.04 3474033 -0.134£1.02 -0.07+1.11 415 8.07 88.59
B 47154090 -2.854044 0004081  -0.0241.06 2.59 5.65 0.00

Mean A 47.8541.13 -2.224043 -0.0841.05 0.91+1.81 4.58 6.90 91.98
Mean B 47.8541.14 -2.23+0.58 -0.0941.08 0.65+1.59 4.62 6.90 0.00

TAt SS, the average cadence error is calculated as ¢ = 50 — ¢ (RPM).

o

a
T
L

Cadence (RPM)

Ft)Aﬂ/\AAI\I\AAAAAnA Aty
s ot
L . . . . . L L

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180
Time (s)

Fig. 5. P2A: (top) measured, admitted, and desired cadences; (middle)
measured cadence errors; and (bottom) calculated rms cadence errors.

decrease significantly upon controller activation at ¢t = 30 s.
The stimulation pulsewidth was approximately 15 us at
t =30 s, as illustrated in Fig. 8. Although each participant
reacts differently to the applied stimulation (hence, the uncer-
tain nonlinear control effectiveness B,,), the authors highlight
that we have not previously witnessed muscle contractions at
these low stimulation levels. Consequently, we surmize that the
participant was volitionally contributing to the cycling task,
despite not measuring muscle activity levels with methods
such as electromyography. Although the participant was blind
to his performance and the desired trajectory, the applied
stimulation can be used as triggering cues for the rider to
pedal the cycle, and based on the stimulation intensity, with
an appropriate amount of force. As the experiment progressed,
however, the stimulation was observed to increase at approx-
imately + &~ 70 s; at this point, we assume the rider began
to relax and withdraw his volitional contributions. When the
rider relaxes, the observed cadence decreases, and both error
systems decrease, as shown in Fig. 7. As the experiment
progresses and the stimulation is able to evoke stronger
contractions, the stimulation level begins to plateau (despite

1 ]
o . . L L L . 1 .
0 20 40 60 80 100 120 140 160 180
600 T T T T T T
500 - s
= 400 - g
300 4
S
R 200+ R
100 [—RQ—RH —RG|
o . . . . I I I !
0 20 40 60 80 100 120 140 160 180
Time (s)

Fig. 6.  P2A: (top) control input to the motor and (bottom) to the rider’s
quadriceps femoris, hamstrings, and gluteal muscle groups of the right leg.
Due to identical muscle gains (i.e., k,, Ym € {Q, H}), the quadriceps and
hamstring control inputs closely overlap. The input to the rider’s muscle
groups was subject to a saturation limit of 500 us.

saturation), indicating that the applied stimulation was nearly
sufficient to evoke contractions powerful enough to pedal the
cycle and overcome the passive torque required to actuate the
rider’s limbs. Due to the admittance filter in (14), the admitted
trajectory begins to align with the desired, resulting in less
error accumulation (i.e., ¢) and a less aggressive ramp in
the stimulation input. However, as the muscles begin to
fatigue, their cumulative torque production lessens, the positive
interaction torque decreases, and the admitted cadence begins
to decrease; consequently, the stimulation input increases to
maintain torque levels. Despite the results of P3 indicating that
he/she contributed to the cycling task volitionally, the adaptive
admittance controller was able to reduce the admittance error
to 0.01 = 1.08 rpm compared to the nonadaptive case of
—0.11 £ 1.27 rpm.

Compared to the other participants, P4’s neurological condi-
tion was unique, in which his/her symptoms (i.e., tremor) were
induced through oral medications and resulted in drug-induced
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Fig. 7.  P3A: (top) measured, admitted, and desired cadences; (middle)

measured cadence errors; and (bottom) calculated rms cadence errors.
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Fig. 8. P3A: (top) control input to the motor and (bottom) the rider’s
quadriceps femoris, hamstrings, and gluteal muscle groups of the right leg.
Due to identical muscle gains (i.e., k,, Ym € {Q, H}), the quadriceps and
hamstring control inputs closely overlap. The input to the rider’s muscle
groups was subject to a saturation limit of 77 us for the quadriceps and
hamstrings and 63 us for the gluteals.

Parkinsonism. However, when P4 participated in the study,
he/she had since changed medications and demonstrated no
signs of discernible tremor. The results from P4A are shown
in Figs. 9 and 10. Because of P4’s low activity levels and
sensitivity to stimulation, the applied stimulation was unable to
evoke strong muscle contractions, similar to P1. Furthermore,
due to participant comfort, the hamstring muscle groups were
not stimulated and further limited the elicited rider torque.
Of the participants with NDs, P4 was the only participant
where enabling adaptation detracted from the performance of
the cycle and increased the admittance error from 0.00 £0.81
rpm without adaptation to —0.13 £ 1.02 rpm with adaptation.

Because Protocol B disabled the adaptive component of the
admittance controller and used a robust admittance controller,
it was used as a quantitative benchmark. Comparing the mean
tracking results from Protocol A to Protocol B lends additional
insight to FES cycling and the role of adaptation. For example,
although the mean admitted cadences and admitted cadence
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Fig. 9. P4A: (top) measured, admitted, and desired cadences; (middle)
measured cadence errors; and (bottom) calculated rms cadence errors.
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Fig. 10. P4A: (top) control input to the motor and (bottom) the rider’s

quadriceps femoris and gluteal muscle groups of the right leg. Due to
participant comfort, the hamstring muscle groups were not stimulated. The
input to the rider’s muscle groups was subject to a saturation limit of 65 us.

errors were similar in the participants with NDs, the mean
standard deviation of the admitted cadence did improve
with adaptation (i.e., 0.43 rpm with adaptation, compared
to 0.58 rpm without adaptation). By reducing the standard
deviation of the cycle’s cadence, the cycle’s crank rotates more
uniformly and results in a smoother and more comfortable
cycling experience. Moreover, because the stimulation applied
to the rider’s muscles uses the cadence controller in (11),
a smaller standard deviation in the cycle’s cadence results in
smoother stimulation patterns.

To further analyze the adaptive controller in (24), Protocols
A-D were conducted on P5. Protocols A-D all used the
cadence controller in (11) but varied their admittance con-
trollers by using (24) and (46)—(48), respectively. The tracking
results of these experiments are provided Table III.

As illustrated in Table III, Protocol A that utilized the
controllers in (11) and (24) had the smallest standard deviation
in the admittance cadence error. However, by comparing Pro-
tocols A and C (the protocols that included Y ) to Protocols B
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TABLE III
TRACKING RESULTS FOR P5

Protocol* & (RPM) £ (RPM) max(é)  max (5)

(RPM)  (RPM)
Al -1.7542.16  -0.214£053  9.32 1.90
A2 1604224  -0.20+0.61  8.87 2.68
Bl -1.6842.77  -0.05£0.61  10.67 2.05
B2 -136+1.69 -0.06+0.65  7.69 225
Cl 1324237 -02140.64 948 2.97
Ie) 1314224 -0224055 857 233
DI -1.63£2.67 -0.05£0.58  9.80 2.86
D2 0.98+1.55 0.01+0.85  4.66 2.68
Mean A -1.68+2.20 -0.21+0.57  9.09 2.29
Mean B -1.5242.29 -0.05+0.63  9.18 2.15
Mean C  -1.31+231 -0.21+0.60  9.02 2.65
Mean D -1.30+2.18 -0.02+£0.73  7.23 277

*Protocols which have a “1” or “2” in their title detail results for the admit-
tance parameters By = 1.0 %, Mg = 1.0, and By = 2.0 Nr':d'S, My =
2.0, respectively.

and D (the protocols that excluded Y8), it is apparent that the
average admittance cadence error increased when the gradient
adaptive component was included. According to Theorem 1,
the adaptive admittance controller in (24) drives the admittance
error system toward zero as t — oo (i.e., asymptotically)
and may be one of the reasons for the larger tracking error.
Comparatively, the robust admittance controllers in Protocol B
use robust high-frequency feedback to guarantee exponential
convergence. While the robust controller guarantees faster
convergence of the admittance error system, it is at the expense
of a more aggressive control strategy (e.g., sliding mode). One
of the benefits of adaptive control is the ability to offload
a portion of the control input from feedback to feedforward
components (as illustrated in Table II) and is one of the
reasons for the lower standard deviation in the cycle’s cadence.
Despite the average admittance error being slightly larger,
compared to the robust controller, the adaptive controller
results in smoother cycling cadence at the expense of longer
convergence times.

For additional analysis and benchmarking, the tracking
results in Tables II and III can be compared to the results
included in [25], which used robust controllers for simulta-
neous cadence and admittance tracking on an FES cycle (the
same objective as this work). The results in [25] detail an addi-
tional 27 experiments on three able-bodied participants and
four participants with NDs using four unique protocols; three
protocols were conducted to examine the effect of varying the
damping parameter B; € {1.0, 2.5, 5.0} [(Nm - s)/rad]; and
an additional protocol was conducted to examine the effects
of adding rider volition. Protocol B of [25] offers the closest
comparison to this work, which effectively mirrors Proto-
col B here (the exception being Protocol B in [25] utilized
a damping parameter of B; = 2.5 [(Nm - s)/rad] compared
to By = 2.0 [(Nm - s) /rad] here). For example, Cousin et al.
[25] showed that, when using a robust admittance controller,
within able-bodied participants, ¢ = —0.05 & 1.52 rpm, and
within the participants with NDs, & = —0.03 & 0.95 rpm.

Comparatively, in this work with an adaptive admittance con-
troller, ¢ = —0.21 + 0.57 rpm for the able-bodied participant
and ¢ = —0.08 & 1.05 rpm for participants with NDs.
Hence, by comparing these results, and the results shown
in Tables II and III, it is not immediately apparent whether
the addition of adaptation to the cycle’s admittance controller
lends itself to significantly improved tracking performance.
Consequently, although both the robust and adaptive con-
trollers demonstrate stable tracking performance, because the
adaptive controller comes at the expense of a significantly
more complex control structure, it may be more advisable
to proceed with a less sophisticated robust controller, such
as in [25]. Although each controller has its benefits, a robust
controller may be beneficial for both the rider and the cycle’s
operator (e.g., study staff) due to significantly reduced tuning
times and similar tracking performance.

As demonstrated by the tracking results of P1-P4, the error
systems remained stable under a wide range of participant
capabilities. In two participants (i.e., P1 and P3), adaptation
was able to noticeably improve the tracking performance,
whereas, in P4, adaptation detracted from the cycle’s per-
formance. Although the four participants reached their stim-
ulation threshold, the position gain (i.e., @) can be reduced
to increase the amount of time until saturation. Controller
saturation is an undesirable obstacle in achieving accurate
trajectory tracking, potentially preventing further convergence
of the errors. However, from a rehabilitation perspective,
saturating the muscle input may be desirable to evoke the
strongest muscle contractions possible and provide the rider
with a more thorough exercise regime. Recent studies, such
as [52], have taken this balance into account and diverted the
surplus of stimulation (i.e., the amount of stimulation above
the threshold) as current to the cycle’s electric motor. Regard-
less of the selected control strategy, balancing stimulation
levels with fatigue, comfort, and torque output remains one of
the foremost challenging and promising topics in FES cycling.

Although the current development represents the muscle
control effectiveness only as a function of position and
cadence, fatigue is an inescapable challenge of FES cycling
and adds an additional layer of complexity to the control task.
Across all trials, for the participants who do not quickly satu-
rate the stimulation input, they begin to show signs of fatigue,
evidenced by the increasing amount of stimulation required to
complete the tracking objective (see Figs. 4 and 10). Because
FES nonselectively recruits muscle fibers, closed-loop control
offers one solution to compensate for the effect of fatigue.
To reduce fatigue, the developed controller could have been
implemented using [53], but compensating for fatigue remains
an outstanding challenge in the use of FES [35]. Likewise,
while results, such as in [54]-[56], offer inroads to com-
pensating for neuromuscular delays, including such methods
in more complex switched systems required for coordinating
limb movements also remains an open challenge.

VI. CONCLUSION

To promote rehabilitation in individuals with NDs, the dual
objectives of admittance and cadence tracking were presented
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for use on an FES cycle, an example of a hybrid exoskeleton.
A novel switched neuroadaptive admittance controller was
implemented to activate the cycle’s electric motor, while a
cadence controller was implemented to activate the rider’s
muscles through FES. A combined switched Lyapunov-based
passivity analysis for nonstrict candidate Lyapunov functions
was then performed to illustrate the global asymptotic stability
of the closed-loop admittance error systems and passivity of
the closed-loop cadence error system. It is shown that while the
cycle’s motor regulates the admittance error system, it does not
destabilize the cadence error system. Such a strategy allows
for stable execution of physical human-robot interaction tasks,
where both the human and the robot are controlled subsystems.
Experiments conducted on one able-bodied participant and
four participants with NDs showcase the performance of
the controllers and demonstrate regulation of the admittance
errors and bounded cadence errors, as proven by the stability
analysis. Results suggest that comparable tracking results can
be obtained using either robust or adaptive control strategies
though both have their respective advantages and disadvan-
tages. Using the developed controllers on FES cycles allows
for people with NDs to perform intense, repetitive, coordinated
active exercises for the purposes of rehabilitation. To further
improve FES cycling as a whole, future efforts may focus
on fatigue-reducing control strategies, addressing controller
saturation, and investigating switched learning strategies.
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