476

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022 k&&/// I ECESES

Real-Time Modular Deep Neural Network-Based
Adaptive Control of Nonlinear Systems

Duc M. Le™, Max L. Greene

and Warren E. Dixon

Abstract—A real-time deep neural network (DNN) adap-
tive control architecture is developed for uncertain control-
affine nonlinear systems to track a time-varying desired
trajectory. A Lyapunov-based analysis is used to develop
adaptation laws for the output-layer weights and develop
constraints for inner-layer weight adaptation laws. Unlike
existing works in neural network and DNN-based con-
trol, the developed method establishes a framework to
simultaneously update the weights of multiple layers for
a DNN of arbitrary depth in real-time. The real-time con-
troller and weight update laws enable the system to track
a time-varying trajectory while compensating for unknown
drift dynamics and parametric DNN uncertainties. A non-
smooth Lyapunov-based analysis is used to guarantee
semi-global asymptotic tracking. Comparative numerical
simulation results are included to demonstrate the efficacy
of the developed method.

Index Terms—Adaptive control, deep neural networks,
Lyapunov methods, nonlinear control systems.

. INTRODUCTION

EURAL networks (NNs) have gained popularity due
Nto their ability to approximate nonlinear functions.
Conventional NNs can approximate functions to a prescribed
accuracy [1] and [2]; however, recent evidence indicates deep
neural networks (DNNs) exploit more complex learning fea-
tures that can potentially improve function approximation
performance [3]. Although DNNs may potentially approxi-
mate the nonlinear dynamics of a system more accurately, it
is difficult to derive real-time adaptation laws for DNNs with
multiple layers because the uncertain ideal weights are nested
within a collection of nonlinear activation functions.

Manuscript received March 4, 2021; revised May 6, 2021; accepted
May 10, 2021. Date of publication May 17, 2021; date of current ver-
sion June 25, 2021. This work was supported in part by the Office of
Naval Research under Grant NO0O014-13-1-0151; in part by NEEC under
Award N00174-18-1-0003; in part by AFOSR under Award FA9550-
18-1-0109 and Award FA9550-19-1-0169; in part by AFRL under
Award FA8651-19-2-0009; and in part by NSF under Award 1762829.
Recommended by Senior Editor C. Seatzu. (Corresponding author: Duc
M. Le.)

The authors are with the Department of Mechanical and Aerospace
Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: ledan50@ufl.edu; maxgreene12@ufl.edu; makumiw @ ufl.edu;
wdixon @ ufl.edu).

Digital Object Identifier 10.1109/LCSYS.2021.3081361

, Student Member, IEEE, Wanijiku A. Makumi ™,

, Fellow, IEEE

Results in [4]-[7] leverage Lyapunov-based analysis to
develop multi-timescale DNN-based controllers containing
real-time and offline iterative learning components. The
output-layer weights of the DNN are adjusted online (i.e.,
in real-time) using NN-based adaptive control techniques.
Concurrent to real-time execution, data is collected and DNN
training algorithms, such as gradient descent and stochastic
gradient descent (see [4], [5], [7] and [8, Ch. 8]), are used to
iteratively update the inner-layer DNN weights. Since DNN
learning algorithms are performed iteratively, the inner-layer
weights are not updated continuously in real-time. The benefit
of iterative learning is that the system performance improves
with the quality of the DNN estimate. However, improving
the quality of the DNN estimate may require a large train-
ing data set to capture the nonlinearities of the dynamics and
significant computational resources to adjust the inner-layer
weights. The DNN-based methods in [4]-[7] also raise ques-
tions regarding the inner-layer weights updates such as: when
to collect data, what is the most efficient way to retrain the
inner-layer weights, when should the inner-layer weights be
updated in the implemented adaptation law, etc.

While such open questions are topics for further inves-
tigation, this letter investigates general characteristics and
structures of inner-layer adaptation laws. Specifically, this let-
ter develops general constraints on the inner-layer adaptation
laws to update the inner-layer weight estimates in real-time.
A Lyapunov-based analysis is used to develop a continuous
adaptation law to estimate the output-layer weights. However,
unlike previous methods, this letter provides a first insight
into the development of Lyapunov-based adaptive update laws
for both the inner-layer DNN weights as well as the output-
layer weights. Inspired by modular adaptive control designs
in [9]-[12], general constraints on the inner-layer DNN weight
update laws are developed that enable modular design and
selection of update laws. The developed DNN-based modular
adaptive architecture allows more flexibility when selecting
inner-layer DNN weight update laws.

In arbitrary width and depth DNNs, there may be hundreds
or thousands of inner-layer weights. Simultaneously updat-
ing all the inner-layer weights online may be computationally
intractable in real-time or undesired. Hence, the developed
method provides a switched framework that provides design
guidelines that can be used in future research efforts to guide

2475-1456 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on June 27,2021 at 20:44:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2891-0439
https://orcid.org/0000-0003-2733-0344
https://orcid.org/0000-0002-8889-7099
https://orcid.org/0000-0002-5091-181X

LE et al.: REAL-TIME MODULAR DEEP NEURAL NETWORK-BASED ADAPTIVE CONTROL OF NONLINEAR SYSTEMS

477

inner-layer weight adaptive update laws. In doing so, the
inner-layer weight update laws may be arbitrarily switched
on and off to allocate computational resources while updat-
ing the desired weights. Additionally, inner-layer weights may
dropout, or be selectively turned off to prevent over-fitting and
improve overall function approximation performance [13].

Results such as [6], [14], and [15] develop a robust slid-
ing mode method to achieve asymptotic tracking with NN
feedforward controllers. Like the aforementioned results, the
developed method uses a sliding mode control term to yield
asymptotic tracking in the presence of the NN reconstruc-
tion error, but also uses switched adaptation laws for the
inner-layer weights. Hence, this letter leverages a nonsmooth
Lyapunov-like analysis [16] to guarantee asymptotic tracking
of a desired trajectory. Unlike existing works, the developed
modular adaptive architecture incorporates the inner-layer
weights of an arbitrarily deep DNN into a Lyapunov-based
analysis to develop and characterize a general class of suit-
able inner-layer DNN adaptation laws. Moreover, sufficient
conditions are developed to guarantee the tracking objective
is achieved, despite the arbitrary number of inner-layers and
switched update laws.

Notation: For a square matrix A € R"*" the trace of A is
denoted by tr(A). Let 0,x,, denote an n x m matrix of zeros.
Let vec(-) denote the vectorization operator that transforms a
matrix into a column vector, e.g., for a matrix A € R™™,
vec(A) € R™,

[l. PROBLEM FORMULATION
A. System Dynamics

Consider a control-affine nonlinear dynamic system
modeled as

X =fx) +gu, ey

where x : R>9 — R”" denotes the state, f : R" — R"

denotes unknown, locally Lipschitz drift dynamics, g : R” —
R™™ denotes the known control effectiveness matrix,! and
u : R>o — R™ denotes the control input. To facilitate the
subsequent control design, the following assumption is made
on the control effectiveness matrix. The control effectiveness
matrix g(x) is assumed to be full-row rank for all x € R". The
right pseudo inverse of g(x) is denoted by g™ : R" — R™*",
where gt (-) £ gT(-)(g(~)gT(-))_1 is assumed to be bounded
given a bounded argument.

B. Control Objective

The control objective is to track a user-defined time-varying
trajectory x4 : R>9 — R" despite unknown system drift
dynamics. The desired trajectory and its time derivative are
assumed to be continuous and bounded, i.e., xg, X4 € Loo. TO
quantify the tracking objective, the tracking error e : R>g —
R" is defined as

e=x—xg. 2)

TWhile the developed method does not account for an uncertain control
effectiveness matrix for simplicity and to better focus the result on the unique
specific contributions, the method in [6] can be used with the developed
method to approximate the uncertain control effectiveness matrix online.

[11. CONTROL DESIGN
A. Feedforward DNN Estimate

NN-based adaptive control architectures are well-suited for
uncertain or unstructured models, as in (1) where the drift
dynamics f(-) are unknown. Using the universal function
approximation property in [2], a DNN-based feedforward esti-
mate of the drift dynamics is developed in this section. Let
Q C R" be a compact simply connected set and define C(2) as
the space where f : 2 — R” is continuous. The universal func-
tion approximation property states there exist ideal weights
and basis functions such that the drift dynamics f(x) € C(R2)
can be represented as

f) = Wo*(d*(x) + e (x), A3)

where W* € RLX" denotes the unknown ideal output-layer
weight matrix of the DNN, o* : R? — RL denotes the
unknown vector of ideal activation functions corresponding
to the output-layer of the DNN, L € Z.o denotes the user-
defined number of neurons used in the output-layer, ¢ : R” —
R"™ denotes the unknown function reconstruction error, and
®* : R" — RP denotes the inner-layers of the DNN contain-
ing unknown ideal weight matrices and activation functions.
Specifically, the ideal inner DNN ®* can be expressed as

") = (V7o o Viligi oo ViTel) (ViTx). ()

where k € Z-¢ denotes the user-defined number of inner-
layers, Vi € RE*L+t for all j € {0, ..., k) denotes the jh
inner-layer ideal weight matrix, and ¢ : R% — R’ for all j €
{1, ..., k} denotes the jth inner-layer vector of ideal activation
functions, and the symbol o denotes function composition, e.g.,
(g o W) (x) = g(h(x)). The user-selected parameters L; € Z~
for all j € {1, ..., k} denote the number of neurons in the j®
inner-layer. Note that Ly = n and Lyy1 = p.

Based on (3), the DNN feedforward estimate of the drift
dynamics f : R" — R" is defined as

oo 2 Whe(dw), ®)

where W : R-o — RE*" denotes the output-layer weight
matrix estimate, & : R? — RL denotes the user-selected vector
of activation functions, and ® : R" — R” denotes the esti-
mated inner-layers of the DNN. The inner-layer DNN estimate
is defined as

b 2 (Vo Vo0 741) (V). 6

where V; : Roog — RL*Li+1 for all j € {0, ..., k} denotes the
7™ inner-layer estimated weight matrix, and oI RL — RY for
allj € {1, ..., k} denotes the j" inner-layer vector of activation

functions. The design of the update laws on the weight esti-
mates W and \7] are subsequently defined. The weight estimate
mismatch of the ideal output-layer weight W : Rso — REX7
and weight estimate mismatch of the ideal inner-layer weights
\7]- : Rog — RE*Litt for all j € {0, ..., k} are defined as

@)
®

U=
(1>

W*—W,
év;‘_vj.

Authorized licensed use limited to: University of Florida. Downloaded on June 27,2021 at 20:44:08 UTC from IEEE Xplore. Restrictions apply.

478

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

It is assumed there exist known constants W*, V*, 0%, 6,7 €
Rso that upper bound the unknown ideal weights W*,
unknown ideal weights V3, unknown ideal bounded acti-
vation functions® o*(-), user-selected bounded activation
functions &(-), and the function reconstruction error &(-),
respectively, as sup,cq IW*[lF < W*, supcq v ||V£||p <

V¥, sup,cq lo* Ol
Supyeq lle()l < & [1].

< 0% supqlle(l < &, and

B. Control Development

Based on the subsequent stability analysis, the control input
is designed as

w2 gt @i — ke = ksgn(e) —), ©)

where ki,k; € R.(o are user-defined control gains, and
sgn(-) denotes the signum function. Based on the subsequent
Lyapunov-based stability analysis, the output-layer weight

estimate update law W R>o — R is designed as

e (é(x))eT, (10)
where T'yy € REXL denotes a user-defined positive definite
gain matrix used to adjust the learning rate of the output-layer
weight matrix estimate.

Taking the time derivative of (2) and substituting
in (1), (3), (5), and (9) yields the closed-loop error system

e = W o™ (@*(x)) + e(x) — ke — kysgn(e)
— W (dw). (11)
In [6], the inner-layer weights of the DNN were held
constant and only updated discretely with data-driven learn-
ing algorithms. Common learning algorithms include gradient
descent variants (see [4], [S], [7], and [8, Ch. 8]). These algo-
rithms often use training data sets to update DNN weights
through an optimization process in which the algorithms
seek to minimize a cost function. However, DNN train-
ing algorithms often require large amounts of training data
and high computational costs [3], making real-time exe-
cution intractable. Motivated to execute real-time learning
and allow flexibility in user-selection of training algorithms
while maintaining stability guarantees, we develop modular
inner-layer DNN weight estimate update laws (see [17] for
single-hidden-layer NNs).
_ Forall je{0,...,k}, the j™ inner-layer weight update law

A

Vi : Rsg — RE*Li+1 js designed as

V2 pityvie. n1 (12)

(=], =0}
where p; : R>o — {0, 1} denotes a switching signal that indi-
cates the active inner-layer weight estimate updates, 1(is the

indicator function, V;, V; € R are user-defined constants where

\7j < V*, and Vi : R"xRso — RL*Li+1 denotes a user-defined
function that satisfies

lvillz < pCleDllel. (13)

2For some common activation functions, e.g., hyperbolic tangent functions,
sigmoid functions, radial basis functions, c* =6 = L.

where p : R” — R” is a positive, globally invertible, and
non-decreasing function.

IV. STABILITY ANALYSIS

Theorem 1: Consider a system modeled by the dynamics
in (1) with the initial condition x(0) € . Then the con-
trol input in (9), output-layer weight adaptation law in (10),
and the family of potential inner-layer weight adaptation
laws that satisfy (12) ensure the closed-loop error system
in (11) yields semi-global asymptotic tracking in the sense
that lim;_, ||e(?)|| = 0, provided the following sufficient gain
condition is satisfied

k> W(F+§) LEL2VEG+ Dp <\/§ ||z<0>||>, (14)

where o, @ € R>¢ are known constants.

Proof: Let D C RY be a set containing z = Oy and Q,
where z : R>g — RY denotes a concatenated state defined
as z = [T, Vec(W)T, Vec(Vo)T, e, vec(Vk)T]T, and ¥ £
n(L—i—l)—i—ZJ’-‘:O L;Ljy is defined for notional brevity. Consider
the candidate Lyapunov function Vi : D x R>g — Rso
defined as

k

Vi(z 1) 2 %eTe n %tr(WTFv}l W) + %gu(ff}ff/j), (15)
which satisfies the inequality alzll? < Vit < alzl?
where a, @ € R are known constants. Let ¢ : R>g — RY
be a Filippov solution to the differential inclusion ¢ €
K[h](¢, 1), where ¢(t) = z(t), the calculus of K[-] is
used to compute Filippov’s differential inclusion as defined
in [18], and £ : R‘If x Rs>g — Rtl’ is defined as h(¢, 1) e
[eT, vec(W)T, vec(Vo)T, ..., vec(Vi)T17. The generalized

time-derivative of V; along the Filippov trajectories of { =

h(&,1) is defined by V26,0 2 Mecovyien é_T[K[hll(q,r) ’

where 0V (¢,t) denotes Clarke’s generalized gradient of
Vi(¢, 1) [19, eq. 13]. Since Vi (¢, t) is continuously differen-
tiable in ¢, then V (¢, 1) = {VVL(¢, 1)}, where V denotes
the gradient operator. Additionally, the time derivative of Vi
exists almost everywhere (a.e.), i.e., VL({, 1)] Vi(c, 1) for
almost all € R>o.

Taking the generalized time derivative of (15), using the
trace operator property,> and substituting the closed-loop error
system in (11), the output-layer adaptive update law in (10),
and the inner-layer adaptive update laws in (12) yields

V,cel (W*Ta*(cb*(x)) +e(x) — ke — kK[sgn(e)]
—WTK[& (&(x))] - VVTK[& (&(x))])
k
X CLECTETT]
=0 L= =T
Adding and subtracting e” (W*TK[6 (®(x))]) in (16) yields

\L/L - eTW*Ta*(CD*(x)) +ele(x) —kiele

3For real column vectors a,b € R", the trace of the outer product is
equivalent to the inner product, i.e., tr(baT) =al'p.

Authorized licensed use limited to: University of Florida. Downloaded on June 27,2021 at 20:44:08 UTC from IEEE Xplore. Restrictions apply.

LE et al.: REAL-TIME MODULAR DEEP NEURAL NETWORK-BASED ADAPTIVE CONTROL OF NONLINEAR SYSTEMS 479

—kse"K[sgn(e)] — e’ WK [6 (&)(x))]

k
_Zu(K[V,-TPJ(f)“f(”l{V,s\V,-H SV/‘}D' o
=0 o

By the definition of the calculus K[-], eTK[sgn(e)] = ||
Using (13), (17) can be upper bounded as

v, < —||e||(k5 _ W(a_u?) _

—2(k+ I)Wp(llell)) —killel®. (18)

To ensure ks > W*(0* + 6) + € 4+ 2(k + 1)VF¥p(Jle|]), it
ks—W*(o*+6)—¢
2(k+1)V*

). The inequality in (18) can be

is required that |le| < ,0_1(

—1 (=W (@ 46)—F
Izl < = C—gov

upper bounded as

), which implies

. a.e. 2
VL S _lee“) VZ € Da (19)

s v, 1 k=W (0 +6)—F
where D = {z € R™ : 7]l < p (—2(k+1)V*)}. Then

using (15) and (17), Vr is positive definite and non-increasing,

which implies ||z(0)|| < /&= VL(O) . Therefore, it is sufficient to
show |2(0)]] < %*%%
{zeD: /% _l(lm%)s } is the region where (19)
holds, and ylelds the sufficient gain condition in (14).

From (15) and (19), V. € Lo, Which implies z € L, and
hence, e, W € Lo . Using (2) and (7) implies x € Lo and W e
Loo, respectively. Using (12) and (13), e € Lo implies v; €
L, and by the use of the indicator function 1

), which implies S £

i Vi=iVille<v)’
implies 17] € L for all j € {0,...,k}. Using (6), the fact
that x, \7j € L implies b € Lo By design, k4,6 € Lo
Using (9), the fact that x, e, Xg, W,6 € Loo implies u € Loo.
Using (10), the fact that 6, e € Lo, implies W e Loo. By the
LaSalle- Yoshizawa theorem extension for nonsmooth systems
in [16] and [20], ki|le]|> — 0, which implies |le(®)] — O
as t — oo. |

V. SIMULATION

To demonstrate the performance of the developed method,
simulations are performed on the nonlinear system from [21],
where £(x) = [— x| +x2, —3x1 + 3x2(1 — (cos(2x; +2)*)]7
and g(x) = diag[5, 3] are used to model the drift dynamics
and control effectiveness in (1). The desired trajectory is xg =
[3cos(?), 5sin(r)]7. The initial condition is x(0) = [3, 0]7. The
controller gains are selected as ks = 0.5 and k = 7.

To illustrate the modularity of the architecture, two sim-
ulation studies are conducted for 60 seconds, each with
different inner-layer adaptation laws and structures imple-
mented. During the entire 60 seconds, the output-layer update
law in (10) is active in both studies. Due to the large number
of weights in this system, only one inner-layer weight update

law is active at a time.* However, the selection of switching
signals that dictates when to update each inner-layer DNN
may be arbitrarily selected. Computational resources may be
allocated to update a subset of the inner-layer weights, or all
inner-layers may be updated arbitrarily at a time. Additionally,
inner-layer weights may dropout, or be selectively turned off
to prevent over-fitting [13].

To reduce the computational load and show the flexibility
in selection of the switching signals to update each inner-
layer DNN weight estimate, in both simulation studies, the
switching signal is arbitrarily designed as

1, te[10j,10G + D],

0, else, (20)

pi(t) = {
for all j € {0, ..., 5}. Based on the switching signals in (20),
each inner-layer weight update law is active for 10 seconds
during the duration of the simulation and is activated in con-
secutive order, i.e., \70 is active from O to 10 seconds, \71 is
active from 10 to 20 seconds, etc. If the update law is not
active (i.e., pj(f) = 0), then its associated weights are not
updated.

The DNN is composed of 6 layers and the hyperbolic tan-
gent function is the activation function for each neuron. Layers
1-6 have 12, 10, 15, 15, 12, and 20 neurons, respectively. The
outer-layer weight learning parameter is set to I'y = 10-17«p,
where 1,x,; is an n x m matrix of ones. The bounds on
the inner-layer weights are \7] = 107% and \7] = 250 for
all j € {0,1,...,5}. The initial conditions for the output-
layer weight estimate W and the inner-layer weight estimates
\A/] are randomly selected from a uniform distribution from
[-0.5,0.5].

Various update laws for Vo 5 can be selected and designed
for learning the inner-layer DNN weights while guarantee-
ing tracking performance. The constraints in (13) provide
general guidelines and enable the user to select or design
update laws accordingly, such as gradient tuning laws based
on back-propagated errors [22] or a Hebbian tuning law [23].

In the first simulation study (Study 1), the inner-layer weight
update laws, which are heuristically selected and inspired by
the methods in [24] and [25], are selected as

n T 7—1
v = ije . re((tanh O¢j o VJ+ ¢j+1

o V;T&—l)(W”x))Vj

5}, where the inner-layer weight learning
1000 - 1z,x2, Vi is the right-
pseudo inverse of I7j, the re(-) operator outputs element-wise
the real component of each entry in \7j, and X € R" denotes the
numerically generated state derivative. Due to the projection
bounds & and \7j, \A/j‘*' exists and is bounded. The selected
update law satisfies the modular adaptive control constraint
in (13).

21

forallje {0,1,...,
parameters are set to I'y, =

4There are 955 individual weights in the simulation. As guaranteed by
the analysis, the developed method can update each layer separately, i.e., a
subset of the total number of weights are updated at a given time. It may be
computationally burdensome for some systems to update a large number of
weights online. One purpose of this simulation is to highlight the developed
method’s ability update different DNN layers separately.

Authorized licensed use limited to: University of Florida. Downloaded on June 27,2021 at 20:44:08 UTC from IEEE Xplore. Restrictions apply.

480

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

Time (s)

Fig. 1. Tracking error e in the system with the inner-layer DNN weight
update law in (21). The vertical lines denote when a new inner-layer
update law is activated.

100 1

Time (s)

Fig. 2. Value of the active DNN inner-layer weight estimates \70_5 when
each inner-layer update law is active with the inner-layer DNN weight
update law in (21). The vertical lines denote when a new inner-layer
update law is activated. Based on the switching signals in (20), V; is
active from 0 to 10 seconds, \71 is active from 10 to 20 seconds, etc.

Figure 1 shows the tracking error e £ [e;, e2]7 with the
inner-layer DNN weight update law in (21). From initializa-
tion to approximately 30 seconds, the system exhibits poor
tracking performance with oscillatory behavior. Poor controller
performance is likely due to randomly initialized weights
which signifies no a priori model knowledge in the drift
dynamic approximation. However, as each subsequent inner-
layer weight matrix Vo_s is updated, the tracking performance
improves and the amplitude of the error signals decreases,
which indicates the DNNs improved approximation of the drift
dynamics.

Figure 2 shows the online adjustment of the inner-layer
weights with the inner-layer DNN weight update law in (21).
Each set of weights is divided by a set of black dashed
lines. Note that some of the weights are unaffected by the

indicator function since the upper bounds \71 are sufficiently
large. However, the weights of layers 3 and 4 are affected

Time (s)

Fig. 3. Tracking error e in the system with inner-layer DNN weight
update law in (22). The vertical lines denote when a new inner-layer
update law is activated.

by the indicator function. When layers 3 and 4 are activated,
their weight estimates quickly reach the bounds defined by the
indicator function.

To provide a comparison in the selection of inner-layer
weight update laws, a second simulation study (Study 2)
is performed where the DNN is structured similarly as the
first simulation study, and each inner-layer update is activated
according to the switching signal in (20). To illustrate the
modularity in the selection of inner-layer weight update laws,
various inner-layer weight update laws are arbitrarily selected
to satisfy (13) and are selected as

g 3
vo =T'ye”2e” 2 lell,
4
v; = I'y,e” 2 tanh(ey) |le]l,

vy = Ty, tanh(eptanh(es) e].

2

1 aQ
v3 =Ty, ————e 2 |le]l,
Tl14e@

vg = 'y, tanh(e;) llell,

1+e 2

vs = Ly Tle_eltanh(ez)llell, (22)
where the inner-layer weight learning parameters are set to
[y, = 1000 - 17,x> for all j € {0, 1,..., 5}.

Figure 3 shows the tracking error e with the inner-layer
DNN weight update law in (22). Similar to Study 1, the track-
ing error results in Figure 3 show poor tracking performance
at the start of the simulation. However, as the simulation
progresses and each subsequent inner-layer is activated, the
tracking performance improves.

Table I shows the root mean squared (RMS) error and
standard deviation (SD) of the tracking error. The leftmost
column indicates the active inner-layer weight law, e.g., the
first row is data collected while the Vj update law is active.
Study 1 uses the heuristically selected update law in (21),
and the RMS error and SD corresponding to Vo are 0.735
and 0.145, respectively. Study 2 uses the update law in (22),

Authorized licensed use limited to: University of Florida. Downloaded on June 27,2021 at 20:44:08 UTC from IEEE Xplore. Restrictions apply.

LE et al.: REAL-TIME MODULAR DEEP NEURAL NETWORK-BASED ADAPTIVE CONTROL OF NONLINEAR SYSTEMS 481

TABLE |
RMS AND SD ERROR
R Study 1 Study 2
Active Vi —RMS Error [SD Error | RMS Error | SD Error

Vo 0.735 0.145 0.705 0.145
Vi 0.727 0.142 0.700 0.149
Vo 0.710 0.136 0.651 0.137
Vs 0.640 0.116 0.612 0.098
V4 0.658 0.087 0.591 0.094
Vs 0.289 0.039 0.327 0.050

and the RMS error and SD are 0.705 and 0.145, respec-
tively. In Study 1, as each subsequent inner-layer update law
is activated, the tracking performance improves and results
in an RMS error and SD of 0.289 and 0.039, respectively.
Although a similar trend is seen in Study 2, the inner-layer
update law in Study 1 outperforms Study 2 which indicates the
inner-layer update law yielded better function approximation
performance, as expected. However, the tracking objective is
achieved in both studies, despite different inner-layer update
laws, as guaranteed by the analysis.

VI. CONCLUSION

This letter develops DNN-based modular adaptive control
update laws and constraints, which were inspired by exist-
ing modular adaptive control constraints, to achieve trajectory
tracking objectives. The modular adaptive control framework
provides general constraints and enables users to design update
laws accordingly. The developed method also allows for dif-
ferent sets of weights to be arbitrarily switched. A simulation
study was performed to compare the performance of dif-
ferent inner-layer weight update laws selected. Inner-layer
weight update laws were designed and selected that satisfy
the developed design constraints. Despite different inner-layer
update laws used and arbitrary switching, the implemented
controllers achieved the tracking objective.

ACKNOWLEDGMENT

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of sponsoring agencies.

REFERENCES

[1]1 F. L. Lewis, S. Jagannathan, and A. Yesildirak, Neural Network Control
of Robot Manipulators and Nonlinear Systems. Philadelphia, PA, USA:
CRC Press, 1998.

[2] N. E. Cotter, “The Stone-Weierstrass theorem and its application to neu-
ral networks,” IEEE Trans. Neural Netw., vol. 1, no. 4, pp. 290-295,
Dec. 1990.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

[4] G. Joshi and G. Chowdhary, “Deep model reference adaptive control,”
in Proc. IEEE Conf. Decis. Control, 2019, pp. 4601—-4608.

[5]1 G. Joshi, J. Virdi, and G. Chowdhary, “Design and flight evaluation of
deep model reference adaptive controller,” in Proc. AIAA Scitech Forum,
2020, p. 1336.

[6] R. Sun, M. Greene, D. Le, Z. Bell, G. Chowdhary, and W. E. Dixon,
“Lyapunov-based real-time and iterative adjustment of deep neural
networks,” IEEE Control Syst. Lett., early access, Jan. 28, 2021,
doi: 10.1109/LCSYS.2021.3055454.

[71 G. Joshi, J. Virdi, and G. Chowdhary, “Asynchronous deep model ref-

erence adaptive control,” 2020. [Online]. Available: arXiv:2011.02920.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,

vol. 1. Cambridge, MA, USA: MIT Press, 2016.

P. Patre, W. Mackunis, K. Dupree, and W. E. Dixon, “Modular adaptive

control of uncertain Euler-Lagrange systems with additive disturbances,”

IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 155-160, Jan. 2011.

[10] M. S. De Queiroz, D. M. Dawson, and M. Agarwal, “Adaptive control of
robot manipulators with controller/update law modularity,” Automatica,
vol. 35, no. 8, pp. 1379-1390, 1999.

[11] W. E. Dixon, M. S. de Queiroz, D. M. Dawson, and T. J. Flynn,
“Adaptive tracking and regulation control of a wheeled mobile robot with
controller/update law modularity,” IEEE Trans. Control Syst. Technol.,
vol. 12, no. 1, pp. 138-147, Jan. 2004.

[12] M. Krstic and P. V. Kokotovic, “Adaptive nonlinear design with
controller-identifier separation and swapping,” IEEE Trans. Autom.
Control, vol. 40, no. 3, pp. 426-440, Mar. 1995.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

[14] H. D. Patino, R. Carelli, and B. R. Kuchen, “Neural networks for
advanced control of robot manipulators,” IEEE Trans. Neural Netw.,
vol. 13, no. 2, pp. 343-354, Mar. 2002.

[15] M. Chen, S. S. Ge, and B. V. E. How, “Robust adaptive neural network
conrtol for a class of uncertain MIMO nonlinear systems with input
nonlinearities,” IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 796-812,
May 2010.

[16] R. Kamalapurkar, J. A. Rosenfeld, A. Parikh, A. R. Teel, and
W. E. Dixon, “Invariance-like results for nonautonomous switched
systems,” IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 614-627,
Feb. 2019.

[17] P. M. Patre, K. Dupree, W. MacKunis, and W. E. Dixon, “A new class of
modular adaptive controllers, part II: Neural network extension for non-
LP systems,” in Proc. Amer. Control Conf., Seattle, WA, USA, Jun. 2008,
pp. 1214-1219.

[18] B.E.Paden and S. S. Sastry, “A calculus for computing Filippov’s differ-
ential inclusion with application to the variable structure control of robot
manipulators,” IEEE Trans. Circuits Syst., vol. 34, no. 1, pp. 73-82,
Jan. 1987.

[19] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth
systems,” IEEE Trans. Autom. Control, vol. 39 no. 9, pp. 1910-1914,
Sep. 1994.

[20] N. Fischer, R. Kamalapurkar, and W. E. Dixon, “LaSalle-Yoshizawa
corollaries for nonsmooth systems,” /EEE Trans. Autom. Control,
vol. 58, no. 9, pp. 2333-2338, Sep. 2013.

[21] R. Kamalapurkar, J. Rosenfeld, and W. E. Dixon, “Efficient model-
based reinforcement learning for approximate online optimal control,”
Automatica, vol. 74, pp. 247-258, Dec. 2016.

[22] P. J. Werbos, “Back propagation: Past and future,” in Proc. Int. Conf.
Neural Netw., vol. 1, 1989, pp. 1343-1353.

[23] D. O. Hebb, The Organization of Behavior. New York, NY, USA: Wiley,
1949.

[24] K.-A. Toh, “Analytic network learning,” 2018. [Online]. Available:
arXiv:1811.08227.

[25] H.-T. Nguyen, C. C. Cheah, and K.-A. Toh, “An analytic layer-wise
deep learning framework with applications to robotics,” 2021. [Online].
Available: arXiv:2102.03705.

[8

[t}

[9

—

Authorized licensed use limited to: University of Florida. Downloaded on June 27,2021 at 20:44:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/LCSYS.2021.3055454

