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Split-Crank Functional Electrical Stimulation
Cycling: An Adapting Admitting
Rehabilitation Robot

Christian A. Cousin, Member, IEEE, Courtney A. Rouse"™,

and Warren E. Dixon

Abstract— Motorized functional electrical stimulation (FES)
cycling is a promising rehabilitation strategy for individuals
with movement disorders, particularly when the pedals of the
FES cycle are decoupled to measure and address asymmetries.
In this article, a rehabilitation robot, i.e., a split-crank FES
cycle, is developed which utilizes a combined admittance-cadence
controller to address rider asymmetries through adaptation,
ensure rider safety, and electrically stimulate the rider’s leg
muscles to pedal the cycle at the desired cadence. The theo-
retical development of the controllers is based on a combined
Lyapunov-passivity switched systems stability analysis. Experi-
ments were conducted on one able-bodied participant and three
participants with various movement disorders, resulting in an
average admittance tracking error of —0.13 + 1.77 RPM with
adaptation and —0.03 + 4.05 RPM without adaptation. The
split-crank FES cycle successfully admits to the rider, preserves
rider safety, and offers a promising robotic rehabilitation strategy
for individuals affected by movement disorders.

Index Terms— Admittance, functional electrical stimulation
(FES), Lyapunov, nonlinear control, rehabilitation.

I. INTRODUCTION

VERY year, it is estimated that 2.5 million Americans

experience a traumatic brain injury [1], 800000 expe-
rience a stroke [2], and nearly 18000 suffer a spinal cord
injury [3]. Consequently, millions of Americans are left with
permanent movement disorders from these neurological con-
ditions (NCs) and others [1], [3]. NCs result from damage to
the brain or spinal cord, and consequently, the muscles/nerves
controlled by the damaged tissue become compromised and
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can result in a movement disorder, such as hemiparesis or
paralysis [4].

In an effort to reduce the negative secondary consequences
of movement disorders and improve the overall quality of
life of individuals affected by NCs, numerous rehabilitation
options are being investigated, namely, functional electrical
stimulation (FES) and rehabilitation robots. While FES has
been proven to improve muscle strength [5] and motor
control [6], and rehabilitation robots have been shown to
improve motor function [7], [8], both therapeutic options have
their respective inherent challenges. For example, the nonlin-
ear dynamics exhibited by muscles and time-varying character-
istics, such as fatigue [9], compromise the accurate regulation
of movement elicited by FES, and when a robot is physically
coupled to a human, safety must be prioritized and incorpo-
rated into the robot’s control structure.

When dealing with a physical human—robot interaction,
a number of studies have employed various strategies to
control robots. For example, Kimmel and Hirche utilized
invariance control to enforce dynamic constraints and keep
the robot in a safe configuration. Other studies have imple-
mented a number of control modes for the robot to operate
under, such as assist-as-needed, for upper limb rehabilitation
robots [11], [12], human-in-charge/force control mode for use
with series elastic actuators [11], and patient-in-charge/robot-
in-charge modes for elbow rehabilitation [13]. Alternatively,
Atashzar et al. provides a framework where a therapist can be
injected into the control loop with the use of haptics-enabled
telerobotic rehabilitation to provide resistive/assistive motor
therapy remotely to stabilize nonpassive, nonlinear, and nonau-
tonomous behavior.

Admittance control, pioneered by Hogan [15], is an addi-
tional control strategy capable of modifying robot behavior
based on force-feedback and offers a method to promote safety
over performance by resolving conflicts in motion between the
robot and human [11]. Admittance control is also amenable to
adaptive control methods, and previous results have integrated
adaptation in the outer-loop of force-feedback to modify the
admittance parameters [16], [17] or within the inner-loop to
modify the position controller using techniques, such as neural
networks [18]. While admittance control has been imple-
mented on a number of rehabilitation robots [18]-[20] and
hybrid exoskeletons (which combine FES with rehabilitation
robots) [21], [22], subsets of admittance control, such as
stiffness control [23], and extensions, such as dissipative
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control [24] (i.e., admittance control with a minimum guar-
antee of passivity), have also been used to accomplish safe,
stable human-robot interaction.

An example of hybrid exoskeletons (see [25], [26]) and
the focus of this article is FES cycles, where the human
rider is electrically stimulated and an electric motor is used
to generate pedaling torques [27]. While objectives of FES
cycling can include cadence [27] or torque tracking [28]-[30],
admittance control strikes a balance between the two and has
been implemented on FES cycles in the authors’ prelimi-
nary works (see [31]-[34]). When dealing with hemiparesis,
FES cycles can often mask asymmetries in the rider due to
coupled pedals and a single-torque sensor, allowing the rider to
“cheat” at the pedaling task by only utilizing their unimpaired
side to pedal the cycle. Previous works have, thus, derived
methods to promote symmetric rehabilitation by isolating the
torque contributions of each leg by instrumenting cycles with
torque sensors on each pedal [35], [36], decoupling the pedals
(i.e., split-crank cycling) [37], [38], or pedaling with one leg at
a time (i.e., one-legged pedaling) [39]. Results, such as [36],
derived symmetry controllers and stimulate each leg differ-
ently to balance the contributions of each leg and promote
rehabilitation outcomes. Because FES cycling has been shown
to improve symmetry in hemiplegic individuals [35], further
research into asymmetric rehabilitation is warranted.

Asymmetric rehabilitation is supported by numerous stud-
ies, such as [40], which indicated that children with unilat-
eral brain injury have separate control circuits for each leg,
and these circuits can be adapted independently to improve
symmetry [41], which found that split-belt treadmills and
individual limb weighting can improve spatiotemporal sym-
metry in poststroke adults, and [42], which demonstrated that
decreases in asymmetry were observed in people with Parkin-
son’s disease in cycling when the average workload increased.
As a whole, the literature suggests that within various NCs
resulting in hemiparesis, symmetry can be improved, at least
in the short term, by targeted rehabilitation of the affected
and nonaffected sides of the body. Moreover, motivation
exists to have individuals participate in rehabilitation to the
greatest extent possible in an effort to reduce neuromuscular
impairment [20].

Split-crank FES cycling offers a method for asymmetric
rehabilitation, but because it involves physically coupling
a rehabilitation robot to the human rider, the numerous
challenges of any physical human-robot interaction task
(e.g., safety, closed-loop control, and nonlinearities) must be
addressed. Furthermore, FES cycling has the added challenge
of discretely switching muscle stimulation ON/OFF with con-
tinuously evolving state dynamics, resulting in a switched
system, and requires a switched systems stability analysis to
illustrate stability [43] and guarantee rider safety. Split-crank
cycling is also highly susceptible to periodic torques (e.g., due
to gravity), which are no longer balanced about the cycle’s
crankshaft due to decoupled pedals. Because people have
different capabilities and every movement disorder is unique,
adaptive control of FES cycling is warranted to not only
account for cycle dynamics but also produce a customized
experience for each rider while avoiding high-frequency
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switching in the control effort, typically found in robust control
methods (e.g., sliding-mode control).

Motivated by the desire to promote rehabilitation in indi-
viduals with movement disorders, specifically hemiparesis,
this article implements novel closed-loop adaptive admittance
controllers on the decoupled motors of a split-crank FES
cycle, while the rider is electrically stimulated with a robust
cadence controller. Compared with the past literature and
our previous work on admittance control of FES cycling
(see [31]-[34]), this article provides the first instance of admit-
tance control applied to a split-crank FES cycle with results
on participants possessing NCs, a rigorous Lyapunov-like
and passivity-based switched systems stability analysis, and
a generalized framework to investigate numerous split-crank
cadence/admittance trajectories using adaptive control. Fur-
thermore, by instrumenting the FES cycle with sensors on
each side, we are now able to measure the performance of
each participant’s right and left leg, allowing for an estimate of
asymmetries.

Compared with other methods of control for hybrid
exoskeletons or hybrid neuroprostheses, the current approach
is capable of simultaneously regulating the dynamic inter-
action between the human and the robot (see [44], which
utilized repetitive learning controllers to alternate the acti-
vation of motors and muscles for explicit cadence track-
ing); automatically and adaptively modulating the amount of
motorized assistance in real time (see [25], which utilized an
offline-computed optimal synergy-based feedforward compo-
nent within the controller); and addressing time-varying tra-
jectories (see [45], which utilized online optimization (MPC)
for regulation tasks).

Because a few results exist in terms of split-crank cycling,
open questions remain regarding how to best design the desired
trajectories and select the appropriate admittance parameters.
Although the development of this article is agnostic to the
desired trajectories, various trajectories are hypothesized to
have different clinical implications for people with movement
disorders [46]. To allow further investigation into asymmetric
rehabilitation, we developed a novel framework which can
be used with a variety of trajectories and admittance filters.
Without loss of generality, we selected the admitted trajectory
to be generated from the average capabilities of the two
sides of the split-crank FES cycle; that is, torque feedback
is implemented on each side of the cycle and averaged, such
that the more capable leg experiences resistance and the less
capable leg experience assistance to achieve the same cadence
and preserve cycling symmetry. A closed-loop robust cadence
controller is subsequently designed to implement FES on the
large muscle groups of the rider’s legs (quadriceps, hamstrings,
and gluteals) and maintain the desired cadence. To ensure
rider safety, the combined closed-loop cycle-rider system is
proven to be energetically dissipative (i.e., stable and passive).
A Lyapunov-passivity-based stability analysis is used to prove
the developed cadence controller is passive, and the admittance
controller exhibits global asymptotic admittance tracking. The
two controllers work in tandem to cooperatively pedal the
split-crank FES cycle while promoting rehabilitation outcomes
using a rehabilitation robot.
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Experiments were conducted on one able-bodied partici-
pant, one participant with spina bifida, one participant with
poststroke right-sided hemiparesis, and one participant with
Parkinson’s disease, with and without controller adaptation.
An additional experiment was conducted on the participant
with Parkinson’s disease to evaluate the effect of adding rider
volition to the experiment. To the best of our knowledge, this
is the first instance of adaptive admittance control applied
to split-crank FES cycling and, based on the experimental
results, offers a promising strategy for safely controlling robots
interacting with individuals affected by movement disorders.

II. DYNAMICS

Because the following analysis will be completed on a
split-crank cycle and the cycle is symmetric by design,
the dynamics are presented for a single side without loss
of generality. The cycle-rider dynamics for one side of the
FES cycle can be modeled by the uncertain, nonlinear, single-
degree-of-freedom system'-2

tm(q,q,1) +1.(t) = M(q)G + V(q,q9)q + G(q)
+P(q,q) +bg+d() (1)

where ¢ Rso — Q denotes the measurable crank angle,
Q C R is a set which contains all possible crank angles,
g : Rsp — R denotes the measurable velocity, and
G : R>9 — R denotes the nonmeasurable acceleration. The
inertial, centripetal-Coriolis, and gravitational effects of the
combined cycle-rider system are denoted by M : Q — R,
V:9xR—R,and G : Q — R, respectively. The rider’s
passive viscoelastic tissue torques and the cycle’s friction are
denoted by P O xR — R and b € R., respectively.
Unmodeled system disturbances (e.g., unintended volitional
efforts from the rider) are denoted by d R>o — R.
The combined torque from the rider’s muscles® is denoted
by 7, 1 Q@ x R x R>9p — R and the torque from the cycle’s
motor is denoted by 7, : R>o — R, which can, respectively,
be expanded as

tn(@.4:) 2 D Bu(q, §)om(@)un(t) )
meM
Te(t) £ Beue(t)~ 3)

The uncertain, nonlinear, individual muscle control effective-
ness relates stimulation input to output torque and is denoted
by By O xR — R.g [9], [27], and the piecewise
right-continuous switching signal for activating the individual
muscle groups is denoted by ¢, : Q — {0, 1}, Vm € M,
where the set M £ {Q H G} includes the quadriceps
femoris (Q), hamstring (H), and gluteal (G) muscle groups
(i.e., the stimulated muscle groups). The subsequently
designed muscle control input is distributed to all muscle

groups and is denoted by uj : R>o — R. This muscle control

IFor notational brevity, all explicit dependence on time, ¢, within the states
q(t), q(t), and G () is suppressed.

2Because each side of the FES cycle is a single-degree-of-freedom system,
the terms representing the dynamics in (1) reduce to scalars.

3The torque arising from the rider’s muscle is subject to an input delay [9]
which is addressed in Section V-B.
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input is used to construct a stimulation pulsetrain delivered
to the rider’s muscles with a fixed current amplitude and fre-
quency, but variable pulsewidth (i.e., the parameter modulated
by the subsequently designed controller u,). The known motor
control constant relating the motor’s input current to output
torque is denoted by B, € R, and the subsequently designed

motor control current is denoted by u, R-o — R. The
switching signal oy, is defined as [27]
15 q S Qm
om(q) = €
" 0, q¢m

Vm € M, where Q,, C Q denotes the regions in which muscle
group m is able to supply a positive torque about the crank.
The union of all muscle regions establishes the combined FES
region of the crank cycle, defined as Q £ UM O, and the

kinematic deadzone (KDZ) region as the remrgiender. By appro-
priately designing the switching signals in (4), each muscle
is stimulated only when it can effectively contribute to the
tracking objective (i.e., when it can apply torque in the same
direction as the control input u;). To delay muscle fatigue,
muscles are only stimulated when in kinematically efficient
regions (i.e., at a high torque transfer ratio from muscle to
crank) [27], [44]. As muscle fatigue does occur, however,
the rider will receive an increasing amount of stimulation
delivered to their leg muscle groups to evoke stronger muscle
contractions due to the closed-loop nature of the controller
in (2). Since different muscle groups are activated through their
respective switching signals, the torque input to the system
discretely changes; however, the system states continuously
evolve. The combination of discretely changing control inputs
with continuous state dynamics gives rise to a state-dependent
switched system.

The switched system dynamics in (1) have the following
properties [27].

Property 1: The dynamic parameters M, V, G, P, b,
and d are bounded by ¢, < M < cpy, |V| < cvliql,
|G| < cG, |P| < cp1 +cp2lql, b < cp, |d] < cq, where
Cm, CM, CV, CG, CPl, Cp2, Ch, Cq € R.q are known
constants.

Property 2: The uncertain dynamic terms M, V, G, and
b are linear in the parameters [47].

Property 3: The system is skew symmetric by the relation
M—2V=0.

Property 4: The individual muscle control effectiveness,
By, is subject to nonlinear activation dynamics and a muscle
fiber recruitment curve (commonly represented by sigmoidal
function) [48], [49]. However, when ¢ € Qj, the unknown
muscle control effectiveness mapping the FES input to the
output muscle force is bounded by B, < Zme M Bunom <
By, where By, Bj € R.( are known constants.

III. CONTROL DEVELOPMENT

In the following section, two controllers are developed for
one side of the FES cycle: a sliding-mode cadence controller
to stimulate the rider’s muscles via FES and an adaptive
sliding-mode admittance controller to activate the cycle’s
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motor; without loss generality, an identical analysis can be
repeated for each side of the FES cycle.

A. Cadence Controller

As in [27], the cycle’s cadence is regulated using the rider’s
muscles in the FES regions. The cadence tracking objective is
quantified by a position error denoted by ¢ : R>o — R and a
filtered tracking error (combining both the position error and
its derivative) denoted by r : R>¢ — R, each defined as*

eLqi—q 5)
A

r=é+oe (6)

where g4 : R>0 — R denotes the desired position, designed
to be sufficiently smooth (i.e., ¢4, 44, Ga € Loo), @ € Rog
denotes a constant control gain, and r acts as a sliding surface.
The open-loop cadence error system is obtained by taking the
derivative of (6), multiplying by M, adding and subtracting e,
and substituting (1), (5), and (6) to yield

Mf:;(—ZBmamuh—re—Vr—e 7
meM

where the lumped auxiliary signal y : R? xR=op — R denoting
system disturbances is defined as y £ M(jq + ar — a’e) +
V(Gqs+oe)+ G+ P+b(gqg—r+ae)+d—+ e and bounded by
Property 1 as |y| < c1 + 2|z +C3||Z||2, where ¢y, ¢z, ¢3 €
R.o are known constants, and the error vector z € R2 is
defined as z = [e, r]7. Based on (7) and the subsequent
stability analysis, the cadence controller is designed as

A 1 2 }
up = sat, | — (kir + (k2 + k3liz]| + kallz]|” )sgn(r )
’ [Bﬂ( e )senr)

where sat,(-) denotes the saturation function with saturation
limit p € R.o, k; € Rog Vi € {1, 2, 3, 4} denote constant
control gains, ||-|| denotes the standard Euclidean norm, sgn(-)
denotes the signum function, and By, is introduced in Prop-
erty 4. Substituting (8) into (7) yields the closed-loop cadence
error system

Mi=y—t1.—Vr—e— Z Bpnomsat,
meM

1
xb4m+®+mw+mw%@mﬁ )

m

B. Admittance Controller

While the rider’s muscles regulate cadence, an admittance
filter is employed to generate the admitted trajectory online;
the filter is selected as

T—1 £ MyGa + Baqa (10)

where 74 : R>9 — R denotes the desired bounded interaction
torque, and 7 : R>9 — R denotes the bounded measurable
interaction torque between the cycle and rider (i.e., 7 € L)
[10], [17]. The filter’s parameters, represented by the desired
inertial and damping constants My, By € R.q, respectively,

4For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.
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are selected such that the transfer function of (10) is passive
[50, Lemma 6.4] (i.e., 9a, Ga Gu € Loo), Where qu, Ga, Ga :
R>0 — R denote the generated admitted position, velocity,
and acceleration, respectively.

The primary goal of the admittance controller is to pro-
mote rider safety by injecting dynamics of the form in (10)
that relate the admitted trajectory to the desired trajectory.
Therefore, while tracking the desired cadence, the most influ-
ential admittance parameter is the damping coefficient, By.
Because damping is proportional to cadence, a higher
damping coefficient results in a stiffer admitted cadence tra-
jectory (which the motor tracks) and allows for less devi-
ation from the desired cadence trajectory (which the rider
tracks).

Moreover, the admitted cadence trajectory can be made
more volatile by decreasing the desired inertia coefficient, M,;.
Decreasing the inertia is analogous to removing mass from
the system in that admitted trajectory is more susceptible to
change. The admitted trajectory only evolves if there exists
a nonzero value on the left side of (10); therefore, if the
rider is able to generate exactly the desired interaction torque,
the motor will not assist (or resist) the rider in maintaining
the desired cadence trajectory. Only if the rider falls short
of the desired interaction torque does the assist-as-needed
control paradigm take effect. Conversely, if the rider exceeds
the desired interaction torque (such as is possible in volitional
pedaling), the cycle will enter a resist-as-needed paradigm to
challenge the rider.

To track the admitted trajectory, an inner-loop position
controller is designed to regulate the admittance error system.
The admittance position error is denoted by & : R>9 — R,
and a filtered tracking error denoted by y : R>¢ — R, each
defined as

¢
4

(1)
12)

E+qa—q
¢+ pE
where = R — Q represents a subsequently defined
customizable, continuously differentiable, admitted position
trajectory generated using the admittance filter in (10)
iie, E = f(ga)]l, B € R.o denotes a constant control
gain, and y acts as a second sliding surface. Although the
admitted trajectory is generated online, it determines if pedals
of the cycle act as if they are coupled or decoupled. That
is, if both sides share the same admitted trajectory, symmetry
is preserved, the pedals will appear to be coupled, and the
two sides of the cycle will operate at the same cadence.
Otherwise, each side will have a unique admitted trajectory,
symmetry will be broken, the pedals will be decoupled, and
the two sides will operate at their own independent cadence.
The motivation behind such a design is to establish a frame-
work, for which numerous trajectories can be investigated to
best promote rehabilitation outcomes without modifying the
developed controller. The open-loop admittance error system
is generated by taking the time derivative of (12), multiplying
by M, adding and subtracting £, and substituting (1), (11),
and (12) to yield

> 1>

My =Y0+7Y — 1, — Beup — & — Vy (13)
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7L Admittance TR
Filter 1
Left n
Te L | Left Motor | UelL Admietta.nce [} fi +
; ., L
Dynamics Controller R
qa,L qa,L
X Left
Left q- 4L -
FES Cycle Trajectory
Dynamics Generator
qa,L a,L
Tin,L| Left Muscle Left €L, 1, f\_
R Cadence O
Dynamics | t,. Controller

Fig. 1. Block diagram showing the cadence and admittance controllers on
the left side of the split-crank FES cycle. The subscripts L and R are used to
denote signals on the left and right sides of the FES cycle. Note, the admittance
trajectory denoted by = is a function of the admitted trajectory, g,, which
is a function of both the torque on the left and right sides of the split-crank
cycle.

YO & M(E+Ga+ By — %)
+V(E+qa+pE)+G
+b(E+Ga— y + BE) (14)

where ¥ : R? xR~ — R!*® denotes a computable regression

matrix and by Property 2 is linear in the parameters; and 0 €

R8*! denotes a matrix of constant system parameters. The

lumped auxiliary signal ¥ : Q x R x R>¢ — R is defined as

Y £ P 4d+ ¢ and is bounded by Property 1 as | Y| < c4 +

¢s||@]|, where c4, c5 € R are known constants, and the error

vectors ¢ € R? and ¢ € R? are defined as ¢ 2 [¢7, Z]7 and
¢ 2 [&, w]T, respectively. Based on (13) and the subsequent
stability analysis, the admittance controller is designed as

1 A
Ue = B—(YH + ksy + (ke + k7llPll + kslunl)sgn(y))  (15)

where k; € R.g Vi € {5, 6, 7, 8} denote constant control
gains, and § : R — R3*! denotes a time-varying estimate
of the constant system parameters. Based on the subsequent
stability analysis, the estimates for the system parameters
in (14) are generated online according to

0 £ proj(T'y"y) (16)
where T' € R8*® denotes a constant positive definite learning
gain, and proj(-) denotes a projection algorithm operator

[51, Sec. 4.4]. Substituting (15) into (13) yields the closed-loop
admittance error system

My=Y—10,—Vy—E+Y0—ksy

— (ke + k71PNl + kslunl)sgn(y)  (17)
where & : Rso — R3*! denotes the error between the
actual and estimated system parameters. A block diagram of
the dual-controller structure is shown in Fig. 1.
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IV. STABILITY ANALYSIS

To facilitate the following theorems, let W R?2 - R
denote a continuously differentiable, positive definite storage
function defined as

1 1
W, = EM r+ 562
and let V; : R0 — R denote a continuously differentiable,

positive definite Lyapunov function candidate defined as

(18)

1 1 1~ 3
= —My/2+552+59Tr*‘6. (19)

2

Theorem 1: The closed-loop cadence error system in (9) is
passive from input |z, + x| (i.e., the motor torque and system
disturbances) to output |r|, with the storage function Wp, Vz.
Proof: Letz : Rso — R? for ¢ € [to, o0) be a Filippov
solution to the differential inclusion z € K[h](z), where K[-]
is defined as in [52], and & : R%Z — R2 is defined as h £
[é, 7]T. Because of the discontinuity in the muscle controller
in (8), the time derivative of Wy exists almost everywhere
(a.e.) [i.e., for almost all € [7p, 00)], and Wi (z) e WL (2),
where WL is the generalized time derivative of W along the
Filippov trajectories of z = h(z) [53]. Using the calculus of

K[-] from [53], and substituting (6) and (9) into WL yields

- 1 .
W C —aez—i-r){—i-(EM—V)rZ

1

— > K[Buoulsat, [—(k1r2 + (k2 + k3 izl

B
meM -

+k4||Z||2)K[Sgn(f”)]f”)} —TITe
(20)

where K[Buom] £ {0, By}. For g € Qum, > e pq K[Bmom]
is nonzero and may be bounded by Property 4 as B,,, which
is continuous. In the case where the control input is below
saturation (i.e., up < p), by Properties 1 and 3, and since

Wi (2) S wy (2), (20) can be bounded as

. a.e. 2 2
Wp < —ae” —kir® — 21|r| — A2lr|llz]]

—J3lrlllzl® + Irllzel 1)

where A1, A2, A3 € R are defined as A1 2 kr — ¢y, 1o 2

ky — ¢y, and A3 £ ka4 — ¢3 and where ¢|, c¢», and c¢3 are
the bounding constants on y in (7). Provided ky > ¢, k3 >
c2, k4 > c3, then 11, Ay, A3 > 0; thus, (21) can be bounded
further as

. a.e. 2 2
Wp < —ae” —kir® +|r||z.|. (22)

Because the interaction torque is bounded, the physically
applied motor torque is similarly bounded [10], [17]. Hence,
by [50, Definition 6.3] the cadence error system is output
strictly passive with input |z, |, output |r|, and storage function
Wi, and the cadence controller is bounded (i.e., u, € Loo).
Using similar arguments for the case where the control input
is saturated (i.e., up > p), (20) can be bounded as

. a.e.
WL < Irllte + x| (23)
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Because the admittance and position error systems are coupled
(i.e., ¢ = E + e) and because the admittance trajectory is
bounded (i.e., ¢4, Ga Ga € Loo), if |£]| and || are bounded,
then |e| and |r| are likewise bounded. By the definition of y
in (7) and Property 1, if |e] and |r| are bounded, then |y|
is bounded. Hence, by [50, Definition 6.3] the cadence error
system can be shown to be passive with the input |z, + x|,
output |r|, and storage function Wy, as long as || and || are
bounded, which is the direct result of the subsequent theorem.
It can also be shown that (22) can be bounded with (23) which
provides the result of Theorem 1. [ |

Remark 1: Although the above-mentioned analysis does
not include volitional contribution from the rider, a common
assumption in human-robot interaction is that the human is
naturally passive [22]. If the rider volitionally contributes,
the cadence controller and rider would act in parallel. Because
passive systems in parallel remain passive [50], volitional
contributions would not affect |r| being passive with respect
to the motor torque and system disturbances (i.e., |z. + x|).
Hence, the rider is able to volitionally contribute toward
the tracking objective without destabilizing the cadence error
system.

Theorem 2: Given the closed-loop error system in (17),
the admittance controller globally asymptotically regulates the
admittance error system in the sense that ¢ £ ¢, 17 T =>o0
as t — oo, provided the following constant gain conditions
are satisfied: kg > c4, k7 > c¢5, kg > Bj, where ¢4 and cs5 are
the bounding constants on Y in (13), and Bj;; was introduced
in Property 4.

Proof: Using an argument similar to the proof for
Theorem 1, the time derivative of (19) can be bounded above
using (12), (17), and Properties 1, 3, and 4 as

- a.c.
Ve < —BE —ksy? — |y|(a + Asl@ll 4+ Aolunl)  (24)

where A4, A5, l¢ € R are defined as 14 £ kg — ca, A5 =
k7—cs, and A¢ £ ks — Bir. Provided the gain conditions listed
in Theorem 2 are satisfied, 14, A5, A¢ > 0, and thus, (24)
can be upper bounded as
. a.e. 2 2
Vi < —BE° —ksy”. (25)
Hence, (19) is a common Lyapunov function across both the

FES and KDZ regions. Subsequently, [54] can be invoked,
along with the radially unboundedness of (19), to show |£],

lw], IICll = 0 as t — oo. Since Vi, > 0 and VL aé" 0, Vp €
L, and hence, &, v, 0 € Lo, which implies ¢, 0 € Loo.
Since (10) is passive, 4, §q € Loo, Which implies Y, ||@| €
Loo. Finally, because uj, € Loo, tte € Loo. [ |

V. EXPERIMENTS
A. Testbed

The experiments were conducted on a motorized split-crank
FES cycle, which is a modified version of the testbed described
in [27], except with encoders and motors on both sides of
the cycle, mounted in a mirrored configuration, as shown
in Fig. 2. The motors are controlled with an ADVANCED
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Fig. 2. Motorized split-crank FES cycle with: A. Right encoder and
powermeter. B. Left encoder and powermeter. C. Stimulator. D. Electrodes
(quadriceps shown). E. Emergency stop. F. Right and left motors (left shown).
G. Filter cards.

Motion Controls® (AMC) PS300W24 power supply, an AMC
AB25A100 motor driver, and an AMC FC15030 filter card.
SRM science road wireless power meters are mounted to
each side of the bike crank to measure the interaction torque
between the right and left side of the rider and the cycle.
A Hasomed Rehastim 1 current-controlled stimulator delivered
biphasic, symmetric, rectangular pulses to the participant’s
muscle groups via bipolar, self-adhesive, PALS electrodes.®
The stimulation was applied at 60 Hz, and amplitudes were
fixed at 90, 80, and 70 mA for the quadriceps, hamstrings,
and gluteals, respectively. The stimulation pulsewidth for
each muscle group was determined by the controller in (8)
and commanded to the stimulator by the control software.
An emergency stop button was fastened to the tricycle that
enabled the participant to immediately stop the experiment if
desired.

B. Methods

Experiments were conducted on one able-bodied male par-
ticipant, aged 26-years old (P1), one male participant with
spina bifida, aged 25-years old (P2), one female participant
with poststroke right-sided hemiparesis, aged 50-years old
(P3), and one male participant with Parkinson’s disease, aged
64-years old (P4). P2 has spina bifida (L5-S1) with an Arnold
Chiari malformation and regularly participates in physical
therapy; he uses ankle-foot orthoses and a wheelchair and is
familiar with FES. P3 had a stroke in 2014 and is community
ambulatory without aid; she has regained some function in
her right leg (her affected leg) though this was her first expe-
rience with FES cycling. P4 was diagnosed with Parkinson’s
disease in 1997 and regularly participates in physical therapy
and exercise; although he had a noticeable tremor in both
arms, his right arm had a larger magnitude. A single trial
of two primary protocols was conducted on each participant,
Protocol A, which implemented the controllers in (8) and (15),

SAMC supported the development of this testbed by providing discounts on
their branded items.

6Surface electrodes for this study were provided compliments of Axelgaard
Manufacturing Company Ltd., Fallbrook, CA, USA.
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and Protocol B, which also implemented the controllers
in (8) and (15), but with the adaptive feedforward component
disabled (i.e., I' = 0). Participants 1-4 completed both
Protocols A and B in random order, with P1 receiving stim-
ulation only on the quadriceps muscle group for proof of
concept, and P2—-P4 receiving stimulation on the quadriceps,
hamstrings, and gluteal muscle groups. For Protocols A and
B, the participants were asked not to contribute volitionally;
although some volitional contribution is possible and not mea-
sured, any voluntary contribution was only partially informed
by stimulation cues because participants were unaware of the
desired trajectories. To investigate the effect of adding volition,
P4 was asked to repeat Protocol A with volition, denoted by
Protocol C. During this protocol, P4 was only shown a plot of
the desired cadence and the measured cadence for their right
side.

While there is no clear consensus for the optimal cadence
of FES cycles for rehabilitation, it has been suggested that
lower cadences may be more ideal for torque production, while
higher cadences may be better for power production [46].
However, for feasibility purposes, the desired cadence was set
to 50 RPM [55], [56] for both the able-bodied population and
the population with NCs, without loss of generality. Each pro-
tocol had a total duration of 180 s, with the first 20 s consisting
of a smooth motor-only ramp to the desired cadence. After the
initial ramp, the controllers in (8) and (15) were switched on
and errors were recorded. For all protocols except Protocol C,
the participants were blind to the desired trajectories for the
duration of the experiment. The experimental protocols were
approved by the Institutional Review Board at the University
of Florida, Gainesville, FL, USA (IRB201600881). For all
experiments, the admittance parameters in (10) were selected
as By = 1 (Nm-s/rad), My = 2 (Nm-s?/rad), 74 =
0.5 Nm for P1, 7; = 0.2 Nm for P2, 7; = 0.3 Nm for
P3, and 7; = 0.2 Nm for P4. The controller gains in (6),
(8), (12), (15), and (16) were selected as k; € [3.0, 5.5],
ky = k3 = kg = 0.1, ks € [5.0, 10.0], k¢ = k7 = kg =
ko = 0.001, a € [2.0, 3.5], p € [0.1, 0.2], and T =
0.1 -diag(3.15, 3.15, 1.05, 2.10, 5.25, 5.25, 1.05, 0.63).

To account for the electromechanical delay present in the
rider’s muscles, the stimulation pattern was advanced as a
function of the cadence (i.e., ¢stim £ qg + 0.1g), where
gstim : @ xR — Q was substituted for ¢ in (4). Although the
aforementioned gain conditions are sufficient to achieve stabil-
ity for the largest uncertainties on the system parameters, they
represent conservative gains required by the controllers in (8)
and (15). Therefore, the gain conditions provide guidelines for
the initial gain selection, and the gains can be subsequently
adjusted to achieve the desired performance. The listed gains
were adjusted using an empirical-based method, but the gains
could have been adjusted using more methodical approaches.
For example, the nonlinear system in [57] was linearized at
several operating points, and a linear controller was designed
for each point, and the gains were chosen by interpolating
or scheduling the linear controllers. In [58], a neural net-
work is used to tune the gains of a proportional, integral,
derivative (PID) controller. In [59], a genetic algorithm was
used to fine-tune the gains after initialization, and guesses

2159

were made by the controller designer. Killingsworth and Krstic
[60] provide an extensive discussion on the use of extremum
seeking for tuning the gains of a PID controller. In addition,
in [61], the tuning of a PID controller for robot manipulators
is discussed.

The admitted trajectory in the error system in (11) and (12)
was generated using Z = (1/2)(qa. + qa.r), Where gux :
Rsop — R, Vx € X & {L, R} represent the trajectories
generated using the admittance filter in (10) for the left and
right sides of the cycle, respectively. The motivation behind the
admitted trajectory being an average of the two sides is to syn-
chronize the positions and cadences of each side, so the natural
coordination and symmetry of the legs are preserved. This
trajectory strikes a dynamic balance between the capabilities of
both legs instead of holding the legs to a standard which they
may be incapable of reaching (e.g., having a nondominant leg
track the trajectory generated from a dominant leg); instead,
the trajectory is set to the average capabilities of the legs,
such that the more capable leg experiences resistance and
the less capable leg experience assistance. However, many
different trajectories could be selected, with potential clinical
differences. For example, the results in [46] suggests that lower
cadences may be optimal for strength training, but higher
cadences may be best for power training.

C. Results

Let participants and protocols be referred to by their respec-
tive numbers and letter; for example, Participant 1 running
Protocol B is referred to as P1B. Numerical results for
Protocols A and B are displayed in Table I with details on
the average and standard deviation of the measured cadence,
admitted cadence, admitted cadence tracking error, motor
control input, and measured torque for each leg. As shown
in Table I, the average cadences for each leg (i.e., gy, Vx € X)
were similar with adaptation enabled and disabled. However,
with adaptation, the standard deviation of the admitted track-
ing error was reduced by 75% for P1, 19% for P2, 47%
for P3, and 50% for P4. Compared with our most similar
previous result on single-crank FES cycling, which utilized
robust admittance control (i.e., [32]), the robust version of
the presented controller (i.e., Protocol B) demonstrated a
notably higher standard deviation of & for the same participant,
Participant A (i.e., —0.10 £ 1.87 RPM in [32] compared
with —0.13 & 5.33 RPM on the left side of the split-crank
cycle). It is surmised that this difference is largely due to the
split-crank cycle’s susceptibility to gravitational effects (i.e.,
they are not canceled as in single-crank cycling). By sub-
sequently enabling adaptation on the split-crank cycle to
compensate for dynamics (e.g., inertial, centripetal-Coriolis,
gravitational, and friction effects), the admittance cadence
error presented here then more closely resembles our previ-
ous work (i.e., —0.10 & 1.87 RPM in [32] compared with
—0.23 4+ 1.64 RPM).

Graphical results for P1-P4 running Protocol A are provided
in Figs. 3—-10. Figs. 3, 5, 7, and 9 show the cadence tracking
results along with the root-mean-square (rms) (windowed
at 0.5 s) values off and ¢ for P1A, P2A, P3A, and P4A,
respectively. Figs. 4, 6, 8, and 10 show the control inputs to
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TABLE I
EXPERIMENTAL RESULTS, REPORTED AS AVERAGE £ STANDARD DEVIATION

Participant  Protocol g, (RPM)*  ¢r RPM)*  ¢o RPM)T £, RPM) £r RPM)  wer (A)  uep (A) 7 (Nm) 7R (Nm)
1 A 49.034+1.73  48.92+1.16 48.80+0.84 -0.23+1.64 -0.13+0.94 -242+4.64 1.984+4.69 0.204+3.70 0.1543.51
B 47704490  47.634+5.18 47.58+091 -0.13+5.33  -0.054+4.67 -2.59+4.89 2.554+5.35 0.00+3.68 -0.27+3.60
5 A 49.004+1.60  48.98+1.52 48.89+0.09 -0.11+1.60 -0.1041.53 -2.3242.73 2.0942.97 -0.13£1.54 -0.05+£1.60
B 48.63+2.06 48.58+1.78  48.60+0.39 -0.03+1.87 0.304+1.97 -2.38+2.13  2.154£2.63 -0.194+1.55 -0.08+1.55
3 A 48.874+1.40 48.824+1.31 48.74+0.27 -0.13+1.40 -0.094+1.26 -1.974£2.94 2.2043.01 0.2242.33  -0.09+2.20
B 48.5042.75 48464243 48434037 -0.08+2.73 -0.034+2.39 -1.994£3.12 2.3743.25 0.1742.33  -0.20£1.95
A 49914146 49.814+241 49.724+0.84 -0.194+1.52 -0.0942.16 -1.91+£3.77 2.3545.15  0.1742.56 0.074+4.04
4 B 49.654+3.68  49.534+4.02 49.51+0.86 -0.14+3.65 -0.034+3.81 -2.21£4.08 2.5945.03 -0.03£2.49 -0.17+4.10
C 50.26+£1.73  50.16+2.70  49.94+0.83 -0.20+1.87 -0.10£2.40 -1.464+4.11 2.104+5.43 0.36+2.70 0.66+4.37
Mean® A 49.204+1.79  49.1341.93  49.03+0.70 -0.16+1.78 -0.104+1.77 -2.15£4.15 2.154£4.70  0.1143.05 0.0243.46
B 48.624+4.05 48.55+4.16 48.53+0.78 -0.09+4.19  0.04+3.91  -2.29+427 2414487 -0.01£3.03 -0.18+3.46
*At steady state, the average cadence error is given as é; = 50 — ¢z, Vo € X.
fda : R>o — R denotes the average admitted cadence given as o = dq + 5 (da,z + da,r). identical for both legs.
Protocol C was not included in calculating the mean.
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Fig. 4. PIA (Top) Control inputs to left and right motors and (Bottom)

Fig. 3. P1A (Top) The measured cadence for the left (§7) and right (4g)
leg, admitted cadence (g, ), and desired cadence (g,); (Middle) rms error of
¢ for the left and right legs; and (Bottom) rms error of é for the left and right
legs. Vertical lines represent the time of controller activation.

the cycle’s motors and rider’s muscle groups for P1A, P2A,
P3A, and P4A, respectively. For visual clarity, a half-second
moving average filter was applied to all plots displaying
measured cadences and motor control inputs (i.e., g1, ¢g,
and u,). To directly compare results with and without
adaptation, Figs. 11 and 12 are included for P4B, which
display the cadence tracking results and control inputs,
respectively. To examine the effects of the rider volitionally
pedaling alongside the admittance and cadence controllers,
Figs. 13 and 14 display P4C, which is P4 running Protocol
A with added volition.

D. Discussion

Across all participants, adding adaptation to the admittance
controller resulted in improvement in the cadence tracking
performance in terms of the average cadence error and stan-
dard deviation. A reduction in the standard deviation of the
cycle’s cadence is a result of more uniform cadence tracking,
which results in smoother cycling performance. Consequently,
this reduces the variation of the cadence errors and assists in

control inputs to the rider’s quadriceps femoris muscle groups for the left
and right legs. Because the motors are mounted in a mirrored configuration,
they require opposite signs on the delivered current. The muscle gains for the
left and right quadriceps were identical, and therefore, the stimulation closely
overlaps. The stimulation input was saturated at 130 us for rider comfort.

smoothing out the applied stimulation to the rider’s muscles,
resulting in a more comfortable experience for the rider.
By examining the results of PI, the effects of adaptation
are evident; in Fig. 3, the rms value of é decreases steadily
for the first 20 s after controller activation. In addition,
as the stimulation input increases, the rider produces more
torque and is able to contribute more toward the cadence
tracking objective (compare Figs. 3 and 4). Furthermore, as the
admittance controller adapts, and the rider generates more
torque, the control effort required by the motors is reduced
throughout the experiment, as shown in Fig. 4. Based on
Table I, adaptation improved all metrics except for a slight
increase in 5 (i.e., from —0.13 RPM to —0.23 RPM for the
left side, and from —0.05 RPM to —0.13 RPM for the right
side). In fact, with adaptation, the standard deviation of the
measured cadence was reduced by 65% and 78% for the left
and right sides, respectively, and the standard deviation of the
admitted cadence was reduced by 69% and 80% for the left
and right sides, respectively.
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Fig. 5. P2A (Top) the measured cadence for the left (¢;) and right (Gr)
leg, admitted cadence (g4), and desired cadence (¢4); (Middle) rms error of
¢ for the left and right legs; and (Bottom) rms error of ¢ for the left and right
legs.
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Fig. 6. P2A (Top) control inputs to left and right motors and (Bottom) control
inputs to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H ), and
gluteal (G) muscle groups. The stimulation input was saturated at 65 us for
rider comfort.

When comparing P2 with P1, it is noted P2 had a lower
stimulation limit and experienced fatigue at a quicker rate,
despite all muscle groups being stimulated. The low stimula-
tion limit made the experiments of P2A and P2B appear very
similar in nature (i.e., with and without adaptation), except the
adaptation resulted in smoother cadence tracking/performance.
Due to adaptation of the motor controller, it can be seen
in Fig. 5 that the rms value of & was reduced over the
course of the experiment, despite only a subtle reduction
in the motor control effort, as shown in Fig. 6. According
to Table I, the adaptation was able to reduce the standard
deviation of the measured cadence by 32% and 15% for the
left and right sides, respectively, and of the admitted cadence
by 14% and 32% for the left and right sides, respectively.
Because P2’s stimulation was saturated early in the experi-
ment, he was unable to achieve the desired cadence at the
desired interaction torque. However, because the admittance
controller held the admitted cadence trajectory near the desired
cadence trajectory, the robot-assisted the rider in maintaining
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Fig. 7. P3A (Top) the measured cadence for the left (g7 ) and right (4g)
leg, admitted cadence (g4 ), and desired cadence (G4); (Middle) rms error of
¢ for the left and right legs; and (Bottom) rms error of é for the left and right
legs.
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Fig. 8. P3A (Top) control inputs to left and right motors and (Bottom) control
inputs to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H ), and
gluteal (G) muscle groups. The stimulation input was saturated at 40 us for
the right hamstring and gluteal and 45 us for all other muscle groups.

his cadence. This exemplifies the assist-as-needed control
paradigm because, without the admittance controller, the rider
would have been unable to produce an identical cadence.
Because the cadence controller is passive and the admittance
controller demonstrates asymptotic tracking, the FES cycle
exemplifies stable performance through the remaining portion
of the experiment. Although P2 has spina bifida, the cycle
detected no notable asymmetries in performance; this was rea-
sonable considering P2 uses ankle-foot orthoses on both legs
and symmetric walking aids (i.e., walkers and wheelchairs).
Because P3 had previously had a stroke which compromised
her right leg, it was anticipated that P3 would showcase the
cycle’s ability to address asymmetries. However, P3 presented
a strong sensitivity (i.e., hypersensitivity) to stimulation, and
thus, the amount of stimulation that could be applied (and
hence, torque contribution) was minimal. Similar to P2, P3’s
stimulation was saturated early in the experiment; however,
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Fig. 9. P4A (Top) the measured cadence for the left (¢ ) and right (Gg) leg,
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Fig. 10. P4A (Top) control inputs to left and right motors and (Bottom)

control inputs to the rider’s right (R) and left (L) quadriceps (Q), hamstring
(H), and gluteal (G) muscle groups.

unlike P2, P3’s saturation limit was much lower (i.e., 65 us
for P2 compared with 40—45 us for P3). Despite the lower
saturation levels, the cycle was still able to adapt and asymp-
totically track the admittance error system. According to
Table I, her unimpaired leg (left) generated more torque than
her impaired leg (right), and both legs demonstrated improved
tracking performance with adaptation enabled. With adapta-
tion, the standard deviation of the measured cadence was
reduced by 49% and 46% for the left and right sides, respec-
tively, and the standard deviation of the admitted cadence
was reduced by 49% and 47% for the left and right sides,
respectively. Fig. 7 shows cadence tracking performance and
Fig. 8 shows the control efforts for P3A. From a rehabilitation
perspective, it would be beneficial for P3 to acclimate to
the sensation of neuromuscular electrical stimulation before
participating in additional FES cycling exercises; as stated, this
experiment was her first experience with electrical stimulation.
After some acclimation, it is assumed she would be able
to tolerate a higher stimulation limit, which would allow
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Fig. 12. P4B (Top) control inputs to left and right motors and (Bottom) con-
trol inputs to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H),
and gluteal (G) muscle groups.

for stronger muscle contractions and better measurement of
muscular asymmetries.

To directly examine the effects of adding adaptation to
the admittance controller, Figs. 9 and 10 display the tracking
results and control inputs with adaptation enabled for P4 and
Figs. 11 and 12 display the tracking results and control
inputs with adaptation disabled for P4. By directly comparing
Figs. 9-11, it can be seen that immediately after controller
activation, the rms admittance and cadence tracking errors
decayed to nearly half their pre-activation values when adapta-
tion was activated. Although the adaptation only occurs on the
robot, because the robot and the rider are physically coupled,
improved performance from the admittance controller yielded
improved performance from the cadence controller. This effect
is significant because of the challenges when adding adaptation
to the cadence controller due to the unknown, nonlinear muscle
control effectiveness in (2); hence, adaptation can be added to
the robot’s controller to improve performance of the cadence
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leg, admitted cadence (g4), and desired cadence (¢4); (Middle) rms error of
¢ for the left and right legs; and (Bottom) rms error of ¢ for the left and right
legs.

controller applied to the rider’s muscles. As with all other
participants, the adaptive controller was able to reduce the
standard deviation of the measured cadence (by 60% and 40%
for the left and right sides, respectively) and the admitted
cadence (by 58% and 43% for the left and right sides,
respectively). This resulted in smoother cycling performance
and more uniform stimulation patterns, which is desirable
to promote rider comfort. P4 did not reach his stimulation
limit in either protocol (see Figs. 10 and 12) and, as shown
in Figs. 9 and 11, was able to produce enough interaction
torque to align the admitted cadence trajectory with the desired
cadence trajectory.

To compare the effect of adding rider volition alongside
the admittance and cadence controllers, Protocol C was run
on P4. As shown in Fig. 13, the tracking errors demonstrated
similar convergence to P4A, the protocol without volition
or adaptation. As displayed by Table I, in this instance,
the controllers outperformed at tracking the desired trajectories
than the rider was able to with volition while monitoring his
performance. In contrast, the rider was able to generate a
larger interaction torque when volition was included. Because
the rider was able to track the desired cadence trajectory
accurately and quickly (i.e., the stimulation did not require
error accumulation to ramp up), the rider’s stimulation was
kept well below his saturation threshold to the point where he
was unable to perceive it. According to Table I, P4 surpassed
the desired interaction torque, the cycle’s average cadence was
above the desired, the cycle resisted the rider, and the rider’s
stimulation was withdrawn (see Fig. 14).

Regardless of the controller, Figs. 3, 5, 7, and 9 indicate
that the measured cadences fluctuate around the desired value
throughout the experiment. The cause of these fluctuations can
arise from system disturbances, such as chain links, the rider,
or inaccurate modeling. Because each controller is designed to
account for these disturbances, when the disturbance occurs,
the controller is capable of compensating for it and correcting
the measured trajectory. The degree of these fluctuations
can be quantified using the standard deviation of cadence,
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displayed in Table I. Across all trials, the participants begin to
show signs of fatigue, evidenced by the increasing amount
of stimulation required to complete the tracking objective
(see Figs. 4, 6, 8, and 10). Because FES nonselectively
recruits muscle fibers, closed-loop control offers one solution
to compensate for the effect of fatigue. To reduce fatigue,
the developed controller could have been implemented using
an asynchronous stimulation pattern as in [62], but compen-
sating for fatigue remains an outstanding challenge in the use
of FES [48]. Likewise, while results, such as [63], [64], offer
inroads to compensating for neuromuscular delays, including
such methods in more complex switched systems required for
coordinating limb movements, also remains an open challenge.

It is important to note that the saturation of the stimula-
tion input (i.e., the cadence controller) does not compromise
the performance of the admittance controller. Regardless of
saturation, the admittance controller applied to the cycle’s
motors asymptotically tracks the admittance error system for
all time. Because of the admittance filter, if the rider’s muscles
are unable to produce the desired interaction torque per the
applied stimulation, the cycle decelerates to accommodate
the rider and enters the assist-as-needed modality. By manip-
ulating the desired interaction torque and the parameters
in (10), the cycle’s performance can be drastically changed;
the interested reader can refer to [32] for additional details.
Whether the participant was able-bodied (P1), had an NC
with no asymmetry (P2/P4), or had an NC with asymmetry
(P3), the combined cadence-admittance controllers applied
to the split-crank FES cycle illustrated stable performance
with adaptation, improving the tracking results and reduc-
ing oscillations (i.e., the standard deviation). Although three
participants possessed unique NCs, the results indicate the
developed controllers are capable of catering to a variety of
NCs in their ability to evoke desired behavior from the cycle
and rider. Hence, heuristic arguments are presented, which can
potentially improve rehabilitation options across a spectrum
of capabilities. The split-crank FES cycle offers a novel
method to potentially treat and manage movement disorders,
with particular emphasis on asymmetries or hemiparesis while
preserving rider safety.
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VI. CONCLUSION

An adaptive admitting split-crank FES cycle was suc-
cessfully developed for use with individuals with movement
disorders needing rehabilitation. The FES cycle is an example
of a rehabilitation robot and showcases physical human—robot
interaction while ensuring human safety and comfort. A com-
bined Lyapunov-passivity-based switched systems stability
analysis was presented to prove the global asymptotic stability
of the admittance error system and passivity of the cadence
error system with respect to the cycle. Experiments were con-
ducted on one able-bodied participant and three participants
with movement disorders. Without volition, the controllers
demonstrated an average admittance tracking error of —0.13+
1.77 RPM with adaptation enabled and —0.03 £ 4.05 RPM
with adaptation disabled across both sides of the split-crank
FES cycle. With rider volition included on one participant,
the average admittance tracking error was —0.10£2.15 RPM,
and the cycle maintained stable tracking performance. To val-
idate the control approach and determine any rehabilitative
benefits, future works will include additional investigations
using a larger subject cohort. Additional protocols will also be
investigated to determine which trajectories should be used to
treat asymmetric disorders. While customizable, the admitted
trajectory for this article was generated by averaging the
capabilities of both legs such that both sides of the cycle
operate at the same cadence while keeping the pedals at 180°
of phase difference to promote symmetry training. By inte-
grating adaptive closed-loop control with rehabilitation robots,
uncertain time-varying characteristics about the FES cycle and
rider are addressed, and accurate regulation of the cycle’s
performance is accomplished. With proper control techniques,
rehabilitation goals can be explicitly designed and measured,
ultimately resulting in improvements in the quality of life of
those individuals affected by movement disorders.
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