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Abstract—A real-time Deep Neural Network (DNN) adap-
tive control architecture is developed for general uncer-
tain nonlinear dynamical systems to track a desired time-
varying trajectory. A Lyapunov-based method is leveraged
to develop adaptation laws for the output-layer weights
of a DNN model in real-time while a data-driven super-
vised learning algorithm is used to update the inner-layer
weights of the DNN. Specifically, the output-layer weights
of the DNN are estimated using an unsupervised learning
algorithm to provide responsiveness and guaranteed track-
ing performance with real-time feedback. The inner-layer
weights of the DNN are trained with collected data sets to
increase performance, and the adaptation laws are updated
once a sufficient amount of data is collected. Building on
the results in (Joshi and Chowdhary, 2019) and (Joshi et
al., 2020), which focus on deep model reference adaptive
control for linear systems with known drift dynamics and
control effectiveness matrices, this letter considers general
control-affine uncertain nonlinear systems. The real-time
controller and adaptation laws enable the system to track
a desired time-varying trajectory while compensating for
the unknown drift dynamics and parameter uncertainties
in the control effectiveness. A nonsmooth Lyapunov-based
analysis is used to prove semi-global asymptotic tracking
of the desired trajectory. Numerical simulation examples
are included to validate the results, and the Levenberg-
Marquardt algorithm is used to train the weights of
the DNN.

Index Terms—Adaptive control, deep neural networks,
Lyapunov-based analysis.
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I. INTRODUCTION

NEURAL Networks (NNs) have been used in results such
as [1] to approximate the receding-horizon (RH) regula-

tor in RH optimal control. More recently, results in [2] and [3]
leverage Deep Neural Networks (DNNs) to approximate the
MPC laws. However, the NN approximations in [1]–[4] can
only provide statistical guarantees of the approximation error.
DNN methods can also be used to capture complex fea-
tures of the dynamics by using back-propagation algorithms
that indicate how to update the inner-layer weights [5]. In
results such as [5] and [6], the emergence of DNN models
with more complex structures improve function approximation
performance. Although DNN function approximation methods
show improved performance empirically, these methods typ-
ically lack performance guarantees because the accuracy of
the outputs are probabilistic. As a result, DNN-based methods
may have limited adoption for safety-critical applications.

Motivated to ensure performance guarantees, early works
in [7]–[10] use Lyapunov-based methods for NN-based adap-
tive control of unknown nonlinear systems. In [7]–[9], NNs
are trained with a gradient descent-based adaptive update law
and used as a feedforward control term. Since the update
laws are derived from a stability analysis and the NN weights
are embedded inside activation functions, it is challenging
to derive adaptation laws from a stability analysis beyond a
single-hidden-layer.

In [11] and [12], the authors developed a data-driven adap-
tive learning method called concurrent learning to increase
performance of parameter estimation. Concurrent learning
leverages recorded input and output data concurrent to real-
time execution to apply batch-like updates to adaptive update
laws, and has been extended to works in [13] and [14].
Results in [15], [16], and [17] leverage concurrent learning
to develop a deep Model Reference Adaptive Control (D-
MRAC). Specifically, a gradient descent-based adaptive update
law is used to estimate the ideal output-layer weights of a DNN
in real-time online, and an offline data-driven method is used
to apply batch updates to the inner-layer weights of the DNN
for linear systems with known system matrices. The meth-
ods were tested on quadrotors and demonstrated that DNN-
based adaptive control can significantly improve learning
performance [16], [17]. The authors demonstrated that DNN
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Fig. 1. Multiple timescale learning architecture.

enabled MRAC outperforms shallow NN MRAC, and also
showed that the DNN weights cluster in different regions in
different operating envelopes of the quadrotor, clearly estab-
lishing the learning performance of DNNs [17]. However,
the D-MRAC development is specific to linear systems with
known system A, B matrices with matched system uncertainty
�(x(t)), i.e., ẋ(t) = Ax(t) + B(u(t) + �(x(t))).

Building on the output-layer weight adjustment strategy
in [15] and [16], this letter develops new control design
and stability analysis methods for general uncertain nonlinear
systems. A Lyapunov-based adaptive control law is developed
to estimate the unknown output-layer weights of the DNN
using real-time state feedback. Concurrent to real-time execu-
tion, data is collected and an offline function approximation
method is used to update the estimates of the inner-layer
DNN weights. Moreover, this letter considers control-affine
dynamics with uncertain state-dependent control effectiveness
matrices. To compensate for the uncertain control effective-
ness, a novel adaptive update law is developed that has internal
feedback. Specifically, the adaptive update law depends on the
control input, and hence, is a function of both the input uncer-
tainty estimates and the DNN weight estimates. To account
for switching from iterative updates of the DNN weights, a
nonsmooth Lyapunov-based analysis is performed to ensure
asymptotic tracking of the desired trajectory. The proposed
DNN architecture is shown in Figure 1.

II. SYSTEM DYNAMICS

Consider a control-affine nonlinear dynamic system mod-
eled as

ẋ(t) = f (x(t)) + g(x(t))u(t), (1)

where x : [t0,∞) → R
n denotes the generalized state,

t0 ∈ R≥0 denotes the initial time, f : R
n → R

n denotes
the unknown drift dynamics, g : R

n → R
n×m denotes the

uncertain control effectiveness matrix, and u : [t0,∞) → R
m

denotes the control input. To facilitate the control develop-
ment, the following assumption is made.

Assumption 1: The product of the uncertain control effec-
tiveness matrix and control input can be linearly parameterized
as

g(x(t))u(t) = Y(x(t), u(t), t)θ, (2)

where Y : R
n × R

m × [t0,∞) → R
n×q denotes a measurable

regression matrix, and θ ∈ R
q denotes a vector of constant

unknown parameters.

III. DNN APPROXIMATION AND UPDATE POLICY

Let � ⊂ R
n be a compact simply connected set with x(t) ∈

�, and define S
n(�) as the space where f (x(t)) is continuous.

There exists ideal weights, ideal basis functions, and an ideal
pre-trained DNN such that the drift dynamics f (x(t)) ∈ S

n(�)

can be represented as [18]

f (x(t)) = W∗Tσ ∗(�∗(x(t))
) + ε(x(t)), (3)

where W∗ ∈ R
L×n is an unknown bounded ideal output-layer

weight matrix, σ ∗ : R
p → R

L is an unknown bounded vector
of the ideal activation functions, �∗:Rn → R

p is the ideal
unknown DNN, ε : R

n → R
n is the bounded unknown func-

tion reconstruction error associated with the ideal weights,
activation functions, and DNN. The ideal unknown DNN �∗
can be expressed as �∗(x(t)) = (WT

k φk ◦ WT
k−1φk−1 ◦ · · · ◦

WT
1 φ1)(x(t)), where k ∈ Z denotes the number of inner-layers

of the DNN, the symbol ◦ denotes function composition, W
and φ(·) denote the corresponding inner-layer weights and
activation functions of the DNN, respectively.

The DNN is updated using a multiple timescale approach.
The DNN is trained a priori using data sets collected from
previous experiments, simulation data, etc. Ideally, large data
sets from the same dynamic system operating under the
same environmental conditions will be available for train-
ing the DNN. However, the developed strategy of real-time
(Lyapunov-based) adjustment of the output-layer weights pro-
vides an advantage of significant flexibility in the training data.
For example, as observed in the subsequent simulation, the
training data could be from a dynamic system with different
parameters (i.e., transfer learning), or could also be initialized
with random weights.

Based on (3), the DNN approximation of the drift dynam-
ics f̂i : R

n → R
n can be represented as f̂i(x(t)) =

ŴT(t)σ̂i(�̂i(x(t))), where Ŵ :[t0,∞) → R
L×n is the estimate

of the ideal output-layer weight matrix, σ̂i: R
p → R

L and
�̂i : R

n → R
p are the ith activation functions and estimates of

σ ∗ and �∗, respectively, and i ∈ N is the DNN estimate update
index.1 The mismatch between the ideal output-layer weights
and the weight estimates W̃: [t0,∞) → R

L×n is defined as

W̃(t) � W∗ − Ŵ(t). (4)

Assumption 2: Using the universal function approximation
property there exists known constants W∗, σ ∗, σ̂ , ε ∈ R>0
such that the unknown ideal weights W∗, unknown ideal acti-
vation functions σ ∗(·), user-selected activation functions σ̂i(·),
the unknown ideal DNN �∗(·), and the function reconstruction
error ε(·) can be upper bounded such that supx(t)∈� ‖W∗‖ ≤
W∗, supx(t)∈� ‖σ ∗(·)‖ ≤ σ ∗, supx(t)∈�,∀i ‖σ̂i(·)‖ ≤ σ̂ ,2 and
supx(t)∈� ‖ε(·)‖ ≤ ε.

1The subscript i on σ̂ and �̂ represents the ith training iteration activa-
tion functions and estimated DNN, respectively. The explicit expression for
�̂i(x(t)) can be expressed as �̂i(x(t)) = (ŴT

i,kφ̂i,k ◦ ŴT
i,k−1φ̂i,k−1 ◦ · · · ◦

ŴT
i,1φ̂i,1)(x(t)), where Ŵ and φ̂(·) denote the corresponding estimated inner-

layer weights and activation functions of the corresponding training iteration,
respectively.

2For common activation functions, e.g., hyperbolic tangent function, sig-
moid function, radial basis function, σ∗ = σ̂ = L.
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A priori training provides �̂1(·) and Ŵ(t0). The offline
DNN training can be achieved by using different techniques.
For example, [15] and [16] use a Stochastic Gradient Descent
(SGD) based generative network architecture to generate esti-
mates of matched system uncertainty, and the SGD update
policy depends on a stochastic estimation of the expected value
of the gradient of the loss function over a training set. When
the offline DNN training phase is completed, an adaptive con-
trol law will be implemented for the system described in (1)
to generate the output-layer DNN weight estimates, i.e., Ŵ(t)
for all t ≥ t0. Simultaneous to the online execution, data is
collected and offline function approximation methods are used
to update estimates on the inner-layer DNN weights.

IV. CONTROL DESIGN

A. Control Objective

The control objective is to ensure the trajectory of the
system in (1) tracks a desired sufficiently smooth time-varying
trajectory xd : [t0,∞) → R

n. To quantify the tracking
objective, a tracking error e : [t0,∞) → R

n is defined as

e(t) � x(t) − xd(t). (5)

B. Control Development

To facilitate the subsequent control development, the prod-
uct of the estimated control effectiveness matrix and the
control input can be written as

ĝ(x(t))u(t) = Y(x(t), u(t), t)θ̂(t), (6)

where ĝ : R
n → R

n×m denotes the estimate of the con-
trol effectiveness matrix. The parameter estimation error
θ̃ : [t0,∞) → R

q is defined as

θ̃ (t) � θ − θ̂ (t), (7)

where θ̂ : [t0,∞) → R
q denotes the parameter estimate.

Assumption 3: The estimate of the control effectiveness
matrix ĝ is a full-row rank matrix for t ≥ t0, and the
right pseudo inverse of ĝ(·) is denoted by ĝ+:Rn → R

m×n,

where ĝ+(·) � ĝT(·)(ĝ(·)ĝT(·))−1 is bounded given a bounded
argument.

Based on the subsequent stability analysis, the control input
is designed as

u(t) � ĝ+(x(t))[ − ke(t) − kssgn(e(t)) + ẋd(t)

− ŴT(t)σ̂i
(
�̂i(x(t))

)
], (8)

where k, ks ∈ R>0 are constant control gains, and sgn(·)
denotes the signum function. The weight estimate adaptation
law is designed as

˙̂W(t) � 	W σ̂i
(
�̂i(x(t))

)
eT(t), (9)

where 	W ∈ R
L×L denotes a user-defined positive definite,

diagonal control gain matrix. The adaptation law for the
parameter estimate in (6) is designed as

˙̂
θ(t) � 	θYT(x(t), u(t), t)e(t), (10)

where 	θ ∈ R
q×q denotes a user-defined positive definite,

diagonal control gain matrix. Taking the time-derivative of (5)

and substituting in (1)-(3) and (6)-(8) yields the closed-loop
error system

ė(t) = W∗Tσ ∗(�∗(x(t))
) − ŴT(t)σ̂i

(
�̂i(x(t))

)

+ ε(x(t)) − ke(t) − kssgn(e(t))

+ Y(x(t), u(t), t)θ̃(t). (11)

Recall the initially trained DNN provides initial estimates
�̂1(·) and Ŵ(t0). During implementation of the real-time con-
troller, the output-layer weights of the DNN are estimated
online. Concurrently, the data generated in real-time is stored
for additional DNN training. Once a sufficient amount of data
(user-defined) is collected to improve the function approxima-
tion performance, the inner-layer weights of the DNN will be
updated to generate �̂i+1(·) for all i, i.e., (8)-(10).

V. STABILITY ANALYSIS

The stability of the DNN-based adaptive tracking controller
is established in the following theorem.

Theorem 1: Consider a general nonlinear system modeled
by the dynamics in (1) with x(t0) ∈ � and satisfying
Assumptions 1-3. The control input in (8), the output-layer
weight adaptation law in (9), and the parameter estimate adap-
tation law in (10) ensure the trajectory tracking error defined
in (5) yields semi-global asymptotic tracking in the sense that
limt→∞ ‖e(t)‖ → 0, t ≥ t0, provided the following gain
condition is satisfied

ks >
(
σ ∗ + σ̂

)
W∗ + ε. (12)

Proof: Consider the candidate Lyapunov-like function
VL : R

n(L+1)+q × [t0,∞) → R≥0 defined as

VL(z, t) � 1

2
eTe + 1

2
θ̃T	−1

θ θ̃ + 1

2
tr
(

W̃T	−1
W W̃

)
, (13)

where z : [t0,∞) → R
n(L+1)+q is defined as z �

[ eT , θ̃T , vec(W̃)T ]T and vec(·) denotes the vectorization oper-
ator. Let ζ : [t0,∞) → R

n(L+1)+q be a Filippov solution to
the differential inclusion ζ̇ ∈ K[h](ζ ), where ζ(t) = z(t), the
calculus of K[ · ] is used to compute Filippov’s differential
inclusion as defined in [19], and h:Rn(L+1)+q → R

n(L+1)+q is
defined as h(ζ ) � [ ėT ,

˙̃
θT , vec( ˙̃W)T ]T . The time-derivative

of VL exists almost everywhere (a.e.), i.e., for almost all t ∈
[0,∞), V̇L(ζ )

a.e.∈ ˙̃VL(ζ ), where ˙̃VL(ζ ) is the generalized time-
derivative of VL along the Filippov trajectories of ζ̇ = h(ζ ).

By [20, Equation 13], ˙̃VL(ζ ) �
⋂

ξ∈∂VL(ζ )

ξT [K[h]T(ζ ), 1]T ,

where ∂VL(ζ(t)) denotes the Clarke generalized gradient of
VL(ζ ). Since VL(ζ ) is continuously differentiable in ζ, then
∂VL(ζ ) = {∇VL(ζ )}, where ∇ denotes the gradient operator.

Taking the generalized time-derivative of (13), then substi-
tuting in the mismatch between the ideal output-layer weight
and the weight estimate in (4), the output-layer adaptation law
in (9), the parameter estimate adaptation law in (10), and the
closed-loop error system in (11) yields

˙̃VL( ζ ) ⊆ eT(
W∗Tσ ∗(�∗(x)

) − ŴTK
[
σ̂i

(
�̂i(x)

)])

+eT(
ε(x) − ke − ksK

[
sgn(e)

])

−tr
(
W̃TK

[
σ̂i

(
�̂i (x )

) ]
eT)

. (14)
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Using the trace operator property,3 the estimated mismatch
for the ideal output-layer weight in (4), and adding and
subtracting eTW∗TK[σ̂i(�̂i(x))] in (14) yields

˙̃VL(ζ ) ⊆ −keTe − kse
TK

[
sgn(e)

] + eTε(x)

+eTW∗T(
σ ∗(�∗(x)

) − K
[
σ̂i

(
�̂i(x)

)])
. (15)

Hence, using the definition of K[sgn(e)] and Assumption 2,
(15) can be upper bounded as

V̇L
a.e.≤ −k‖e‖2 −

(
ks −

(
σ ∗ + σ̂

)
W∗ − ε

)
‖e‖. (16)

By satisfying the gain condition described in (12), (16) can be
further upper bounded as

V̇L
a.e.≤ −k‖e‖2. (17)

Using (13) and (17) implies VL(z, t) ∈ L∞, which implies
z(t) ∈ L∞. The definition of z(t) implies e(t), θ̃ (t), W̃(t) ∈
L∞. Using (4), (5) and (7) implies x(t), θ̂ (t), Ŵ(t) ∈ L∞.

Using Assumptions 2 and 3 implies σ̂i(·), ε(x(t)), ĝ+(x(t)),
ĝ(x(t)) ∈ L∞. Since e(t), ĝ+(x(t)), Ŵ(t) ∈ L∞, using (8)
implies u(t) ∈ L∞. Since ĝ(x(t)), u(t), θ̂ (t) ∈ L∞, using (6)
yields Y(x(t), u(t), t) ∈ L∞. Furthermore, by the extension
of the LaSalle-Yoshizawa theorem for non-smooth systems
in [21] and [22], k‖e‖2 → 0, which implies ‖e(t)‖ → 0 as
t → ∞ and x(t) ∈ � for all t ≥ t0.

VI. SIMULATION

To demonstrate the effectiveness of the developed method,
a simulation is performed on a control-affine realization of a
two-state Van der Pol oscillator. The dynamics used in the
simulation are

f (x) =
[

μ
(

x1 − 1
3 x3

1 − x2

)

1
μ

x1

]

, (18)

g(x) =
[

5 0
0 3

]
, (19)

where x = [x1, x2]T and μ = 10. The desired trajectory is
xd = [5 cos(t), 5 sin(t)]T . The initial conditions of the system
were x(0) = [−5, 8]T and θ̂ (0) = [6, 6]T . The user-defined
parameters were selected as k = 75, ks = 0.05, 	W = 500 ·
I13×13, and 	θ = diag([0.1, 0.05]).

The DNN used in this simulation was composed of 4 lay-
ers, each with 10, 5, 8, and 2 neurons, respectively. The DNN
architecture is illustrated in Figure 2. Each layer is linear
and the first, second, and third layers have tangent-sigmoid,
logarithmic-sigmoid, and tangent-sigmoid activation functions,
respectively. The learning rate (i.e., the learning gain param-
eter used to determine the step size in retraining the DNN
weights at each iteration) was fixed as η = 0.001. The mean
squared error (MSE) was used as the loss function for train-
ing. Each training iteration lasted until the MSE (i.e., the loss)
was less than 10−3. The Levenberg-Marquardt algorithm was
used to train the weights of the DNN. For each DNN training
iteration, 70% of the data was used for training, 15% was used
for validation, and 15% was used for testing.

Fig. 2. The DNN is composed of 4 layers, each with 10, 5, 8, and 2
neurons, respectively.

Fig. 3. The MSE for the offline trained DNN with learning rate η = 0.001
for 535 epochs in logarithmic scale. The best validation performance for
DNN1 is MSE = 0.00093357.

Fig. 4. The tracking error over three iterations of DNN training, i.e.,
DNN1, DNN2, DNN3. At t = 0 seconds, the first iteration of the DNN
(DNN1) is deployed. The red dashed line at t = 25 seconds represents
the beginning of the first retraining (DNN2), and the black dashed line
at t = 37.4 seconds represents the end of the first retraining. The red
dashed line at t = 62.4 seconds represents the beginning of the sec-
ond retraining (DNN3), and the black dashed line at t = 68.3 seconds
represents the end of the second retraining.

To pre-train the DNN, a 600 second simulation of a system
with dynamics in (18) and μ = 10 was performed. Training
statistics for the offline training are shown in Figure 3. The
real-time controller and the update laws in (8)-(10) are used to
update their respective parametric estimates. Concurrent to the
real-time controller execution, input-output data is collected to
retrain the DNN. As shown in Figures 4–6, the training start
time is denoted by the red dashed vertical line and the train-
ing completion time is denoted by the black dashed vertical
line. The time (and corresponding amount of data) between
retraining the inner-layer weights is a user-defined parameter
of the simulation. After the prescribed time between retrain-
ing elapses, the inner-layer DNN weights begin updating via
retraining. In this simulation, the time between retraining is
25 seconds. The first retraining starts at t = 25 seconds and
ends at t = 37.4 seconds. The second retraining starts at
t = 62.4 seconds and ends at t = 68.3 seconds. While the
retraining is in process, the real-time controller and update
laws continue uninterrupted as described in (8)-(10). Once the
retraining is completed, the new inner-layer DNN weights are
updated, overwriting the previous values.

3For real column matrices a, b ∈ R
n, the trace of the outer product is

equivalent to the inner product, i.e., tr(baT ) = aT b.
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Fig. 5. Weight estimates over three iterations of DNN training, i.e.,
DNN1, DNN2, DNN3.

Fig. 6. Applied control input over three iterations of DNN training, i.e.,
DNN1, DNN2, DNN3.

As shown in Figures 4–6, the time for the MSE to be less
than 10−3 took 12.4 seconds to complete. After the DNN has
completed retraining, the controller implements the inner-layer
weights at t = 37.4 seconds. After implementing the updated
DNN weights, new data is collected for another 25 seconds. To
further improve the DNN estimate, a second retraining is per-
formed. During the second training iteration, data from the first
25 seconds and the second 25 seconds are both used. The sec-
ond retraining took 5.9 seconds. The inner-layer weights from
the second retraining are implemented at t = 68.3 seconds.

The tracking error performance in Figure 4 indicates that
discretely retrained DNNs with an online adaptive output-layer
weights are a viable method to perform trajectory tracking.
The first iteration of the DNN (DNN1) is the offline generated
DNN, DNN2 is the model after the first retraining, and DNN3
is the model after the second retraining. As shown by the root
mean squared error (RMSE) in Table I (A), each subsequent
DNN training iteration yielded improved performance, where
e � [ e1 e2 ]T . The decrease in error after each retraining is
expected since a larger set of system data was used to train the
DNN during each retraining. Figure 7 shows the phase plot
of the system, and compares the performance of the track-
ing during the application of each DNN. DNN1 has the worst
estimate of the system dynamics. DNN2 and DNN3 show sig-
nificantly better tracking behavior, which is also reflected in
Figure 4. Figure 6 presents the control input to the system for
the duration of the simulation. DNN1 poorly approximates
the dynamics near x = [−3.5, 3.5]T , and this error is fur-
ther reflected in Figure 6 with the spikes in control input
approximately at t = 2 seconds and t = 8 seconds.

A. Transfer Learning & Random Weights

To further demonstrate the flexibility of the developed real-
time Lyapunov-based adjustment of the output-layer weights,
two additional simulations were performed. In this section,

TABLE I
ROOT MEAN SQUARED ERRORS (RMSE)

Fig. 7. Phase plot of the dynamics in (18) over three iterations of DNN
training, i.e., DNN1, DNN2, DNN3.

transfer learning-based and randomly initialized DNN weights
simulations were investigated. Transfer learning in this context
is applying the learned DNN model of one system to another
system. In the simulation, transfer learning is demonstrated
by training a DNN model on a dataset of a system described
by the dynamics in (18) with parameter μ = 1, whereas the
simulated system has parameter μ = 10.

In the transfer learning-based approach, the DNN is pre-
trained with 600 seconds of simulated data from a system
with dynamics in (18), but parametrized with μ = 1. Figures
8(a), 9(a), and Table I (B) show the tracking error, phase plot,
and RMSE of the transfer learning approach over three itera-
tions of DNN training, respectively. For situations where data
cannot be collected a priori, initial inner-layer DNN weights
can be selected by the user. In the third simulation, instead of
pre-training the DNN, a simulation was performed with the
initial DNN randomly selected weights. Figures 8(b), 9(b),
and Table I (C) show the tracking error, phase plot, and
RMSE of this approach over three iterations of DNN training,
respectively.

The performance of the transfer learning-based approach
and initial randomly selected DNN weights simulations are
depicted in Figures 8 and 9. Iterations in the inner-layer
weights are shown to improve performance. The first simu-
lation, which was trained with 600 seconds of offline data
using the dynamics in (18) with μ = 10 has the best
performance with respect to the smallest RMSE within 25
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Fig. 8. Tracking error for (a) transfer learning, and (b) randomly selected
initial inner-layer weights.

Fig. 9. The phase plot for (a) transfer learning, and (b) randomly
selected initial inner-layer weights.

second intervals compared to transfer learning and initial ran-
domly selected DNN weights. Nevertheless, the proposed real-
time Lyapunov-based adjustment of the output-layer weights
accommodates for different methods to initialize the DNN
inner-layer weights.

VII. CONCLUSION

A multiple timescale DNN-based adaptive control archi-
tecture is developed for general nonlinear dynamical systems
with unknown drift dynamics and uncertain control effective-
ness matrix. Specifically, a Lyapunov-based adaptive update
law is developed to estimate the unknown output-layer
weights of the DNN and the uncertain control effective-
ness matrix in real-time. Simultaneous to real-time exe-
cution, data is collected and offline function approxima-
tion methods are used to update estimates of the inner-
layer weights. A nonsmooth Lyapunov-based analysis is per-
formed to ensure semi-global asymptotic tracking of the
desired trajectory. Numerical simulation examples are pro-
vided to demonstrate the performance of the proposed archi-
tecture.
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