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Understanding structural dynamics of biomolecules at the single-molecule level is
vital to advancing our knowledge of molecular mechanisms. Currently, there are
few techniques that can capture dynamics at the sub-nanometre scale and in

physiologically relevant conditions. Atomic force microscopy (AFM)' has the
advantage of analysing unlabelled single molecules in physiological buffer and at
ambient temperature and pressure, but its resolution limits the assessment of
conformational details of biomolecules?. Here we present localization AFM (LAFM), a
technique developed to overcome current resolution limitations. By applying
localization image reconstruction algorithms? to peak positions in high-speed AFM
and conventional AFM data, we increase the resolution beyond the limits set by the tip
radius, and resolve single amino acid residues on soft protein surfaces in native and
dynamic conditions. LAFM enables the calculation of high-resolution maps from
either images of many molecules or many images of a single molecule acquired over
time, facilitating single-molecule structural analysis. LAFM is a post-acquisition
image reconstruction method that can be applied to any biomolecular AFM dataset.

Observing the native structure and behaviour of biomoleculesis chal-
lenging owing to their architectural complexity and dynamic nature.
Additionally, biomolecules can adopt multiple interchanging confor-
mational states. Proteinstructure determination is progressing rapidly
thanksto recentadvancesincryo electron microscopy (cryo-EM) and
X-ray crystallography. However, these structures represent static snap-
shots of averaged ensembles acquired from molecules incorporated
into crystals and/or imaged at cryogenic temperature, whereas indi-
vidualmolecules at physiological temperature are highly dynamic. In
contrast to cryo-EM, which provides three-dimensional (3D) volume
data, AFMis restricted to surface analysis. Nevertheless, AFM images
moleculesinanative-like environment: (i) at ambient temperature, (ii)
atambient pressure, (iii) in physiological buffer and (iv) in membranes
(in the case of membrane proteins). Furthermore, the AFM measure-
ment mechanism and the openness of the fluid cell allow for (v) buffer
exchanges, (vi), temperature changes and (vii) force changes during
image acquisition®*.

High-speed AFM (HS-AFM)® has an additional advantage in that it
yields real-time nanometre topographical information of single bio-
molecules atunprecedented spatiotemporal resolutions® ™, through
the integration of short cantilevers and the development of faster
scanners® and feedback operation’®. Although this is proving powerful
inrevealing conformational changes of proteins*Y, it is often not pos-
sibleto resolve sub-molecular structural features on protein surfaces,
primarily owing to the finite size of the AFM tip. For probes typically
used to image biological samples, the resolution in the z direction
(topography) is about 1A, whereas the lateral resolution in thex, y direc-
tionsisabout1nm, fundamentally limited by the probe geometry and
the probe-sampleinteraction forces. The lateral resolutionis further
reduced whenimaging softer samples, owing to anincreased contact
areabetween the tip and flexible protein structures'®. Because of these
limitations, sub-nanometre lateral resolution of biological samples

has only been reported for two-dimensional (2D) crystals'®*, and was

evidenced to be an overestimation due to periodic tip convolution
effects?.Inan attempt to circumvent such limitations, tip deconvolu-
tion algorithms were proposed®*?, which produced sharpened images
but could introduce artefacts.

Localization microscopy methods, also known as super-resolution
fluorescence microscopies, suchas stochastic optical reconstruction
microscopy (STORM)* and photoactivated localization microscopy
(PALM)?, have provided insights into the architecture and macromo-
lecular assemblies of cells. By isolating and pinpointing the source
of excited fluorescence signals with high spatial precision in many
images, high-lateral-resolution maps can be reconstructed, taking
the ~400 nm resolution limit set by the diffraction limit of light down
toabout 20 nm (refs. >?¢),

Here, inspired by these fluorescence localization microscopy meth-
ods (Extended DataFig.1a-d), we develop LAFM, whereby localization
algorithms are applied to the spatial fluctuations of topographic fea-
turesin AFM and HS-AFMimages (Extended Data Fig. 1e-h). Compari-
sons with X-ray structures and molecular dynamics (MD) simulations
show that this approach can reveal angstrom-range high-resolution
details on protein surfaces.

Breaking theresolution limit

Under specific conditions; that is, with an atomically sharp tip and
rapidly decaying tip-sample interaction forces, atomic resolution is
attainable on flat incompressible materials such as mica by conven-
tional AFM imaging'®. Achieving and maintaining such conditions
on biological samples, which are not only soft and dynamic, but also
immersedinliquid atroom temperature, is not possible. Typically, the
tipgeometry fromthe apex up to the height of the objects being imaged
is much larger than the separation distance between the features of
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Fig.1|Principle of LAFM. a, Schematic of an AFM tip scanning a high
topography with high-resolution features. Dashed line, theoretical contour.
Colouredlines, threerepresentative simulated topography traces. Open
symbols and lines, vertical and lateral positions of detected local maxima.
b, Simulations (n=1,000) of the LAFM method on surfaces with one (top), two
(middle) and many (bottom) height-modulated surface features. Surface:
representation of idealized surface features (grey). AFM traces: nine
representative simulated topography traces (coloured lines), with detected
local maxima (crosses). Average AFM: average topography (n=1,000). LAFM
height: average height of detected local maxima. LAFM probability: peaking

interest (Fig. 1a, b, surface). The finite tip radius results in convoluted
lateral dimensions. The signal is further obstructed by noise inthe z
direction and stochastic fluctuations of flexible protein surface fea-
tures (Supplementary Video1) inthex, yand zdirections (Fig.1b, AFM
traces). Averaging several of these traces removes noise and resultsina
noise-free topography trace but the tip convolution remains alimiting
factor (Fig.1b, average AFM). By applyinglocalization algorithms that
detectthelocal maximainthe sameseries of traces (Fig. 1b, AFM traces,
crosses), extracting the location-specific heights (Fig. 1b, LAFM height)
and merging the individual detections in a peaking-probability map
(Fig. 1b, LAFM probability), the surface structures are reconstructed
with greater lateral resolution in an LAFM map (Fig. 1b, LAFM). Local
peak-search algorithmstoidentify and accumulate local maximain AFM
datahave previously been used to create probability density maps, from
which energy landscapes were calculated to sample the conformational
space of protein moieties?” and to derive stiffness maps’. Here we build
onthis concept and extend the approach, leveraging the methodologi-
calknowledge generated by the development of super-resolution fluo-
rescence localization microscopies®**. Localization-based fluorescence
microscopy methods taught us thataresolution superior to the physical
limitations can be achieved when the localization of isolated signalsis
determined with high spatial precision in many images, which are later
merged in acompiled map?, which has higher lateral resolution than
theinitial data. Advantage is taken of the fact that the peak position of
signals with wide intensity distributions canbe determined with aston-
ishing precision. Here, we adapt this transformative rationale to AFM
data (Extended Data Fig.1e-h).First, the pixel-and/or AFM-restricted
low-lateral-resolution data are oversampled to allow peak positions
to be determined with increased spatial localization resolution. Peak
positions are measured and localization dataare then merged togive a
reconstructed map with higher lateral resolution than theinitial pixel
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probability distribution of detected local maxima. LAFM: LAFM map merging
real-space height with peaking probability. Insets: false-colour scales
represent height, probability and height/probability. ¢, High-spatial-resolution
topography local maxima detection. (i), (iv), Two representative sequential
(t=0s,t=1s)rawdataimagesof an AStrimer. (ii), (v), Magnified views of raw
data (4 A per pixel). Blue squares, local maxima pixels. Local maximalabelled ‘',
2’and ‘3’ are detected atidentical pixel locations in both images. (iii), (vi), Same
image regions after image expansion (0.5 A per pixel). Red squares, local
maxima pixels.

sampling and/or technique allowed (Fig. 1b; compare LAFM with aver-
age AFM).

The LAFM map reconstruction is best illustrated in the simulation,
where several features of varying height are contoured next to each
other (Fig.1b, bottom row). Simulations show that the LAFM algorithm
detectsfeatures thatare hidden to theoretical and average topographies
(Fig.1b, Extended DataFig. 3). However, the detection probability per-
formsbest on flat samples, andis nonlinear withthe protrusion height if
there are closely neighbouring higher features (Extended Data Fig. 2).
Each pixelin these maps contains both height and probability informa-
tion (Fig. 1b, bottomright). Further simulations with varying tip radius
andshape onsimple (Extended DataFig. 4, Supplementary Video 2) and
more complex (Extended Data Fig. 5) model 3D surfaces showed that
the LAFM algorithm outperformed averaging methods within10-100
images, showing the greatestimprovement in resolution (about 1/5)
for tip radii greater than the separation of structural features. These
analyses corroborate that the quality of the LAFM map increases with
increasing number of observations until it plateaus, ataround 50 (fora
sharp tip) and around 500 (for ablunt tip) particles are analysed.

On real AFM data, detection of local height maxima is performed
after image expansion (Fig. 1c). Image expansion using bicubic inter-
polation (see Methods) does not increase the lateral resolution of the
topography but allows the detection of local maxima with far greater
spatial precision (Fig. 1c; compare panels (ii) and (v) with (iii) and (vi)).
Merging the high-precisionlocal maxima from several particles results
inresolving structural features with separation distances shorter than
theinitial pixel sampling. To retain the topographic structural informa-
tion, the topography height value from each peak location is carried
intothe LAFMreconstruction, where height and peaking probability are
encoded by a 2D false-colour scale in which the green/red ratio scales
linearly with height 4 and probability P from white at P=1to black at
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Fig.2|LAFMof AqpZ and A5.a-c,AqpZ; d-f,A5. a, d, Left, average AFM maps;
middle, LAFM maps; and right, surface representations of X-ray structures.

b, e, Detail views of LAFM maps and X-ray structures, with recognizable
residues labelled.c, f, FRC analyses of LAFM half-maps. AqpZ data acquisition:
AqpZreconstitutedin DMPC/POPC (1/1) membranes imaged by conventional
AFMincontactmode; scanspeed, 6.8 lines per second; scanarea, 169 nm;

P=0 (Extended Data Fig. 1i, j). Furthermore, each peaking detection,
originating from an atomic tip-sample interaction, is assigned a 2D
Gaussian density function decaying from1to O over 1.4 A to approxi-
mate atomic solvent-accessible surface areas. A reconstructed LAFM
map thus compiles, from many particles, the average topography
height refined by the peaking probability (Fig. 1b, right), where each
pixel carries the fullinformation about topography andits likelihood
ofbeing detected at this location. In merging many particles, randomly
distributed apparatus noise does not merge into consistent height/
probability data. Conversely, peaking detections that emerge from
protein surface fluctuations will merge into strong localized signals
in high-resolution reconstructed LAFM maps.

Single amino acids on protein surfaces

Toillustrate the power of the LAFM approach, we first applied itto a
former conventional AFM dataset®. After extraction and alignment
of aquaporin-Z (AqpZ) tetrameric channels, the LAFM map revealed
details comparable to the surface of the X-ray structure (Fig. 2a, Supple-
mentary Video 3), resolving single amino-acids on surface protruding
loops (Fig.2b). Line profile analysis and image comparison between the
average AFM topography, previous peak probability mapping meth-
ods? and LAFM probability maps of independent dataset half-maps
show the ability of LAFM to detect previously hidden structural features
(separated by 2.6 A) well beyond the details resolved by previous averag-
ing and peak probability methods (11 A) and the Nyquist frequency of
the raw data (1/(6.6 A)) (Extended DataFig. 6a-i). Interestingly, among
the AqpZ X-ray structures, E31in the central a-loop isin different orien-
tations, and the LAFM map indicates that in physiological buffer the E31
rotamer configuration, as foundin PDB 2ABM, is preferred (Extended
Data Fig. 6j). We also applied the LAFM approach to annexin-V (A5)
trimers extracted from HS-AFM videos>*?® (Fig. 2d, Supplementary
Video 4) and found that the LAFM map resolved fine structural details
(whereas the average resolved only the protein envelope) along the
backbone of the molecule (Fig. 2b).

To quantitatively assess the resolution of the LAFM maps, we applied
the Fourier ring correlation (FRC) method, developed for electron
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image size, 512 pixels; pixel sampling, 3.3 A per pixel?°. A5 data acquisition: A5
onaDOPC/DOPS (8/2) bilayerimaged by HS-AFM in amplitude modulation
mode;scanspeed,1frame persecond; scanarea, 80 nm;image size, 200 pixels;
pixel sampling, 4.0 A per pixel. LAFM map pixel sampling, 0.5 A per pixel; AqpZ:
n=128,A5:n=698, filtered to 5 A. X-ray structures: AqpZ, PDB2ABM, A5, PDB
1HVD.

microscopy?®’ and more recently adapted for super-resolution fluores-
cence microscopy”. The FRC method splits the datasets into halves and
assesses their statistical resemblance as a function of the resolution
range. This analysis resulted in a resolution of 4.0 A for AqpZ, 5.1A
for A5and 4.5 A for A5 P13W-G14W (Fig. 2¢, f, Extended Data Fig. 7a,
b, h). The FRC curve of AqpZ has, in addition to the signal power up to
about4.0 A, asecond information-containing range in the 2-A regime.
Thus, both the real-space (Extended Data Fig. 6h, i) and the statistical
analysis of AqpZ LAFM half-maps report resolutionat distances shorter
than the Nyquist frequency of the raw data. Accordingly, LAFM maps
ofboth AqpZ and ASresolve details down to the amino acid size range
(around 5 A to 4 A), and some signal power on the quasi-atomic scale
(around 2 A) in the case of AqpZ (Fig. 2b, ¢, Extended Data Fig. 6). We
also capitalized on the serendipitous co-existence of two differently
oriented A5 trimersin the ASlattice. LAFM of the two trimer datasets,
independent from each other and acquired through different relative
AFM scan-directions, agree in great detail (Extended Data Fig. 7c-e).
Finally, we cloned, expressed and purified amutant A5, replacing two
amino acids in the N terminus with tryptophans (P13W, G14W), and
imaged the A5-mutant by HS-AFM (Extended Data Fig. 7f-h). LAFM
maps of the A5 mutant show overall rearrangements of the N terminus
with increased height and peaking probability at the mutation site.

Localization AFM of CLC antiporters

The AFM dataof A5 and AqpZ were acquired on 2D lattices, however, a
considerable advantage of LAFM s that the biomolecules do not need
to be confined ina crystal for analysis, but can be sparsely populating
anative-like environment. Furthermore, the buffer conditions inside
the fluid cell can be changed to assess structural changesin response to
environmental changes. Therefore, we studied CLC-ecl (a ClI/H* anti-
porter fromE. coli)***, which, to our knowledge, has not been observed
by AFM, and whose transport mechanism remains unresolved. Muta-
tions in human CLC family homologues have been associated with
diseases™.

HS-AFM of CLC-eclin membranes formed through proteo-liposome
fusion showed a dispersed population of proteins protruding 1.2 nm
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Fig.3|HS-AFMimaging and LAFM workflow of CLC-ecl. a-c, HS-AFM images
of CLC-eclina POPE:POPG (2:1w-w) membrane at 400 nm (300 pixels) (a),

120 nm (300 pixels) (b) and 40 nm (300 pixels) (c) image (frame) size of
predominantly dimeric CLC-eclatlow densityinamembrane.d, LAFM method
workflow steps: (1) HS-AFM video acquisition; (2) image Gaussian filtering; (3)
moleculedetection; (4) 2D tracking to separate single molecules (molecules
highlighted blue or red can be treated individually); (5) molecule selection; (6)
bicubic expansion (original pixel sampling, 1.33 A per pixel; expanded pixel
sampling, 0.5 A per pixel); (7) molecule centring (first round) by centre of mass;

fromthe membrane (Fig.3a-c, Supplementary Video 5). CLC-ecl was
predominantly dimeric, with small populations of monomers and
higher-order oligomers assembled from multiple dimers (Fig. 3b).
The topography and lateral dimensions of the dimers (Fig. 3c) were
consistent with the 5.5nm x 9.6 nm dimensions of the extracellular face
of CLC-ecl (Extended Data Fig. 8a-e)****. Because the dimers were not
confined, they exhibited translational and rotational freedom (Fig. 3c,
Supplementary Video 5), whichled usto establish a generalized LAFM
workflow (Fig. 3d; see Methods): (1) aHS-AFM videois acquired and (2)
low-pass-filtered, so that (3) particles can automatically be detected.
Particles are thus (4) tracked throughout the HS-AFM observationand
(5) selected and extracted in a gallery. (6) Bicubic image expansion
allows for (7) precise particle centring and (8) rotational alignment
toanarbitrary molecule reference. A second cycle of (9.1) lateral and
(9.2) rotational alignment, this time with respect to anensemble aver-
age, prepares particles for (10) application of the LAFM method (Sup-
plementary Video 6). As described in Fig.1, (10.1) local maxima peaks
aredetected and (10.2) the height at these locations is extracted with
al.4-A-wide probability radius. Finally, all detections are merged ina
height-probability LAFM map (Fig. 3e). The particle gallery (step 5)
can be assembled from many molecule observations in one or sev-
eral frames. Alternatively, an LAFM map can be reconstructed from
one molecule observed over time, which gives this method unique
possibilities to access high-resolution information of individual
molecules.
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(8) rotational alignment (first round) of molecules through rotational
cross-correlation with areference frame, ref(#1); (9) translational and
rotational alignment (second round) through cross-correlation with the
average molecule, ref(ave), fromstep 8 (inset histograms, rotation angle
distributions for all particlesinsteps 8 and 9); (10) LAFM method; insets:
aligned HS-AFM images (n=200); (10.1) LAFM peak detection of local maxima;
(10.2) height extraction at each peak position and application of a1.4-A
localization probability distribution; (11) LAFM map reconstruction through
mergingof allLAFM detections.

Conformational changes in CLC-ecl

The exchange pathway in the CLC-ec1 Cl/H*-antiporter has been pro-
posed to have two separate entrances/exits for H*and CI” on the intra-
cellular face, converging to a central binding region from which both
ions follow the same path to the extracellular side. However, there is
debate about whether the gating mechanism requires only localized
side-chain motions in the CI” pathway based on X-ray structures, or if
greater movements occur, as evidenced by nuclear magnetic resonance
(NMR)*?¢, computational® and helix-crosslinking studies®®. Findings
by these non-crystallographic methods** have led to suggestions
that confinement of CLC in 3D lattices inhibit large conformational
movements (Extended Data Table 1, Extended Data Fig. 8f), similar
to other transporters*®™*, CI” transport by CLC-ec1 is maximal at
acidic pH and stalled at neutral and basic pH (owing to pH-dependent
activation and lack of H' as substrate)**. A more recent structure of a
protonation-mimicking triple mutant also indicates conformational
rearrangements*. Therefore, we performed HS-AFM of transporters
sparsely packed in lipid membranes and in physiological buffer. Sub-
sequent LAFM of the pH 7.6 (inactive state) and pH 4.5 (active state)
observations should inform on whether large-scale conformational
changes occur.

Onthebasis of the X-ray structure surface (Fig. 4a), we assigned the
protruding residues expected to give signals in AFM: Asp73 in loop
B-C, Glu235, Asp240 and Lys243 in the long loop I-J, Asn327 in loop
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Fig.4|Conformational changesin CLC-eclat neutral and acidic pH.

a, Extracellular surface of CLC-eclat pH 9.5 (PDB10TS?); membrane-
protruding residuesin four major protrusions (1-4) are labelled.

b, Logarithmic-scale population density map of the positions of atoms with
the highest zcoordinates onthe extracellular surface of CLC-ec1from5.6-ps
MD simulations at pH 7 (simulated from PDB10TS). Major protrusions (1-4) are
labelled. Major contributions to each population peak: (1) D73 (97%), A72
(2.7%); (2) N237 (91%), D240 (2.2%); (3) Q381 (42.3%), H383 (54.7%); (4) K243

L-M, and GIn381 and His383 in loop N-O. To refine the interpretation
of LAFM reconstructions, we used MD simulations to convert the
static X-ray structure into a dynamic molecular system fluctuating
at room temperature and at pH 7 (Supplementary Video 1). Similar
to the LAFM method, we plotted a population density map of the dis-
tribution of the z-coordinate local maxima on the CLC-ecl extracel-
lular face from MD trajectories, which reflected side-chain motions
of membrane-protruding residues (Fig. 4b, Extended Data Fig. 8g, h).
The MD trajectories show how structural fluctuations that are probed
(in AFM) and merged (in LAFM) allow extraction of high-resolution
information of amino acid residues on protein surfaces.

The CLC-ec1 LAFM reconstructions at pH 7.6 and pH 4.5 display the
same set of structural features as the X-ray structure and the MD popula-
tion map, butin distinctly different configurations (Fig. 4c, d). Peaks 2,
3 and 4, which form a triangle close to the dimer interface, pack more
loosely at pH 4.5, and peak 3 moves towards a more lateral position
on the dimer, while the most remarkable conformational change is a
~6-A movement of peak 1towards the dimer interface at acidic pH. The
extracellular CI'/H" ion pathway lies between Asp73, Asn327 and Glu235
(Fig. 4c, asterisk); thus, under the premise that these displacements
arerelated to movements in the underlying helices, these structural
changes might alter accessibility to the extracellular gate. Insummary,
LAFM reports large pH-dependent conformational changes (Fig. 4e,
Supplementary Video 7).

By recording 3D topographicimages and videos, AFM and HS-AFM
offer rich data, captured through many atomic interactions between
tip and sample inliquid and at ambient conditions. By pinpointing
peakinteraction locations with high spatial precisionin oversampled
topographies, LAFM produces quasi-atomic resolution maps of pro-
tein surfaces from such data. We demonstrate the ability of LAFM to
detectaminoacid side chains onthe surfaces of AqpZ, A5and CLC-ecl,
mutation-related differencesin A5, and conformational changesin the
angstromrangein CLC-ecl. Our LAFM maps, calculated from CLC-ecl
imaged at physiological and acidic pH, identified substantial differ-
ences in the central region, where helices N and O are located, and at
the peripheral end of helix B, which moves towards the dimer centre,
giving the entire molecule a-1.2-nmshortened appearance (Fig. 4d, e).

HS-AFM’ operates in amplitude modulation mode using short can-
tilevers that oscillate at resonance at around 660 kHz (oscillation

aoualoyIp Alligeqoid

(52%),D240 (21.7%),S245 (3.4%).c,d, LAFM reconstructions of CLC-eclat pH 7.6
(c)and pH4.5(d). Theion pathway entryis labelled with an asterisk. The four
major protrusions (1-4) are highlighted for comparison with the X-ray
structure and the MD population density map. e, Detection probability
difference map between CLC-ecl1 LAFMreconstructionsatpH?7.6 (c)and pH4.5
(d). The difference map highlights the conformational changes of the four
major protrusions, notably a-6-A movement of peak 1towards the dimer axis.

cycle of around 1.5 ps). The tip touches the surface only during ~10%
of an oscillation cycle*, thus about 150 ns. Even though this is a short
periodinthelife of a protein, side-chain fluctuations occurinsuch time
regimes, thus blurring the signal. Hence, LAFM will provide improved
datawhen the next generation of faster HS-AFM systems arrive. Today,
amplitude detectors oversample the cantilever*¢, but feedback opera-
tion and the z-piezo are limiting (about 100 kHz) factors and need
improvement.

The LAFM method can be used in two different ways: LAFM maps can
be reconstructed (i) from many molecules recorded in one or several
frames or (ii) from asingle molecule over time. The first approach allows
ustoresolve time-orenvironment-dependent conformational changes.
About 50 particles are needed toreconstruct an LAFM map (Extended
DataFig. 5); therefore, the temporal resolution of LAFMis decreased to
the time required to accumulate these 50 observations. Faster HS-AFM
operation will of course improve time-resolved studies of single mol-
ecules. Alternatively, imaging densely packed proteins (witharound 50
particles in each frame®*) would allow LAFM map reconstruction of
the conformation of the proteins in each frame, giving high-resolution
structural changes as afunction of time. The second approach gives the
method the unique capability to provide high-resolutioninformation
of single molecules or of non-ordered supramolecular assemblies.
Altogether, we envisage that LAFM will become the standard method
applied to AFM imaging, allowing the extraction of high-resolution
information beyond the tip-radius resolution limit in the study of single
biomolecules in native-like environments.
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Methods

HS-AFM

HS-AFM measurements (annexin-V, CLC-ecl) were taken with an ampli-
tude modulation mode HS-AFM (RIBM), as previously described in
ref. %%, In brief, we used short cantilevers (USC-F1.2-k0.15, NanoWorld)
withaspring constant of 0.1I5Nm™, aresonance frequency of -0.66 MHz
and a quality factor of ~1.5in buffer.

AFM

AFM data (aquaporin-Z) were taken by contact-mode AFM using a
Nanoscope-Ill AFM (Digital Instruments) equipped witha120-pm scan-
ner (J-scanner) and oxide-sharpened Si;N, cantilevers with alength
of 120 um and spring constant of 0.IN m™ (Olympus Ltd), as detailed
inref. %,

Cloning, expression and purification of annexin-V-P13W-G14W
The P13W-G14W site-directed mutagenesis was performed on
an untagged human annexin pET28a expression vector using
the QS site-directed mutagenesis kit (New England BioLabs) and
the following mutagenic primers (mutated nucleotides are in
bold): 5-GACCGATTTTTGGTGGTTTGATGAACGTGCTGATGCC-3’ and
5-ACGGTACCACGCAGCACTTG-3'.

The mutated genes were sequenced to confirm that only the desired
mutations were inserted into the plasmid. The annexin-V-P13W-G14W
plasmid was then transformed into BL21 (DE3) pLysE chemically
competent E. coli cells (Invitrogen), and grown overnight at 37 °C for
small-scale culture. The overnight culture (50 ml) was inoculated into
21fresh Luria-Bertanibroth mediaat37 °C, and once an optical density
(A600) of 0.6-0.8 was achieved, the cells were induced by addition of
0.4 mM isopropyl 3-D-1-thiogalactopyranoside. After induction for
4 h, the cells were separated from the culture medium by centrifu-
gation (5,000 g; 20 min) and resuspended in ice-cold calcium buffer
(50 mM Tris pH 7.5,10 mM CaCl,). The suspension was three times
tip-sonicated on ice for 5 min (one pulse every 9 s), and centrifuged
(23,000 g; 45 min). The supernatant was discarded, and the pellet
was resuspended in ice-cold EGTA buffer (50 mM Tris pH 7.5, 60 mM
EGTA). After gentle shaking for 30 min, the cell debris were removed
by centrifugation (23,000 g; 45 min), and the supernatant contain-
ing the soluble Annexin-V-P13W-G14W was dialysed overnight against
buffer A (20 mM Tris pH7.5,20 mM NaCl). The solution was applied to
aHiTrap DEAE FF sepharose column (5ml) AKTA Avant (GE Healthcare
Life Sciences), and eluted with alinear gradient of 0-1M NaCl. Fractions
containing annexin-V-P13W-G14W (based on SDS-PAGE analysis) were
concentrated to ~1 mg ml™ using 10 kDa centrifugal filters (Amicon,
Millipore), and subjected to a final purification step with a Superdex
200 Increase 10/300 gelfiltration column (equilibrated with20 mM Tris
pH7.5,100 mM NaClbuffer), reaching a final purity of >95% according
to SDS-PAGE analysis.

CLC-ecl expression and purification

Expression and purification of CLC-ecl were carried out as previously
described*®. BL21-AI E. coli competent cells (Thermo Fisher Scientific)
were transformed with the plasmid and then 2 Terrific Broth supple-
mented with ampicillin was inoculated and grown at 37 °C. Protein
expressionwas induced with anhydro-tetracycline at OD,,,=1.0. After
3hofinduction, cellswere harvested, then lysed by sonicationin buffer
supplemented with 5 mM reducing agent TCEP (Tris(2-carboxyethyl)
phosphine; Soltec Bioscience) and pHadjusted to 7.5. Protein extraction
was carried out with 2% n-decyl-B-D-maltopyranoside (DM; Anatrace)
for 2 hat room temperature. Cell debris was pelleted down, and the
supernatant was run on a2 mlcolumnvolume (CV) TALON cobalt affin-
ity resin (Clontech Laboratories) equilibrated in cobalt column wash
buffer (CoWB)/TCEP:100 mM NaCl, 20 mM Tris, 1mM TCEP, pH 7.5 with
NaOH, 5mM DM. After binding, the column was washed with15 CVs of

CoWB/TCEP followed by alow-imidazole wash of CoWB/TCEP contain-
ing20 mMimidazole (Sigma-Aldrich). CLC-ec1was eluted with CoWB/
TCEP containing 400 mM imidazole, then concentrated in 30-kDa
nominal molecular weight limit (NMWL) centrifugal filters (Amicon,
EMD Millipore) to ~-500 pl and injected on a Superdex 200 10/30 GL
size exclusion column (GE Healthcare) equilibrated in size exclusion
buffer (SEB):150 mM NaCl,20 mM MOPS pH7.5,5mM analytical-grade
DM, attached to a medium-pressure chromatography system (NGC,
Bio-Rad).

CLC-eclreconstitution and bilayer formation

Lipids were resuspended in 300 mM KCI, 20 mM citrate pH 4.5 with
NaOH. CHAPS (35 mM) solubilized lipids were combined with protein
at100 pg CLC-ecl per 1mg of lipids, corresponding to a protein/lipid
mole fraction of 7.6 x 10 (assuming a 50% incorporation yield)*. The
protein-lipid-detergent mixture was dialysed in cassettes (NMWL
10 kDa; ThermoFisher Scientific) at 4 °C against 4 | of buffer for 48 h
with buffer changes every 8-12 h. After completion of dialysis, the
proteo-liposomes were harvested from the cassettes, freeze/thawed
and then extruded using an Avanti Polar Lipids Mini Extruder (Ala-
baster) through a400-nm membrane. 1.5 pl of the SUV solution with
atotal lipid concentration of 0.1 mg ml™ was deposited onto freshly
cleaved micato form supported lipid bilayers (SLBs) through vesicle
fusion. The excess lipids, after SLB formation, were rinsed first with
deionized water, followed by buffer. For experiments at pH 7.6 the
sample was rinsed with 25 mM Tris, 300 mM KCI pH 7.6.

Image expansion

AFM topography images were expanded using bicubic interpolation
(Catmull-Rom interpolation; implemented in image], scripted using
the method of Burger and Burge)*. The method considers values over
alé-pixel surface (4 x 4 pixels) to calculate the new intermediate sur-
face, p(x,y), created by expansion across the central 2 x 2 area. The
interpolated values are approximated by 3rd-order polynomials in
both the xand ydirections:

3 3
ple,y)=3 Y apx'y/,
i=0 j=0

where i andj are the order of the polynomial for x and y, respectively,
and a;are 16 possible corresponding coefficients. The resulting poly-
nomlal can be calculated using the values at the four corners of the
central 2 x 2 grid (f(x, y)), the gradients at each of those positions in
thexand ydirections (f,(x, y),f,(x,¥)) and the cross-derivatives (f,,(x,
y)) requiring the 4 x 4 pixel grid, with the derivatives being calculated
numerically. The interpolated surface, p(x, y), between four corner
pixels can be described by:
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where the 16 coefficients canbe calculated using the values and deriva-
tives at the four corners:
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Using this method, all our datasets were resampled to 0.5 A per pixel,
asindicated in the figure captions. The reason for expanding to 0.5 A
per pixel is based on approximating the picked maxima features to the
solvent-accessible surface of atoms with Gaussian profiling, as detailed
in the Methods section ‘Detection probability’. By constructing the
interpolant value from continuous piecewise polynomials, the result
isalways continuous. This works particularly well for interpolation of
smooth areas, as in the case of tip-radius-limited imaging, and there-
fore considerably improves local maximalocalization, but does not
increase image resolution.

Detection of local maxima

Alocal maximum position (Fig. 1c) is defined if a given pixel is higher
than all the surrounding eight pixels in a 3 x 3 pixel grid (Figs. 1c, 3d).
This 3 x3 pixel grid is ‘scanned’ pixel by pixel over theimage, and thus all
pixels (with the exception of those at the image borders) in each particle
image are checked for maxima. Toreduce the selection of maximadue
to noise in certain datasets, a noise tolerance algorithm that selects
maxima based on their prominence above surrounding maxima was
implemented. The prominence of each maximum, p,, is calculated by
the following steps: (i) search for the closest neighbouring maximum
h, with higher height than the current maximum h; or closest image
boundary; (ii) find the minimum height along the profile between A;
and h, or between h;and theimage boundary; and (iii) define the peak
prominence as:

P, = hy= hoin(h; > hy).

In our method, for alocal maximum to be selected, its prominence
must be greater than the noise tolerance (typically 1-2 A). In our plugin,
the noise tolerance is defined by the user from 0 to 100%, where the
noise tolerance parameter corresponds to the range of height values
from lowest to highest in the image. These maxima selection crite-
ria are based on the noise level of the AFM imaging and the typical
root-mean-square fluctuations at protein surfaces (Extended Data
Fig. 8g, h). An alternative method is to apply a Gaussian filter to the
image toreduce noise and use 0% noise tolerance. The repulsive inter-
action forces between the farthest exposed atoms of the tip and the
atomsin protein moieties that protrude most have very steep separa-
tion distance dependence. Very strong short-range interactions occur,
including Pauli repulsion and van der Waals, hydration, steric and
ionicforces, which depend on the surface properties of boththe AFM
tip and the protein®. As a result, the most exposed atoms dominate
local topographic detection and high-resolution information can be
obtained through merging many tip-sample atomic interactions at
different localizations and time points or on different molecules of
the same kind.

Detection probability

The peaking probability at a given localizationin an LAFM map, is the
cumulative probability that a pixel (in the expanded image) is detected
within all particles analysed. It is the sum of: picking events (n), multi-
plied by the power of the 2D Gaussian, g(0 <P<1) oneach pixel, divided
by the total number of particles merged (N).

N
i1 My i, .y
Xy~ N .

The 2D Gaussianin all our datasets was set to 1.4 A width to approxi-
mate the solvent-accessible surface of the underlaying atoms (the
solvent-accessible surface area is defined as the surface traced out
by the centre of a water sphere rolled over the protein atoms)* while
imparting a continuous probability density to each discreetly selected
maximum. The application of larger Gaussian radii to approximate the
atomic origin of the tip—sample interactions or pre-filtering the data

before peakingleadstoloss of resolution or loss of peaking detection
of lower features, respectively (Extended Data Fig. 9). Because AFM
canreproduciblyimage atoms on solid surfaces, for example, on mica,
the piezo-elements that mediate the scanning of the AFM sample stage
have sub-atomic x-y position precision.

Height extraction

The real-space topographic height is extracted at each detection to
produce a set of N matrices containing height values for each value
of n. This matrix is then false-coloured to allow distinction between
height and probability information.

Merging height and detection probability

The false-coloured extracted height valuesin eachimage are then mul-
tiplied by the greyscale probability values in each image, and then
averaged for the whole image set to reconstruct an LAFM map.

LAFM workflow

The HS-AFM videos were 1st-order flattened to compensate for sample
stage tilt, drift-corrected and contrast-adjusted by laboratory-built
image analysis software in ImageJ and MATLAB (Mathworks). The
workflow used to calculate an LAFM map from molecular HS-AFM
raw datais outlined in Fig. 3. The key steps in the preparation for the
LAFM method are: extraction of molecular observations fromimages
(Fig. 3d, steps1-5),image expansion (Fig. 3d, step 6; see Methods sec-
tion ‘Image expansion’) and creation of a particle gallery with later-
ally and rotationally well aligned particles (Fig. 3d, steps 7-9). Several
image processing packages used for electron microscopy (for example,
ref. ) allow particle extraction and alignment, and could be used for
convenience. The particle gallery of pixel-expanded (0.5 A per pixel)
molecular observations is the entry for the LAFM algorithm, which
comprises detection of local maxima, height extraction and merging of
height and peaking probabilities (Fig. 3d, steps 10-11; Methods sections
‘Detection of local maxima’,‘Detection probability’, ‘Height extraction’
and ‘Merging height and detection probability’) in the final LAFM map.
The LAFM method is available as code in the form of an appendix and
as an ImageJ plugin (Supplementary Information).

LAFM simulations

2D and 3D LAFM simulations were performed using MATLAB. In 2D
simulations (x, z), various model surfaces were created with different
features depending onthe simulation (Fig. 1b; simulation parameters:
tip radius, 20 pixels; feature height, 3 pixels; feature width and sepa-
ration, 2 pixels; scanning noise, 0.05 (standard deviation, o), feature
fluctuation, 0.3 (0); the Gaussian surface topography (bottom row) has
0=20; varying parameters are used in Extended Data Figs. 2, 3, given
in the figure captions). Each topographic feature was given a height
higher than the surrounding baseline surface (set at zero). Normally
distributed random numberswithset standard deviation were then gen-
erated and added to eachx position containing atopographic feature,
increasing or decreasing the height. These random fluctuations were
added independently of neighbouring x positions. A semicircular tip
of defined radius was calculated numerically and then scanned across
the simulated 2D surface to create a tip-convoluted topography. To
simulate the AFM instrument noise, normally distributed random noise
wasthenaddedinthe zdirectionto thetip-convoluted topography at all
positions. Many randomly generated topographies were then analysed
using the LAFM algorithm to produce peaking probability and peaking
height traces. 3D simulations were run using a similar methodology,
however a hemispherical tip was scanned across 3D model surfaces
(Extended DataFigs. 4, 5, Supplementary Video 2).

Simulation data are compared to a theoretical resolution limit
(Extended Data Fig. 3) on the basis of geometric considerations, assum-
ingarigid pair of spikes separated by a distance (d) and a height differ-
ence (4h), contacted by a tip radius (R) without noise or fluctuations.



Theresolution limitis defined as being resolved if the probe is able to
reach a minimum (4z) below the height of the smallest spike®:

d=-/2R (JAz +-/Az+Ah).

The absolute resolution limit under these considerations occurs
when maxima can be detected at both spikes when 4z=0.

MD simulations of CLC

Construct for MD simulations. The molecular model of the CLC-ecl
dimer used in all MD simulations described in this work was based on
the X-ray structure PDB10TS>.. The protonation states of the titratable
residues at pH 7 were determined from constant-pH calculations with
the neMD/MC (non-equilibrium MD/Monte Carlo) approach®. The spa-
tialarrangement of the CLC-ecldimerin the bilayer was optimized using
the Orientations of Proteins in Membranes (OPM) database® and input
to the Membrane Builder module on the CHARMM-GUI web server®®
to assemble the protein-membrane system. The CLC-ecl dimer was
embeddedina 629-lipid membrane bilayer containing a~70:30 mixture
of POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) and
POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)),
solvated in150 mM KCl explicit water to achieve electroneutrality.

MD simulation procedures. The assembled molecular system was sub-

jected toaninitial equilibration phase using NAMD®’ (version 2.13) fol-
lowing two protocols. The first used the standard six-step equilibration
protocol provided by CHARMM-GUI. The other used alaboratory-built
multi-step equilibration, in which the backbone of the protein was first
fixed®®. Backbone constraints were gradually released in three 300-ps
steps of force constant change (1to 0.5 and to 0.1 kcal per mol ™ A2).
The final structures from the equilibration phases were subjected to
short (46 nsand 48 ns) unbiased MD with NAMD (2-fs time steps, vdw-
ForceSwitching option, and PME for electrostatic interactions)®. The
runs werein the NPT ensemble under semi-isotropic pressure coupling
at 24 °C. The Nose-Hoover-Langevin piston algorithm®® was used to
control the target P=1atm pressure with LangevinPistonPeriod =50 fs
and LangevinPistonDecay =25fs. Van der Waals interactions had a cut-
off distance of 12 A. The first phase of production runs (Production 1)
wasinitiated by all-atom velocity resetting and continued with simula-
tions of the system in 50 independent replicates of ~150 ns each (that
is, 100 replicates overall for a cumulative 15 ps) using ACEMD®., At the
conclusionof Production1, the trajectories were analysed to assess the
stability of the bound Cl”ions, and replicates with the most stably bound
CI” ions were identified. The final snapshots from 48 replicates were
selected as starting points for the next phase, Production 2, in which
the systems were simulated using NAMD with the parameters described
above for-120 ns (cumulative 5.76 p1s). Run parameters: timestep 4 fs,
vdwforceswitching on, switching on, switchdist 7.5, cutoff 9, fullelect-
frequency 2, langevindamping 0.1, pme on, and pmegridspacing 1.0.
Allthe simulations used the latest CHARMMZ36 force-field parameters
for proteins, lipids and ions.

Population density maps from the MD trajectories. To analyse the
height of protein atoms with respect to the membrane plane during
the MD simulations, the symmetry axis of the CLC-ecl dimer was set
perpendicular to the X-Y plane. In analogy to the LAFM method, the
highest z-coordinate values on the CLC extracellular surface were se-
lected for each frame to plot the position distribution map. Maps were
constructed by taking the 8,10 and 16 highest points in each frame,
leadingto the conclusionthat detection of more than 8 points resulted
insampling the neighbouring atoms of residues already includedin the
8-pointset. Thus, the distribution maps were obtained by pooling the 8
highest-z-coordinate peaks from each frame. Analysis performed sepa-
rately on Productionland Production2 trajectories did not show nota-
ble differences, and in the main text we show the results from the analysis

of 5.6 ps with 20-ps time strides of Production 2 trajectories. Because
both protomers of CLC-ecl were considered identical, we symmetrized
the data by aligning trajectories of each protomer onto another one.

MD simulation of annexin-V P13W-G14W

MD simulations of the mutant annexin-V-P13W-G14W were conducted
with Gromacs2019.1%, using the Amber03 force field®. The initial
molecular model of annexin-V-P13W-G14W was generated using the
X-ray structure PDB1HVD, and the double mutationintroduced using
the program Coot®*. This model was then solvated with -40,000 water
molecules in accordance with the Tip3P water model®, and neutral-
ized with Na"and CI” ions to a concentration of 150 mM. The system
was placed in a dodecahedron box, with a minimal distance of 1.0 nm
between protein and box wall. Van der Waals interactions were imple-
mented with a cutoff at 1.0 nm, and long-range electrostatic effects
were treated with the particle mesh Ewald method. The protein-solvent
modelwas then put through four rounds of geometry optimization and
energy minimization, followed by a 50-ps protein position-restrained
equilibration and an additional 50 ps of unrestrained equilibration.
The system was then heated to 300 K using a velocity-rescaling ther-
mostat®® (50 ps), and equilibrated to a constant pressure of 1bar using
aParrinello-Rahman barostat (50 ps). Following these equilibration
procedures, atime trajectory of 100 ns was simulated at constant tem-
perature and pressure, using time steps of 2 fs and the same thermostat
and barostat. The datawere then symmetrized along the threefold axis
by aligningtrajectories of each protomer one onto the other. To build
anannexin-V-P13W-G14W mutant structural model that represents the
rotamer conformations of the mutated Trp residues, clustering analysis
ofthe simulation trajectories was performed with Gromacs (g_cluster,
gromos algorithm)®, with a root-mean-square deviation cut-offof 0.2
withrespect tothe mutated Trp residues in positions13-14. Out of the
10 resulting clusters, the most representative structure was extracted
fromthe centre of the most populated cluster (containing ~-50% of total
protein structures).

Data availability

The datasets generated and/or analysed during the current study are
available from the corresponding author on reasonable request.

Code availability

The custom-written scriptimplemented in Image]J to create LAFM maps
fromastack of aligned and expanded imagesis available in Supplemen-
tary Information. MATLAB codes used in2D and 3D LAFM simulations
are also available in Supplementary Information.
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Extended DataFig.1|Localization principlesin PALMand LAFM.

a, Adiffraction-limited image/profile of two fluorescent molecules located at a
separation distance smaller than the diffraction limit. b-d, Spatially resolved
positions of the fluorophores after application of optical localization methods
suchas PALM or STORM. The position of each fluorophore canbe spatially
localized with high precisionif the emitted signal can be isolated from
neighbouring fluorophores, permitted by stochastic activation of the right (c)
orleft (d) fluorophore. e, A tip-convoluted AFMimage of two structural
featureslocated at aseparation distance smaller than the sharpness of the AFM
tip. f-h, Spatially resolved positions of structural features after application of
LAFM. Stochastic height fluctuations allow the position of each feature tobe
localized by the protruding height signal of the right (g) or left (h) feature
peaking over the neighbouring features. Ina-h, top panels show 2D intensity/
topographyimages and bottom panels show intensity/height profilesacross

0

1 probability [ p ]

thecentralxline of the top panels. i, j, LAFM false-colour scale used to encode
topography and localization peaking probability information. i, The LAFM map
isencoded by afalse-colour scale inwhichred (R), green (G) and blue (B) values
follow the relations: R(h) =—h?/255+2h—2; G(h) =Rh/255; B(h) = h{sin[0.036(h +
127)]1+1}/2, where his the topography scale and RGB values range between
0and 255 (minimum to maximum). The ratio of green tored (G/R) increases
linearly with height (dashed line), whereas the blue valueincreases and
oscillates to produce a visually informative false-colourscale.j, Toincorporate
the probability, each picked locationis given a Gaussian probability density
function that peaks at value 1. To generate the final LAFM map, the peaks of all
molecules are merged, and thus an average topography height and related
peaking probability (grey scale; bottom) atany locationis calculated, resulting
ina2D false-colour tablein which each pixel carries the fullinformation about
topography and the likeliness of atopography to be detected at this location.
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Extended DataFig.2|Simulations of varying cleft height and cleft width, surface feature pixel has feature fluctuation standard deviation of 0.3, and
and detection of featuresinvarying topographicsuperstructures by the fluctuations are independent of neighbouring pixels. ¢, Peak detection of
LAFMalgorithm. a, Example average surface topography (top) and peaking surface features on Gaussian curved surfaces. Features are 2 pixels wide

probability (bottom) for 24, 8 and 2 pixels cleft width and cleft heights of 0,90 interspersed by 2 pixels multiplied by Gaussian functions with =10, 20,40 and
and100%. At aseparation of 2 pixels (cleft width), averagingis unable to detect aflatsurface, respectively, scanned by atip with aradius of 20 pixels

any topography change as the cleft heightis changed, because the tip never (noise, 0.3).d, e, Surface plots of the height of the model surface (d) and the
probesinto the cleft.In contrast, the LAFM method reports lower peaking relative peaking probability compared to the probability at the central peak (e)
probabilitiesin thisregion separating the two features. The detection foreach Gaussiansurface topography up to adistance of 8 peaks fromthe

probabilityinthe cleft areas depends on the tip radius, feature separation and central peak. The probability of peak detection is affected by neighbouring
height fluctuation, and is therefore not linear. The height detectionin the cleft peaksandtipradius, leadingto acorrect representation of the height,buta
areasisthesameasthe topography (see Fig.1b). b, Surface plot showing the nonlinearrelation between surface height and peaking probability. There is
peaking probability in the cleft region relative to the pillar positions forvarying littletonolateral error of localization position detection on peaks of different
cleft heights and widths. In the simulations the tip radius is 20 pixels and each local height.
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Extended DataFig.3|Simulations offeature detection withvarying
topographicheightby the LAFMalgorithm. a, Schematic of two sharp features
inwhichthefeature separation, d, and height difference, Ah, are varied by
changingthe position/height of the secondary feature. Feature fluctuations are
thensimulated by adding or subtracting arandomly generated height (normally
distributed), f, withaset standard deviation, f,4, before being scanned by amodel
AFMtip of radius R. b, Example simulations of topographieswithd=4, Ah=1(top)
andd=10,Ah=3 (bottom),scannedbyatip witharadiusR=20, forvarying
amounts of feature fluctuation fromleft toright (f,;=0,0.1,0.3and 0.6). Coloured
linesare threerepresentative simulated topography traces and thick grey lines
show the average scanned topography (n=2,000). Panels above eachtopography
plotgive the LAFM peaking probability ateach positioninthetopography.c,
Matrix of simulations plotted asanimage in which each pixel representsthe LAFM
peaking probability of the secondary feature for adifferent height difference-

Lateral separation (d)

Lateral separation (d)

separation distance combination. The black pixelsindicate zero probability and
therefore no peak detection. Also plotted are the theoretical resolution limits
accordingtogeometrical arguments allowing the apex of the tip to contact the
feature (see Methods section ‘LAFM simulations’) and the average AFM maximum
resolution, according towhetheralocalmaximum canbe detected for the
secondary featureinthe average topography.d, Lateral position of peaking
probability for the different height difference-separation distance combinations.
Eachcolouredlinerepresentsadifferentlateral separationand error barsshowthe
peakwidth (+s.d.). e, Matrix of simulations plotted as animage in which each pixel
representsthe difference betweenthe detected LAFM average heightand the
model heightfor each height difference-separation distance combination.Inc-e,
eachrowfromtoptobottomrepresents adifferent feature fluctuationstandard
deviationof 0,0.1,0.3and 0.6.For eachfluctuationlevel, 286 Ah-d combinations
wereeachsimulated 2,000 times.
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Extended DataFig. 4 |Simulations to assess the ability toresolve two
spatial featuresin LAFM maps. a-e, Atipwith varyingtip radius r (here100
pixels) isscanned over two different simulation surfaces featuring topographic
lines (b) or topographic points (c). These lines and points have asize of 1 pixel in
thex,yandzdirections,and areinterspacedby1,2, 3,4 and 5 pixels. This
procedure, including sample fluctuations and contouring noise, resultsin
individual simulated topography images for the line topography (d) and the
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pointtopography (e) thatare either averaged or analysed using the LAFM
algorithm (average AFM and LAFM maps result from merging 2,000 simulated
topographies). f, Surface plot of the simulated LAFM map resolution
determined by FRC asa function of the number of merged images and
simulation tip radius, showing that when -100 particles are analysed, features
of size-1/40 (for ablunttip) to-1/5 (for asharp tip) of the tip radius can be
resolved.
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Extended DataFig. 5|Influence of tip radius and number of merged
particles for the calculation of LAFM maps. First column: simulation
experimentsinwhich the surface topography (S) witharing diameter of 35
pixels (top) is probed by five different tips, four spherical tips with increasing
radius (1-4,R=10,100,300, 600) and anirregular tip with a‘double-tip’
protrusion (R=40, peak to peak =12 pixels). Second column: simulated
individual raw dataimages (comprising random noise) of the topography (S)
contoured by the various tips. Third column: average image of 500 simulated
images. Fourth column: LAFM map derived from the same 500 simulated
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images. Thenumbersinthetopright corner of eachimage are the normalized
cross-correlation values (CCV[0,1]) between theimage and the surface model.
Thegraphs show the dependence of the CCV between average or LAFM maps
withthetopographyasafunctionofthe number of merged particles. Inthe
case of the sharpest tip (top row), the LAFM map CCV plateaus after merging
~-50 molecules. Right: analysis of localization map image quality and CCV for
thelargesttip (4) when mergingup to 10,000 particles. Inthe case of the
bluntest tip, the LAFM map CCV plateaus after merging ~500 particles.
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Extended DataFig. 6 | Resolution comparison between averaging, peak featuresintheaverage AFM, probability and LAFM probability maps. The
probability and LAFM methods applied to AFMimages of AqpZ. featuresinthe twoline profiles are consistently resolved near and below the
a, b, Average AFMimages at the original pixel sampling of 3.3 Aper pixel (@)and  highest theoretical resolution based on the discrete sampling of asingleimage
after bicubicinterpolationto 0.5 A per pixel (b). c, d, Peak probability maps (raw data Nyquist frequency is 1/(6.6 A)). j, Left: alignment of the nine available
calculated at the original pixel sampling of 3.3 A per pixel (c) and after bicubic AqpZ X-ray structures. The structures canbe grouped withrespect to the
interpolationto 0.5 A per pixel (d) (n=128 for average height and probability side-chain orientation of E31in the a-loop. Middle: surface representation
maps). e-g, LAFM probability maps calculated at 0.5 A per pixel with1.4-A overlay of IRC2and 2ABM, highlighting how the different E31rotamers alter
Gaussian peaking probability distribution using 128 AqpZ particles with the surfacestructure. Right: representative structures (top) and surface
highest correlation to the average map (e) or using two randomly generated representations (bottom) of IRC2and 2ABM. The 2ABM structure features an
independent128-particle sets fromaset of 256 to create twoindependent E31conformation that fits closely the reconstructed LAFM map (g and
half-maps (f,g). h, i, Line profilesalong arrow1 (h) andarrow2 (i) inband g, Fig.2a,b), suggesting thatin the membrane, physiological bufferand room-

measuring height (for average AFM images) and probability across structural temperature E31isinaconformation similar tothe2ABM structure.
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Extended DataFig.7 | LAFM mapresolution and quality assessment.

a, b, AFMimage frames of AqpZ (a) and A5 (b) are alternately extracted into two
separateimage sets (Set Aand Set B). The LAFM algorithmis then applied to
eachimagesetto produce twoindependent LAFM half-maps of AqpZ (left) and
AS5 (right). FRC analysis of the LAFM half-mapsis then used for quantification of
the powerasafunctionofthespatial resolutioninthe AqpZ dataset (left) and
A5 (right). Dashed and dotted lines show the 1/2-bitand 3o criteria, respectively.
c,Image froman HS-AFMvideo of ASinapé lattice (centre), showing that the
ASlattice contains trimers of two fixed orientations labelled U and D. The two
AS5trimer typesUand D are scanned with different relative orientation with
respect to the HS-AFM fast-scan axis. Extracted images of the trimersin each of
thetwo orientations areshownoneither side for set U (up; left) and set D (down;
right).d, Average AFM and LAFM maps filtered to 5 A of A5 trimersin the U
(n=700)and D (n=697) orientations. e, Structural comparisonbetween LAFM
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mapsobtained fromtheindependent differently orientated A5 and the
probability difference map (image U has been rotated 180° to allow direct
comparison). f, Analysis of A5 P13W-G14W mutant (data acquisition: A5
P13W-G14W on aDOPC/DOPS (1/1) bilayerimaged by HS-AFM inamplitude
modulationmode; scanspeed, 1frame persecond;scanarea, 120 nm; image
size, 300 pixels; pixel sampling, 4.0 A per pixel). Average AFM map (left), LAFM
map (middle; pixel sampling, 0.5 A per pixel; number of particles n=300,
filtered to 4.5A) and surface representations of an A5 P13W-G14W structural
model.g, Detail views of the LAFM maps (top) and structures (bottom;
MD-refined structural model of A5 P13W-G14W and X-ray structure of A5). The
mutations appear toinduce conformational rearrangements in the N-terminal
region (residues 1to15), withanincreased height and peaking probability at
positions13-14 inthe LAFM map. h, FRC analysis of the A5 P13W-G14W LAFM
map.
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Extended DataFig. 8 | Extracellular sidedness assignment of CLC-ecl.
a,b,HS-AFMvideo frames of CLC-eclin a POPE:POPG (ratio of 2:1w-w) bilayer:
molecules protrudingjust alittle and S-shaped molecules protruding farther
fromthe membrane were detected. ¢, Section analysis of the two molecules
shown inb: one molecular species protrudes only -4 A from the bilayer,
whereas the S-shaped representation of the CLC-ecl protrudes -11 A from the
membrane surface.d, e, Surface representations of theintracellular (d) and
extracellular (e) faces of the X-ray structure (PDB10TS). Based on the structural
comparison, we assigned the S-shaped CLC-ec1 HS-AFM topography to the
extracellular face. Only the S-shaped extracellular-face molecules were
integrated into the LAFM analysis. f, Alignment of CLC-ecl X-ray structures
(PDB:10TS, 2FEE, 2H2P, 3DET, 2HTK, 4KKB) exhibiting essentially identical
conformations, leading to the suggestion that the transport mechanism
implicates only minor side-chain motion. NMR, computational and
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biochemical studies have suggested larger-scale movements of helices N*%, 0®
and B¥ intransport. Protruding residues detectable by LAFM are shown in
sticksand are labelled. g, Root-mean-square fluctuations (RMSF) of the
backbone (left) and the side-chain (right) atoms of membrane-protruding
extracellular CLC-eclresidues from the analysis of MD trajectoriesat pH7. The
colouredblocks demarcate the groups of residues attributed to the four major
LAFM and MD population map peaks, and the key residues are labelled. h,Key
residues contributing to the peak observationsin LAFM mapsinthe PDB10TS
structure (middle and top right panels). The black shadowed plane illustrates
the average position of the lipid phosphate atoms throughout the MD
trajectories and thus represents the membranelevel. Surrounding images
(labelled1to 4) show representative snapshots from MD simulations
highlighting re-orientations/fluctuations of the side chains of the residues
contributing to the LAFM-detected peaks.
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Extended DataFig. 9| Analysis of theinfluence of the 2D Gaussian radius to method resultsinalossofinformation, particularly from features that are

the peaking events and data pre-filtering on LAFM map reconstruction. smaller or of lower height. Whereasincreasing the 2D Gaussian radius applied
Horizontal panels show reconstructed AqpZ LAFM maps of peaking detections ~ toeachlocalization during the LAFM method resultsinaloss of lateral
withvarying 2D Gaussianradiiof 0.7A,1.4A,2.8 A, 4.2 Aand 5.6 A (without any resolutionin the reconstructed LAFM map. Highlighted in red is our standard
pre-processing Gaussian filtering). The vertical panels show reconstructed method for constructing LAFM maps, using no pre-filtering and a peaking
AqpZ LAFM maps of images pre-processed with varying Gaussian filtersof 0 A, detection 2D Gaussian of 1.4 A, approximating the solvent-accessible surface of
1A,2A,3Aand 4 Awhilevarying the peaking detection 2D Gaussianradius. The ~ atoms.

comparisonshows thatapplying afilter to the databefore applying the LAFM
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Extended Data Table 1| Set of available PDB structures of
CLC-ec1at various conditions

PDB ID pH Mutations lons BB RMSD
A)
10TS 9.5 NaCl reference
1KPK 8.5 Na,SO, / Li,SO, 0.785
1KPL* 4.6 M26L/C264V Na,SO, / Li,SO, 1.169
10TT 9.5 E148A NaCl 0.465
10TU 9.5 E148Q NaCl 0.589
2EXY 8.5 E148Q TART 0.646
2EZ0 9.5 S107A/E148Q/Y445A NaBr 0.722
2FEC 75 E203Q NaBr 0.425
2FED 75 E203Q NaCl 0.427
2FEE 75 NaBr 0.362
2H2P 75 KSCN 0.515
2H2S 75 E148A KSeCN 0.491
2HLF 9.5 Y445E NaBr 0.378
2HT2 8.5 Y445H TART 0.654
2HT3 75 Y445L TART 0.581
2HT4 8.0 Y445W NaBr 0.533
2HTK 8.5 Y445A TART 0.378
2R9H 9.5 Q207C NaCl/ TART 0.558
3DET 55 E148A/Y445A KCI 0.415
3EJY 95 NaBr 0.425
3EJZ 8.5 E203V NaBr 0.426
3NMO* 9.5 LiNO, 0.565
4ENE 8.5 CaCl, 0.442
4FTP 95 E202Y 0.877
4KJP 9.5 0.412
4KK5 9.0 NaF / NaBr 0.282
4KK8 8.5 E148Q NaF 0.422
4KKB 7.0 E148A NaF / NaBr 0.454
4KKC 9.0 E148A NaBr 0.679
5HD8 9.0 D417C TART 0.597

The root-mean-square deviation (RMSD) values are calculated for backbone atoms with
respect to the PDB 10TS structure as reference. All CLC X-ray structures exhibited essentially

identical conformations.

*A low-pH structure of CLC from Salmonella typhimurium.

tStructure of monomer.
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