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Abstract—Scientific workflows drive most modern large-scale
science breakthroughs by allowing scientists to define their
computations as a set of jobs executed in a given order based on
their data dependencies. Workflow management systems (WMSs)
have become key to automating scientific workflows—executing
computational jobs and orchestrating data transfers between
those jobs running on complex high-performance computing
(HPC) platforms. Traditionally, WMSs use files to communicate
between jobs: a job writes out files that are read by other
jobs. However, HPC machines face a growing gap between their
storage and compute capabilities. To address that concern, the
scientific community has adopted a new approach called in situ,
which bypasses costly parallel filesystem I/O operations with
faster in-memory or in-network communications. When using
in situ approaches, communication and computations can be
interleaved. In this work, we leverage the Decaf in situ dataflow
framework to accelerate task-based scientific workflows managed
by the Pegasus WMS, by replacing file communications with
faster MPI messaging. We propose a new execution engine that
uses Decaf to manage communications within a sub-workflow
(i.e., set of jobs) to optimize inter-job communications. We
consider two workflows in this study: (i) a synthetic workflow that
benchmarks and compares file- and MPI-based communication;
and (ii) a realistic bioinformatics workflow that computes mu-
tational overlaps in the human genome. Experiments show that
in situ communication can improve the bioinformatics workflow
execution time by 22% to 30% compared with file communica-
tion. Our results motivate further opportunities and challenges
for bridging traditional WMSs with in situ frameworks.

Index Terms—Scientific Workflows, Workflow Management
Systems, In situ, Pegasus, Decaf

I. INTRODUCTION

Large-scale scientific workflows have facilitated recent ma-
jor scientific discoveries [1], [2]. A scientific workflow is a
complex description of computational jobs and data move-
ments, usually represented as a directed acyclic graph (DAG)
whose nodes represent compute jobs and whose edges are
dependencies. Workflow management systems (WMSs) have
been developed over the years [3], [4] to manage such complex
sequences of computations and data movements. A WMS is
responsible for scheduling different compute jobs efficiently,
allocating the resources and handling data movements between
storage at compute nodes or geographically distributed com-
pute sites, like clouds and high-performance computing (HPC)
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centers. Traditional distributed WMSs operate at a higher
granularity level than classic HPC technologies like MPI or
OpenMP. A job in a workflow is often a sequential application
and is seen as a black-box from the WMS’ point of view.
Because of that level of granularity, jobs often communicate
through files.

Scientific workflows running on HPC machines have be-
come increasingly important for large-scale science discov-
eries [5], [6]. The vast majority of workflows adopt a post-
processing approach where a simulation produces data and
writes them to disk, then several analysis kernels process these
data to extract meaningful scientific insights. We have recently
witnessed a dramatically growing discrepancy between the
computation and I/O capabilities of HPC machines [7], [8].
A recent paradigm called in situ has emerged within the
HPC community to overcome the inherent bottleneck aris-
ing from file-based communications—writing files to disk is
several orders of magnitudes slower than using in-memory
communications. Note that data-in-memory techniques are not
new, IBM already proposed a similar idea with Batchpipes
in their mainframe system OS/390 [9]. In situ approaches
allow users to bypass costly disk accesses by leveraging faster
storage layers (e.g., memory, burst buffers [10]) and high-
speed interconnects. When using the in situ approach, the
simulation and the analysis kernels run concurrently, and the
data produced by the simulation are iteratively processed by
the analysis.

Several in situ coupling frameworks have been developed
in the last few years [11], [12]. However these frameworks
usually lack several features offered by classic WMS, such as
distributed data management, interoperability (executing jobs
using different technologies within the same workflow) and the
ability to run across different sites. At the same time, most of
the traditional WMSs do not correctly support in situ jobs.
Dorier et al. [12] listed several of these weaknesses, in partic-
ular better interoperability and data management capabilities.
These conclusions indicate the need for a better integration
between in situ coupling frameworks and WMSs.

In this work, we study the integration between a classic
WMS, Pegasus [3], and the Decaf [13], an in situ middleware.
Decaf allows us to benefit from in-memory data transfers
between jobs while Pegasus WMS relies on file communi-
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cations. Note that, as Decaf relies on MPI, we exclusively
consider high-performance computing platforms in this work.
Pegasus includes a number of workflow execution engines that
target specific execution environments. One of the engines
is designed to run on HPC platforms and executes a sub-
workflow using MPI and a master/worker approach (i.e., each
job within the sub-workflow has a MPI rank and an extra
MPI rank is the master that organizes communications among
ranks). We propose a new Decaf-based execution engine that
uses Decaf to manage communications among a set of jobs
within a sub-workflow. Then, we compare the performance
obtained via Decaf engine with baseline performance using
native Pegasus MPI-based engine.

This paper makes the following contributions:
1) We propose a new workflow execution engine in Pegasus

WMS that allows users to leverage Decaf in situ frame-
work.

2) Armed with two workflows, a simple synthetic workflow
which only performs I/Os and a realistic bioinformatics
workflow that computes human genome mutations, we
demonstrate the utility of such integration between an
in situ framework and a classic task-based WMS, and we
quantify the performance gains using a leadership-class
HPC machine.

3) We highlight the lessons learned, and discuss how task-
based WMSs could address deeper integration of emerg-
ing computing paradigms such as in situ processing.

This paper is organized as follows. In Section II, we
review important related works about task-based WMS and
in situ synergies. Section III introduces Pegasus, Decaf, and
thoroughly explains the proposed integration. Section IV
presents an I/O synthetic workflow that we use to explore
potential performance benefits arising from leveraging in situ
communications; then we introduce a data-intensive bioinfor-
matics workflow that helps us validate the proposed approach
on a realistic use-case. In Section V, we evaluate our approach
using the two aforementioned workflows; we summarize our
findings, and we discuss future challenges and opportunities
that in situ brings to established task-based WMS. Section VI
concludes our work and presents potential future work direc-
tions.

II. RELATED WORK

A. From Loosely to Tightly-coupled Workflows

Traditionally, a workflow is represented as a directed acyclic
graph (DAG), where computational jobs are the nodes and
the edges represent data and control dependencies between
those jobs. Most of current WMSs have adopted a loosely-
coupled approach, in which jobs communicate through files –
a job writes output files that are then used as input files for
another job. However, this model does not facilitate inter-job
communications during their executions, which are the heart
of tightly-coupled approaches [14]. Existing, well-established
workflow management systems have been designed before the
emergence of tightly-coupled workflows [15], [16]. Bringing
tightly-coupled workflow support into current and emerging

WMS is one key element on the road to enable computational
science at an extreme-scale [7], [16]. Some traditional DAG
representations have been extended with the concept of a
bundle representing a group of several jobs that need to be
scheduled concurrently, allowing inter-jobs communications
at runtime [3]. Our work provides another approach to trans-
form loosely-coupled workflows (e.g., HTC) to tightly-coupled
workflows (e.g., HPC).

B. In situ Workflows

Unlike traditional WMSs, which rely on file systems to
exchange data, in situ workflows run within a single HPC
system, and data exchange is done through memory or the
supercomputer interconnect. For example, VisIt’s Libsim [17]
and Paraview’s Catalyst [18] libraries support shared-memory
communication between analysis and visualization tasks run-
ning synchronously with the simulation, in the same address
space. Another example is Damaris [19], I/O middleware
that supports in situ data processing and visualization using
dedicated cores, where messages between simulation and
visualization tasks are allocated in a shared-memory buffer.
Decaf [13] is a middleware for coupling parallel tasks in situ
by creating communication channels over HPC interconnects
through MPI. Some in situ solutions offload the data to
a distributed memory space that is shared among multiple
workflow tasks. DataSpaces [20] provides such a distributed
memory space, where workflow tasks can both push data
into this space and retrieve data from it. Another example
is FlexPath [21], which provides a publish/subscribe model
to exchange data between parallel codes running on separate
resources. In this work, we explore using in situ frameworks
in task-based WMSs to accelerate scientific workflows.

The idea of combining the best of both worlds is not
new. Yildiz et al. [22] studied the execution of heterogeneous
workflows with traditional task-based workflow tasks and
in situ tasks, where PyCOMPSs [23] manages the end-to-end
workflow, and Decaf [13] is used as an in situ middleware. The
resulting heterogeneous workflow exhibited speedup increases
over a traditional task-based workflow. While [22] was one of
the first steps exploring the potential benefits of heterogeneous
workflows by integrating task-based and in situ workflows,
our work focuses on the performance benefits brought by
using in situ solutions in traditional task-based workflows, and
provides a deeper analysis for such benefits with respect to
different workflow characteristics.

III. INTEGRATION

In this section, we describe the main contribution of this
work, the integration between the Pegasus workflow man-
agement system and the Decaf in situ framework. We first
introduce Pegasus and Decaf, then we describe our proposed
integration and how it can accelerate scientific workflows.
Figure 1 presents an overview of the integration that we
propose in this work from a user perspective.
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Users

Sub-workflow job

Pegasus job

MPI Communications managed by Decaf

File I/Os managed by Pegasus

Pegasus API

Execute workflow

Commodity clusters

Decaf sub-workflow

Pegasus API 

PMC 
sub-workflow HPC clusters

Decaf or PMC managed jobs

Pegasus WMS

Figure 1: Users express their computations using the Pegasus API and have the possibility to execute portions of the workflow
(or the whole workflow) using Pegasus with the pegasus-mpi-cluster (PMC) engine. Then, Pegasus creates a workflow that is
submitted to the underlying scheduler (e.g., HTCondor, Slurm). In this work, we give users the possibility to leverage an in situ
framework, Decaf, when executing sub-workflows. From the workflow structure, Pegasus automatically infers the correct Decaf
representation and creates the appropriate workflow representation, which is then submitted to a HPC scheduler. Thus, users
can easily leverage this feature in their existing Pegasus workflows by simply annotating the jobs that have to use Decaf.

A. Pegasus Workflow Management System

Pegasus [3] is a well-established workflow management sys-
tem that enables users to describe scientific workflows, where
the descriptions are independent of the available resources
to execute the workflow tasks, and they are also indepen-
dent of the location of data and executables. Data transfer
tasks are automatically added to the executable workflow and
they perform two key functions: (1) stage in input files to
staging areas associated with the computing resources, and
(2) transfer the generated outputs back to a user-specified
location. Additionally, data cleanup (removal of data that is
no longer required at the execution site) and data registration
tasks (cataloging the output files) are also added to the
workflow. The main workflow execution engine in Pegasus
is HTCondor’s DAGMan and individual jobs are executed by
HTCondor’s schedd [24]. HTCondor is a job management
system particularly well suited for distributed high-throughput
computing (HTC) environments, to run and manage the gen-
erated workflows.

B. Job Clustering

An important feature that Pegasus, as well as other WMSs,
offers is job clustering [25] where multiple jobs are grouped
and executed together as one larger single unit. Job clustering
is a widely-used technique to increase throughput and improve
workflows’ performance by improving data locality (i.e., tra-
ditional heuristic is to cluster jobs sharing common data). Job
clustering also greatly benefits workflow runtime by reducing
the number of jobs in the queue, thus the overall queuing time
incurred.

Pegasus supports two job clustering flavors, an automatic
mode where Pegasus identifies and clusters independent jobs
together based on predefined characteristics (e.g., clustered job
should not run longer than a preset runtime), and a manual
mode, where users directly label jobs they want to cluster
together. In this study, we extend the latter to in situ.

By definition, a clustered job contains a sub-workflow
of the original workflow. Pegasus provides different ways
of executing this sub-workflow. In the basic case, the jobs
within the sub-workflow are executed using an engine called
pegasus-cluster that executes the jobs sequentially, following
a topological sort of the sub-workflow. Pegasus also supports
execution of jobs within the sub-workflow using an engine
called pegasus-mpi-cluster (PMC) [26] that leverages the
message passing interface (MPI) [27] to execute the jobs using
a master/worker paradigm (i.e., each job within a given sub-
workflow is managed as an MPI rank, and PMC creates an
additional MPI rank for the master). Note that both workflow
engines rely on files to handle data exchanges between jobs of
the same sub-workflow, and even though PMC leverages MPI
to manage sub-workflow jobs, every I/O operation between
jobs uses files. Unfortunately, file-based I/Os are slow, espe-
cially on HPC platforms, where file systems (e.g., Lustre) are
usually distributed over several I/O nodes. In addition, PMC
cannot cluster jobs that are already using MPI. In this work, we
propose a novel workflow execution engine in Pegasus based
on the Decaf [13] in situ framework, allowing us to leverage
faster in situ communications.
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C. In Situ Communications with Decaf

Decaf [13] is a middleware for building and executing
in situ workflows. Decaf allows parallel communication of
coupled tasks by creating communication channels over HPC
interconnects through MPI. In particular, Decaf creates parallel
communication channels, each association of a producer, a
consumer, and a communication object to exchange data
between the producer and the consumer over MPI. Producers
and consumers are parallel programs, each with their own
MPI communicator. Decaf creates an additional communicator
between the producer and the consumer for the data exchange.
Messages are passed in a distributed fashion, point-to-point
from producer ranks to consumer ranks, without aggregating at
the root of either the producer or the consumer. Decaf launches
these parallel programs as a multiple-program-multiple-data
(MPMD) MPI application.

D. In situ Workflow Execution Engine

The goal of this work is to accelerate existing scientific
workflows executed via Pegasus WMS with the use of an
in situ workflow execution engine (i.e., rely on Decaf to man-
age inter-jobs I/Os within a specific sub-workflow). Figure 1
illustrates our proposed solution. The existing PMC route is
represented on the top-region of the figure, where users can
execute sub-workflows using PMC by labeling the jobs, and
the lower part of the figure highlights our contribution. Users
can now use the Decaf in situ framework to manage the
execution of these sub-workflows. Users have to only indicate
to Pegasus where to find Decaf library, and then label the jobs
they want to place in a sub-workflow using identical labels and
Pegasus will automatically infer the correct Decaf representa-
tion for the sub-workflow. In addition, user codes require some
changes to use Decaf primitives in order to replace file-based
I/Os with MPI communications. In particular, to minimize the
required code modifications to the user codes, Decaf provides
a simple put/get API [28] that allows tasks to send/receive data
to/from the rest of the workflow. Our proposed solution allows
users to benefit from faster data exchanges when running on a
HPC cluster with MPI installed while only requiring minimal
changes for the existing workflows.

IV. WORKFLOW USE CASES

In this section, we present two workflow use cases. The first
one is a synthetic I/O-intensive workflow, which allows us to
explore simple scenarios and highlight in which cases Decaf
integration brings performance improvements. The second
workflow is a realistic data-intensive bioinformatics workflow,
1000 Genomes, that computes human genome mutation over-
laps. Both workflows are available online [29], [30] as open-
source projects for interested readers to reproduce our findings.

A. I/O Synthetic Workflow

In order to investigate and understand early potential ben-
efits of leveraging the in situ workflow engine in Pegasus,
we designed a simple chain workflow called SYNTHETICIO
(see Figure 2). SYNTHETICIO has five I/O jobs, each of them

reading and writing a file of a given size ranging from 1 to
16 GB. In addition, by default each job in SYNTHETICIO is

v0 v1

x GB

v2 v3 v4 v5 v6

Figure 2: SYNTHETICIO with 5 jobs, each job reads/writes a
file of x GB (x ∈ {1, 2, 4, 8, 16}). In addition, each job sleeps
for 2 seconds per GB written (e.g, if v2 writes 2 GB then sleep
time is equal to 2× 2 seconds)

purely doing I/O and does not do any computation. However,
we can configure the workflow such that each I/O job sleeps
for 2 seconds per GB of data written. The idea behind this
behavior is to emulate a computation in order to study how
the Decaf engine can help us overlap communications with
computations.

B. 1000 Genomes Workflow

The 1000 Genomes workflow (shortened as GENOME in
this study) is a bioinformatics workflow that fetches, parses
and analyzes data from the 1000 Genomes Project [31], which
aims to provide a comprehensive reference of human genetic
variations. The workflow analyzes mutational overlaps in

· · ·

· · · · · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Chromosome 1 · · · Chromosome N

k k

P P P P

· · ·

· · · · · · · · ·

· · ·

· · ·

· · · · · · · · ·

· · ·

· · ·

Individuals

Individuals_merge

Sifting

Mutation_overlap

Frequency

File I/Os

Figure 3: GENOME [30] workflow with N chromosomes and
k Individuals jobs per chromosome and P super populations
(N = 1 and P = 7 in this study).

humans, ultimately allowing statistical evaluation of potential
disease-related mutations.

The Project’s Phase 3 and superpopulations data are down-
loaded and parsed (Individuals and Individuals_Merge jobs),
sorting amino acid substitutions and determining their poten-
tial phenotypic effects (Sifting jobs). Then, several analysis
tasks are performed in Frequency and Mutation_Overlap jobs,
and lastly an output dataset is created (see Figure 3).

Workflow Characteristics. GENOME is a data-intensive work-
flow that processes a given number of chromosomes in parallel
(from 1 to N ), where a chromosome file is quite large with
250, 000 lines, hence, the workflow leverages data parallelism
to process 250, 000/k in parallel. In addition, this workflow
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relies on 26 populations, but uses seven super populations:
African (AFR), Mixed American (AMR), East Asian (EAS),
European (EUR), British from England and Scotland (GBR),
South Asian (SAS), and all the populations together (ALL).
Thus, the workflow has 7 Frequency jobs and 7 Muta-

tion_Overlap jobs per chromosome processed. Therefore, a
given execution of GENOME has N × (k + 2 + 2P ) jobs in
total.

Performance characterizations. In this work, we present a
new method to execute Pegasus sub-workflows using the Decaf
in situ framework. Once we have the scientific description
of the workflow, we have to define which jobs should be
executed by which workflow engines (usually based on the
target execution platform). To this end, we study the execution
time breakdown within one run of GENOME and the I/O
characteristics of Individuals jobs.

Execution Time (s) Fraction (%)
Job

Individuals 11,431 81.85
Frequency 1,492 10.68
Individuals_Merge 500 3.58
Mutation_Overlap 468 3.35
Stage_Out 34 0.24
Stage_In 21 0.15
Auxiliary1 16 0.11
Sifting 6 0.05

Total2 (≈ 3.9h) 13,967 100

1 Internal jobs managed by Pegasus.
2 Total execution time is not the makespan of the workflow, it is simply

the sum of all job execution times (i.e., no notion of scheduling).

Table I: Execution time breakdown within GENOME with
k = 10 individuals jobs and 1 chromosome. This instance
has been executed using Cori at NERSC (see Section V-A
for further details about the platform).

Table I presents the execution time for each job and
their relative time fraction of the entire workflow. When
there are multiple jobs from the same class (e.g., Individuals,
Mutation_Overlap, and Frequency) that could run in parallel,
we take the maximum duration among those jobs. For ex-
ample, we take the maximum execution time among the 10
Individuals job executions. Our goal here is not to focus on the
raw execution time, but rather on the relative time of each job.
We observe that Individuals clearly dominates the workflow
execution time with more than 80% of total time spent in
Individuals jobs. Based on that observation, we conjecture
that clustering k Individuals jobs and one Individuals_Merge

job together and executing them with a specialized in situ
execution engine can improve performance.

In order to back up this conjecture, we explore I/O charac-
teristics of Individuals jobs in Table II. Note that each Individ-

uals processes a part of the chromosome file, then compresses
the 2, 504 resulting files into a single archive file, and sends
this resulting archive to Individuals_Merge. On the other hand,
Individuals_Merge is in charge of decompressing k archives
and merging all k partial results. In Table II, we observe

that Individuals jobs exhibit a large memory footprint and
perform a substantial amount of file I/O by writing many files
(2, 504× k) to the filesystem. Such I/O patterns could greatly
benefit from in-memory communications between these jobs.
Based on these conclusions, in the rest of this study, we
consider exclusively a subset of GENOME comprised of k
Individuals jobs and one Individuals_Merge job (see cluster
in Figure 4) as these jobs represent more than 85% of the
workflow execution time.

V. EXPERIMENTS

A. Experimental Setup

Platform. Our execution platform is Cori [32], a Cray XC40
supercomputer located at the National Energy Research Sci-
entific Computing Center (NERSC). Each compute node is
equipped with two Intel Xeon E5-2698 v3 (16 cores each)
sharing 128 GB of DRAM. Nodes are connected to each other
by a Cray Aries interconnection network. In this work, we use
exclusively CPU nodes to run each of the workflows.

Software. For all experiments in this work, we use Pega-
sus WMS 5.0.2dev [33] (commit ID: 9bb674f6f), De-
caf [34] (commit ID: ad6ad82), and HTCondor 8.8.1 [24].
The I/O synthetic workflow [29] and 1000 Genomes work-
flow [30] are available online as open-source projects with
complete documentation allowing interested users to reproduce
our findings.

B. Execution Scenarios

We have two use cases serving different purposes: (i) SYN-
THETICIO is a synthetic workflow used to explore potential
gains from using Decaf, and (ii) a realistic bioinformatics
workflow, GENOME, used to validate our approach. We de-
fine three execution scenarios and describe how we compute
the workflow execution time for each scenario. Note that
for GENOME, we only consider k Individuals jobs and one
Individuals_Merge job, not the entire workflow. Table III
summarizes different scenarios and the deployment used for
each scenario and use case.

VANILLA. The first scenario acts as a baseline scenario, where
we run the use cases with Pegasus default settings, using the
default execution workflow engine, which relies on file-based
communications. There is no sub-workflow in this case. Every
task is submitted to the Slurm [35] scheduler as a single job
by Pegasus, and each job is executed on one compute node
since jobs are scheduled on the regular queue of Cori [32]. In
particular, each job runs on a dedicated one-node allocation
to avoid potential interference.

As each job is submitted as a standalone job, concurrent jobs
(e.g., Individuals) can run at different times depending on the
queue status. Therefore, measuring the wall time without the
time spent waiting in the queue is not straightforward, and
we compute the workflow makespan based on the execution
time recorded for each job. For SYNTHETICIO, we sum the
execution times of each job in the chain of jobs. For GENOME,

�
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# of Individuals (k) Input per Individuals
(lines)

# of output files
per Individuals

Output size per Individuals (MB) Peak Mem. per Individuals (GB)

2 125, 000 2, 504 92.66 (±1.88e-04) 6.11 (±1.76e-05)
5 50, 000 2, 504 39.43 (±2.28e-04) 3.95 (±7.94e-06)

10 25, 000 2, 504 21.19 (±9.90e-04) 3.25 (±7.94e-06)
16 15, 625 2, 504 10.33 (±1.41e-04) 2.93 (±1.49e-04)

Table II: I/O characteristics of Individuals jobs in GENOME. Each value is the result of 3 trials.

VANILLA PMC PEGDECAF

Job scheduling One allocation per job Single allocation Single allocation
SYNTHETICIO Workflow

Number of nodes 5 1 5
Makespan

∑
i
T (vi) Measured wall time max

i
(T (vi))

GENOME Workflow
Number of nodes Number of Individuals + 1 Number of Individuals Number of Individuals + 1
Makespan max

k
(T (Individualsk)) + T (Individuals_Merge) Measured wall time max

k
(T (Individualsk), T (Individuals_Merge))

Table III: Deployment settings for each scenario and use case, i denotes the number of I/O jobs and k denotes the number of
Individuals jobs. T (·) denotes the job execution time measured by Pegasus.

we take the longest execution time among the k concurrent
Individuals jobs, and we add this time to the execution time
of Individuals_Merge, as we only consider k Individuals jobs
and one Individuals_Merge job.

PMC. In this second scenario, we leverage the Pegasus-MPI-

Cluster [26] engine to execute portions of the workflow. Note
that the user-defined sub-workflow (containing multiple jobs
clustered together) appears to Pegasus as a single job, and
it is submitted to Slurm as a single allocation. Therefore,
instead of submitting several jobs to Slurm as in the baseline
scenario (VANILLA), Pegasus submits only one job. Moreover,
like VANILLA, each job in the sub-workflow runs on a
single node to avoid potential interference. Based on the level
of parallelism (i.e., how many jobs could run at the same
time), we allocate sufficient number of compute nodes to the
allocation such that (i) each job in the sub-worklfow runs on
a single dedicated node and (ii) within the sub-workflow jobs
having no data dependency can run simultaneously (e.g., for
a sub-workflow containing 5 concurrent jobs, we allocate 5
different compute nodes; for a sub-workflow of 5 sequential
jobs, we only need to allocate 1 compute node).

In the case of SYNTHETICIO, all the jobs are clustered
together into one sub-workflow, while we cluster all Individu-

als and the Individuals_Merge jobs together for GENOME, as
shown in Figure 4 based on our previous workflow characteri-
zation study. We schedule an allocation for the workflow with
a certain number of compute nodes such that the allocation can
sustain the largest number of concurrent jobs required by the
workflow tasks’ dependencies. For the SYNTHETICIO, all I/O
jobs are performed sequentially, hence, we only need a single-
node allocation, and PMC will schedule the jobs one after
the other. For the GENOME, we assign an allocation with the
number of nodes that is equal to the number of Individuals so
that they are able to execute concurrently. We use the wall time
recorded by Pegasus to obtain the makespan of the workflow

execution.

PEGDECAF. In this third scenario, we aim to bring benefits of
in-memory data transfers managed by Decaf to Pegasus. This
scenario is similar to PMC, but instead of reading and writing
files to communicate between jobs, the workflow engine
enables communications via MPI calls as shown in Figure 4.

· · ·

Sub-workflow

· · ·

· · · · · ·

k

P P

Individuals

Individuals_merge

Sifting

Mutation_overlap

Frequency

File I/Os MPI Communications

Figure 4: GENOME with N = 1 chromosome when clustering
Individuals and Individuals_Merge jobs into a sub-workflow.
When using the Decaf engine the jobs within the sub-workflow
communicate via MPI, with PMC, they communicate via files.

Specifically, Pegasus coordinates the job execution, while
data communication between jobs that belong to a sub-
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workflow is managed by Decaf. Decaf uses MPI instead of
traditional file communication and maintains communicators
among different jobs so that jobs with data dependencies can
exchange data through MPI operations on data residing in
memory. Note that this model requires jobs within a sub-
workflow to run simultaneously, i.e., they start at the same
time. Therefore, this scenario requires sufficient resources
to accommodate all clustered jobs to run concurrently. For
both workflows, because all jobs start at the same time, the
makespan is simply the execution time of the longest running
job (see Table III).

C. Results

In this section, we study the performance of both use
cases, SYNTHETICIO and GENOME, using the three scenarios
described previously.

SYNTHETICIO. We conduct the experiments by running the
SYNTHETICIO workflow of 5 I/O jobs, in which the size of
data read and written by each job is varied between 1 GB
and 16 GB. This workflow has 2 modes: without and with
the sleep, i.e. the I/O jobs sleep for a certain amount of time
after data is written (2 seconds per GB written). As further
detailed in Section IV-A, the intuition behind this sleep time
is to highlight Decaf capabilities of interleaving computations
with communications among concurrent jobs. Figures 5
and 6 display SYNTHETICIO makespan, respectively, with and
without the sleep time. The makespan is measured as described
in Table III, and all data points are averaged over 10 runs.

In the no sleep scenario presented in Figure 5, VANILLA and
PMC scenarios show similar performance. That result is ex-
pected as they both use files to manage data transfers between
jobs. However, because the jobs in the VANILLA scenario
are possibly scheduled at different times, the execution time
of each I/O job slightly varies depending on the contention
of the shared parallel file system. On the PEGDECAF side,
results are promising with our in situ-based worfklow engine
demonstrating the lowest makespan, especially when operating
on files larger than 4 GB. However, PEGDECAF performs
worse at small file sizes, which is due to the overhead of
MPI calls that Decaf uses for in situ communications, with
such small file sizes these calls cannot be amortized. This
overhead diminishes when the file size increases. For instance,
in the case without sleep, PEGDECAF starts to outperform the
baseline VANILLA at 4GB and improves the makespan up to
62% at 16 GB.

With the sleep mode enabled on Figure 6, PEGDECAF out-
performs the other two scenarios when using 2 GB and larger
file sizes. In particular, PEGDECAF improves makespan up to
71% compared with the VANILLA configuration at 16 GB.
Comparing the no sleep configuration with the sleep one,
we see that PEGDECAF brings more benefits when sleep is
enabled. This is due to the overlapping in situ communications
with computations (e.g., as emulated by sleeping in this use
case). In classic file-based WMS, a job starts its execution only
when its parent jobs finish their execution and generate their
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Figure 5: Makespan and normalized makespan of SYNTHETI-
CIO without sleep.

output files, which are given as input files to the child jobs.
One benefit of using Decaf and in situ communications is that
instead of performing I/O operations (e.g., writing files) after
computing, Decaf can start sending data using asynchronous
MPI calls, thus overlapping some parts of the computation
with communications.

GENOME. The analysis presented in this section is based on
the execution of a subset of jobs (Individuals and Individu-

als_Merge) of the GENOME workflow (see Section IV-B). In
this experiment, we set the number of chromosomes processed
by the workflow to 1, and we vary the number of Individuals

jobs between 1 and 16. Note that increasing the number of
Individuals jobs reduces the amount of data processed per
job, either using files (for VANILLA and PMC) or in-memory
transfers (for PEGDECAF). As in the previous experiment, we
present the makespan and the normalized makespan, and each
reported result is the average over 5 runs.

Figures 7a and 7b present the makespan of the GENOME

workflow for PEGDECAF compared with the other two sce-
narios VANILLA and PMC. Similarly to the SYNTHETICIO
workflow, the difference between VANILLA and PMC is due
to the job submission mode. In VANILLA scenario, we submit
several jobs to the scheduler, while in PMC we submit only
one job that is managed by the PMC engine. The higher
the number of Individuals jobs, the larger the variation in
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Figure 6: Makespan and normalized makespan of SYNTHETI-
CIO with sleep (2 seconds per GB).

the execution time, which exacerbates the difference between
the VANILLA and the PMC. Recall that the makespan in the
VANILLA scenario is measured by the maximum execution
time among Individuals jobs plus the time to perform In-

dividuals_Merge (see Table III). The best overall makespan
is achieved by PEGDECAF, which illustrates the advantage
of using in situ communications between jobs rather than
traditional file-based I/Os. By normalizing to VANILLA, we
see that the performance improvement brought by PEGDECAF

increases with the higher number of Individuals jobs (i.e., by
22% to 30% improvements in the makespan). The reason is
that there are more concurrent communications with a higher
number of Individuals jobs, which enhances the performance
of in situ communications between jobs with MPI.

Figure 7c presents a strong scaling study. We study the
speedup of GENOME when varying the number of Individuals

jobs between 1 and 16. The problem size is set to one chromo-
some (i.e, 250, 000 lines to process for all Individuals). The
speedup is computed as the ratio between the time taken with
1 Individuals job and the time taken with x Individuals jobs.
Figure 7c confirms our previous findings, PEGDECAF clearly
outperforms both baseline VANILLA and PMC; furthermore,
PEGDECAF achieves near-optimal speedup.

In Figure 8, we explore weak scaling. The problem size
is now set per Individuals job, so each Individuals has to
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Figure 7: Makespan, normalized makespan and speedup of
GENOME with 1 chromosome when varying the number of
Individuals jobs. The speedup is computed as t(1)/t(x) where
t(x) is the makespan with x Individuals job (ideal speedup is
x).

process 250, 000/50 = 5, 000 lines and, each Individuals

job runs on one dedicated node. These settings allow us
to explore how PMC and PEGDECAF scale up with the
amount of data. Figures 8a and 8b respectively depicts the
makespan and the efficiency of GENOME when varying the
number of Individuals jobs. Similarly, to the speedup in the
strong scaling case, the efficiency is computed as the ratio
between the time taken with 1 Individuals and the time taken
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with x Individuals jobs. Figure 8a confirms that PEGDECAF

executes the sub-workflow much faster than PMC. Figure 8b
shows that both engines exhibit degradation when scaling up
(recall that 1 is the perfect efficiency), however, PEGDECAF

clearly outperforms PMC in terms of efficiency. The gap
between PMC and PEGDECAF increases with the number of
Individuals jobs, indicating that PEGDECAF scales better than
PMC. We conjecture that this gap will only get larger for an
higher number of Individuals jobs.
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Figure 8: Weak scaling study of GENOME where each Indi-

viduals processes 5, 000 lines. The efficiency is computed as
t(1)/t(x) where t(x) is the makespan with x Individuals job
(ideal efficiency is 1).

Summary. This campaign of experiments highlights the ben-
efits of integrating approaches developed by the HPC and
the in situ community into more traditional WMSs. Our
results showed that using in situ communications improves
the makespan of data-intensive workflows like GENOME.
Moreover, as demonstrated with SYNTHETICIO, in situ com-
munications can also improve the execution time of simpler
workflows, and such improvements can even be larger when
there is a room for overlapping communications with compu-
tations.

We also show that the benefits brought by using in situ
frameworks in WMSs highly depend on the type of workflows.
For instance, we suspect that scientific workflows may not
benefit from such integration if there is an imbalance between

computation and communication (i.e., the communication part
is not large enough compared with the computation part).
Therefore, analyzing the workflow characteristics (i.e., com-
putation and communication behaviours) is key in finding
appropriate scientific workflows that would benefit from in situ
workflow engines.

Finally, another advantage of using Decaf is to reduce
performance variations among different runs. Indeed, MPI
communications are faster, but also much more stable than
file-based I/Os, which rely on a parallel filesystem, a very
complex piece of software subject to important performance
variations.

VI. CONCLUSION

Scientific workflows have become one of the pillars of
modern computational science. However, they still mostly rely
on file-based communications and lack support for emerging
approaches such as in situ. This study addresses the gap
between traditional file communications in WMSs and recent
HPC communication paradigms, where we have proposed a
new workflow execution engine in Pegasus based on the in situ
framework Decaf. This new engine improves the performance
of scientific workflows by replacing costly file-based com-
munications with faster MPI communications managed by
Decaf. Using a realistic bioinformatics workflow, we have
demonstrated that executing data-intensive jobs using Decaf
reduces the execution time by 22% to 30%. In addition, from
a user’s perspective, our solution requires minimal changes
in the existing Pegasus workflows, therefore, users can easily
transition from using existing Pegasus engines to this new
approach.

As future work, we will consider expanding experiments
to use cases from other scientific domains to confirm these
promising findings. We also plan to increase the scale of the
experiments to further highlight the gap between MPI- and
file-based communications. In this work, we choose which
jobs should be managed by a specialized engine based on
our knowledge of the workflow characteristics, a longer-term
future work will be to investigate automated methods to
identify these sub-workflows.
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