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For any 2 ≤ r < ∞, we prove that the Newhouse phenomenon 
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the stabilization of some heterodimensional cycles for any 
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renormalization scheme. We also continue the study of the 
paradynamics done in [6,7,1] and prove that parablenders 
appear by unfolding some heterodimensional cycles.
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0. Introduction

One of the most complex and rich phenomenon in differentiable dynamical systems 
was discovered by Newhouse [32,33]. He showed the existence of locally Baire-generic sets 
of dynamics displaying infinitely many sinks which accumulate onto a Smale’s horseshoe 
(a stably embedded Bernoulli shift). This property is the celebrated Newhouse phe-
nomenon. It appears in many classes of dynamics [15,3,19,15,21,9]. Following Yoccoz, 
this phenomenon provides a lower bound on the wildness and complexity of the dynam-
ics, rather than a complete understanding on the dynamics. Indeed from the topological 
or statistical viewpoints, these dynamics are presently extremely far from being under-
stood; it is not clear that the current dynamical paradigm would even allow one to state 
a description of such dynamics.

Since the early 70’s, the problem of the typicality of the Newhouse phenomenon has 
been fundamental, see for instance [40]. But the notion of Baire-genericity among dynam-
ical systems is a priori independent of other notions of typicality involving probability. 
That is why many important works and programs [43,39,37,34–36,22] wondered if the 
complement of the Newhouse phenomenon could be typical in some probabilistic senses 
inspired by Kolmogorov.

In his plenary talk ending the ICM 1954, Kolmogorov introduced the notion of typi-
cality for analytic or finitely differentiable dynamics of a manifold M . He actually gave 
two definitions: one was designed to decide that a phenomenon is negligible, the other 
one to decide that a phenomenon is typical. He called negligible a phenomenon which 
only holds on a subset dynamics sent into a Lebesgue null subset of Rn by a finite num-
ber of [non trivial] real valued functionals (Fi)0≤i≤n on the space of dynamics. To decide 
if a phenomenon B is typical, he proposed starting with a dynamics f0 presenting the 
behavior, and then to considering deformations fa of the form

fa(z) = f0(z) + a · φ(x, a) ,

where φ is a function of both x and a, of the same regularity as f (e.g. analytic, smooth 
or finitely differentiable). Then he called the behavior B typical, or stably realizable if, 
for every a small enough, the system fa displays this behavior. This was presented as a 
criterion for detecting the importance of a phenomenon:
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Fig. 1. Bicycle.

Any type of behavior of a dynamical system for which there exists at least one example 
of stable realization should be recognized as being important and not negligible.

Kolmogorov, ICM 1954.

In this work we show that the Newhouse phenomenon is typical according to the 
following notion inspired by Kolmogorov idea and subsequent developments [26,24,30,28]:

Definition 0.1 (Germ-typicality). A behavior B is Cr-germ-typical in U ⊂ Cr(M, M), if 
there exist a Baire-generic4 set R in the space of Cr-families5 f̂ = (fa)a∈R of maps in 
U and a locally constant function δ : R → (0, +∞) such that for every f̂ ∈ R and for all 
|a| < δ(f̂), the map fa presents the behavior B.

Newhouse has shown that the local Baire-genericity of his phenomenon occurs near 
any diffeomorphism exhibiting a homoclinic tangency. In a similar way, we show that 
the germ typicality of the Newhouse phenomenon occurs near any system displaying a 
simple configuration that we call a bicycle (see Fig. 1):

Definition 0.2. A local diffeomorphism displays a bicycle if one of its saddle points has a 
homoclinic tangency and a heterocycle. A saddle point P displays a heterocycle if Wu(P )
contains a projectively hyperbolic source S and if the strong unstable manifold Wuu(S)
intersects W s(P ). The bicycle is dissipative if the dynamics contracts area along the 
orbit of P .

Since a bicycle is a simple configuration, in many cases it may be easy to obtain, as 
we will see in Example 1.12 for the planar dynamics (x, y) �→ (x2 − 2, y).

The main theorem of this work is the following:

Theorem A. For every 2 ≤ r < ∞ and for every local Cr-diffeomorphism of a surface 
f ∈ Diffr

loc(U, M) which displays a dissipative bicycle, there exists a (non empty) open 

4 i.e. a set which contains a countable intersection of open and dense sets.
5 In Section 1.1, we will precise the topological space of Cr-families involved.
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set Ur ⊂ Diffr
loc(U, M) whose closure contains f and where the Newhouse phenomenon 

is Cr-germ-typical.

Following Kolmogorov viewpoint, this theorem strengthens the evidence of the im-
portance of the Newhouse phenomenon. This work is a new step in the aforementioned 
fundamental program towards the description of the typicality of the Newhouse phe-
nomenon. It is based and goes beyond the recent work [6,7]. The later discovered that 
there exists a locally generic set of Cr-families of dynamics which display Newhouse 
phenomenon for every parameter. It holds inside an open set of families satisfying well-
chosen conditions on the unfolding (direction, curvature, etc) enabling to obtain robust 
degenerated bifurcations. In this work we show that these conditions actually hold for 
all typical families taking values inside an open set of systems.

This enables to show the typicality of the Newhouse phenomenon in a much stronger 
sense: the typicality locus depends only on the dynamics and not on its unfolding. Finally, 
another main point of the present work is to bring to light a very simple configuration 
(the bicycle) nearby which germ-typicality of the Newhouse phenomenon holds true. 
In other words, the results are about which simple bifurcation are culprit of the germ-
typicality of the Newhouse phenomenon: we are not only showing that the Newhouse 
phenomenon holds in a strong sense but also providing simple mechanisms that produces 
it.

Locus of robust phenomena: stabilization of heterodimensional cycles

The idea to associate a phenomenon to a homoclinic configuration goes back to the 
work of Birkhoff [10] where he showed that a transverse homoclinic intersection leads to 
infinitely many periodic points.

In [31], Newhouse first showed that it is possible to get a (non-empty) open set of sur-
face diffeomorphisms exhibiting homoclinic tangencies (these diffeomorphisms exhibit 
C2-robust homoclinic tangencies), and then in [32] that this open set can encompass 
a Baire-generic subset formed by dynamics displaying the Newhouse phenomenon (in-
finitely many attracting cycles). To obtain such open sets of diffeomorphisms with robust 
homoclinic tangencies, Newhouse considered horseshoes with large fractal dimension 
(large thickness in his own nomenclature). Later, in [33], Newhouse proved that from 
[the configuration defined by] a homoclinic tangency, a perturbation of the dynamics 
displays a robust homoclinic tangency (see Theorem 1.1).

The homoclinic and heteroclinic configurations and their robust versions play an im-
portant role when one tries to classify the space of differentiable dynamical systems, as 
it has been proposed by Palis [34] and Bonatti [11], and developed by two of the authors, 
see for instance [38,17,16].

For local diffeomorphisms, Newhouse thick horseshoes can be replaced by a more 
topological object, called blender. They were introduced by Bonatti and Diaz [2] for 
diffeomorphisms in dimension larger than or equal to three and can be recast in the 
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context of local diffeomorphisms of surface as hyperbolic compact sets such that the 
union of their local unstable manifolds covers Cr-robustly a (non-empty open set of the 
surface (see Definition 1.4). In the same spirit as Newhouse’s work, one can wonder, 
nearby which homoclinic configurations do blenders appear. Bonatti, Diaz and Kiriki 
[4] proved that heterodimensional cycles (which, in the case of local diffeomorphisms 
of a surface, correspond to cycles between a saddle and a source) play that role when 
one considers the C1-topology: a C1-perturbation of a heterodimensional cycle generates 
open sets of dynamics exhibiting blenders and C1-robust heterodimensional cycles. In 
the present paper, we extend this result to the context of more regular dynamics:

Theorem B. For every 1 ≤ r ≤ ∞ or r = ω, consider f ∈ Diffr
loc(U, M) exhibiting a 

heterocycle associated to a saddle P . Then there exists f̃ that is Cr-close to f , with 
a basic set K containing the hyperbolic continuation of P , and which has a Cr-robust 
heterocycle.

While communicating our result, Li and Turaev have informed us that they indepen-
dently proved a more general version of Theorem B for higher dimensional systems using 
different techniques [29]. Diaz and Perez have also recently obtained [20] a similar sta-
bilization of heterodimensional cycles for Cr-diffeomorphisms in dimension 3, assuming 
in addition that one of the periodic points exhibits a homoclinic tangency.

Renormalization nearby heterocycles

In order to prove Theorem B (in Section 2.1), we first show in Proposition 2.1
that nearby heterocycles there are heterocycles satisfying an additional property. These 
configurations are called strong heterocycles and are defined in Definition 1.3. Then 
Proposition 2.2 introduces a renormalization nearby strong heterocycles to obtain nearly 
affine blenders.

This renormalization consists in selecting two inverses branches g+ and g− of larges 
iterates of the dynamics, which are defined on boxes nearby the heterocycle and then 
to rescale Rg− = φ−1 ◦ g− ◦ φ, Rg+ = φ−1 ◦ g+ ◦ φ the two latter branches via a same 
coordinate change φ. The maps Rg−, Rg+ are close to affine maps and define a blender, 
which will be called nearly affine blender, see Definition 1.7.

Theorem B is restated more precisely in Section 1.4. Propositions 2.1 and 2.2 are 
proved in respectively Sections 3 and 5. This renormalization is one of the main technical 
novelty of the present work. It is further developed to obtain Theorem D (in Section 1.7), 
a parametric counterpart of Theorem B. Theorem D is essential to prove Theorem A. 
It states that nearby paraheterocycles there are nearly affine parablenders. These are 
objects of paradynamics.
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Paradynamics

To explain the role of these parametric blenders we have to go back to the paper [6]: 
it considered parameter families of local diffeomorphisms on surfaces and introduced the 
notion of paratangencies: a homoclinic tangency that is “sticky” (or unfolded in “slow 
motion”). That phenomenon implies that the attracting periodic points created by the 
unfolding of the tangency have “a long life in the parameter space”. Moreover, if any 
perturbation of a parameter family still exhibits a dissipative homoclinic paratangency 
for all parameters (in other words the family exhibits robust homoclinic paratangencies, 
the analog in the space parameter families of the robust homoclinic tangencies in the 
space of local diffeomorphisms) then, after small perturbation, the new family displays 
infinitely many attracting periodic points for all parameters (see Lemmas 2.15 and 2.16).

To provide robust paratagencies, [6] introduced a parametric version of the blenders, 
called Cr-parablenders, see Definition 1.17. To grasp the idea behind this notion, first 
recall that any hyperbolic compact set of a map has a unique continuation for a nearby 
system. Any point in the hyperbolic set has a unique continuation as well (see Section 1.1
for details) and the same holds true for its local stable and unstable manifolds. When the 
parameter family is of class Cr, the continuation of a point defines a curve of class Cr. 
The key property of a Cr-parablender, is that for an open set of parametrized points in 
the surface, of the local unstable manifold of the parablender moves in slow motion with 
respect to the parametrized point. This property can be pushed forward to the unfolding 
of homoclinic tangencies and allows to create robust homoclinic paratangencies. For that 
purpose, it is easier to assume that the collection of local unstable manifolds covers a 
source homoclinically linked to the parablender.

In [1], the notion of parablender has been recasted: parameter families of maps natu-
rally induce an action on Cr-jets and the parablenders can be viewed as blenders for this 
dynamics on the space of jets. This viewpoint allowed us to systematize the construction 
of parablenders: in [1], using Iterated Function Systems, a special type of parablenders 
called nearly affine parablenders (see Definition 1.18) is introduced.

In the present paper, we tried to follow Newhouse’s approach and looked for a simple 
bifurcation that generates “robust paratangencies”. According to [7], it suffices to obtain 
a parablender covering a source and linked to a dissipative homoclinic tangency. Sim-
ilarly to [4], one can wonder if the parametric unfolding of a heterodimensional cycle 
may generate a parablender. We answer by proving that the unfolding of a homoclinic 
tangency related to a heterocycle (a bicycle) is the sough configuration which produces 
robust paratangencies.

To precise, first we prove that combining a homoclinic tangency with the heterocycle, 
one obtains alternate chain of heterocycles (a chain of heterocycles involving saddles with 
negative eigenvalues, see Definition 2.7). The unfolding of that special chain produces a 
paraheterocycle (a heterocycle that is unfolded in “slow motion”, see Definition 1.15 and 
Theorem C) and which then gives birth to nearly affine parablenders (see Theorem D) 
using the aforementioned renormalization technique.
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Open problems

Paradynamics has been useful to prove that several complex and interesting phenom-
ena are robust along a locally Baire-generic set of families of dynamics, see [5,27,13,12]. 
The tools brought by our work should enable to show the Cr-germ-typicality of these 
phenomena.

Note that if a behavior B is Cr-germ-typical in U then it occurs on an open and dense 
set of parameters for a Baire-generic set of Cr-families (fa)a of dynamics fa ∈ U . But it 
does not imply that the Lebesgue measure of this open and dense set of parameters is 
full. In particular, it remains open whether the Newhouse phenomenon is locally typical 
with respect to some interpretations of Kolmogorov typicality given by [24], [8] or [26, 
Chapter 2, section 1]. The latter is slightly stronger than:

Definition 0.3 (Arnold prevalence (soft version)). For r, k ≥ 1, a behavior B is Cr-k-
Arnold prevalent in U ⊂ Cr(M, M), if there exists a Baire-generic set R of Cr-families 
(fa)a∈Rk formed by maps fa ∈ U such that for every (fa)a ∈ R, for Lebesgue almost 
every parameter a ∈ Rk, fa presents the behavior B.

A notion of probability-based typicality has been introduced by Hunt, Yorke and Sauer 
[25], and then developed by Kaloshin-Hunt in [24]; it was used by Gorodetski-Kaloshin 
[22] to study the typicality of the Newhouse phenomenon, but leaves open the problem 
of the typicality of Newhouse phenomenon following the latter notions.6

Let us emphasize that the important Arnold-prevalence or the germ-typicality of 
the Newhouse phenomenon are open for the C∞ or analytic topologies. Hopefully the 
tools developed in this present work seem to us useful for progress on these important 
problems.

On a different level, one may ask if our Theorem A would be valid only assuming 
a dissipative homoclinic tangency. More generally: Are there other configurations which 
imply the typicality of the Newhouse phenomena in a strong sense? A converse statement 
would be also interesting, but probably more difficult.

We are grateful to Sébastien Biebler and James Yorke for many comments on our 
text.

1. Concepts involved in the proof

In this section we state the main results which are used to obtain Theorem A.
In Section 1.1 we recall classical definitions about hyperbolicity in the particular con-

text of local diffeomorphisms. In Section 1.2 and Section 1.3 we recall the concepts of 

6 The original notion of typicality defined by [25] is defined for Banach spaces; its counterpart for Banach 
manifolds (such as the space of dynamics on a compact manifold) is so far not unique (there is no version 
of this notion which is invariant by coordinate change, contrarily to germ-typicality or Arnold prevalence).
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homoclinic tangency and heterodymensional cycle between fixed points with different 
indices and the classical results of Newhouse and Bonatti-Diaz associated to these bifur-
cations. In Section 1.4 we recall the notions of blenders and nearly affine blenders and we 
state the main theorem that relates cycles and blenders (Theorem B). In Section 1.5, we 
state precisely the definition of bicycle (that combines a homocycle and a heterocycle) 
and we show in Corollary B′ that from bicycles one can obtain robust bicycles (it is 
worth to mention that this is done in any Cr-regularity including the analytic one).

In Section 1.6 and Section 1.7 we give the parametric version of the previous results. 
In Section 1.6 we introduce the notion of paraheterocycle and explain how by unfolding 
heterocycles associated to saddles with negative eigenvalues one can obtain a parahete-
rocycle (Theorem C). In Section 1.7 we introduce the notions of affine and nearly affine 
parablenders and explain how they emerge from paraheterocycles (Theorem D).

1.1. Preliminaries

In the following M is a compact surface, U an open subset whose boundary is a 
smooth submanifold and Diffr

loc(U, M) for r ∈ N ∪{∞}, denotes the restrictions to U of 
Cr-map f : U → M whose differential Dxf is invertible at every x ∈ U . Endowed with 
the Cr-topology, this is a Baire space.

For some results, one will also assume that M is a real analytic surface and let M̃
be a complex extension. One then considers the space Diffω

loc(U, M) of real analytic 
maps endowed with the analytic topology defined as the inductive limit of the spaces of 
holomorphic maps defined on neighborhoods of M in M̃ .

Now let us precise the space of Cr-families parametrized by the interval I = (−1, 1). 
For the sake of clarity, we will focus only on the space Dr(I × U, M) of families (fa)a∈I
which are the restriction of a map (a, x) �→ fa(x) of class Cr on I × U , that we endow 
with the uniform Cr-topology. However all our arguments will be also valid for the 
smaller space Cr(I, Diffr

loc(U, M)) endowed with the topology of Cr-maps from I into 
Diffr

loc(U, M).
An inverse branch for f ∈ Diffr

loc(U, M) is the inverse of a restriction f |V of f to a 
domain V ⊂ U such that fn|V is a diffeomorphism onto its image.

A compact set K is (saddle) hyperbolic for f if it is f -invariant (i.e. f(K) = K) and 
there exists a continuous, Df -invariant subbundle Es of TM |K which is uniformly con-
tracted and normally uniformly expanded. More precisely, there exists N ≥ 1 satisfying:

‖Dzf
N |Es

z‖ < 1/2 and ‖pEs⊥ ◦Dzf
N (v)‖ ≥ 2‖v‖ , ∀z ∈ K, v ∈ Es⊥

z ,

where Es⊥ is the subbundle of TM |K equal to the orthogonal complement of Es
z and 

pEs⊥ the orthogonal projection onto it. The hyperbolic set K is a basic set if it is 
transitive and locally maximal. Then K is equal to the closure of its subset of periodic 
points.
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Any point x ∈ K has a stable manifold W s(x) (also denoted W s(x; f)) which is 
an injectively immersed curve. The map f |K being in general not injective, a single 
point x ∈ K has in general as many unstable manifolds as preorbits x. We denote 
such a submanifold by Wu(x), or Wu(x; f). The space of preorbits x is denoted by ←−
K := {x = (xi)i≤0 ∈ KZ− : f(xi−1) = xi}. The space 

←−
K is canonically endowed 

with the product topology. The zero-coordinate projection is denoted by πf : ←−K → M ; 
it semi-conjugates the shift dynamics σ on 

←−
K with f .

It is well known (see for instance [14]) that a hyperbolic compact set is C1-inverse 
limit stable: for every C1-perturbation f ′ of f , there exists a (unique) map πf ′ : ←−K → M

which is C0-close to πf ′ and so that:

πf ′ ◦ σ = f ′ ◦ πf ′ .

The image Kf ′ := πf ′(←−K) is also a hyperbolic set. Note that Kf = K. Also Kf ′ is called 
the hyperbolic continuation of K.

Two basic sets are (homoclinically) related if there exists an unstable manifold of the 
first which has a transverse intersection point with a stable manifold of the second, and 
vice-versa. Then by the Inclination Lemma, the local unstable manifolds of one basic set 
are dense in the unstable manifolds of the other.

An f -invariant compact space is projectively hyperbolic expanding if there exists a 
continuous Df -invariant subbundle Ecu of TM |K which is uniformly expanded and 
normally uniformly expanded. More precisely, there exists N ≥ 1 satisfying:

‖Dzf
N |Ecu

z ‖ > 2 and ‖pEcu⊥◦Dzf
N (v)‖ ≥ 2·‖v‖·‖Dzf

N |Ecu
z ‖, ∀z ∈ K, v ∈ Ecu⊥

z .

If it is transitive and locally maximal, it is equal to the closure of its subset of periodic 
points. To any x ∈ ←−

K , one associates a strong unstable manifold Wuu(x) as the set of 
points which converge to the orbit of x in the past transversally to the bundle Ecu.

A saddle periodic point P of period p ≥ 1, is dissipative if |detDP f
p| < 1.

A source periodic point S is projectively hyperbolic if the tangent space at S split 
into two Df -invariant directions, TSM = Ecu ⊕ Euu, the direction Ecu –called center 
unstable– being less expanded than the direction Euu –called strong unstable. Its strong 
unstable manifold Wuu(S) is the set of points which converge to the orbit of S in the 
past in the direction of Euu.

1.2. Homocycle

Given f ∈ Diffr
loc(U, M), a saddle periodic point P ∈ U has a homoclinic tangency or 

homocycle for short, if its stable manifold has a non-transverse intersection point T ∈ U

with its unstable manifold.

∃T ∈ TW s(P ) ∩ TWu(P ) . (Homocycle)
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Fig. 2. Homocycle.

More generally, a basic set K ⊂ U has a homoclinic tangency if there exist P ∈ K and 
Q ∈ ←−

K (not necessarily periodic) such that W s(P ) is tangent to Wu(Q). A basic set K
has a Cr-robust homoclinic tangency if for every Cr-perturbation of the dynamics, the 
hyperbolic continuation of K still has a homoclinic tangency. If r ≥ 2 and if the phase 
space is a surface, the tangency T is quadratic, if the curvature of W s(P ) and Wu(Q)
at T are not equal (see Fig. 2).

Here is a famous theorem by Newhouse [33], which stabilizes the homoclinic tangen-
cies.

Theorem 1.1 (Newhouse). For 2 ≤ r ≤ ∞ or r = ω, consider f ∈ Diffr
loc(U, M) and a 

saddle periodic point P exhibiting a homoclinic tangency T . Then there exists f̃ Cr-close 
to f , with a basic set K containing the hyperbolic continuation of P , and which has a 
Cr-robust homoclinic tangency.

The open set N r of dynamics displaying a Cr-robust homoclinic tangency is called the 
Newhouse domain. We denote by N r(P ) ⊂ N r the open set of dynamics for which the 
hyperbolic continuation of P belongs to a basic set displaying a Cr-robust homoclinic 
tangency. By the Inclination Lemma, the stable and unstable manifolds of P are dense 
in the stable and unstable sets of K. Thus a Cr-small perturbation of any dynamics in 
N r(P ) creates a homoclinic tangency for P . This proves:

Proposition 1.2. For every 1 ≤ r ≤ ∞ or r = ω, there exists a Cr-dense set in N r(P ), 
made by maps for which the hyperbolic continuation of P has a homoclinic tangency.

Let N r
diss(P ) ⊂ N (P ) be the open set formed by dynamics for which the hyperbolic 

continuation of P is dissipative. As a periodic sink of arbitrarily large period can be 
obtained by a small perturbation of a dissipative homoclinic tangency, the latter propo-
sition then implies the Baire-genericity in N r

diss(P ) of dynamics exhibiting a Newhouse 
phenomenon (see [32] for more details).
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Fig. 3. Heterocycle for a surface map.

1.3. Heterocycles

In the present section we first recast for the case of surface endomorphisms, the notion 
of heterodimensional cycle introduced in [18,2], and present two stronger versions of it 
called heterocycle and strong heterocycle.

Definition 1.3. A map f ∈ Diffloc(U, M) displays a heterodimensional cycle if it has a 
saddle periodic point P and a periodic source S such that Wu(S) intersects W s(P ) and 
S is in Wu(P ):

S ∈ Wu(P ) and W s(P ) ∩Wu(S) �= ∅ . (Heterodimensional cycle)

The heterodimensional cycle forms a heterocycle if the source is projectively hyperbolic 
and Wuu(S) intersects W s(P ) (see Fig. 3):

S ∈ Wu(P ) and W s(P ) ∩Wuu(S) �= ∅ . (Heterocycle)

This heterocycle is strong if furthermore Wuu(S) contains P :

S ∈ Wu(P ) and P ∈ Wuu(S) . (Strong heterocycle)

We will see in Proposition 2.1 that any map displaying a heterocycle can be smoothly 
perturbed to display a strong heterocycle between a saddle point P ′ homoclinically 
related to the initial one P , and the initial source S.

A heterocycle is a one-codimensional phenomenon. To show its local density, we shall 
generalize it as follows. A basic set K and a projectively hyperbolic periodic source S
of a surface map display a heterocycle if there exists P ∈ K (not necessary periodic) 
such that W s(P ) ∩ Wuu(S) �= ∅ and there exists P ∈ ←−

K such that P = πf (P ) and 
S ∈ Wu(P ). The heterocycle is Cr-robust if for every Cr-perturbation of the dynamics, 
the hyperbolic continuations of K and S still have a heterocycle. The Cr-open set of 
surface maps which display a robust heterocycle is called the Bonatti-Diaz domain and is 
denoted by BDr. We denote by BDr(P, S) ⊂ BDr the open set of dynamics for which the 
hyperbolic continuation of P belongs to a basic set displaying a Cr-robust heterocycle 
with the continuation of S.
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1.4. Blenders

Let us again consider a robust heterocycle between a basic set K and a source S. As 
by a perturbation of the dynamics, S can be moved independently of K and its unstable 
manifold, this implies that K must be a blender :

Definition 1.4 (Cr-Blender). A Cr-blender for f ∈ Diffr
loc(U, M) is a basic set K such 

that the union of its local unstable manifolds has Cr-robustly non-empty interior: there 
exists a continuous family of local unstable manifolds whose union contains a non-empty 
open set V ⊂ U and the same holds true for their continuations for any Cr-perturbations 
f̃ of f .

The set V is called an activation domain of the blender K.

As the periodic points are dense in K, the unstable manifolds of periodic points are 
also dense in the activation domain. Hence for a small Cr-perturbation supported by a 
small neighborhood of the blender, there exists a periodic point whose unstable manifold 
contains the source, defining a heterocycle. This proves the following counterpart of 
Proposition 1.2:

Proposition 1.5. For every 1 ≤ r ≤ ∞ or r = ω, there exists a Cr-dense set in BDr(P, S)
made by maps for which the hyperbolic continuation of P and S have a heterocycle.

Bonatti and Diaz have introduced the notion of blender and obtained the first semi-
local constructions of robust heterocycles [2].

Question 1.6. All the known Cr-blenders are also C1-blender. Is BDr equal to BD1?

The following notion has been introduced in [1] and will play a key role in a renor-
malization that we will perform nearby heterocycles.

Definition 1.7 (Nearly affine blender). For r ∈ [1, ∞), Δ > 1, x0 ∈ (−2, 2), δ > 0, f has 
a δ-Cr-nearly affine blender with contraction Δ−1 if there is a Cr-chart H : R2 ↪→ M

such that:

– there is an inverse branch g+ of an iterate fN+ of f such that Rg+ := H−1 ◦ g+ ◦H
is well defined on [−2, 2]2 and is δ-Cr-close to (x, y) �→ (x0, Δ(y − 1) + 1);

– there is an inverse branch g− of an iterate fN− of f such that Rg− := H−1 ◦ g− ◦H
is well defined on [−2, 2]2 and is δ-Cr-close to (x, y) �→ (x0, Δ(y + 1) − 1).

Observe that the maximal invariant set of the map:

(Rg+)−1 � (Rg−)−1 : Rg+([−2, 2]2) � (Rg−([−2, 2]2) → R2
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is a basic set K. The following is easy, see for instance [1, Section 6] for details.

Proposition 1.8. For every Δ > 1 close to 1, x0 ∈ (−2, 2) and η ∈ (0, 1), if δ > 0 is 
sufficiently small, then the set K is a C1-blender and (−2, 2) × [−1 + η, 1 − η] is an 
activation domain.

In Section 2 we will prove the following analogous of Newhouse Theorem 1.1, which 
stabilizes the heterocycles. It will be obtained by introducing a renormalization for a 
perturbation of f leading to a nearly affine blender.

Theorem B. For every 1 ≤ r ≤ ∞ or r = ω, consider f ∈ Diffr
loc(U, M) exhibiting a 

heterocycle formed by a saddle P and a projectively hyperbolic source S. Then for every 
δ > 0 and any number ρ ≤ r, there exists f̃ , Cr-close to f , such that Pf̃ is homoclinically 
related to a δ-Cρ-nearly affine blender whose activation domain contains Sf̃ .

Question 1.9. To what extend the previous results generalize to heterodimensional cycles?

In that direction, [4] proved for diffeomorphisms that it is possible to stabilize by 
C1-perturbation any classical heterodimensional cycle between saddles whose stable di-
mension differs by one, provided that at least one of the saddle involved in the cycle 
belongs to a nontrivial hyperbolic set. An analogue in any regularity class is done in 
[29].

1.5. Bicycles and robust bicycles

Let us precise the definition of bicycle mentioned in the introduction:

Definition 1.10. A saddle P and a projectively hyperbolic source S display a bicycle if 
they form a heterocycle and if P has a homocycle. The bicycle is dissipative if the orbit 
of P is dissipative.

The notion of bicycle can be extended to basic sets.

Definition 1.11. A basic set for f ∈ Diffr
loc(U, M) displays a Cr-robust bicycle if it displays 

a Cr-robust homocycle and forms a Cr-robust heterocycle with a projectively hyperbolic 
source.

It is easy to build a bicycle by perturbation of some explicit example:

Example 1.12. For every r ≥ 2, the map f := (x, y) ∈ R2 �→ (x2 − 2, y) is the Cr-
limit of maps fε exhibiting a bicycle. Hence by Theorem A, there is an open set of 
Cr-perturbations Ur of fε in which the coexistence of infinitely many sinks is Cr-germ-
typical.
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Proof of Example 1.12. For the Chebyshev map x �→ x2 − 2, the critical orbit belongs 
to a non trivial expanding transitive set whose unstable set contains the critical point. 
First, we choose the parameter a close to −2 such that the map g(x) = x2 + a admits 
two homoclinically related repelling periodic points s, p, the orbit of the critical point 
contains p (there exists n ≥ 1 such that gn(0) = p) and belongs to the unstable set of p
(there exists a sequence of backward iterates of 0 which accumulates on p): usually such 
a parameter a is called a Misiurewicz parameter).

Then we consider a function ρ close to 1 which is equal to 1 +ε on a small neighborhood 
of the orbit of s and to 1 − ε in a small neighborhood of the orbit of p. We now consider 
the following small perturbation of f :

fa,ε(x, y) �→ (x2 + a, ρ(x)y).

Observe that it has a projectively hyperbolic source S := (s, 0) and dissipative saddle 
point P := (p, 0), such that the unstable manifold of each point intersects the other 
point and the image of the critical point still is preperiodic. One now performs a small 
perturbation in a neighborhood of the critical point that makes the map a local dif-
feomorphism. One also preserves the image of the critical point, which then becomes a 
homoclinic tangency for p. In such a way, one obtains a map with a bicycle involving P
and S. �

Similarly to Proposition 1.2 and Proposition 1.5 we have:

Proposition 1.13. For every 1 ≤ r ≤ ∞ or r = ω, consider an open set of maps 
f ∈ Diffr

loc(U, M) displaying a Cr-robust bicycle involving a saddle P and a projectively 
hyperbolic source S. It contains a Cr-dense subset of maps for which the hyperbolic con-
tinuation of P and S form a bicycle.

Combining Theorems 1.1 and B, one can stabilize the bicycles:

Corollary B′. For 2 ≤ r ≤ ∞ or r = ω, consider f ∈ Diffr
loc(U, M) and a saddle P

exhibiting a bicycle. Then there exists f̃ , Cr-close to f , with a hyperbolic basic set K
containing the hyperbolic continuation of P which exhibits a Cr-robust bicycle.

1.6. Paraheterocycles

Let us fix 1 ≤ r ≤ ∞, and a Cr-family (fa)a∈R of local diffeomorphisms fa ∈
Diffr

loc(U, M).

Hyperbolic sets for families of dynamics It is well known that if f0 has a hyperbolic 
fixed point P , then its hyperbolic continuation (Pa)a∈I is a Cr function of the parameter 
a on a neighborhood I ⊂ R of 0. More generally, if K is a hyperbolic set for f0, with 

←−
K
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the inverse limit of K, its hyperbolic continuation (Ka)a∈I by the range Ka = πa(
←−
K) of 

a family of maps πa := πfa : ←−K → M (see Section 1.1) with the following regularity:

Proposition 1.14 (see Prop 3.6 [6]). There exists a neighborhood I of 0 where (πa)a∈I

is well defined. For any z ∈ ←−
K , the map a ∈ I �→ πa(z) is of class Cr and depends 

continuously on z in the Cr-topology.

The local stable and unstable manifolds W s
loc(z; fa) and Wu

loc(z; fa) are canonically 
chosen so that they depend continuously on a, z and z in the Cr-topology (see Prop 3.6 
in [6]). They are called the hyperbolic continuations of W s

loc(z; f0) and Wu
loc(z; f0) for fa.

Definition 1.15 (Paraheterocycle). Given 0 ≤ d ≤ r, the family (fa)a∈R displays a Cd-
paraheterocycle at a0 if there exist a heterocycle for fa0 involving a saddle P and a 
projectively hyperbolic source S whose hyperbolic continuations satisfy for some N ≥ 0

d(Sa, f
N
a (Wu

loc(Pa))) = o(|a− a0|d
′
), for any integer 0 ≤ d′ ≤ d. (1.1)

We say it is a strong Cd-paraheterocycle if furthermore P , S form a strong heterocycle.

Note that if fa0 has a heterocycle then (fa)a has a C0-paraheterocycle at a = a0.

Theorem C. Consider a C∞ family of local diffeomorphisms (fa)a∈R in Diff∞
loc(U, M) and 

a heterocycle for f0 between a saddle point P with period p and a projectively hyperbolic 
source S. Let us assume furthermore that the stable eigenvalue of DPf

p
0 is negative.

Then there exists a family (f̃a)a∈R, C∞-close to (fa)a∈R, which displays a C∞-
paraheterocycle at a = 0 between the continuation of the saddle P and a projectively 
hyperbolic source S′.

We will see in Lemma 2.9 that the assumption on the negative stable eigenvalue can 
be obtained when the heterocycle is included in a bicycle.

Remark 1.16. The definition of paraheterocycle, the statement of Theorem C and its 
proof extend without difficulty to families parametrized by Rk, for any k ≥ 1, see Re-
mark 2.11 and Section 4.3.

1.7. Parablenders

In this section we fix 1 ≤ r < ∞.
Parablenders are a parametric counterpart of blenders. The first example of a para-

blender was given in [6]; in [1] a new example of parablender was given and therein the 
definition of parablender was formulated as:
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Definition 1.17 (Cr-Parablender). The continuation (Ka)a∈I of a hyperbolic set K for 
the family (fa)a∈R is a Cr-parablender at a0 ∈ Interior(I) if the following condition is 
satisfied.

There exist a continuous family of local unstable manifolds (Wu
loc(z; fa0))z∈←−

K
and a 

non-empty open set O of germs at a0 of Cr-families of points (γa)a∈I in M such that for 
every (f̃a)a∈R Cr-close to (fa)a∈R, there exists z ∈ ←−

K satisfying:

lim
a→a0

|a− a0|−r · d
(
γa , Wu

loc(z; f̃a)
)

= 0 .

The open set O is called an activation domain for the Cr-parablender (Ka)a∈I .

Here is the parametric counterpart of the nearly affine blender introduced in Defini-
tion 1.7.

Definition 1.18 (Nearly affine parablender7 [1] ). For Δ > 1, x0 ∈ (−2, 2) and δ > 0, a 
Cr-family (fa)a∈R has a δ-nearly affine Cr-parablender with contraction Δ−1 at a = 0
if there exist a neighborhood I of 0 in R, a Cr-family (Ha)a∈I of charts Ha : R2 ↪→ M , 
a diffeomorphism θ : J ↪→ I fixing 0 and inverse branches (g+

a )a∈I , (g−a )a∈I of iterates 
fN+

a , fN−
a such that

Rg+
a := H−1

a ◦ g+
θ(a) ◦Ha and Rg−a := H−1

a ◦ g−θ(a) ◦Ha

are well defined on [2, 2]2 and (Rg±a )a∈I are δ-Cr-close to the two families (A±
a )a∈I

defined by

A+
a : (x, y) �→ (x0, (Δ + a) · y + Δ − 1) and A−

a : (x, y) �→ (x0, (Δ + a) · y − Δ + 1) .

Note that a nearly affine parablender defines a germ of family of nearly affine blenders 
(Ka)a∈I at a = 0 and so a germ of family of blenders by Proposition 1.8. In [1, Section 
6], we showed8 that it defines also a parablender:

7 The coordinates considered in [1] were slightly different but the same modulo conjugacy: the renormalized 
inverses branches are of the form:

B
±
b : (X,Y ) 	→

(
0, (Y ± 1)/(Δ−1 + b)

)
,

which is conjugate to the presented form (A±
a )± via the coordinates changes:

(X,Y ) = (x − x0,
Δ − 1
Δ + a

· y) and a = −
b · Δ2

1 + b · Δ
.

.
8 The activation domain is not explicited in the statements of the results of [1, Section 6], but appears 

in the proof as a product W = B × A (see page 67), where B = [−2, 2] × (−η, η)r and where A is a 
neighborhood of 0 in Rr+1, obtained as the image of a neighborhood of 0 by a surjective linear map (page 
63).
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Proposition 1.19. For every Δ > 1 close to 1 and x0 ∈ (−2, 2), there is η > 0 arbitrarily 
small such that if δ > 0 is sufficiently small, then (Ka)a∈I is a Cr-parablender at a = 0. 
Moreover, its activation domain contains:{

(za)a∈I ∈ Cr(I,R2) : z0 ∈ [−2, 2] × (−η, η) and ‖∂k
aza|a=0‖ < η, ∀1 ≤ k ≤ r

}
.

We will show that nearly affine Cr-parablenders appear as renormalizations of the 
dynamics nearby paraheterocycles. This will enable us to show:

Theorem D. Let us consider a C∞ family of local diffeomorphisms (fa)a∈R in
Diff∞

loc(U, M) and, for r ≥ 1, a family of saddles (Pa)a∈R and a family of projectively 
hyperbolic sources (Sa)a∈R exhibiting a Cr-paraheterocycle at a = 0.

Then there exists (f̃a)a∈R, C∞-close to (fa)a∈R displaying a Cr-parablender at a = 0
which is homoclinically related to P0 and whose activation domain contains the germ of 
(Sa)a∈R at a = 0. In particular (f̃a)a∈R displays a robust Cr-robust paraheterocycle at 
a = 0.

2. Structure of the proofs of the theorems

2.1. Proof of Theorem B

The strategy of the proof breaks down into two steps. In a first step, we obtain, by 
perturbation of the heterocycle, a strong heterocycle. This is done in Section 3.

Proposition 2.1. For ρ ∈ {∞, ω}, let f ∈ Diffρ
loc(U, M) with a projectively hyperbolic 

source S and a saddle point P forming a heterocycle. Then there exists a map f̃ arbitrary 
Cρ-close with a saddle point Q homoclinically related to Pf̃ and which forms with Sf̃ a 
strong heterocycle.

In a second step we perturb the strong heterocycle in order to exhibit a nearly affine 
blender displaying a robust heterocycle. See Section 5.

Proposition 2.2. For ρ ∈ {∞, ω}, let f ∈ Diffρ
loc(U, M) with a projectively hyperbolic 

source S and a saddle point Q forming a strong heterocycle. Fix ∞ > r ≥ 1 and take 
Λ > 1 close to 1.

Then, for every δ > 0 there exists a Cρ-perturbation f̃ exhibiting a δ−Cr-nearly affine 
blender which is homoclinically related to Qf̃ and whose activation domain contains Sf̃ .

Note that the conjunction of these two propositions implies Theorem B for the topolo-
gies C∞ and Cω. When the initial diffeomorphism is Cr, 1 ≤ r < ∞, we first perturb 
in the Cr-topology in order to get a C∞-diffeomorphism taking care that the source S
still belongs to the unstable manifold of the saddle P , and we then apply the result for 
C∞-diffeomorphisms. �
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2.2. Proof of Theorem D

Similarly to the proof of Theorem B, the proof consists in two steps that are the 
parametric counterparts of Proposition 2.1 and Proposition 2.2. They are detailed in 
Sections 3 and 5.

Proposition 2.3. Consider a C∞ family of local diffeomorphisms (fa)a∈R in Diff∞
loc(U, M), 

and, for r ≥ 1, a family of saddles (Pa)a∈R and a family of projectively hyperbolic sources 
(Sa)a∈R exhibiting a Cr-paraheterocycle at a = 0.

Then there exist (f̃a)a∈R, C∞-close to (fa)a∈R with a family of saddles (Qa)a∈R
homoclinically related to (Pa)a∈R which forms with (Sa)a∈R a strong Cr-paraheterocycle 
at a = 0.

Proposition 2.4. Consider a C∞ family of local diffeomorphisms (fa)a∈R in Diff∞
loc(U, M), 

and, for r ≥ 1, a family of saddles (Qa)a∈R and a family of projectively hyperbolic sources 
(Sa)a∈R exhibiting a strong Cr-paraheterocycle at a = 0.

Then there exists (f̃a)a∈R, C∞-close to (fa)a∈R, displaying a Cr-parablender at a = 0
homoclinically related to Q0 and whose activation domain contains the germ of (Sa)a∈R
at a = 0.

This completes the proof of Theorem D. �
Remark 2.5. One can choose the parablender and the family of local unstable manifolds 
defining its activation domain in such a way that each local unstable manifold does not 
have S0 as an endpoint and is not tangent to the weak unstable direction of S0. See 
Remark 5.16.

2.3. Proof of Theorem C: chains of heterocycles

We begin with some preparation lemmas. The first one is proved in section 3.2.1.

Lemma 2.6. Let S and P be a projectively hyperbolic source and a saddle point forming 
a heterocycle for a smooth map f . Then for a C∞-small perturbation of the dynamics, 
the source S belongs to a Cantor set R which is a projectively hyperbolic expanding set.

We introduce the following notion.

Definition 2.7. A N -chain of alternate heterocycles (see Fig. 4) for a map f ∈
Diffloc(U, M) is the data of N saddle points P 1, . . . , PN and N projectively hyperbolic 
sources S1, . . . , SN such that:

• the orbits of P 1, . . . , PN , S1, . . . , SN are pairwise disjoint,
• the stable eigenvalues of the saddles P i are negative,
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Fig. 4. 2-Chain of heterocycles.

• Wu(P i) contains Si and is transverse to Ecu
Si for each 1 ≤ i ≤ N ,

• Wuu(Si) intersects transversally W s(P i+1) for 1 ≤ i < N and Wuu(SN ) intersects 
transversally W s(P 1).

Chains of alternate heterocycles may be obtained as follows.

Lemma 2.8. Consider f ∈ Diff∞
loc(U, M) with a heterocycle between a saddle P with period 

p and a source S such that the stable eigenvalue of DP f
p is negative.

Then, for any N ≥ 1, there exists f̃ , C∞-close to f , with an N -chain of alternate 
heterocycles whose saddles P 1 = P, P 2, . . . , PN are homoclinically related to the contin-
uation Pf̃ .

Proof. By preliminary perturbations one stabilizes the heterocycle and builds a blender 
K homoclinically related to P , whose activation domain contains S (Theorem B). One 
also reduces to the case where the source S belongs to a projectively hyperbolic ex-
panding invariant Cantor set R (Lemma 2.6). One can also assume that Wuu(S) and 
W s(P ) have a transverse intersection point. In order to simplify, one will assume that 
K is topologically mixing (otherwise one has to decompose K into finitely many pieces 
permuted by the dynamics and whose return map is topologically mixing on each piece). 
Note that P 1 = P and S1 = S define a 1-chain of alternate heterocycle. One proves 
the statement by induction on N . Let us assume that f has a N − 1-chain of alternate 
heterocycles whose saddles P i are homoclinically related to P .

One chooses a saddle PN whose orbit is distinct from the orbits of P 1, . . . , PN−1 and 
which is homoclinically related to P : since Wuu(SN−1) intersects transversally W s(P 1), 
it also intersects transversally W s(PN ). One also chooses a source SN ∈ R in the ac-
tivation domain of K and whose orbit is distinct from the orbits of S1, . . . , SN−1; one 
can furthermore assume that it is arbitrarily close to S, so that Wuu(SN ) intersects 
transversally W s(P ), hence W s(P 1). The blender property implies that SN belongs to 
the unstable set of K. More precisely there exists x ∈ K and y ∈ Wu(x) \ Orbit(SN )
such that f(y) ∈ Orbit(SN ). Since K is topologically mixing, Wu(PN ) is dense in the 
unstable set of K, one can find y′ ∈ Wu(PN ) arbitrarily close to y and whose backward 
orbit is disjoint from a uniform neighborhood of y. One then perturbs f in a small neigh-
borhood of y and get a map satisfying f̃(y′) = f(y). Consequently PN and SN define 
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a heterocycle for f̃ and the properties built at the previous steps of the induction are 
preserved. �

The existence of a saddle point with negative stable eigenvalue may be obtained once 
a saddle belongs to a homocycle, as we recall in the next lemma.

Lemma 2.9. Let f ∈ Diff∞
loc(U, M) and P be a saddle point with a homoclinic tangency L. 

Then for a C∞-small perturbation f̃ of the dynamics supported on a small neighborhood 
of L, the saddle P belongs to a basic set which contains a point Q with some period τ
and such that the stable eigenvalue of DQf̃

τ is negative.

Proof. This is a well-known result. Up to replace L by an iterate, one assumes L ∈
W s

loc(P ). One perturbs f so that the contact of the homoclinic tangency is quadratic. 
By unfolding the homoclinic tangency, a horseshoe containing P appears. Indeed, one 
considers a thin rectangle R which is a tubular neighborhood of W s

loc(P ). A large iterate 
f �(R) crosses R twice, with different orientations. In each component of the intersection, 
a �-periodic point is obtained, and the signs of Df � along the stable direction differ. See 
[39, chapter 3] for details. �

Theorem C follows from the next proposition, proved in Section 4.

Proposition 2.10. For any d ≥ 0, there exists N = N(d) ≥ 1 with the following property.
Consider a C∞ family (fa)a∈R in Diff∞

loc(U, M) such that f0 has a N -chain of alternate 
heterocyles with saddle points P i and sources Si. Then there exists a family (f̃a)a∈R, C∞-
close to (fa)a∈R, such that the continuations of P 1 and SN form a Cd-paraheterocycle 
at a = 0.

Remark 2.11. This result is still valid for families parametrized by Rk, k ≥ 1 (see Sec-
tion 4.3). The length of the chain required is then equal to:

N(r, k) = dimR{P ∈ R[X1, . . . , Xk] : degP ≤ r, P (0) = 0}.

Proof of Theorem C. For any large integer d ≥ 1, Lemma 2.8 and Proposition 2.10 give 
after a C∞-perturbation a Cd-paraheterocycle between the continuation of the saddle 
P and a projectively hyperbolic source S′. Hence there exists a Cd-small perturbation 
(f ′

a)a∈R in Diff∞
loc(U, M) and an integer N which satisfy S′

a ∈ fN (Wu
loc(Pf ′

a
)) for any 

a close to 0. Since d has been chosen arbitrarily large, the perturbation can be chosen 
C∞-small. �
2.4. Proof of Theorem A

A consequence of the previous results is the:
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Fig. 5. Assumptions (H0). . . (H4).

Corollary 2.12. Consider a C∞ family (fa)a∈R in Diff∞
loc(U, M) such that f0 displays a 

bicycle between a projectively hyperbolic source S0 and a dissipative saddle point P0. Let 
r ≥ 1. Then up to a Cr-perturbation of the family, and up to replacing S0 by another 
projectively hyperbolic source, we can assume that (See Fig. 5):

(H0) There exists a blender K0 for f0 whose activation domain contains S0.
(H1) K0 intersects the repulsive basin of S0.
(H2) P0 is homoclinically related to K0 and W s(P0) has a robust tangency with the 

strong unstable foliation Fuu of S0.
(H3) The continuation (Ka)a∈I of K0 is a Cr-parablender at a = 0 and the continuation 

(Sa)a∈I of S0 belongs to its activation domain.
(H4) In the continuous family of local unstable manifolds defining the activation domain 

involved in (H0) and (H3), each local unstable manifold does not have S0 as an 
endpoint and is not tangent to the weak unstable direction of S0.

Remark 2.13. The properties (H0). . . (H4) are Cr-open.

Proof. With Corollary B′ Page 14, one first stabilizes the bicycle. By Lemma 2.9, up to 
a small C∞-perturbation, one gets a saddle Q0 homoclinically related to P0 whose stable 
eigenvalue at the period is negative. One thus gets a robust heterocycle between Q0 and 
S0 and Theorem C Page 15 gives a family (f ′

a)a∈R, that is C∞-close, and displaying a 
C∞-paraheterocycle between the continuation of Q0 and a projectively hyperbolic source 
saddles S′. Theorem D Page 17 produces a family Cr-close having a Cr-parablender 
(Ka)a∈I at a = 0 which is homoclinically related to Q0 (and P0) and whose activation 
domain contains the family of source (S′

a)a∈I . Denoting the new source by S0, we get all 
the robust properties (H0), (H1) and (H3). By Remark 2.5, (H4) is also satisfied.

Since P0 and S0 form a robust heterocycle, one can assume (after a new perturba-
tion) that the strong unstable manifold Wuu(S0) intersects transversally W s(P0). From 
the robust tangency, we can perturb and produce a homoclinic tangency point L be-
tween Wu

loc(P0) and W s(P0). The inclination lemma implies that Wuu(S0) accumulates 
on Wu

loc(P0). A last perturbation near L gives a quadratic tangency between Wuu(S0)
and W s(P0). For maps close, this tangency admits a continuation which is a quadratic 
tangency between W s(P0) and the leaves of the strong unstable foliation in the repelling 
basin of S0: this is (H2). �
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We now use the following result of [7, Theorem A, page 11]:

Theorem 2.14. Consider a C∞ family (fa)a∈R in Diff∞
loc(U, M) with a projectively hy-

perbolic source (Sa)a∈R and a dissipative saddle point (Pa)a∈R satisfying (H0). . . (H4). 
Then, there are δ > 0, a Cr-neighborhood V of the family (fa)a in the space of Cr-
families and a Baire-generic subset G ⊂V such that for any (f̃a)a ∈ G and a ∈ (−δ, δ), 
the map f̃a displays infinitely many sinks.

For completeness we sketch its proof.

Idea of the proof of Theorem 2.14. Since the hypotheses are open, they hold for an open 
neighborhood V of the initial family. Let us consider an arbitrary family (f ′

a)a∈R in V. The 
robust heterocycle provided by (H0) and (H1) and Lemma 2.6 allow after a perturbation 
to assume that there are δ > 0 and two distinct sources (Sa)a∈[−δ,δ], (S′

a)a∈[−δ,δ] which 
satisfy (H0). . . (H4) at every a0 ∈ [−δ, δ] for each of these sources and for the family 
(f ′

a)a∈R.
Then we apply the following key lemma (which uses (H3)):

Lemma 2.15 ([7, Prop. 3.6]). For every ε > 0, there exist α > 0 and an ε-Cr-perturbation 
(f ′′

a )a∈[−δ,δ] localized at (Sa)a and (S′
a)a such that:

1. for every j ∈ 2Z, there exists a continuation of a periodic point (P (j)
a )a in the para-

blender whose local unstable manifold contains Sa for every a ∈ [−δ, δ] ∩[αj−α/2, αj+
α/2],

2. for every j ∈ 2Z + 1, there exists a continuation of a periodic point (P (j)
a )a in the 

parablender whose local unstable manifold contains S′
a for every a ∈ [−δ, δ] ∩ [αj −

α/2, αj + α/2].

We continue with:

Lemma 2.16 ([7, Prop. 3.4]). After a new C∞-small perturbation of (f ′′
a )a, for every 

j ∈ Z ∩ [−δ/α, δ/α] the point Pa displays a quadratic homoclinic tangency which persists 
for every a ∈ [−δ, δ] ∩ [αj − α/2, αj + α/2].

Idea of proof of Lemma 2.16. Assume j odd (resp. even) and let us continue with the 
setting of Lemma 2.15. As Pa and P (j)

a belong to the same transitive hyperbolic set and 
using Proposition 1.14, after a small perturbation a fixed iterate of the local unstable 
manifold of Pa contains Sa for every a ∈ [−δ, δ] ∩ [αj−α/2, αj +α/2]. Then we proceed 
as depicted in Fig. 6: we denote by W s

a a segment of W s(Pa) which is included in a basin 
of Sa (resp. S′

a) and display a tangency with the strong unstable foliation of the repelling 
basin of S′

a (resp. Sa) by (H2). After perturbation we can assume this tangency quadratic. 
Then, in the Grassmannian bundle P (TM) of M , the tangent space TW s of this curve 
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Fig. 6. Inclination lemma used in the bundle P(TM) at Euu(SA).

intersects transversally the unstable manifold of (Sa, Euu(Sa)) for the action f̂a of Dfa
on the Grassmannian. By the inclination lemma, the preimages TW s

n,a of TW s
a , by f̂n

a , 
converge to the stable manifold {Sa} × PR1 \ {Ecu(Sa)} of (Sa, Euu(Sa)). By property 
(H4), a piece of Wu

loc(Pa) intersects Sa with a direction different from Euu(Sa), hence 
the stable manifold of (Sa, Euu(Sa)) intersects untangentially a piece TWu

a of TWu
loc(Pa)

for every a ∈ [−δ, δ] ∩ [αj − α/2, αj + α/2]. This enables to perturb (fa)a such that 
TW s

n,a ⊂ TW s(Pa) intersects TW s
loc(Pa) for every a ∈ [−δ, δ] ∩ [αj−α/2, αj +α/2]. �

In [7, Prop. 3.5] it is shown that for every N ≥ 1, we can then perturb the family in 
the C∞-topology near the homoclinic tangency of (Pa)a obtained in Lemma 2.16 so that 
for every a ∈ [αj − α/2, αj + α/2] and j ∈ Z ∩ [−δ/α, δ/α], the new map f̃a displays a 
periodic sink of period ≥ N . Hence we have obtained an open and dense subset in V of 
families displaying a sink of period ≥ N at every parameter a ∈ [−δ, δ]. By taking the 
intersection G of these open and dense subsets over N ≥ 1, we obtain Theorem 2.14. �

This allows to complete the proof of our main theorem.

Proof of Theorem A. Let us consider a Cr map f with a dissipative bicycle associated 
to a saddle P . By Corollary B′, there exists a Cr-open set U ∈ Diffr

loc(U, M), which 
contains f in its closure, such that the continuation of P exhibits a robust bicycle for 
any map in U .

Let F := (fa)a∈R be a Cr-family consisting of maps fa ∈ U . By perturbation, one 
can assume that the family is C∞ and by Proposition 1.13 that f0 displays a bicycle. 
Then, by Corollary 2.12, there exists a new Cr-perturbation which satisfies (H0) · · · (H4). 
Theorem 2.14 associates a neighborhood VF of this family and a dense Gδ-set GF of 
VF and δF > 0. Let {Fn : n ∈ N} be a dense countable set in the space of families 
(fa)a∈R ∈ Dr(I × U, M) consisting of maps fa ∈ U . The union G =

⋃
GFn

is a dense 
Gδ subset of this space. By construction, for any family F = (fa)a∈R in G and any |a|



24 P. Berger et al. / Advances in Mathematics 407 (2022) 108528
smaller than a locally constant function δF of F , the map f̃a exhibits infinitely many 
sinks for any parameter a close to 0. �
3. From heterocycles to basic sets and strong heterocycles

In this section we prove Proposition 2.1, Proposition 2.3 and Lemma 2.6.
We consider a C∞ map f ∈ Diff∞

loc(U, M) with a projectively hyperbolic source S
and a saddle point P forming a heterocycle, and we show that by perturbation it can be 
improved to a strong heterocycle.

In Section 3.1, first we establish local coordinates around P and S. To obtain these 
coordinates, we need to perturb the dynamics, to assume the eigenvalues non-resonant, 
but also to ensure two transversality conditions (T1)-(T2). Then nearby P and S, the 
inverse dynamics P and S are linear in local coordinates. Furthermore, the heterocycle 
defines inverse branches of the dynamics that are transitions from one linearizing chart 
to the other.

As a direct application of these linearizing charts, we build an IFS and from there an 
expanding projective hyperbolic set containing the source: this allows to prove Lemma 2.6
at the beginning of Section 3.2). Later, using again these coordinates, we obtain the 
existence of a non-trivial basic set K which contains P (Lemma 3.1). After a small per-
turbation, which consists in perturbing the stable eigenvalues of P , the strong unstable 
manifold of S intersects K, whereas S belongs to Wu(K). This will imply Proposition 2.1. 
The proof of Proposition 2.3 follows similar lines.

3.1. Local coordinates for a heterocycle

For the sake of simplicity we assume that the periodic points P and S are fixed and 
that the eigenvalues of DP f and DSf are positive. Anyway we can go back to this case 
by regarding an iterate of the dynamics and performing the forthcoming perturbations 
nearby finitely many points belonging to different orbits.

Up to a smooth perturbation we can assume that the eigenvalues of DP f and DSf

are non-resonant. Then Sternberg Theorem [41] implies the existence of:

• neighborhoods V ′
S ⊂ VS := f(V ′

S) of S and coordinates for which f |V ′
S has the form:

(x, y) ∈ V ′
S �→ (σ−1

uu · x, σ−1
u · y) ∈ VS with 0 < σuu < σu < 1 .

• neighborhoods V ′
P and VP := f(V ′

P ) of P and coordinates for which f |V ′
P has the 

form:

(x, y) ∈ V ′
P �→ (σ−1 · x, λ−1 · y) ∈ VP with 0 < σ < 1 < λ .
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Fig. 7. Inverse branches S,P, T S , T H induced by the heterocycle.

This defines the inverse branches P := (f |V ′
P )−1 and S := (f |V ′

S)−1:

S : (x, y) ∈ VS �→ (σuu · x, σu · y) ∈ V ′
S and P : (x, y) ∈ VQ �→ (σ · x, λ · y) ∈ V ′

Q .

Up to restricting VP and V ′
P and rescaling the coordinates, we can assume:

V ′
P ≡ [−σ, σ] × [−1, 1] and VP ≡ [−1, 1] × [−λ−1, λ−1] .

Let Wu
loc(P ) := VQ ∩ {y = 0}, W s

loc(P ) := V ′
Q ∩ {x = 0} and Wuu

loc (S) := {y = 0} ∩ VS .
Let H be a point in W s(P ) ∩ Wuu(S). Up to replacing it by an iterate, we can 

assume that H belongs to V ′
P with H =: (0, h) in the linearizing coordinates of P . Up 

to conjugating the dynamics by (x, y) �→ (x, −y), we can assume moreover that h > 0. 
Also, a preimage S′ of S has coordinates S′ =: (s, 0) in the linearizing coordinates of P :

S′ ≡ (s, 0) and H ≡ (0, h) , h > 0 .

Furthermore up to a smooth perturbation, we can assume that:

(T1) The intersection W s(P ) ∩Wuu(S) is transverse at H.
(T2) The line TSW

u(P ) is in direct sum with the weak unstable direction Ecu of S.
(T3) The line TSW

u(P ) is in direct sum with the strong unstable direction Euu of S.

Let V ′′
S � V ′

S and VH � V ′
P be small neighborhoods of S and H; and let T S : V ′′

S ↪→ VP

and T H : VH ↪→ VS be inverse branches of iterates of f such that T S(S) = S′ and 
T H(H) ∈ Wuu

loc (S) (see Fig. 7).

3.2. Basic sets induced by a heterocycle

We now build two hyperbolic sets: one expanding projective hyperbolic set containing 
the source, and a saddle hyperbolic set containing the saddle.

3.2.1. Proof of Lemma 2.6: expanding Cantor set linked to the heterocycle
Note that for n large, the point (s, λ−nh) belongs to the range of T S. We perturb f

near the point S′ and define a map f̃ which satisfies in coordinates
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f̃(s, λ−nh) = f(S′).

This in turn defines a perturbation T̃ S of the inverse branch T S .
As the point (s, λ−nh) is sent by Pn to the (σn · s, h) ∈ VH , the map T H ◦ Pn ◦ T̃ S

is well defined on a neighborhood W of S. Hence for N large compared to n, the maps 
S1 := SN ◦ T H ◦ Pn ◦ T̃ S and S2 := SN are contractions from W into W with disjoint 
images. So they define a transitive expanding Cantor set R for f̃ which contains S.

Let us fix η > 0 small and introduce the cone C := {(u, v) : |u| < η|v|}. Using (T1), 
(T2) and assuming that n, N have been chosen large enough, for any x ∈ W , the maps 
DxS1 and DxS2 send C inside C ∪ {0}. The cone field criterion (see for instance [44]) 
implies that the Cantor set R is projectively hyperbolic. The Lemma 2.6 is proved. �
3.2.2. Basic sets linked to the heterocycle

The heterocycle configuration implies under the transversality assumptions (T1) and 
(T2) that the saddle P has a transverse homoclinic intersection.

Lemma 3.1. For all n large, the subsegment:

W s
loc(H̄) := T S ◦ Sn ◦ T H(W s

loc(P ) ∩ VH)

of W s(P ) intersects transversally the local unstable manifold Wu
loc(P ) at a point H̄ which 

is � σn
uu-close to S′. The endpoints of W s

loc(H̄) are � σn
u -distant from Wu

loc(P ).

Proof. Let Γ := W s
loc(P ) ∩ VH . This curve is sent by T H to a curve which intersects 

transversally Wuu
loc (S) by (T1). By projective hyperbolicity, the image by Sn of T H(Γ)

is a curve which is tangent to a thin vertical cone field, which is � σn
uu-close to S and 

which has length � σn
u . As (T S)−1({y = 0}) intersects transversally {x = 0} ∩ VS at S

by (T2), it must intersect transversally Sn ◦ T H(Γ) for n large. Consequently the curve 
T S ◦ Sn ◦ T H(Γ) intersects the local unstable manifold {y = 0} ∩ VP of P . �

By Smale’s horseshoe theorem (see [39, chapter 2]), one deduces:

Corollary 3.2. There exists a basic set K containing P and H̄.

We will make it more precise. If N is large, K can be spanned by the inverse branches

G1 := PN and G2 := T S ◦ Sn ◦ T H ◦ PN .

Let ε > 0 be small enough so that {0} × [h − ε, h + ε] is included in VH and let (see 
Fig. 8):

B := [−1, 1] ×
[
h− ε

N
,
h + ε

N

]
.

λ λ
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Fig. 8. The box B and its images.

Lemma 3.3. For every n, N large, the map G2 is well defined on B. If εσn
uλ

N � 1, the 
map G2 displays a saddle fixed point Q̄ in B ∩K, which is homoclinically related to P .

Proof. The box B is sent by PN to (0, h) + [−σN , σN ] × [−ε, ε] which is included in VH

for N large enough. As Sn ◦ T H(VH) is included in V ′′
S for n large enough, the map g is 

well defined on B. Let us decompose the boundary of B:

∂sB := {−1, 1} ×
[
h− ε

λN
,
h + ε

λN

]
and ∂uB = ∂B \ ∂sB.

Both curves of Sn◦T H◦PN (∂sB) are σn
uu close to the vertical arc W c

loc(S) := {0} ×[−1, 1]
and their endpoints are � ε ·σn

u distant to Wuu
loc (S) by transversality (T1) at T H(H) and 

by projective hyperbolicity of S. Thus they intersect transversally (T S)−1(Wu
loc(P )) by 

property (T2).
Consequently G2(B) intersects Wu

loc(P ), and G2(∂uB) is � ε · σn
u distant to Wu

loc(P ). 
By assumption, λ−N is small compared to ε ·σn

u , then G2(B) crosses B: it does not meet 
the vertical boundary ∂sB, whereas B does not meet the horizontal boundary G2(∂uB). 
Thus G2 displays a fixed point Q̄ in B ∩ G2(B).

Note that DG2 expands vectors in a vertical cone by a factor � λN · σn
u , which is 

large, and the image of these vectors are uniformly transverse to the horizontal. On the 
other hand by projective hyperbolicity DG−1

2 sends the vectors in an horizontal cone to 
uniformly horizontal vectors and expands them by a factor σ−n

uu · σ−N . The point Q̄ is 
a saddle, its local unstable manifold is an horizontal graph in B over [−1, 1] whereas its 
local stable manifold connects the two curves in G2(∂uB) and so crosses the horizontal 
Wu

loc(P ). This shows that Q̄ and P are homoclinically related as required. �
3.2.3. Replacement of the saddle point

Let us consider a saddle periodic point Q homoclinically related to P . The following 
allows to replace the saddle P by Q in the heterocycle.

Lemma 3.4. Let Q be a periodic saddle point that is homoclinically related to P . Then 
there exists a map f̃ that is C∞ close to f such that S and Q form a heterocycle.
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One can choose f̃ to coincide with f outside an arbitrarily small neighborhood of 
f−1(S) \ {S}. In particular if Wuu(S; f) contains Q, then S and Q form a strong hete-
rocycle for f̃ .

Proof. By assumption, there exists a point z ∈ Wu(P ) ∩ f−1(S) \ {S}. Let Q−1 be the 
forward iterate of Q which satisfies f(Q−1) = Q. Since Q−1 is homoclinically related 
to P , there exists z′ ∈ Wu(Q−1) arbitrarily close to z having a backward orbit which 
converges to the orbit of Q and which avoids a uniform neighborhood of z.

Hence, there exists a C∞-small perturbation of f supported on a small neighborhood 
of z satisfying f̃(z′) = f(z). In particular Wu(Q) contains S. �

We state a parametric version of the previous lemma.

Lemma 3.5. Consider a C∞ family (fa)a∈R in Diff∞
loc(U, M), and, for r ≥ 1, fami-

lies of saddles (Pa)a∈R and of projectively hyperbolic sources (Sa)a∈R exhibiting a Cr-
paraheterocycle at a = 0. If (Qa)a∈R is a family of saddles homoclinically related to 
(Pa)a∈R, then there exists (f̃a)a∈R, C∞-close to (fa)a∈R such that Q0 and S0 form a 
Cr-paraheterocycle at a = 0.

One can choose (f̃a)a∈R to coincide with (fa)a∈R outside an arbitrarily small neighbor-
hood of f−1

0 (S0) \{S0}. Hence if Q0 ∈ Wuu(S0; f0), then S0, Q0 form a strong heterocycle 
for f̃0.

Proof. Let (Ka)a∈I be a basic set that contains Pa and Qa for a in a neighborhood 
I of 0. Let P and Q be the periodic lifts of P and Q in 

←−
K . By assumption, there 

exists a choice of local unstable manifolds Wu
loc(z, fa) for z ∈ ←−

K and N ≥ 1 such that 
d(Sa, fN (Wu

loc(P a))) = o(|a|r). Since P and Q are homoclinically related, there exists a 
sequence of points zn ∈ ←−

K which converges to P and which belong to Wu
loc(Q). Since 

Wu
loc(z; fa) varies continuously with z for the C∞-topology, when n is large there exists 

a family (f̃a)a∈R, which is C∞-close to (fa)a∈R, such that d(Sa, f̃N
a (Wu

loc(zn, f̃a))) =
o(|a|r). There exists a large integer � ≥ 1 such that f̃N

a (Wu
loc(zn, f̃a)) ⊂ f̃ �

a(Wu
loc(Qa

, f̃a)), 
hence d(Sa, f̃ �

a(Wu
loc(Qa

, f̃a))) = o(|a|r) as in the definition of Cr-paracycle. Note that 
the perturbation can be supported on a neighborhood of a point in f−1

0 (S0) \ {S0}. �
3.3. Proof of Proposition 2.1: from heterocycles to strong heterocycles

The main step in the proof of Proposition 2.1 is contained in the following lemma.

Lemma 3.6. Let us assume that both stable branches of P intersect Wu(P ) transversally. 
Then there exists a map f̃ , C∞-close to f , with a saddle Q homoclinically related to Pf̃

such that:

• f and f̃ coincide on Wu
loc(P ) and outside a small neighborhood of P ,
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Fig. 9. The two cases for the position of [S′, H̄].

• Wuu(S, f̃) contains Q.

Proof. From (T1), the curves Wuu
loc (S) and Sn ◦T H(W s

loc(P ) ∩VH) intersect transversally 
at a point whose image under T S is denoted as [S′, H̄], see Fig. 9.

We can reduce to the case depicted on the left part of Fig. 9, where [S′, H̄] belongs 
to the half upper plane {y > 0} (for the chart of VP ). Indeed if we are in the other case 
(depicted on the right part of Fig. 9), we use the fact that the stable branch {0} × [−1, 0]
of P has backward iterates which accumulate on W s

loc(P ) in order to replace H by a point 
H ′ = (0, h′), h′ < 0, which is a transverse intersection between W s(P ) and Wuu(S). The 
new point [S′, H̄ ′] is close to [S′, H̄], hence belongs to the lower half plane. It remains 
to conjugate the chart by (x, y) �→ (x, −y) in order to find the desired configuration.

Let us consider some large integers n, N , the map G2 and the box B defined at Sec-
tion 3.2.2. The transversality conditions (T2) and (T3) imply that T H(Wuu

loc (S)) crosses 
the box G2(B) along a small curve whose vertical coordinate belongs to an interval 
[c1.σn

uu, c2.σ
n
uu], where c1, c2 are independent from the choice of n, N .

We choose n, N such that

(h− ε)λ−N−1 < c2σ
n
uu < (h− ε)λ−N . (3.1)

Note that the condition εσn
uλ

N � 1 is satisfied and Lemma 3.3 associates a saddle 
point Q̄ ∈ B whose vertical coordinates is in [(h − ε)λ−N , (h + ε)λ−N ]. By the previous 
estimates, Q̄ is “above” the graph T H(Wuu

loc (S)).
Now we consider a family (ft)t∈[0,1] such that f0 = f , and for every t, the restrictions 

of ft to Wu
loc(P ) and to the complement of a neighborhood of V ′

P coincide with f , while 
the restriction of the map ft|V ′

P is still linear with eigenvalues (λt, σ) such that:

λt = λ
N
√

1 + t · (C − 1)
with C = c1

c2

h− ε

h + ε
· λ−1 .

Note that (ft)t∈[0,1] is a smooth family which is C∞-close to be constantly equal to f
since n is large. The map S, T S, T H are unchanged, while Pp

t := (x, y) ∈ VP �→ (σ·x, λt·y)
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depends on a. Any map of this family satisfies the assumptions of Section 3.2.2. Let 
(Q̄t)t∈[0,1] be the hyperbolic continuation of Q̄. The vertical coordinate of Q̄1 is bounded 
by

(h + ε)λ−N
1 = C · (h + ε) · λ−N = (h− ε) · λ−N−1 c1

c2
,

From (3.1), it is smaller than c1.σn
uu, hence Q̄1 is “below” the graph T H(Wuu

loc (S)). One 
deduces that there exists a parameter such that Q̄t belongs to T H(Wuu

loc (S)). This implies 
that Q̄t has an iterate Q which belongs to Wuu

loc (S). �
Proof of Proposition 2.1 in the C∞ case. One considers a basic set K provided by 
Corollary 3.2. It contains a periodic saddle P ′ homoclinically related to P such that both 
of its stable branches intersects Wu(P ′) transversally. The Lemma 3.4 allows by a first 
perturbation f̃1 to replace P by the saddle P ′ so that the assumptions of the Lemma 3.6
are satisfied. One can then build a new perturbation f̃2 such that Wuu(S, f̃2) contains a 
saddle Q which is homoclinically related to P and P ′, whereas the heterocycle between S
and P ′ is not destroyed (since the perturbation does not modify S nor Wu

loc(P ′)). After 
a third perturbation f̃3 provided by Lemma 3.4, a strong heterocycle between Q and S
is obtained. �
3.4. Proof of Proposition 2.1 in the analytic case

Now we assume f ∈ Diffω
loc(U, M) and as before f displays a heterocycle between a 

saddle P and a source S. To prove Proposition 2.1 in the analytic case, it suffices to 
show the following counterparts of Lemmas 3.4 and 3.6.

Lemma 3.7. Let Q be a periodic saddle point that is homoclinically related to P . Then 
there exists a map f̃ that is Cω close to f such that S and Q form a heterocycle.

If Wuu(S; f) contains Q, then, one can choose f̃ so that S and Q form a strong 
heterocycle.

Lemma 3.8. Let us assume that both stable branches of P intersect Wu(P ) transversally. 
Then there exists a map f̃ , Cω-close to f , with a saddle Q homoclinically related to Pf̃

such that:

• Wuu(S, f̃) contains Q.
• Wu(P, f̃) contains S.

Proof of Lemma 3.7. First recall that M is analytically embedded into an Euclidean 
space RN , see [23]. Hence there exists an analytic retraction π : U → M of a neigh-
borhood U of M in RN . Let Wu

loc(P ) be a local unstable manifold of P which contains 
S in its interior and let S′ �= S in Wu

loc(P ) such that f(S′) = S. Let VS′ be a small 
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neighborhood of S′ such that the backward orbit of S′ inside Wu
loc(P ) does not meet S′. 

One takes an analytic chart φ : VS′ → [−1, 1]2 sending S′ to 0 and VS′ ∩ Wu
loc(P ) to 

[−1, 1] × {0}.
Now consider a C∞-family (fp)p∈[−ε,ε] such that f0 = f and each fp is equal to 

f outside VS′ while on a smaller neighborhood of S′, the map fp coincides with the 
composition of f with a translation of vector (0, p). In particular the continuation of 
Wu

loc(P ) for fp inside VS′ is equal to Wu
loc(P ), while the continuations Sp of S and of 

its preimage S′
p = f−1(S) ∩ VS′ satisfy that ∂pS′

p|p=0 has non-zero second coordinate. 
Remark that χ := Df−1 ◦ (∂pfp|p=0) is a smooth vector field defined on the compact 
subset Ū ⊂ RN . Then by Stone-Weierstrass Theorem, there exists a polynomial vector 
fields χ̃ ∈ R[X1, . . . , XN ] whose restriction to Ū is C1-close χ. Also by reducing ε > 0, 
the following is well defined for any |p| < ε:

f̃p := x ∈ U �→ π
(
f(x) + p ·Df ◦ χ̃(x)

)
.

Note that ∂pf̃p|p=0 = Df ◦ χ̃ is C1-close to ∂pfp|p=0. In particular the hyperbolic 
continuation (S̃′

p)p∈[−ε,ε] of S′ for (f̃p)p is family C1- close to (S̃′
p)p∈[−ε,ε]. Also the 

hyperbolic continuation (Wu
loc(P, f̃p))p∈[−ε,ε] is a family of curves C1- close to the family 

constantly equal to [−1, 1] × {0}. Hence assuming that the C1-size of the perturba-
tion is small, the curve Γ :=

⋃
p∈[−ε,ε]{S̃′

p} × {p} intersects transversally the surface 

Σ :=
⋃

p∈[−ε,ε] W
u
loc(P, f̃p) × {p} at {S′} × {0}.

By the inclination lemma with parameter, see [7, Lemma 3.2], there exists a sequence 
(Wn,p)n of p-families of segments Wn,p ⊂ Wu(Q, fp) such that the sequence of surfaces 
Σn :=

⋃
p∈[−ε,ε] Wn,p × {p} converges to Σ in the C1-topology as n → ∞. Thus when 

n is large, the curve Γ intersects Σn at a point close to {S′} × {0}. Hence there is p
arbitrarily small such that the continuations of S′ and Q form a heterocycle for f̃p. This 
proves the first part of the lemma since f̃p is Cω-close to f when p is small.

In the second part of the lemma, the saddle Q belongs to a local strong unstable 
manifold Wuu

loc (S) of S and one performs a similar construction. Let Q′ �= Q in Wuu
loc (S)

which satisfies f(Q′) = Q, let VQ′ be a small neighborhood of Q′, and consider a chart 
ψ : VS′ → [−1, 1]2 sending Q′ to 0 and VQ′ ∩ Wuu

loc (Q) to [−1, 1] × {0}. One considers 
a C∞ family of maps which are equal to f outside VQ′ and which coincide with the 
composition of f with a translation of vector (0, q) on a small neighborhood of Q′: it 
induces a vector field ξ, that can be approximated by a polynomial vector field ξ̃. Up to 
shrinking ε > 0, for every (p, q) ∈ [−ε, ε]2, the following is well defined:

f̃p,q := x ∈ M �→ π
(
f(x) + p ·Df ◦ χ̃(x) + q ·Df ◦ ξ̃(x)

)
.

Similarly we can consider the continuation S̃p,q of S, Q̃p,q of Q, Wu
loc(P, f̃p,q) of 

Wu
loc(P, f), Wn,p,q of Wn,p and Wu

loc(Q, f̃p,q) of Wu
loc(Q).

From the first part of the proof, Wu
loc(P, f̃p,q) contains S̃p,q when (p, q) belongs to 

graphs γn that are arbitrarily C1-close to the curve p = 0 when n → ∞. By a similar 
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argument, Wuu
loc (S, f̃p,q) contains Q̃p,q when (p, q) belongs to a one-dimensional subman-

ifold σ that contains 0, is C1-close to the curve q = 0. In particular σ is transverse to the 
graphs γn. Thus the conclusion of the lemma holds for some map f̃p,q with (p, q) ∈ γn∩σ

which is Cω-close to f when n is large and p, q are small. This implies the second part 
of the lemma. �
Proof of Lemma 3.8. The proof of Lemma 3.6 was obtained using a smooth family which 
changes the stable eigenvalue of P , without changing the relative position of S w.r.t. 
Wu

loc(P ; f). To obtain the analytic setting, as above, we approximate this family by an 
analytic one and we add an extra parameter which varies the relative position of S w.r.t. 
Wu

loc(P ; f). While the first parameter enables to find a saddle Q homoclinically related 
to P such that Q ∈ Wuu

loc (S), in the analytic setting this unfolding might unfold also the 
heterocycle. However the new second parameter enables to restore it. �
3.5. Proof of Proposition 2.3: from paraheterocycles to strong paraheterocycles

We follow the proof of the Proposition 2.1 in the C∞ case. After a first C∞-small 
perturbation of f0 (and hence of the family (fa)a∈R), there exists a saddle Q homoclin-
ically related to P which belongs to Wuu

loc (S). The paracycle property (1.1) between S
and P may not hold anymore, but by a new perturbation, with a similar size, it can be 
restored. Note that it is supported near f−1(S) \ {S}, hence the property Q ∈ Wuu

loc (S)
is not destroyed. Finally one applies Lemma 3.5, and gets a C∞-small perturbation of 
the family (fa)a∈R in order to get a strong Cr-paraheterocycle at a = 0 between S and 
Q. �
4. From chains of heterocycles to paraheterocycles

We prove Proposition 2.10 in this section: an N -chain of alternate heterocycles whose 
saddles are homoclinically related, can be perturbed as a Cd-paraheterocycle, provided 
that N is large enough with respect to d. This is shown by induction on d. The case d = 0
follows from the continuity of the family (without any perturbation). The induction step 
is given by:

Proposition 4.1. Consider a C∞ family (fa)a∈R in Diff∞
loc(U, M) and d ≥ 0 such that 

f0 has a 2-chain of alternate heterocyles with saddle points P 1, P 2 and sources S1, S2

such that (P 1, S1) and (P 2, S2) form two Cd-paraheterocycles at a = 0. Then there 
is a C∞-perturbation of (fa)a∈R such that the continuation of (P 1, S2) forms a Cd+1-
paraheterocycle at a = 0.

Moreover the perturbation is supported on a small neighborhood of orbit(S1) ∪
orbit(S2).
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Proof of Proposition 2.10. One considers a 2d-chain of alternate heterocycles with pe-
riodic points P 1, S1, . . . , P 2d

, S2d . Proposition 4.1 allows to perform a perturbation at 
orbit(S1) ∪orbit(S2), such that P 1 and the continuation of S2 form a C1-paraheterocycle.

Note that P 1, S2, P 3, S3, . . . , P 2d

, S2d is still a 2d − 2-chain of alternate heterocycles. 
By induction, one gets a 2d−1-chain of alternate heterocycles P 1, S2, . . . , P 2d−1, S2d such 
that P 2i+1, S2i+2 form a C1-paraheterocycle at a = 0, for each 0 ≤ i < 2d−1.

By a new perturbation supported near the sources, one gets a 2d−2-chain of al-
ternate heterocycles P 1, S4, . . . , P 2d−3, S2d such that each pair P 4i+1, S4i+4 forms a 
C2-paraheterocycle at a = 0. Repeating this construction inductively, one gets a Cd-
paraheterocycle at a = 0 between P 1 and the continuation of S2d . �

Proposition 4.1 is proved in the next two subsections. In Section 4.3 we discuss the 
case where there are several parameters.

4.1. Notations and local coordinates

The setting is similar to Section 3.1 and depicted Fig. 10. We choose a large integer 
r and a small number ε > 0, we look for a smooth perturbation of (fa)a∈R which is 
ε-Cr-small and such that the continuation of (P 1, S2) forms a Cd+1-paraheterocycle at 
a = 0.

As in Section 3 we shall assume that the points P 2 and S1 are fixed. We denote by 
|σa| < 1 and λa < −1 (resp. by |σuu

a | < |σu
a | < 1) the inverse of the eigenvalues of the 

tangent map of fa at P 2
a (resp. at S1

a).
After a small perturbation we can assume that the eigenvalues are non-resonant and:

log |σu
0 |

log |λ0|
∈ R \Q .

Then by [42], there exist:

• neighborhoods V ′
S(a) ⊂ VS(a) := fa(V ′

S(a)) of S1
a endowed with coordinates depend-

ing Cr on the parameter and for which the inverse branche Sa := (fa|V ′
S)−1 has the 

form:

Sa : (x, y) ∈ VS �→ (σuu
a · x, σu

a · y) ∈ V ′
S

• neighborhoods V ′
P (a) and VP (a) := fa(V ′

P (a)) of P 2
a endowed with coordinates de-

pending Cr on the parameter and for which the inverse branch has the form:

Pa : (x, y) ∈ VP (a) �→ (σa · x, λa · y) ∈ V ′
P (a) .

Up to restricting VP , V ′
P and VS we can assume them equal to filled rectangles containing 

0 in their interior. We define:
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Wu
loc(P 2

a ) ≡ VP (a) ∩ {y = 0} , W s
loc(P 2

a ) ≡ V ′
P (a) ∩ {x = 0} and

Wuu
loc (S1

a) ≡ {y = 0} ∩ VS(a) .

Let H0 be a point in W s(P 2
0 ) ∩ Wuu(S1

0). Up to replacing it by an iterate, we can 
assume that H0 belongs to V ′

P (0) with H0 ≡ (0, h0) in the linearizing coordinates of P 2
0 .

Also, a preimage S′ 2
a of S2

a by an iterate of fa has coordinates S′ 2
a =: (xa, ya) in the 

linearizing coordinates of P 2
a . Let Ta : VH ↪→ VS be an inverse branches of an iterate of 

fa defined on a neighborhood VH � V ′
P of H0 and such that T0 sends H0 into Wuu

loc (S1
0).

Up to a smooth perturbation, one can require that:

(T1) Wu(P 1) is transverse to Ecu
S1 at S1,

(T2) Wuu
loc (S1

0) and W s
loc(P 2

0 ) are transverse at H0.

By (T1), Wu(P 1
a ) contains a graph in the chart at S1

a, over a neighborhood I ⊂ R of 0:

Γa ≡ {(x, γa(x)); x ∈ I}.

By (T2), the transverse intersection H0 admits a continuation Ha for a close to 0. One 
sets

Ha ≡ (0, ha) and Ta(Ha) = (za, 0) .

Since (P 1, S1) and (P 2, S2) form two Cd-paraheterocycles at a = 0, one has for any 
0 ≤ k ≤ d,

∂k
aγa(0)|a=0 = 0 and ∂k

aya|a=0 = 0.

Up to a small perturbation, one can also assume that

∂d+1
a γa(0)|a=0 �= 0 and ∂d+1

a ya|a=0 �= 0.

Fig. 10 summaries the notations.

4.2. Compositions nearby a paraheterocycle

Let Δ be the second coordinate of ∂yT0(H0); it is nonzero by (T2).

Lemma 4.2. Given integers n, m ≥ 1 large such that (σu
0 )nλm

0 = O(1), there is a Cr-
perturbation of (fa)a localized at S2

a such that the germ at a = 0 of a �→ Sn
a ◦Ta◦Pm

a (S′ 2
a )

is Cd+1-close to (
0, (σu

0 )n · Δ · λm
0 · ∂

d+1
a ya|a=0

ad+1
)
.
(d + 1)!
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Fig. 10. Notations.

Proof. For m large, after a Cr-small perturbation localized at S2
a (which is conjugated 

to a translation in a small neighborhood of S2
a), we can assume S′ 2

a = (xa, ya+εa) where 
a �→ εa is the C∞-small function defined by εa := λ−m

a · ha and where as before (xa, ya)
are the coordinates of S′ 2

a before the perturbation.
Then observe that Pm

a (S′ 2
a ) = Ha + (σm

a · xa, λm
a · ya) forms a family whose germ at 

a = 0 is Cd-close to (Ha)a. When m is large, the germ at a = 0 of a �→ Ta ◦ Pm
a (S′ 2

a ) is 
Cd+1-close to

Ta(Ha) + DHa
Ta

(
σm
a · xa, λ

m
a · ∂

d+1
a ya|a=0

(d + 1)! ad+1
)

and so Cd+1-close to

(za, 0) + ∂yT0(H0) · λm
a · ∂

d+1
a ya|a=0

(d + 1)! ad+1 .

Consequently, for any n ≥ 0, the germ at a = 0 of a �→ Sn
a ◦ Ta ◦ Pm

a (S′ 2
a ) is Cd+1-close 

to

((σuu
a )n · za, 0) + diag((σuu

a )n, (σu
a )n) · ∂yT0(H0) · λm

a · ∂
d+1
a ya|a=0

(d + 1)! ad+1 .

If (σu
0 )nλm

0 = O(1), then both (σuu
a )n and (σuu

0 )nλm
0 are small, and so we obtain the 

announced bound. �
Since the ratio log |σu

0 |/ log |λ0| is irrational, and since ∂d+1
a γa(0)|a=0 �= 0 and 

∂d+1
a ya|a=0 �= 0, one can choose some large positive integers n, m such that

n log |σu
0 | + m log |λ0| − log |Δ| + log |∂d+1

a ya|a=0

is arbitrarily close to log |∂d+1
a γa(0)|a=0. Since λ is negative, one can choose m to be odd 

or even so that Δ · (σu
0 )n(λ0)m∂d+1ya|a=0 and ∂d+1γa(0)|a=0 have the same sign.

By our assumptions, the Cd-jets of a �→ γa(0) and a �→ ya at a = 0 vanish. With our 
choices, this guaranties that the Cd+1-jet at a = 0 of a �→ Δ · (σu

0 )n(λ0)mya − γa(0) is 
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arbitrarily small. By Lemma 4.2, after a Cr-perturbation of (fa)a localized at (S2
a)a, the 

germ at a = 0 of the following function is Cd+1-small:

a �→ ηa := γa ◦ px ◦ Sn
a ◦ Ta ◦ Pm

a (S′ 2
a ) − py ◦ Sn

a ◦ Ta ◦ Pm
a (S′ 2

a ).

A Cr-small perturbation localized at S1
a (which is locally conjugated to a translation) 

translates the functions (γa)a by −ηa for each parameter a close to 0. Then we have at 
a = 0:

d(Γa,Sn
a ◦ Ta ◦ Pm

a (S′ 2
a )) = o(ad+1).

As a consequence, the continuation of P 1
0 and S2

0 form a Cd+1-paraheterocycle at 
a = 0 for the chosen perturbation. Since the charts are a priori only Cr, the resulting 
perturbation is only Cr. In a last step, we thus smooth the family near the sources, 
keeping the paraheterocycle we have obtained (the latter being a finite codimensional 
condition on the family). Proposition 4.1 is now proved. �
4.3. Families parametrized by k-parameters

When the family (fa) is parametrized by a = (a1, . . . , ak) in Rk, k > 1, the proof 
follows the same scheme, by canceling one by one the partial derivatives ∂i1

a1
∂i2
a2

· · · ∂ik
ak

of the unfolding of the heterocycle. For this end, we proceed by induction on {i =
(i1, . . . , ik) ∈ Nk :

∑
j ij ≤ d} following an order ≺ such that:

∑
j

ij <
∑
j

i′j ⇒ i ≺ i′.

5. Nearly affine (para)-blender renormalization

In this section, we prove Propositions 2.2 and 2.4.
We consider a C∞ map f ∈ Diff∞

loc(U, M) with a projectively hyperbolic source S
and a saddle point Q forming a strong heterocycle, and build by perturbation a nearly 
affine blender homoclinically related to Q. It is defined by two inverse branches from a 
neighborhood of Q to “vertical rectangles” stretching across the local unstable manifold 
of the saddle.

In §5.1 and §5.2 we choose nice coordinate systems for the inverse dynamics nearby 
the source, the saddle and the heteroclinic orbits. It requires preliminary perturbation in 
order to satisfy some non-resonance and transversality conditions. We also explain how 
to unfold the strong heterocycle. The heterocycle induces well-defined inverse branches 
of the dynamics (§5.3) that are transitions from one linearizing chart to the other. §5.4
provides Cr-estimates on rescalings g−, g+ of the inverse branches. In §5.5 and §5.6, we 
tune the length of the branches and the size of the unfolding so that the inverse branches 
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Fig. 11. Inverse branches given by the strong heterocycle.

define a nearly affine blender with a neat dilation Δ; it is homoclinically related to the 
saddle point P and that its activation domain contains S. In other words, Proposition 2.2
will be proved.

In §5.8, we add a parameter, consider a family (fa)a∈R and apply the previous discus-
sion to f0. The inverse branches admit continuations (g−a )a∈R and (g+

a )a∈R. After having 
chosen an adapted reparametrization, we extend the Cr-bounds to the parametrized 
families and check that they define a nearly affine Cr-parablender, concluding the proof 
of Proposition 2.4.

Notations The proofs will depend on a small number ε > 0 and on integers 
n+, n−, m+, m−. The notation A = O(ε) (or more generally A = O(g(ε, n+, n−, m+,

m−))) will mean that the quantity A has a norm bounded by C.ε (or by C.|g(ε, n+, n−,

m+, m−)|), where the number C > 0 depends on the initial map f but not on the choices 
made during the construction.

Similarly, one will say that a function h (that may depend on coordinates x, y, and/or 
parameters a or α) is Cr-dominated by ε if ∂kh = O(ε) for all its kth derivatives with 
respect to x, y, a, α with 0 ≤ k ≤ r. Note that if in the Cr-topology, hi = h′

i + O(ε), 
i ∈ {1, 2}, then h1 ◦ h2 = h′

1 ◦ h′
2 + O(ε).

5.1. Coordinates for generic perturbations of strong heterocycles

We first fix a system of coordinate as depicted in Fig. 11. As in Section 3.1, we 
shall assume that the points Q and S are fixed and the eigenvalues 1 < σ−1

u < σ−1
uu

and 0 < λ−1 < 1 < σ−1 of DSf and DQf respectively are positive and non-resonant. 
Furthermore we can assume that:

log σu

log λ /∈ Q . (5.1)

The hypothesis of the proposition consists of two finite codimensional conditions:

S ∈ Wu(Q; f) and Q ∈ Wuu(S; f) . (5.2)

So after a small smooth perturbation, we can assume moreover:
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TQW
uu(S; f) ⊕ TQW

s(Q; f) = TQM and Ecu(S) ⊕ TSW
u(Q; f) = TSM . (5.3)

As in Section 3.1, the non-resonance of the eigenvalues and the smoothness of the 
dynamics imply, by the Sternberg Theorem [41], the existence of:

• Neighborhoods V ′
S ⊂ VS := f(V ′

S) of S and coordinates for which f |V ′
S has the form:

f : (x, y) ∈ V ′
S �→ (σ−1

uu · x, σ−1
u · y) ∈ VS .

• Neighborhoods V ′
Q and VQ = f(V ′

Q) of Q and coordinates in which f |V ′
Q has the 

form:

f : (x, y) ∈ V ′
Q �→ (σ−1 · x, λ−1 · y) ∈ VQ.

This defines the inverse branches Q := (f |V ′
Q)−1 and S := (f |V ′

S)−1:

S : (x, y) ∈ VS �→ (σuu · x, σu · y) ∈ V ′
S and Q : (x, y) ∈ VQ �→ (σ · x, λ · y) ∈ V ′

Q .

Up to restrict VQ and V ′
Q and rescale their coordinate, we can assume:

VQ ≡ [−2, 2] × [−2λ−1, 2λ−1] and V ′
Q ≡ [−2σ, 2σ] × [−2, 2] .

Let Wu
loc(Q) := VQ ∩ {y = 0}, W s

loc(Q) := V ′
Q ∩ {x = 0} and Wuu

loc (S) := {y = 0} ∩ VS .

By Eq. (5.2) there is a neighborhood V ′′
S � V ′

S of 0 ≡ S and an inverse branch 
T S : V ′′

S ↪→ VQ of an iterate of f sending 0 into [−2, 2] × {0}. Similarly, there exists 
a neighborhood V ′′

Q � V ′
Q ∩ VQ of 0 ≡ Q and an inverse branch T Q : V ′′

Q ↪→ VS of an 
iterate of f sending 0 into VS ∩ {y = 0}. The inverse branches T S and T Q are called the 
transitions maps.
Assuming the neighborhoods VS and VQ small enough, it is possible (up to compose by 
an iterate of f) to choose T S, T Q such that

T S(0) ∈ VQ \ V ′
Q and T Q(0) ∈ VS \ V ′

S .

Let the coordinates of T S and T Q be

T S := (X S ,YS) and T Q := (XQ,YQ) .

By Eq. (5.3), ∂yYQ(0) �= 0. Thus by rescaling one of the linearizing chart, we can assume:

∂yYQ(0) = 1. (5.4)
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5.2. Unfolding of the strong heterocycle

We will perturb T S, T Q so that the following points are close to but not necessarily
in {y = 0}:

S′ = (s′x, s′y) := T S(0) and Q′ = (q′x, q′y) := T Q(0) .

This is enabled by the next claim without changing any derivative of the inverse branches.

Claim 5.1. For every small numbers s′y and q′y, there exists a C∞ perturbation of the 
dynamics such that the inverse branches S and Q remain unchanged, while the contin-
uations of the inverse branches T S and T Q have the same derivatives but satisfy:

YS(0) = s′y and YQ(0) = q′y.

Proof. First recall that T S(0) ∈ VQ \ V ′
Q. One perturbs f by composing with a trans-

lation supported on a small neighborhood of T S(0). This enables to move the vertical 
position of T S(0), without affecting the other branches. The modification of T Q(0) is 
done similarly. �

In the following we will prescribe some values of s′y, q′y and consider the perturbed 
dynamics. The inverse branches of the new system will be still denoted by Q, S, T S =
(X S , YS) and T Q = (XQ, YQ). The next lemma enables to assume that ∂yYS(0) is 
positive.

Lemma 5.2. Up to perturbation f and to change T S, we can assume moreover that

∂yYS(0) > 0.

Proof. If ∂yYS(0) < 0, we are going to perturb f and replace T S by the inverse branch 
T̃ S := T S ◦ Sn ◦ T Q ◦ Qm ◦ T S for some large n and m. First note that for any large n
and any m, the map T̃ S is well defined on a small neighborhood of 0 ≡ S. Also ∂yT S(0)
is a vector with negative vertical component. By hyperbolicity, it is sent by DQm to a 
nearly vertical vector. Its vertical component is still negative since λ > 0. It is pointed at 
a point Qm ◦ T S(0) close to 0 ≡ Q. Thus for m sufficiently large, by Eq. (5.4), its image 
by DT Q is a vector with negative vertical component. By projective hyperbolicity of the 
source S, its image by DSn is a vector vertical, pointed at a point nearby S when n is 
large, and with negative vertical component. Consequently it is sent by T S to a vector 
with positive vertical component at a point nearby T S(0). In other words, the second 
coordinate of ∂yT̃ S(0) is positive.

It remains to perform a perturbation of f so that the second coordinate of T̃ S(0) is 
zero. Let (T S

t )t be the family of perturbations of T S given by Claim 5.1 and enabling to 
move the y-coordinate of T S(0). Note that when n � m,
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Fig. 12. Construction of a nearly affine blender.

∂t(T S
t ◦Sn ◦ T Q ◦Qm ◦ T S

t )(0) ≈ ∂tT S
t (0)+D(T S ◦Sn ◦ T Q ◦Qm)(∂tT S

t (0)) ≈ ∂tT S
t (0) .

Hence there is a small parameter t such that T̃ S
t := (T S

t ◦ Sn ◦ T Q ◦ Qm ◦ T S
t ) satisfies 

moreover that the y-coordinate of T̃ S
t (0) is 0. �

Remark 5.3. Note that all the previous properties, and in particular Claim 5.1, are still 
satisfied by the coordinates change given in the proof of Lemma 5.2.

5.3. Choice and renormalization of inverse branches

Let us fix Δ > 1 sufficiently close to 1 so that a nearly affine blender of contraction 
Δ−1 is a blender by Proposition 1.8. The construction also depends on a small number 
ε > 0 (it will measure the distance of the rescaled blender to an affine one) and on large 
integers n−, m−, n+, m+ that will be chosen later.

The nearly affine blender will be displayed in the neighborhood VQ of Q, using two 
inverse branches g+ and g− of different iterates of f (see Fig. 12). We take them of the 
form:

g± := T S ◦ Sn± ◦ T Q ◦ Qm±
.

The inverse branches defining the blender will be rescaled by the map:

H : (x, y) ∈ [−2; 2] × [−2ε−1λm+−1, 2ε−1λm+−1] → (x, ε · λ−m+ · y) ∈ VQ .

Their renormalizations are given for ± ∈ {−, +} by:

Rg± := H−1 ◦ g± ◦ H = H−1 ◦ T S ◦ Sn± ◦ T Q ◦ Qm± ◦ H (5.5)

Lemma 5.4. For every n−, m−, n+, m+ large, with m+ > m−, the renormalizations 
Rg−, Rg+ are well defined on B := [−2, 2]2.

Proof. Since m− < m+, both maps Qm+ ◦H, Qm− ◦ H are well defined on B and equal 
to:
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.

Qm+ ◦ H(x, y) = (σm+ · x, ε · y) and Qm− ◦ H(x, y) = (σm− · x, ε · λm−−m+ · y) .

As ε is small, their ranges are contained in a small neighborhood of 0 and so in the 
domain of T Q. Thus both maps T Q ◦Qm± ◦H are well defined on B and their ranges lie 
in a small neighborhood of T Q(0) ∈ VS . Then as S contracts VS into itself with a fixed 
point at 0 and since n± are large, Sn± ◦T Q ◦Qm± ◦H is well defined on B and its image 
is included in the small neighborhood V ′′

S of 0. Thus T S ◦ Sn± ◦ T Q ◦ Qm± ◦ H is well 
defined on B. �
5.4. Bounds on the renormalized maps

Given ε > 0 small, we require the following properties on the large integers n±, m±:

n+ > n− ≥ ε−1 and m+ > m− ≥ ε−1 , (5.6)

{ σn−

u λm− · ∂yYS(0), σn+

u λm+ · ∂yYS(0) } ⊂ [Δ − ε,Δ + ε] , (5.7)

σn+−n−

u ≤ ε and (m+ −m−)r · λm+−m− ≤ ε2 · min(n−,m−) . (5.8)

Let us recall that the inverse eigenvalues satisfy κ := max(σu, σuu, σuu

σu
, λ−1, σ) < 1.

Fact 5.5. For every ε > 0 small and n > ε−1, it holds κn < n−(r+4).

In particular, one has σn−
< ε and σn−

u < ε.

We decompose the renormalized maps as

Rg± = Ψ± ◦ Φ± = [H−1 ◦ T S ◦ Sn± ◦ H±] ◦ [(H±)−1 ◦ T Q ◦ Qm± ◦ H] ,

where H± := (x, y) �→ (x, ε · λm±−m+ · y) −Q′.

Lemma 5.6. The maps (x, y) �→ Φ±(x, y) − (0, y) are Cr-dominated by ε.

Proof. We have Φ±(x, y) = (H±)−1 ◦ T Q ◦ Qm± ◦ H(x, y). Since Q′ = T Q(0) = T Q ◦
Qm± ◦ H(0) we get Φ±(0) = 0. Recalling that T Q = (XQ, YQ) and that Q′ = (q′x, q′y), 
we obtain:

Φ±(x, y) = (XQ, ε−1 · λm+−m± · YQ)(σm± · x, ε · λm±−m+ · y) + (q′x, ε−1 · λm+−m± · q′y)

∂xΦ±(x, y) = σm± · (∂xXQ, ε−1 · λm+−m± · ∂xYQ)(σm± · x, ε · λm±−m+ · y) .
∂yΦ±(x, y) = (ε · λm±−m+ · ∂yXQ, ∂yYQ)(σm± · x, ε · λm±−m+ · y) .

From this, (5.6) and Fact 5.5, the first coordinate of DΦ± is Cr−1-dominated by ε. 
Using also (5.8) and then Fact 5.5, we have σm± · ε−1 · λm+−m±

< σm± · ε ·m− < ε and 
the second coordinate of ∂xΦ± is Cr−1-dominated by ε. As ∂yYQ(0) = 1 by (5.4), the 
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second coordinate of ∂yΦ± coincides with the constant function 1, up to an error term 
that is Cr−1-dominated by ε. �
Lemma 5.7. The maps Ψ± coincide with

(x, y) �→ (0,Δ · y) + (s′x , ε−1λm+ · s′y − ε−1 · λm+
σn±

u · ∂yYS(0) · q′y),

up to an error term that is Cr-dominated by ε.

Proof. We have Ψ± = H−1 ◦ T S ◦ Sn± ◦ H±. With T S = (X S , YS), it holds:

Ψ±(x, y) = (X S , ε−1λm+YS)(σn±

uu · (x− q′x), σn±

u · (ε · λm±−m+ · y − q′y)) .

Thus ∂xΨ± is Cr−1-dominated by σn−
uu ·λm+ ·ε−1, which by (5.6), (5.7), (5.8) is dominated 

by

(σuu

σu
)n

− · λm+−m− · ε−1 < (σuu

σu
)n

− · n− · ε < ε.

The first coordinate of ∂yΨ± is Cr−1-dominated by ε · σn±
u · λm±−m+

< ε. Similarly, 
using (5.7), the second coordinate of ∂yΨ± coincides with σn±

u · λm± · ∂yYS(0), hence 
with Δ, up to an error term that is Cr−1-dominated by ε. We have thus shown that the 
derivative of (x, y) �→ Ψ±(x, y) − (0, Δ · y) is Cr−1-dominated by ε. Moreover:

Ψ±(0) = (X S , ε−1 · λm+ · YS)(−σn±

uu · q′x,−σn±

u · q′y) .

The first coordinate is ε-close to X S(0) = s′x and the second coordinate is equal to:

ε−1λm+YS(−σn±

uu · q′x,−σn±

u · q′y))

= ε−1λm+
(
YS(0) − ∂xYS(0) · σn±

uu · q′x − ∂yYS(0) · σn±

u · q′y + O(σ2n±

u )
)
.

As before ε−1 · λm+ · σn−
uu = O(ε). By (5.7) and (5.8), ε−1 · λm+ · σ2n−

u is dominated by 
ε−1 · λm+−m− · σn−

u = O(ε). As YS(0) = s′y, we obtain (1). �
5.5. Tunning iterates

Lemma 5.8. Given ε > 0 small, there exist n−, m−, n+, m+ which satisfy (5.6), (5.7), 
(5.8).

Proof. By (5.1), there exist m, n ≥ 1 arbitrarily large such that:

λmσn
u ∈ [1 − ε , 1 + ε ] and σn

u ≤ ε .
10 10
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As Δ and ∂yYS(0) have the same sign (by Lemma 5.2), there are n−, m− > ε−1 such 
that:

min(n−,m−) ≥ ε−2 ·mr · λm and ∂yYS(0) · λm−
σn−

u ∈ Δ + [− ε
10 ,

ε
10 ] .

Then let m+ := m +m− and n+ := n +n−. This gives λm+ ·∂yYS(0) ·σn+

u ∈ Δ +[−ε, ε]. �
A consequence of the Lemmas 5.6, 5.7 and 5.8 is:

Corollary 5.9. For every ε > 0 there exist n−, m−, n+, m+ such that the renormalized 
maps Rg± coincide, up to a term that is Cr-dominated by ε, with:

(x, y) �→ (0,Δ · y) + (s′x , ε−1 · λm+ · s′y − ε−1 · λm+ · σn±

u · ∂yYS(0) · q′y).

5.6. Proof of Proposition 2.2: from strong heterocycles to blenders

Let n−, m−, n+, m+ be given by Corollary 5.9. It remains to choose the values of s′y
and q′y, such that the renormalized maps Rg± are Cr-close to:

(x, y) �→ (s′x,Δ · y) ± (0,Δ − 1).

In view of Corollary 5.9, it is enough to ask:

ε−1 · λm+ · s′y − ε−1 · λm+ · σn±

u · ∂yYS(0) · q′y = ±(Δ − 1) + O(ε).

This is implied by choosing s′y and q′y as follows:

ε−1 · λm+ · s′y = Δ − 1 and ε−1 · λm+
σn−

u · ∂yYS(0) · q′y = 2(Δ − 1) . (5.9)

Indeed, one has σn+−n−
u ≤ ε by (5.8), and with (5.6), (5.7), Fact 5.5, the choices (5.9)

give s′y = O(ε2), q′y = O(ε) and ε−1 · λm+
σn+

u · ∂yYS(0) · q′y = O(ε).
By Proposition 1.8, {Rg+, Rg−} defines a nearly affine blender with activation domain 

containing [−2, 2] × [−1/2, 1/2]. Thus, {g+, g−} defines a blender with activation domain 
containing H([−2, 2] × [−1/2, 1/2]) = [−2, 2] × [−ε · λ−m+

/2, ε · λ−m+
/2]. Choosing 

|Δ − 1| < 1/4, one gets |s′y| < ε · λ−m+
/2 and S′ belongs to this activation domain. 

Also the point Q ≡ 0 belongs to this activation domain. Pushing forward this activation 
domain along the inverse branch T S , we define a new family of local unstable manifolds 
for the blender whose activation domain contains S. Note that the unstable manifold of 
Q stretches across {s′x} × [−ε · λ−m+

/2, ε · λ−m+
/2] and so the stable manifolds of the 

blender. Hence Q is homoclinically related to the blender. Proposition 2.2 is proved in 
the C∞ case. �
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5.7. Proof of the Proposition 2.2 in the analytic case

The whole previous proof is still valid in the analytic setting but Claim 5.1. Note 
that the proof of Proposition 2.2 does not use that the r first derivatives of T S and T Q

remain unchanged but only that they are bounded. Thus to prove the analytic case of 
Proposition 2.2, it suffices to show:

Claim 5.10. For every small numbers s′y and q′y, there exists a Cω perturbation of the 
dynamics such that the inverse branches S and Q remain unchanged, while the contin-
uations of the inverse branches T S and T Q derivatives at 0 and satisfy:

YS(0) = s′y and YQ(0) = q′y.

Moreover their Cr-norm vary continuously with the parameters s′y, q′y.

Proof. The perturbation technique follows the same lines as the proof of Lemma 3.7. 
First we embed analytically M into RN , and we define an analytic retraction π from 
a neighborhood of M ⊂ RN to M . Then we chose a C∞-family (fp)p∈[−ε,ε]8 such that 
f0 = f , such that fp coincide with f outside of a small neighborhood of {S, Q}, and such 
that the following map is a local diffeomorphism:

Φ: p ∈ [−ε, ε]8 �→ (Sp, Pp, σ(p), λ(p), σu(p), σuu(p)) ∈ M2 ×R4,

where Sp and Pp are the continuations of S and P , while (σ−1(p), λ−1(p)) and 
(σ−1

u (p), σ−1
uu (p)) are their eigenvalues. Then using Stone-Weierstrass theorem and the 

retraction π, we define an analytic family (f̃p)p∈[−ε,ε]8 such that f̃0 = f and such that 
the continuation of Φ remains a diffeomorphism. We can thus extract from this family a 
4-parameter family (f̃p)p∈[−ε,ε]4 along which the eigenvalues are constant, but such that 
the continuations S̃p and P̃p of S and P still satisfy that the following map is a local 
diffeomorphism:

p ∈ [−ε, ε]4 �→ (S̃p, P̃p) ∈ M2 .

In §5.1, we assumed the eigenvalues of these points to be non-resonant. Thus we can 
apply [42] which provides Cr-families of coordinates at S and P in which fp|V ′

S and 
fp|V ′

Q coincide with diagonalized linear part of DSfp and DQfp, which do not depend 
on p. Consequently the inverse branches S and Q (seen in the coordinates) remain 
unchanged when p varies in [−ε, ε]4. Also the continuations of the inverse branches T S

and T Q vary Cr-continuously with p. On the other hand, the variation of the relative 
positions of the continuation of S and Q w.r.t. a local unstable manifold of Q and a local 
strong unstable manifold of S is non-degenerated. �
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5.8. Proof of Proposition 2.4: from strong paraheterocycles to parablenders

We now consider a C∞ family of (fa)a∈R and continue to work in the setting of 
§5.1–5.6 for the map f = f0.

The continuations of the periodic points are (Sa)a∈R, (Qa)a∈R, with eigenvalues 
σ−1
u (a), σ−1

uu (a) and λ−1(a), σ−1(a). By [42], their linearizing coordinates can be extended 
for every a ∈ I of I sufficiently small, as Cr+1-family of Cr+1-diffeomorphisms. This en-
ables us to consider the continuations Sa, Qa, T Q

a and T S
a of the inverse branches S, Q, 

T Q and T S . They are still of the form:

Sa : (x, y) ∈ VS �→ (σuu(a) · x, σu(a) · y), Qa : (x, y) ∈ VQ �→ (σ(a) · x, λ(a) · y),
T S
a = (X S

a ,YS
a ) : (x, y) ∈ V ′′

S ↪→ VQ, T Q
a = (XQ

a ,YQ
a ) : (x, y) ∈ V ′′

Q ↪→ VS ,

and they allow to define the preimages by fa:

S′
a = (s′x(a), s′y(a)) := T S

a (0) and Q′
a = (q′x(a), q′y(a)) := T Q

a (0).

Observe that up to a perturbation localized at a neighborhood of S0 we can also 
assume:

∂a
log σu(a)
log λ(a) �= 0 at a = 0 . (5.10)

We consider Δ > 1, ε > 0, and the integers n+, m+, n−, m− as before. This allows to 
extend the definition of g± as families (g±a )a∈I . We also extend the rescaling maps:

Ha : (x, y) �→ (x, ε · λm+
(a) · y),

H±
a : (x, y) �→ (x, ε · λm±−m+

(a) · y) −Q′
a,

and, similarly to Eq. (5.5), the renormalized inverse branches:

Rg±a := H−1
a ◦ g±a ◦ Ha = Ψ±

a ◦ Φ±
a ,

where Φ±
a := (H±

a )−1 ◦ T Q
a ◦ Qm±

a ◦ Ha and Ψ±
a := (Ha)−1 ◦ T S

a ◦ Sn±

a ◦ H±
a .

For a small, Rg+
a , Rg−a are well defined on B := [−1, 1] × [−2, 2] by Lemma 5.4 and form 

a Cr-nearly affine blender Ka by Section 5.6. We also rescale the parameter space:

α(a) := Δ−(a) − Δ−(0) where Δ±(a) := λm±
(a) · ∂yYS

a (0) · σn±

u (a).

Lemma 5.11.

1. The map α is a local diffeomorphism at a = 0.
2. Its inverse function α �→ a(α) is Cr-dominated by 1/n− (and hence by ε).
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3. The maps α �→ Δ±(α) − (Δ + α) are Cr-dominated by ε.

Proof. First observe that α(0) = 0. Then

Δ−1
− · ∂aα = ∂a log Δ− = ∂a log(λm− · σn−

u · ∂yYS
a (0))

= ∂a

(
log(λm− · σn−

u )
log λ · log λ + log ∂yYS

a (0)
)

= n− · log λ · ∂a
log σu

log λ + m− · log λ + n− log σu

log λ · ∂a log λ + ∂a log(∂yYS
a (0)) .

Thus by (5.7), when ε is small, ∂aα|a=0 is invertible, of the order of n−, giving the first 
item.

By induction, one gets that the higher derivatives can be written as:

∂k
aΔ− = ∂k

aα = Δ− ·
(
n− · log λ · ∂a

log σu

log λ + m− · log λ + n− log σu

log λ · ∂a log λ+

∂a log(∂yYS
a (0))

)k

+ Δ− ·Rk(n−,m−) , (5.11)

where Rk(n−, m−) is a polynomial in n−, m− with degree smaller or equal to k − 1. 
Hence ∂k

aα is dominated by (n−)k. Note that ∂k
αa · (∂aα)k+1 is a linear combination of 

terms of the form (∂aα)i1 · (∂2
aα)i2 · · · (∂k

aα)ik , where i1 + 2 · i2 + · · · + k · ik ≤ k. This 
implies that ∂k

αa is dominated by 1/n− ≤ ε as announced in the second item.
The definition of α gives Δ−(α) = Δ−(0) +α and |Δ−(0) −Δ| < ε by (5.7). In order 

to get the third item, it is thus enough to prove that each derivative ∂k
α(Δ+ − Δ−) is 

dominated by ε.
By (5.7) and (5.8), Δ+ − Δ− is dominated by ε, and n+ − n− is dominated by εn−, 

whereas m− · log λ + n− log σu and m+ · log λ + n+ log σu are uniformly bounded. The 
partial derivative ∂k

aΔ− satisfies Eq. (5.11). Replacing Δ−, n−, m− by Δ+, n+, m+, one 
obtains a relation for ∂k

aΔ+. Taking the difference, one concludes that ∂k
a(Δ+ − Δ−) is 

dominated by ε(n−)k. Since ∂k
α(Δ+ − Δ−) is a linear combination of terms ∂m

a (Δ+ −
Δ−) · ∂i1

α a · · · ∂i�
α a with i1 + · · · + i� = m, by the second equality of it is dominated by 

ε. �
By abuse of notation, for any function of a, for instance a �→ S′

a, we denote α �→ S′
α

its reparametrization equal to the composition of a �→ S′
a with the inverse of α.

Corollary 5.12.

1. The maps α �→ S′
α − S′

0 and α �→ Q′
α −Q′

0 are Cr-dominated by ε.
2. The first derivative of α �→ ε−1 · λm+−m±(α) · q′y(α) is Cr−1-dominated by ε.
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).
3. The first derivative of α �→ ε−1 · λm+(α) · σn±
u (α) · q′y(α)) is Cr−1-dominated by ε.

Proof. The first item is a direct consequence of Lemma 5.11: in particular the first deriva-
tive of α �→ q′y(α) is Cr−1-dominated by 1/n−. By our choice (5.9), q′y(0) is dominated 

by ε · λm−−m+ . Similarly, the first derivative of α �→ λm+−m−(α) is Cr−1-dominated by

max{(m+−m−

n− )kλm+−m−
: 1 ≤ k ≤ r} ≤ m+−m−

n− λm+−m−
< ε2λm+−m−

,

using (5.8). The second item is thus a consequence of (5.8): ε−1λm+−m±
/n− ≤ ε.

The third item is obtained similarly, by writing λm+(α) · σn±
u (α) = λm+−m±(α) ·

λm±
σn±
u (α) and by using (5.7). �

Lemma 5.13. With py : (x, y) �→ y, the families (Φ±
α − (0, py))α are Cr-dominated by ε.

Proof. In addition to Lemma 5.6, it remains to study the partial derivatives involving 
α. Let us recall that Φ±

α (x, y) is given by

(XQ
α , ε−1·λm+−m±

(α)·YQ
α )(σm±

(α)·x, ε·λm±−m+
(α)·y)+(q′x(α), ε−1·λm+−m±

(α)·q′y(α)).

By Corollary 5.12, one can reduce to consider the family indexed by α and formed by:

(x, y) �→ (XQ
α , ε−1 · λm+−m±

(α) · YQ
α )(σm±

(α) · x, ε · λm±−m+
(α) · y). (5.12)

By Lemma 5.11.(2) and then by the 2nd inequality in (5.8), the first derivative of the 
map α �→ ε−1 · λm+−m±(α) has a Cr−1-norm dominated by

max
1≤i≤r

ε−1 · n−i
+ · (m+ −m±)iλm+−m± ≤ max

1≤i≤r
ε · n1−i

+ ≤ ε.

On the other hand, the map K : (α, x, y) �→ (XQ
α , YQ

α )(σm±(α) · x, ε · λm±−m+(α) · y)
is a Cr-bounded function with small first coordinate. Also its first derivative w.r.t. α is 
dominated by 1

n+ ≤ ε. Thus the first derivative w.r.t. α of the map in (5.12) is dominated 
by:

ε + ε−1 · λm+−m±
(α) · ‖∂αK‖Cr−1 ,

which is dominated by ε small using the 2nd inequality in (5.8). �
Lemma 5.14. The families (Ψ±

α )α coincide, up to the addition of maps Cr-dominated by 
ε, with the families defined by:

((x, y), α) �→ (0, (Δ+α)·y)+(s′x(0), ε−1·λm+
(α)·s′y(α)−ε−1·λm+

(α)·σn±

u (α)·∂yYS
α(0)·q′y(α)
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Proof. In addition to Lemma 5.7, we are reduced to examine the (∂αΨ±
α )α. We have:

Ψ±
α (x, y) = (X S

α , ε
−1λm+

(α)YS
α)(σn±

uu (α)·(x−q′x(α)), σn±

u (α)·(ε·λm±−m+
(α)·y−q′y(α))) .

We first discuss the families (∂xΨ±
α )α, (∂yΨ±

α )α and then the families (∂αΨ±
α (0))α.

Step 1. The families (∂xΨ±
α )α are controlled as in the proof of Lemma 5.13, by bounding 

the factors ∂k
αa by 1/n− with Lemma 5.11. By (5.7), (5.8), m−, m+, n+ are dominated 

by n−. All of this implies that log(λm±), σn±
u , σn±

uu , as functions of α, are Cr-bounded. 
One deduces that ∂xΨ±

α are Cr−1-dominated by σn±
uu ·λm+ · ε−1. Arguing as in the proof 

of Lemma 5.7, ∂xΨ±
α are thus Cr−1-dominated by

(σuu

σu
)n

− · λm+−m− · ε−1 < (σuu

σu
)n

− · n− · ε < ε.

Step 2. The families (∂yΨ±
α )α have a first coordinate which is Cr−1-dominated by (n±)r ·

σn±
u · (m± −m+)r · λm±−m+ · ε, and by ε by Fact 5.5. The second coordinate of ∂yΨ±

α

equals:

((x, y), α) �→ σn±

u (α) · λm±
(α)

· ∂yYS
α

(
σn±

uu (α) · (x− q′x(α)), σn±

u (α) · (ε · λm±−m+
(α) · y − q′y(α))

)
.

It differs with (σn±
u (α) · λm±(α) · ∂yYS

α(0))α up to a map which is Cr−1-dominated by

σn±

u · λm± · max
{

(n±)r · σn±

uu , (n±)r · σn±

u · (m+ −m±)r · λm±−m+ · ε
}
,

and hence by ε from (5.7) and Fact 5.5. By definition σn±
u (α) ·λm±(α) ·∂yYS

α(0) = Δ±(α)
and Δ±(α) coincides with Δ +α up to a term that is Cr-dominated by ε, by Lemma 5.11.

Up to here, we have shown that the spacial derivative of Ψ±
α coincides with the spatial 

derivative of the map ((x, y), α) �→ (0, (Δ + α) · y), up to a term Cr−1-dominated by ε.
Step 3. The families (∂αΨ±

α (0))α, are given by:

Ψ±
α (0) = (X S

α , ε
−1 · λm+

(α) · YS
α)(−σn±

uu (α) · q′x(α),−σn±

u (α) · q′y(α)) .

The first coordinate of each derivative ∂k
αΨ±

α (0) is dominated by derivatives ∂i
αa, hence 

the first coordinate of ∂αΨ±
α (0) is dominated by ε by Lemma 5.11.

By similar estimates as in Lemma 5.7, combined with Lemma 5.11, the second coor-
dinate of ∂αΨ±

α (0) can be reduced (up to a term Cr−1-dominated by ε) to:

ε−1 · λm+
(α) · YS

α(0) + ε−1 · λm+
(α) ·DYS

α(0).(0,−σn±

u (α) · q′y(α)) ,

which is also equal to ε−1 · λm+(α) · s′y(α) − ε−1 · λm+(α) · σn±
u (α) · ∂yYS

α(0) · q′y(α). �
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As a consequence of the Lemmas 5.13, 5.14 and 5.8, we have obtained:

Corollary 5.15. For every ε > 0 there exist n+, n−, m+, m− such that the families (Rg±α )α
coincide, up to a term Cr-dominated by ε, with the families defined by:

(x, y) �→ (0, (Δ+α)·y)+(s′x(0), ε−1·λm+
(α)·s′y(α)−ε−1·λm+

(α)·σn±

u (α)·∂yYS
α(0)·q′y(α)) .

End of the proof of Proposition 2.4. Corollaries 5.15 and 5.12 reduce the family (Rg±α )α
to:

(x, y) �→ (0, (Δ+α)·y)+(s′x(0), ε−1 ·λm+
(α)·s′y(α)−ε−1 ·λm+

(0)·σn±

u (0)·∂yYS
0 (0)·q′y(0)) .

Note that we removed the dependence on α of the right hand term since its first derivative 
(w.r.t. α) is bounded by ε by the 2nd inequality of (5.8) and Lemma 5.11(2). As in 
Section 5.6,

ε−1 · λm+
(0) · σn−

u (0) · ∂yYS
0 (0) · q′y(0) = 2(Δ − 1) and

ε−1 · λm+
(0) · σn+

u (0) · ∂yYS
0 (0) · q′y(0) = O(ε).

As we started with a strong Cr-paraheterocycle, all the r-first derivatives of α �→ s′y(α)
equal 0 at 0. So by Claim 5.1, we can perturb (fa)a so that α �→ s′y(α) has the same 

r-jet as the Cr-small function α �→ ε · λ−m+(α) · (Δ − 1) at α = 0. Then we obtain that 
(Rg±α )α are δ-Cr-close to:

(x, y) �→ (s′x(0), (Δ + α) · y ± (Δ − 1)) ,

and hence defines a δ-nearly affine Cr-parablender, where δ is arbitrarily close to 0
when ε → 0. By Proposition 1.19, one deduces that the continuation (Ka)a of the 
maximal invariant set induced by the maps (g+

a , g
−
a )a is a Cr-parablender. Its activation 

domain seen in the chart Hα contains any germ α �→ z(α) with z(0) ∈ [−2, 2] × {0}
and ‖∂αz(α)‖Cr−1 ≤ η, where η > 0 is small number independent from ε. Note that our 
perturbation satisfies Hα(S′

α) = (s′x(α), ε(Δ − 1)). Combining with Corollary 5.12, item 
1, one concludes that the activation domain of (Kα)α∈I contains the germ of (S′

α)α, and 
the germ of the source (Sα) at α = 0. We also recall that Q is homoclinically related to 
the (para)-blender. Proposition 2.4 is proved. �
Remark 5.16. For each point x ∈ ←−

K , let γx be the unstable curve of x which is a 
graph over [−2, 2]. The activation domain is obtained by considering the local unstable 
manifolds of the form (T S)−1(γx). By assumption (5.3), Wu(Q) is transverse to Ecu(S). 
One deduces that the family of local unstable manifolds defining the activation domain 
of the parablender satisfies the property announced in Remark 2.5.
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