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0. Introduction

One of the most complex and rich phenomenon in differentiable dynamical systems
was discovered by Newhouse [32,33]. He showed the existence of locally Baire-generic sets
of dynamics displaying infinitely many sinks which accumulate onto a Smale’s horseshoe
(a stably embedded Bernoulli shift). This property is the celebrated Newhouse phe-
nomenon. It appears in many classes of dynamics [15,3,19,15,21,9]. Following Yoccoz,
this phenomenon provides a lower bound on the wildness and complexity of the dynam-
ics, rather than a complete understanding on the dynamics. Indeed from the topological
or statistical viewpoints, these dynamics are presently extremely far from being under-
stood; it is not clear that the current dynamical paradigm would even allow one to state
a description of such dynamics.

Since the early 70’s, the problem of the typicality of the Newhouse phenomenon has
been fundamental, see for instance [40]. But the notion of Baire-genericity among dynam-
ical systems is a priori independent of other notions of typicality involving probability.
That is why many important works and programs [43,39,37,34-36,22] wondered if the
complement of the Newhouse phenomenon could be typical in some probabilistic senses
inspired by Kolmogorov.

In his plenary talk ending the ICM 1954, Kolmogorov introduced the notion of typi-
cality for analytic or finitely differentiable dynamics of a manifold M. He actually gave
two definitions: one was designed to decide that a phenomenon is negligible, the other
one to decide that a phenomenon is typical. He called negligible a phenomenon which
only holds on a subset dynamics sent into a Lebesgue null subset of R™ by a finite num-
ber of [non trivial] real valued functionals (F;)o<i<» on the space of dynamics. To decide
if a phenomenon B is typical, he proposed starting with a dynamics fy presenting the
behavior, and then to considering deformations f, of the form

fa(2) = fo(z) + a- ¢(x,a)

where ¢ is a function of both x and a, of the same regularity as f (e.g. analytic, smooth
or finitely differentiable). Then he called the behavior B typical, or stably realizable if,
for every a small enough, the system f, displays this behavior. This was presented as a
criterion for detecting the importance of a phenomenon:



P. Berger et al. / Advances in Mathematics 407 (2022) 108528 3

P 7
MS

Fig. 1. Bicycle.

Any type of behavior of a dynamical system for which there exists at least one example
of stable realization should be recognized as being important and not negligible.

Kolmogorov, ICM 1954.

In this work we show that the Newhouse phenomenon is typical according to the
following notion inspired by Kolmogorov idea and subsequent developments [26,24,30,28]:

Definition 0.1 (Germ-typicality). A behavior B is C"-germ-typical in U C C" (M, M), if
there exist a Baire-generic* set R in the space of C"-families® f = (fa)aecr of maps in
U and a locally constant function §: R — (0, +00) such that for every f € R and for all
la| < 8(f), the map f, presents the behavior B.

Newhouse has shown that the local Baire-genericity of his phenomenon occurs near
any diffeomorphism exhibiting a homoclinic tangency. In a similar way, we show that
the germ typicality of the Newhouse phenomenon occurs near any system displaying a
simple configuration that we call a bicycle (see Fig. 1):

Definition 0.2. A local diffeomorphism displays a bicycle if one of its saddle points has a
homoclinic tangency and a heterocycle. A saddle point P displays a heterocycle if W*(P)
contains a projectively hyperbolic source S and if the strong unstable manifold W**(.S)
intersects W#*(P). The bicycle is dissipative if the dynamics contracts area along the
orbit of P.

Since a bicycle is a simple configuration, in many cases it may be easy to obtain, as
we will see in Example 1.12 for the planar dynamics (z,y) — (22 — 2,y).
The main theorem of this work is the following:

Theorem A. For every 2 < r < oo and for every local C"-diffeomorphism of a surface
f € Dift] (U, M) which displays a dissipative bicycle, there exists a (non empty) open

loc

4 j.e. a set which contains a countable intersection of open and dense sets.

5 In Section 1.1, we will precise the topological space of C”-families involved.
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set U™ C Diff}, (U, M) whose closure contains f and where the Newhouse phenomenon

is C"-germ-typical.

Following Kolmogorov viewpoint, this theorem strengthens the evidence of the im-
portance of the Newhouse phenomenon. This work is a new step in the aforementioned
fundamental program towards the description of the typicality of the Newhouse phe-
nomenon. It is based and goes beyond the recent work [6,7]. The later discovered that
there exists a locally generic set of C"-families of dynamics which display Newhouse
phenomenon for every parameter. It holds inside an open set of families satisfying well-
chosen conditions on the unfolding (direction, curvature, etc) enabling to obtain robust
degenerated bifurcations. In this work we show that these conditions actually hold for
all typical families taking values inside an open set of systems.

This enables to show the typicality of the Newhouse phenomenon in a much stronger
sense: the typicality locus depends only on the dynamics and not on its unfolding. Finally,
another main point of the present work is to bring to light a very simple configuration
(the bicycle) nearby which germ-typicality of the Newhouse phenomenon holds true.
In other words, the results are about which simple bifurcation are culprit of the germ-
typicality of the Newhouse phenomenon: we are not only showing that the Newhouse
phenomenon holds in a strong sense but also providing simple mechanisms that produces
it.

Locus of robust phenomena: stabilization of heterodimensional cycles

The idea to associate a phenomenon to a homoclinic configuration goes back to the
work of Birkhoff [10] where he showed that a transverse homoclinic intersection leads to
infinitely many periodic points.

In [31], Newhouse first showed that it is possible to get a (non-empty) open set of sur-
face diffeomorphisms exhibiting homoclinic tangencies (these diffeomorphisms exhibit
C?-robust homoclinic tangencies), and then in [32] that this open set can encompass
a Baire-generic subset formed by dynamics displaying the Newhouse phenomenon (in-
finitely many attracting cycles). To obtain such open sets of diffeomorphisms with robust
homoclinic tangencies, Newhouse considered horseshoes with large fractal dimension
(large thickness in his own nomenclature). Later, in [33], Newhouse proved that from
[the configuration defined by] a homoclinic tangency, a perturbation of the dynamics
displays a robust homoclinic tangency (see Theorem 1.1).

The homoclinic and heteroclinic configurations and their robust versions play an im-
portant role when one tries to classify the space of differentiable dynamical systems, as
it has been proposed by Palis [34] and Bonatti [11], and developed by two of the authors,
see for instance [38,17,16].

For local diffeomorphisms, Newhouse thick horseshoes can be replaced by a more
topological object, called blender. They were introduced by Bonatti and Diaz [2] for
diffeomorphisms in dimension larger than or equal to three and can be recast in the
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context of local diffeomorphisms of surface as hyperbolic compact sets such that the
union of their local unstable manifolds covers C"-robustly a (non-empty open set of the
surface (see Definition 1.4). In the same spirit as Newhouse’s work, one can wonder,
nearby which homoclinic configurations do blenders appear. Bonatti, Diaz and Kiriki
[4] proved that heterodimensional cycles (which, in the case of local diffeomorphisms
of a surface, correspond to cycles between a saddle and a source) play that role when
one considers the C'-topology: a C'-perturbation of a heterodimensional cycle generates
open sets of dynamics exhibiting blenders and C!-robust heterodimensional cycles. In
the present paper, we extend this result to the context of more regular dynamics:

Theorem B. For every 1 < r < oo or r = w, consider f € Diff}, (U, M) ezhibiting a
heterocycle associated to a saddle P. Then there exists f that is C"-close to f, with
a basic set K containing the hyperbolic continuation of P, and which has a CT-robust

heterocycle.

While communicating our result, Li and Turaev have informed us that they indepen-
dently proved a more general version of Theorem B for higher dimensional systems using
different techniques [29]. Diaz and Perez have also recently obtained [20] a similar sta-
bilization of heterodimensional cycles for C"-diffeomorphisms in dimension 3, assuming
in addition that one of the periodic points exhibits a homoclinic tangency.

Renormalization nearby heterocycles

In order to prove Theorem B (in Section 2.1), we first show in Proposition 2.1
that nearby heterocycles there are heterocycles satisfying an additional property. These
configurations are called strong heterocycles and are defined in Definition 1.3. Then
Proposition 2.2 introduces a renormalization nearby strong heterocycles to obtain nearly
affine blenders.

This renormalization consists in selecting two inverses branches g and g~ of larges
iterates of the dynamics, which are defined on boxes nearby the heterocycle and then
to rescale Rg~ = ¢ log  op, RgT = ¢~ og' o the two latter branches via a same
coordinate change ¢. The maps Rg~, Rg™ are close to affine maps and define a blender,
which will be called nearly affine blender, see Definition 1.7.

Theorem B is restated more precisely in Section 1.4. Propositions 2.1 and 2.2 are
proved in respectively Sections 3 and 5. This renormalization is one of the main technical
novelty of the present work. It is further developed to obtain Theorem D (in Section 1.7),
a parametric counterpart of Theorem B. Theorem D is essential to prove Theorem A.
It states that nearby paraheterocycles there are nearly affine parablenders. These are
objects of paradynamics.
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Paradynamics

To explain the role of these parametric blenders we have to go back to the paper [6]:
it considered parameter families of local diffeomorphisms on surfaces and introduced the
notion of paratangencies: a homoclinic tangency that is “sticky” (or unfolded in “slow
motion”). That phenomenon implies that the attracting periodic points created by the
unfolding of the tangency have “a long life in the parameter space”. Moreover, if any
perturbation of a parameter family still exhibits a dissipative homoclinic paratangency
for all parameters (in other words the family exhibits robust homoclinic paratangencies,
the analog in the space parameter families of the robust homoclinic tangencies in the
space of local diffeomorphisms) then, after small perturbation, the new family displays
infinitely many attracting periodic points for all parameters (see Lemmas 2.15 and 2.16).

To provide robust paratagencies, [6] introduced a parametric version of the blenders,
called C"-parablenders, see Definition 1.17. To grasp the idea behind this notion, first
recall that any hyperbolic compact set of a map has a unique continuation for a nearby
system. Any point in the hyperbolic set has a unique continuation as well (see Section 1.1
for details) and the same holds true for its local stable and unstable manifolds. When the
parameter family is of class C", the continuation of a point defines a curve of class C".
The key property of a C"-parablender, is that for an open set of parametrized points in
the surface, of the local unstable manifold of the parablender moves in slow motion with
respect to the parametrized point. This property can be pushed forward to the unfolding
of homoclinic tangencies and allows to create robust homoclinic paratangencies. For that
purpose, it is easier to assume that the collection of local unstable manifolds covers a
source homoclinically linked to the parablender.

In [1], the notion of parablender has been recasted: parameter families of maps natu-
rally induce an action on C"-jets and the parablenders can be viewed as blenders for this
dynamics on the space of jets. This viewpoint allowed us to systematize the construction
of parablenders: in [1], using Iterated Function Systems, a special type of parablenders
called nearly affine parablenders (see Definition 1.18) is introduced.

In the present paper, we tried to follow Newhouse’s approach and looked for a simple
bifurcation that generates “robust paratangencies”. According to [7], it suffices to obtain
a parablender covering a source and linked to a dissipative homoclinic tangency. Sim-
ilarly to [4], one can wonder if the parametric unfolding of a heterodimensional cycle
may generate a parablender. We answer by proving that the unfolding of a homoclinic
tangency related to a heterocycle (a bicycle) is the sough configuration which produces
robust paratangencies.

To precise, first we prove that combining a homoclinic tangency with the heterocycle,
one obtains alternate chain of heterocycles (a chain of heterocycles involving saddles with
negative eigenvalues, see Definition 2.7). The unfolding of that special chain produces a
paraheterocycle (a heterocycle that is unfolded in “slow motion”, see Definition 1.15 and
Theorem C) and which then gives birth to nearly affine parablenders (see Theorem D)
using the aforementioned renormalization technique.



P. Berger et al. / Advances in Mathematics 407 (2022) 108528 7

Open problems

Paradynamics has been useful to prove that several complex and interesting phenom-
ena are robust along a locally Baire-generic set of families of dynamics, see [5,27,13,12].
The tools brought by our work should enable to show the C"-germ-typicality of these
phenomena.

Note that if a behavior B is C"-germ-typical in U then it occurs on an open and dense
set of parameters for a Baire-generic set of C"-families (f,), of dynamics f, € Y. But it
does not imply that the Lebesgue measure of this open and dense set of parameters is
full. In particular, it remains open whether the Newhouse phenomenon is locally typical
with respect to some interpretations of Kolmogorov typicality given by [24], [8] or [26,
Chapter 2, section 1]. The latter is slightly stronger than:

Definition 0.3 (Arnold prevalence (soft version)). For r,k > 1, a behavior B is C"-k-
Arnold prevalent in U C C"(M, M), if there exists a Baire-generic set R of C"-families
(fa)aerr formed by maps f, € U such that for every (f,)s € R, for Lebesgue almost
every parameter a € R*, f, presents the behavior B.

A notion of probability-based typicality has been introduced by Hunt, Yorke and Sauer
[25], and then developed by Kaloshin-Hunt in [24]; it was used by Gorodetski-Kaloshin
[22] to study the typicality of the Newhouse phenomenon, but leaves open the problem
of the typicality of Newhouse phenomenon following the latter notions.%

Let us emphasize that the important Arnold-prevalence or the germ-typicality of
the Newhouse phenomenon are open for the C'* or analytic topologies. Hopefully the
tools developed in this present work seem to us useful for progress on these important
problems.

On a different level, one may ask if our Theorem A would be valid only assuming
a dissipative homoclinic tangency. More generally: Are there other configurations which
imply the typicality of the Newhouse phenomena in a strong sense? A converse statement
would be also interesting, but probably more difficult.

We are grateful to Sébastien Biebler and James Yorke for many comments on our
text.

1. Concepts involved in the proof

In this section we state the main results which are used to obtain Theorem A.
In Section 1.1 we recall classical definitions about hyperbolicity in the particular con-
text of local diffeomorphisms. In Section 1.2 and Section 1.3 we recall the concepts of

8 The original notion of typicality defined by [25] is defined for Banach spaces; its counterpart for Banach
manifolds (such as the space of dynamics on a compact manifold) is so far not unique (there is no version
of this notion which is invariant by coordinate change, contrarily to germ-typicality or Arnold prevalence).
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homoclinic tangency and heterodymensional cycle between fixed points with different
indices and the classical results of Newhouse and Bonatti-Diaz associated to these bifur-
cations. In Section 1.4 we recall the notions of blenders and nearly affine blenders and we
state the main theorem that relates cycles and blenders (Theorem B). In Section 1.5, we
state precisely the definition of bicycle (that combines a homocycle and a heterocycle)
and we show in Corollary B’ that from bicycles one can obtain robust bicycles (it is
worth to mention that this is done in any C"-regularity including the analytic one).

In Section 1.6 and Section 1.7 we give the parametric version of the previous results.
In Section 1.6 we introduce the notion of paraheterocycle and explain how by unfolding
heterocycles associated to saddles with negative eigenvalues one can obtain a parahete-
rocycle (Theorem C). In Section 1.7 we introduce the notions of affine and nearly affine
parablenders and explain how they emerge from paraheterocycles (Theorem D).

1.1. Preliminaries

In the following M is a compact surface, U an open subset whose boundary is a
smooth submanifold and Dift}, (U, M) for r € NU {0}, denotes the restrictions to U of
CT-map f: U — M whose differential D, f is invertible at every 2 € U. Endowed with
the C"-topology, this is a Baire space.

For some results, one will also assume that M is a real analytic surface and let M
be a complex extension. One then considers the space Diff}, (U, M) of real analytic
maps endowed with the analytic topology defined as the inductive limit of the spaces of
holomorphic maps defined on neighborhoods of M in M.

Now let us precise the space of C"-families parametrized by the interval T = (—1,1).
For the sake of clarity, we will focus only on the space D" (I x U, M) of families (f,)qc1
which are the restriction of a map (a,z) + f.(z) of class C" on I x U, that we endow
with the uniform C"-topology. However all our arguments will be also valid for the
smaller space C" (I, Diff],.(U, M)) endowed with the topology of C™-maps from I into
Diff],.(U, M).

An inverse branch for f € Diff] (U, M) is the inverse of a restriction f|V of f to a

loc
domain V' C U such that f™|V is a diffeomorphism onto its image.

A compact set K is (saddle) hyperbolic for f if it is f-invariant (i.e. f(K) = K) and
there exists a continuous, D f-invariant subbundle E*® of T'M|K which is uniformly con-
tracted and normally uniformly expanded. More precisely, there exists N > 1 satisfying:

ID- MBI < 1/2 and  pges o DofN ()| 2 2|0l , Vz€ K, ve B,

where E°1 is the subbundle of TM|K equal to the orthogonal complement of E¥ and
pgs.L the orthogonal projection onto it. The hyperbolic set K is a basic set if it is
transitive and locally maximal. Then K is equal to the closure of its subset of periodic
points.
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Any point z € K has a stable manifold W*(z) (also denoted W?*(z; f)) which is
an injectively immersed curve. The map f|K being in general not injective, a single
point z € K has in general as many unstable manifolds as preorbits z. We denote
such a submanifold by W*(z), or W"(z; f). The space of preorbits z is denoted by
K = {z = (:)ico € K2~ . f(x;_1) = x;}. The space %
with the product topology. The zero-coordinate projection is denoted by m¢: K — M;

is canonically endowed

it semi-conjugates the shift dynamics o on K with f.

It is well known (see for instance [14]) that a hyperbolic compact set is C'-inverse
limit stable: for every Cl-perturbation f’ of f, there exists a (unique) map o ? — M
which is C%-close to 7y and so that:

npoo=fom.

The image Ky := ﬁf/(?) is also a hyperbolic set. Note that Ky = K. Also K is called
the hyperbolic continuation of K.

Two basic sets are (homoclinically) related if there exists an unstable manifold of the
first which has a transverse intersection point with a stable manifold of the second, and
vice-versa. Then by the Inclination Lemma, the local unstable manifolds of one basic set
are dense in the unstable manifolds of the other.

An f-invariant compact space is projectively hyperbolic expanding if there exists a
continuous D f-invariant subbundle E* of TM|K which is uniformly expanded and
normally uniformly expanded. More precisely, there exists N > 1 satisfying:

1D MBS > 2 and  [lpgess oD f¥ ()| = 2ol -|D-FY B, V2 € K, v e BS

If it is transitive and locally maximal, it is equal to the closure of its subset of periodic
points. To any z € K, one associates a strong unstable manifold W**(z) as the set of
points which converge to the orbit of z in the past transversally to the bundle E<*.

A saddle periodic point P of period p > 1, is dissipative if |detDp fP| < 1.

A source periodic point S is projectively hyperbolic if the tangent space at S split
into two D f-invariant directions, TsM = E @ E**, the direction E* —called center
unstable— being less expanded than the direction E“* —called strong unstable. Its strong
unstable manifold W**(S) is the set of points which converge to the orbit of S in the
past in the direction of E“*.

1.2. Homocycle
Given f € Diff;, (U, M), a saddle periodic point P € U has a homoclinic tangency or

homocycle for short, if its stable manifold has a non-transverse intersection point 7' € U
with its unstable manifold.

AT e TW(P)NTW*(P) . (Homocycle)
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Fig. 2. Homocycle.

More generally, a basic set K C U has a homoclinic tangency if there exist P € K and
Qe i (not necessarily periodic) such that W*(P) is tangent to W*(Q). A basic set K
has a C"-robust homoclinic tangency if for every C"-perturbation of the dynamics, the
hyperbolic continuation of K still has a homoclinic tangency. If + > 2 and if the phase
space is a surface, the tangency T is quadratic, if the curvature of W*(P) and W*(Q)
at T are not equal (see Fig. 2).

Here is a famous theorem by Newhouse [33], which stabilizes the homoclinic tangen-

cies.

Theorem 1.1 (Newhouse). For 2 < r < oo or r = w, consider f € Diff], (U, M) and a
saddle periodic point P exhibiting a homoclinic tangency T. Then there exists f C”-close

T
loc

to f, with a basic set K containing the hyperbolic continuation of P, and which has a
C"-robust homoclinic tangency.

The open set N of dynamics displaying a C"-robust homoclinic tangency is called the
Newhouse domain. We denote by N"(P) C N the open set of dynamics for which the
hyperbolic continuation of P belongs to a basic set displaying a C"-robust homoclinic
tangency. By the Inclination Lemma, the stable and unstable manifolds of P are dense
in the stable and unstable sets of K. Thus a C"-small perturbation of any dynamics in
NT(P) creates a homoclinic tangency for P. This proves:

Proposition 1.2. For every 1 < r < oo or r = w, there exists a C"-dense set in NT(P),
made by maps for which the hyperbolic continuation of P has a homoclinic tangency.

Let N

diss

(P) € N(P) be the open set formed by dynamics for which the hyperbolic
continuation of P is dissipative. As a periodic sink of arbitrarily large period can be
obtained by a small perturbation of a dissipative homoclinic tangency, the latter propo-
sition then implies the Baire-genericity in NV,  (P) of dynamics exhibiting a Newhouse
phenomenon (see [32] for more details).
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WH(P)
| J
S
WH(P)
P

Fig. 3. Heterocycle for a surface map.

1.3. Heterocycles

In the present section we first recast for the case of surface endomorphisms, the notion
of heterodimensional cycle introduced in [18,2], and present two stronger versions of it
called heterocycle and strong heterocycle.

Definition 1.3. A map f € Diff},.(U, M) displays a heterodimensional cycle if it has a
saddle periodic point P and a periodic source S such that W*(.S) intersects W*(P) and
S is in W (P):

SeW*P) and W(P)NWU(S)# 2. (Heterodimensional cycle)

The heterodimensional cycle forms a heterocycle if the source is projectively hyperbolic
and W"*(S) intersects W*(P) (see Fig. 3):

SeW*(P) and W*(P)NW"“(S)#o. (Heterocycle)
This heterocycle is strong if furthermore W**(S) contains P:
SeW*P) and PeW"(S). (Strong heterocycle)

We will see in Proposition 2.1 that any map displaying a heterocycle can be smoothly
perturbed to display a strong heterocycle between a saddle point P’ homoclinically
related to the initial one P, and the initial source S.

A heterocycle is a one-codimensional phenomenon. To show its local density, we shall
generalize it as follows. A basic set K and a projectively hyperbolic periodic source S
of a surface map display a heterocycle if there exists P € K (not necessary periodic)
such that W?*(P) N W**(S) # & and there exists P € % such that P = 7¢(P) and
S € W*(P). The heterocycle is C"-robust if for every C"-perturbation of the dynamics,
the hyperbolic continuations of K and S still have a heterocycle. The C"-open set of
surface maps which display a robust heterocycle is called the Bonatti-Diaz domain and is
denoted by BD". We denote by BD" (P, S) C BD" the open set of dynamics for which the
hyperbolic continuation of P belongs to a basic set displaying a C"-robust heterocycle
with the continuation of S.
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1.4. Blenders

Let us again consider a robust heterocycle between a basic set K and a source S. As

by a perturbation of the dynamics, S can be moved independently of K and its unstable
manifold, this implies that K must be a blender:
Definition 1.4 (C"-Blender). A C"-blender for f € Diff; (U, M) is a basic set K such
that the union of its local unstable manifolds has C"-robustly non-empty interior: there
exists a continuous family of local unstable manifolds whose union contains a non-empty
open set V' C U and the same holds true for their continuations for any C"-perturbations
fof f.

The set V is called an activation domain of the blender K.

As the periodic points are dense in K, the unstable manifolds of periodic points are
also dense in the activation domain. Hence for a small C"-perturbation supported by a
small neighborhood of the blender, there exists a periodic point whose unstable manifold
contains the source, defining a heterocycle. This proves the following counterpart of
Proposition 1.2:

Proposition 1.5. For every 1 < r < co orr = w, there exists a C"-dense set in BD" (P, S)
made by maps for which the hyperbolic continuation of P and S have a heterocycle.

Bonatti and Diaz have introduced the notion of blender and obtained the first semi-

f3

local constructions of robust heterocycles [2].
Question 1.6. All the known C”-blenders are also C'-blender. Is BD" equal to BD' ¢

The following notion has been introduced in [1] and will play a key role in a renor-
malization that we will perform nearby heterocycles.

Definition 1.7 (Nearly affine blender). For r € [1,00), A > 1, zg € (—2,2), § > 0, f has
a 0-C"-nearly affine blender with contraction A~1! if there is a C"-chart H: R? — M
such that:

~ there is an inverse branch g+ of an iterate f¥' of f such that Rg* := H-log*t o H
is well defined on [—2,2]? and is §-C"-close to (z,y) + (zo, Ay — 1) + 1);

— there is an inverse branch g~ of an iterate fV of f such that Rg~ := H log~ o H
is well defined on [—2,2]? and is §-C"-close to (x,y) — (zo, Ay +1) —1).

Observe that the maximal invariant set of the map:

(Rg™) U (Rg™) ™" Rg™([-2,2°) U(Rg™ ([-2,2]*) — R?
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is a basic set K. The following is easy, see for instance [1, Section 6] for details.

Proposition 1.8. For every A > 1 close to 1, zg € (—2,2) and n € (0,1), if 6 > 0 is
sufficiently small, then the set K is a Cl-blender and (—2,2) x [=1+mn,1—n] is an
activation domain.

In Section 2 we will prove the following analogous of Newhouse Theorem 1.1, which

stabilizes the heterocycles. It will be obtained by introducing a renormalization for a
perturbation of f leading to a nearly affine blender.
Theorem B. For every 1 < r < oo or r = w, consider f € Dift; (U, M) exhibiting a
heterocycle formed by a saddle P and a projectively hyperbolic source S. Then for every
8 > 0 and any number p < r, there exists f, C"-close to f, such that Py is homoclinically
related to a §-CP-nearly affine blender whose activation domain contains S;.

Question 1.9. To what extend the previous results generalize to heterodimensional cycles?

In that direction, [4] proved for diffeomorphisms that it is possible to stabilize by
Cl-perturbation any classical heterodimensional cycle between saddles whose stable di-
mension differs by one, provided that at least one of the saddle involved in the cycle
belongs to a nontrivial hyperbolic set. An analogue in any regularity class is done in
[29].

1.5. Bicycles and robust bicycles

Let us precise the definition of bicycle mentioned in the introduction:

Definition 1.10. A saddle P and a projectively hyperbolic source S display a bicycle if
they form a heterocycle and if P has a homocycle. The bicycle is dissipative if the orbit
of P is dissipative.

The notion of bicycle can be extended to basic sets.

Definition 1.11. A basic set for f € Diff] (U, M) displays a C"-robust bicycle if it displays
a C"-robust homocycle and forms a C"-robust heterocycle with a projectively hyperbolic

source.
It is easy to build a bicycle by perturbation of some explicit example:

Example 1.12. For every r > 2, the map f := (z,y) € R? — (22 — 2,y) is the C"-
limit of maps f. exhibiting a bicycle. Hence by Theorem A, there is an open set of
CT-perturbations U" of f. in which the coexistence of infinitely many sinks is C"-germ-
typical.
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Proof of Example 1.12. For the Chebyshev map z + x? — 2, the critical orbit belongs
to a non trivial expanding transitive set whose unstable set contains the critical point.
First, we choose the parameter a close to —2 such that the map g(z) = 22 + a admits
two homoclinically related repelling periodic points s, p, the orbit of the critical point
contains p (there exists n > 1 such that g"(0) = p) and belongs to the unstable set of p
(there exists a sequence of backward iterates of 0 which accumulates on p): usually such
a parameter a is called a Misiurewicz parameter).

Then we consider a function p close to 1 which is equal to 1+¢ on a small neighborhood
of the orbit of s and to 1 — € in a small neighborhood of the orbit of p. We now consider
the following small perturbation of f:

fae(z,y) = (2 + a, p(x)y).

Observe that it has a projectively hyperbolic source S := (s,0) and dissipative saddle
point P := (p,0), such that the unstable manifold of each point intersects the other
point and the image of the critical point still is preperiodic. One now performs a small
perturbation in a neighborhood of the critical point that makes the map a local dif-
feomorphism. One also preserves the image of the critical point, which then becomes a
homoclinic tangency for p. In such a way, one obtains a map with a bicycle involving P
and S. O

Similarly to Proposition 1.2 and Proposition 1.5 we have:

Proposition 1.13. For every 1 < r < oo or r = w, consider an open set of maps
f € Diff], (U, M) displaying a C"-robust bicycle involving a saddle P and a projectively
hyperbolic source S. It contains a C"-dense subset of maps for which the hyperbolic con-

tinuation of P and S form a bicycle.
Combining Theorems 1.1 and B, one can stabilize the bicycles:

Corollary B’. For 2 < r < oo orr = w, consider f € Diff], (U, M) and a saddle P

exhibiting a bicycle. Then there exists f, C"-close to f, with a hyperbolic basic set K

-
loc

containing the hyperbolic continuation of P which exhibits a C"-robust bicycle.
1.6. Paraheterocycles

Let us fix 1 < r < oo, and a C"-family (f,)eer of local diffeomorphisms f, €
Diff],.(U, M).
Hyperbolic sets for families of dynamics It is well known that if fy has a hyperbolic
fixed point P, then its hyperbolic continuation (P, ).cr is a C” function of the parameter
a on a neighborhood I C R of 0. More generally, if K is a hyperbolic set for fy, with
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the inverse limit of K, its hyperbolic continuation (K, ).cr by the range K, = Wa(%) of
a family of maps m, := 7y, : K — M (see Section 1.1) with the following regularity:

Proposition 1.14 (see Prop 8.6 [6]). There exists a neighborhood I of 0 where (7y)acr
is well defined. For any z € K, the map a € I — 7,(2) is of class C" and depends
continuously on z in the C"-topology.

The local stable and unstable manifolds W} (z; f,) and W% (z; f,) are canonically
chosen so that they depend continuously on a, z and z in the C"-topology (see Prop 3.6
in [6]). They are called the hyperbolic continuations of W (z; fo) and W} _(z; fo) for f,.

Definition 1.15 (Paraheterocycle). Given 0 < d < r, the family (f,)qer displays a C-
paraheterocycle at ag if there exist a heterocycle for f,, involving a saddle P and a
projectively hyperbolic source S whose hyperbolic continuations satisfy for some N > 0

d(Sa, FN(WE(PL))) = o(|la — ag|¥),  for any integer 0 < d’ < d. (1.1)
We say it is a strong C%-paraheterocycle if furthermore P, S form a strong heterocycle.
Note that if f,, has a heterocycle then (f,), has a C%-paraheterocycle at a = aq.

Theorem C. Consider a C* family of local diffeomorphisms (fa)acr @n Dift]. (U, M) and
a heterocycle for fy between a saddle point P with period p and a projectively hyperbolic
source S. Let us assume furthermore that the stable eigenvalue of Dp f¥ is negative.

Then there exists a family (fa)acr, C°-close to (fa)ecr, which displays a C™-
paraheterocycle at a = 0 between the continuation of the saddle P and a projectively
hyperbolic source S’.

We will see in Lemma 2.9 that the assumption on the negative stable eigenvalue can
be obtained when the heterocycle is included in a bicycle.

Remark 1.16. The definition of paraheterocycle, the statement of Theorem C and its
proof extend without difficulty to families parametrized by R*, for any k > 1, see Re-
mark 2.11 and Section 4.3.

1.7. Parablenders

In this section we fix 1 < r < co.

Parablenders are a parametric counterpart of blenders. The first example of a para-
blender was given in [6]; in [1] a new example of parablender was given and therein the
definition of parablender was formulated as:
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Definition 1.17 (C"-Parablender). The continuation (K,).es of a hyperbolic set K for
the family (fy)aeer is a C"-parablender at ag € Interior(I) if the following condition is
satisfied.

There exist a continuous family of local unstable manifolds (Wy;.(z; fa,)), % and a
non-empty open set O of germs at ag of C"-families of points (7, )aeer in M such that for
every (fa)aer C"-close to (fa)ecr, there exists z € K satisfying:

lim |a—ao_r-d(% » Wige(; fa)) =0.

a—ag

The open set O is called an activation domain for the C"-parablender (K, )qer-

Here is the parametric counterpart of the nearly affine blender introduced in Defini-
tion 1.7.

Definition 1.18 (Nearly affine parablender” [1] ). For A > 1, g € (—2,2) and § > 0, a
Cr-family (f.)eecr has a d-nearly affine C"-parablender with contraction A=! at a = 0
if there exist a neighborhood I of 0 in R, a C"-family (H,)ser of charts H,: R% < M,
a diffeomorphism 0 : J < I fixing 0 and inverse branches (g )acr, (9, )acr of iterates
FNTENT guch that

Rg; = H{;l ogg'(a) oH, and Rg; = Hcfl © gg_(a) o H,

are well defined on [2,2]? and (RgF)a.er are 6-CT-close to the two families (AF),er
defined by

A (z,y) = (20, (A+a)-y+A—1) and A :(z,y) — (z0,(A+a)-y—A+1).

Note that a nearly affine parablender defines a germ of family of nearly affine blenders
(Ka)acr at a = 0 and so a germ of family of blenders by Proposition 1.8. In [1, Section
6], we showed® that it defines also a parablender:

7 The coordinates considered in [1] were slightly different but the same modulo conjugacy: the renormalized
inverses branches are of the form:

BF (X,Y) — (o, (Y +£1) /(A" + b)) ,

which is conjugate to the presented form (Af)i via the coordinates changes:

A—1 b A2
——y) and a=— .
A+a 14+b-A

(X,Y) = (z — zo,

8 The activation domain is not explicited in the statements of the results of [1, Section 6], but appears
in the proof as a product W = B x A (see page 67), where B = [—2,2] X (—n,n)" and where A is a
neighborhood of 0 in R"T! obtained as the image of a neighborhood of 0 by a surjective linear map (page
63).
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Proposition 1.19. For every A > 1 close to 1 and xo € (—2,2), there is n > 0 arbitrarily
small such that if 6 > 0 is sufficiently small, then (K,)acr is a C"-parablender at a = 0.
Moreover, its activation domain contains:

{(Za)aeI € CT(I7R2) 120 € [_272] X (_77’77) and Hasza|a:0‘| <, V1 < k < T} .

We will show that nearly affine C"-parablenders appear as renormalizations of the
dynamics nearby paraheterocycles. This will enable us to show:

Theorem D. Let us consider a C™ family of local diffeomorphisms (fa)acr in
Diff},. (U, M) and, for r > 1, a family of saddles (P,)eer and a family of projectively
hyperbolic sources (Sg)qcr exhibiting a C-paraheterocycle at a = 0.

Then there exists (fa)acr, C-close to (fa)acr displaying a C”-parablender at a = 0
which is homoclinically related to Py and whose activation domain contains the germ of
(S2)acr at a = 0. In particular (f,)eer displays a robust C”-robust paraheterocycle at
a=0.

2. Structure of the proofs of the theorems
2.1. Proof of Theorem B

The strategy of the proof breaks down into two steps. In a first step, we obtain, by
perturbation of the heterocycle, a strong heterocycle. This is done in Section 3.
Proposition 2.1. For p € {oo,w}, let f € Diff) (U, M) with a projectively hyperbolic
source S and a saddle point P forming a heterocycle. Then there exists a map f arbitrary
C?-close with a saddle point QQ homoclinically related to Pg and which forms with Sf a
strong heterocycle.

In a second step we perturb the strong heterocycle in order to exhibit a nearly affine
blender displaying a robust heterocycle. See Section 5.
Proposition 2.2. For p € {oo,w}, let f € Diff]) (U, M) with a projectively hyperbolic
source S and a saddle point Q@ forming a strong heterocycle. Fix co > r > 1 and take
A > 1 close to 1.

Then, for every 8 > 0 there exists a CP-perturbation f exhibiting a  —C"-nearly affine
blender which is homoclinically related to Qf and whose activation domain contains Sf.

Note that the conjunction of these two propositions implies Theorem B for the topolo-
gies C* and C*. When the initial diffeomorphism is C", 1 < r < oo, we first perturb
in the C"-topology in order to get a C'*°-diffeomorphism taking care that the source S
still belongs to the unstable manifold of the saddle P, and we then apply the result for
C*>°-diffeomorphisms. O
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2.2. Proof of Theorem D

Similarly to the proof of Theorem B, the proof consists in two steps that are the
parametric counterparts of Proposition 2.1 and Proposition 2.2. They are detailed in
Sections 3 and 5.

Proposition 2.3. Consider a C* family of local diffeomorphisms (fo)aer in Diff}5. (U, M),
and, forr > 1, a family of saddles (P,)qcr and a family of projectively hyperbolic sources
(Sa)acr exhibiting a C"-paraheterocycle at a = 0.

Then there exist (fo)acr, C-close to (fa)acr with a family of saddles (Qq)acr
homoclinically related to (P,)qer which forms with (Sq)eer @ strong C"-paraheterocycle
at a = 0.

Proposition 2.4. Consider a C*° family of local diffeomorphisms (fo)aer in Diff},. (U, M),
and, forr > 1, a family of saddles (Qqa)acr and a family of projectively hyperbolic sources
(Sa)acr ezhibiting a strong CT-paraheterocycle at a = 0.

Then there exists (fu)acr, C™-close to (fa)aer, displaying a C"-parablender at a = 0
homoclinically related to Qo and whose activation domain contains the germ of (Sa)acr
at a =0.

This completes the proof of Theorem D. O

Remark 2.5. One can choose the parablender and the family of local unstable manifolds
defining its activation domain in such a way that each local unstable manifold does not
have Sy as an endpoint and is not tangent to the weak unstable direction of Sy. See
Remark 5.16.

2.8. Proof of Theorem C: chains of heterocycles

We begin with some preparation lemmas. The first one is proved in section 3.2.1.

Lemma 2.6. Let S and P be a projectively hyperbolic source and a saddle point forming
a heterocycle for a smooth map f. Then for a C*°-small perturbation of the dynamics,
the source S belongs to a Cantor set R which is a projectively hyperbolic expanding set.

We introduce the following notion.

Definition 2.7. A N-chain of alternate heterocycles (see Fig. 4) for a map f €
Diff;,.(U, M) is the data of N saddle points P!,..., PY and N projectively hyperbolic
sources ST, ..., S" such that:

o the orbits of P',..., PN S ... SN are pairwise disjoint,

« the stable eigenvalues of the saddles P? are negative,



P. Berger et al. / Advances in Mathematics 407 (2022) 108528 19

st

N /lsg
Fig. 4. 2-Chain of heterocycles.

. W“(P’) contains S¢ and is transverse to Egi foreach 1 <i < N,
o Wu4(S?%) intersects transversally W*(Pi*1) for 1 <i < N and W“*(SV) intersects
transversally W*(P1).

Chains of alternate heterocycles may be obtained as follows.

Lemma 2.8. Consider f € Diff}, (U, M) with a heterocycle between a saddle P with period
p and a source S such that the stable eigenvalue of Dp fP is negative.

Then, for any N > 1, there exists f, C®-close to f, with an N-chain of alternate
heterocycles whose saddles P' = P, P2, ... PN are homoclinically related to the contin-
uation Pf~.

Proof. By preliminary perturbations one stabilizes the heterocycle and builds a blender
K homoclinically related to P, whose activation domain contains S (Theorem B). One
also reduces to the case where the source S belongs to a projectively hyperbolic ex-
panding invariant Cantor set R (Lemma 2.6). One can also assume that W**(S) and
W#(P) have a transverse intersection point. In order to simplify, one will assume that
K is topologically mixing (otherwise one has to decompose K into finitely many pieces
permuted by the dynamics and whose return map is topologically mixing on each piece).
Note that P! = P and S' = S define a 1-chain of alternate heterocycle. One proves
the statement by induction on N. Let us assume that f has a N — 1-chain of alternate
heterocycles whose saddles P! are homoclinically related to P.

One chooses a saddle PY whose orbit is distinct from the orbits of P',..., PN=1 and
which is homoclinically related to P: since W“%(S™~1) intersects transversally W*(P?),
it also intersects transversally W*(P™). One also chooses a source SV € R in the ac-
tivation domain of K and whose orbit is distinct from the orbits of S*,...,SV=1; one
can furthermore assume that it is arbitrarily close to S, so that W"*(S™) intersects
transversally W#(P), hence W*(P'). The blender property implies that S¥ belongs to
the unstable set of K. More precisely there exists * € K and y € W(z) \ Orbit(SY)
such that f(y) € Orbit(SY). Since K is topologically mixing, W*(P¥) is dense in the
unstable set of K, one can find y/ € W*(PY) arbitrarily close to y and whose backward
orbit is disjoint from a uniform neighborhood of 4. One then perturbs f in a small neigh-
borhood of y and get a map satisfying f(y’) = f(y). Consequently PV and SV define
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a heterocycle for f and the properties built at the previous steps of the induction are
preserved. O

The existence of a saddle point with negative stable eigenvalue may be obtained once
a saddle belongs to a homocycle, as we recall in the next lemma.

Lemma 2.9. Let f € Diff}, (U, M) and P be a saddle point with a homoclinic tangency L.
Then for a C*-small perturbation f of the dynamics supported on a small neighborhood
of L, the saddle P belongs to a basic set which contains a point QQ with some period T
and such that the stable eigenvalue of DQfT s negative.

Proof. This is a well-known result. Up to replace L by an iterate, one assumes L €
Wi (P). One perturbs f so that the contact of the homoclinic tangency is quadratic.
By unfolding the homoclinic tangency, a horseshoe containing P appears. Indeed, one
considers a thin rectangle R which is a tubular neighborhood of W (P). A large iterate
FY(R) crosses R twice, with different orientations. In each component of the intersection,
a (-periodic point is obtained, and the signs of D f¢ along the stable direction differ. See
[39, chapter 3] for details. O

Theorem C follows from the next proposition, proved in Section 4.

Proposition 2.10. For any d > 0, there exists N = N(d) > 1 with the following property.

Consider a C* family (fa)aer in Dift},.(U, M) such that fo has a N-chain of alternate
heterocyles with saddle points P' and sources S°. Then there exists a family (fa)ae]g, C>-
close to (fu)acr, such that the continuations of P* and SN form a C?-paraheterocycle
at a = 0.

Remark 2.11. This result is still valid for families parametrized by R* &k > 1 (see Sec-
tion 4.3). The length of the chain required is then equal to:

N(r,k) = dimg{P € R[X1,...,X)]: degP <r, P(0) =0}.

Proof of Theorem C. For any large integer d > 1, Lemma 2.8 and Proposition 2.10 give
after a C>°-perturbation a C%paraheterocycle between the continuation of the saddle
P and a projectively hyperbolic source S’. Hence there exists a C%-small perturbation
(f1)aer in Diffjs. (U, M) and an integer N which satisfy S, € fN(W (Py.)) for any
a close to 0. Since d has been chosen arbitrarily large, the perturbation can be chosen
C*®-small. O

2.4. Proof of Theorem A

A consequence of the previous results is the:
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Fig. 5. Assumptions (Ho)...(Ha).

Corollary 2.12. Consider a C* family (fa)aer @n Diff[s. (U, M) such that fy displays a
bicycle between a projectively hyperbolic source Sy and a dissipative saddle point Py. Let
r > 1. Then up to a C"-perturbation of the family, and up to replacing Sy by another
projectively hyperbolic source, we can assume that (See Fig. 5):

Hy) There exists a blender Ky for fo whose activation domain contains Sy.

(Hy1) Ky intersects the repulsive basin of Sy.

Hsy) Py is homoclinically related to Ko and W*(Py) has a robust tangency with the
strong unstable foliation F** of Sp.

(H3) The continuation (Kg)acr of Ko is a C"-parablender at a = 0 and the continuation

(Sa)acr of So belongs to its activation domain.

(Hy4) In the continuous family of local unstable manifolds defining the activation domain

involved in (Hy) and (Hs), each local unstable manifold does not have Sy as an

endpoint and is not tangent to the weak unstable direction of Sp.

Remark 2.13. The properties (Hp)...(Hy) are C"-open.

Proof. With Corollary B’ Page 14, one first stabilizes the bicycle. By Lemma 2.9, up to
a small C'*°-perturbation, one gets a saddle Qg homoclinically related to Py whose stable
eigenvalue at the period is negative. One thus gets a robust heterocycle between @y and
So and Theorem C Page 15 gives a family (f!).cr, that is C*°-close, and displaying a
C*°-paraheterocycle between the continuation of )y and a projectively hyperbolic source
saddles S’. Theorem D Page 17 produces a family C"-close having a C"-parablender
(Ka)acr at a = 0 which is homoclinically related to Qo (and Py) and whose activation
domain contains the family of source (S/,)qcs. Denoting the new source by Sy, we get all
the robust properties (Hy), (H1) and (Hs). By Remark 2.5, (Hy) is also satisfied.

Since Py and Sy form a robust heterocycle, one can assume (after a new perturba-
tion) that the strong unstable manifold W**(Sy) intersects transversally W#(P,). From
the robust tangency, we can perturb and produce a homoclinic tangency point L be-
tween W} _(Py) and W*(Fy). The inclination lemma implies that W"*(Sy) accumulates
on W _(FPo). A last perturbation near L gives a quadratic tangency between W"*(Sy)
and W*(P,). For maps close, this tangency admits a continuation which is a quadratic
tangency between W#*(Py) and the leaves of the strong unstable foliation in the repelling
basin of Sp: this is (Hz). O
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We now use the following result of [7, Theorem A, page 11]:

Theorem 2.14. Consider a C*° family (fo)aecr in Diff)s.(U, M) with a projectively hy-
perbolic source (Sq)acr and a dissipative saddle point (P,)a.er satisfying (Ho)...(Hy).
Then, there are 6 > 0, a C"-neighborhood V of the family (fo)a in the space of C"-
families and a Baire-generic subset G CV such that for any (fo)a € G and a € (=9,9),
the map fa displays infinitely many sinks.

For completeness we sketch its proof.

Idea of the proof of Theorem 2.14. Since the hypotheses are open, they hold for an open
neighborhood V of the initial family. Let us consider an arbitrary family (f.),cr in V. The
robust heterocycle provided by (Hp) and (H;) and Lemma 2.6 allow after a perturbation
to assume that there are 6 > 0 and two distinct sources (S,)ac[—s,5], (5%)ae[—s,6) Which
satisfy (Ho)...(Hy) at every ag € [—0,0] for each of these sources and for the family

(f(:)aE]R~
Then we apply the following key lemma (which uses (H3)):

Lemma 2.15 ([7, Prop. 3.6]). For everye > 0, there exist & > 0 and an £-C" -perturbation
(fo)ac]=s,6) localized at (Sq)a and (S},)a such that:

1. for every j € 27, there exists a continuation of a periodic point (Péj))a in the para-
blender whose local unstable manifold contains S, for every a € [—4, 8]N[aj—a/2, aj+
a/2],

2. for every j € 2Z + 1, there exists a continuation of a periodic point (Péj))a in the
parablender whose local unstable manifold contains S, for every a € [—6,d] N [aj —
/2,0 + a/2].

We continue with:

Lemma 2.16 ([7, Prop. 3.4]). After a new C°°-small perturbation of (f!)a, for every
jE€ZN[=d/a,d/a] the point P, displays a quadratic homoclinic tangency which persists
for every a € [=4,0] N [af — /2,5 + «/2).

Idea of proof of Lemma 2.16. Assume j odd (resp. even) and let us continue with the
setting of Lemma 2.15. As P, and Péj ) belong to the same transitive hyperbolic set and
using Proposition 1.14, after a small perturbation a fixed iterate of the local unstable
manifold of P, contains S, for every a € [—4,d] N [aj —a/2, aj + a/2]. Then we proceed
as depicted in Fig. 6: we denote by W7 a segment of W#(P,) which is included in a basin
of S, (resp. S)) and display a tangency with the strong unstable foliation of the repelling
basin of S/, (resp. S,) by (Hz). After perturbation we can assume this tangency quadratic.
Then, in the Grassmannian bundle P(T'M) of M, the tangent space TW* of this curve
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Fig. 6. Inclination lemma used in the bundle P(TM) at E““(S4).

intersects transversally the unstable manifold of (S,, E“*(S,)) for the action f, of Df,
on the Grassmannian. By the inclination lemma, the preimages TWy , of TW, by i,
converge to the stable manifold {S,} x PR\ {E%(S,)} of (S,, E““(S,)). By property
(Hy), a piece of W} (P,) intersects S, with a direction different from E““(S,), hence
the stable manifold of (S,, E**(S,)) intersects untangentially a piece TW of TW} (P,)
for every a € [—4,0] N [aj — /2, aj + «/2]. This enables to perturb (f,), such that
TW, . C TW#(P,) intersects TW .(P,) for every a € [-0,0]N[aj — /2, f +/2]. O

In [7, Prop. 3.5] it is shown that for every N > 1, we can then perturb the family in
the C*°-topology near the homoclinic tangency of (P,), obtained in Lemma 2.16 so that
for every a € [aj — a/2,aj + /2] and j € Z N [~6/a, 5/a], the new map f, displays a
periodic sink of period > N. Hence we have obtained an open and dense subset in V of
families displaying a sink of period > N at every parameter a € [—0,0]. By taking the
intersection G of these open and dense subsets over N > 1, we obtain Theorem 2.14. O

This allows to complete the proof of our main theorem.

Proof of Theorem A. Let us consider a C™ map f with a dissipative bicycle associated
to a saddle P. By Corollary B’, there exists a C"-open set U € Diff}, (U, M), which
contains f in its closure, such that the continuation of P exhibits a robust bicycle for
any map in U.

Let F := (fa)acr be a C"-family consisting of maps f, € U. By perturbation, one
can assume that the family is C°° and by Proposition 1.13 that fy displays a bicycle.
Then, by Corollary 2.12, there exists a new C"-perturbation which satisfies (Hy) - - - (Hy).
Theorem 2.14 associates a neighborhood Vg of this family and a dense Gg-set Gp of
Vi and 6p > 0. Let {F,, : n € N} be a dense countable set in the space of families
(fa)acr € D"(I x U, M) consisting of maps f, € U. The union G = |JGF, is a dense
G subset of this space. By construction, for any family F = (f,).cr in G and any |a
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smaller than a locally constant function 8 of F, the map f, exhibits infinitely many
sinks for any parameter a close to 0. O

3. From heterocycles to basic sets and strong heterocycles

In this section we prove Proposition 2.1, Proposition 2.3 and Lemma 2.6.

We consider a C*° map f € Diff}, (U, M) with a projectively hyperbolic source S
and a saddle point P forming a heterocycle, and we show that by perturbation it can be
improved to a strong heterocycle.

In Section 3.1, first we establish local coordinates around P and S. To obtain these
coordinates, we need to perturb the dynamics, to assume the eigenvalues non-resonant,
but also to ensure two transversality conditions (73)-(7%). Then nearby P and S, the
inverse dynamics P and S are linear in local coordinates. Furthermore, the heterocycle
defines inverse branches of the dynamics that are transitions from one linearizing chart
to the other.

As a direct application of these linearizing charts, we build an IFS and from there an
expanding projective hyperbolic set containing the source: this allows to prove Lemma 2.6
at the beginning of Section 3.2). Later, using again these coordinates, we obtain the
existence of a non-trivial basic set K which contains P (Lemma 3.1). After a small per-
turbation, which consists in perturbing the stable eigenvalues of P, the strong unstable
manifold of S intersects K, whereas S belongs to W*(K). This will imply Proposition 2.1.
The proof of Proposition 2.3 follows similar lines.

3.1. Local coordinates for a heterocycle

For the sake of simplicity we assume that the periodic points P and S are fixed and
that the eigenvalues of Dpf and Dgf are positive. Anyway we can go back to this case
by regarding an iterate of the dynamics and performing the forthcoming perturbations
nearby finitely many points belonging to different orbits.

Up to a smooth perturbation we can assume that the eigenvalues of Dpf and Dgf
are non-resonant. Then Sternberg Theorem [41] implies the existence of:

o neighborhoods V§ C Vg := f(V{) of S and coordinates for which f|V} has the form:

-1 —1

(x,y) €Virr (0 " T,0, -y) €EVs with 0 < oyy <oy, < 1.

o neighborhoods V} and Vp := f(V}) of P and coordinates for which f|V} has the

form:

(x,y) €Vh = (o2, X y)eVp withO<o<l<A.
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Fig. 7. Inverse branches S, P, T°, T induced by the heterocycle.

This defines the inverse branches P := (f|V}) ™! and S := (f|V§)~h:
S:(z,y) €Vs = (Owu-x,00-y) €Vg and P:(z,y) €V (0-2,X-y) € V.
Up to restricting Vp and V} and rescaling the coordinates, we can assume:
Vh =[-0,0] x [-1,1] and Vp=[-1,1] x [-A"1, A7}

Let W (P) = Vo N{y =0}, W .(P) = V5N {x=0}and W(S) = {y =0} NVs.
Let H be a point in W*(P) N W**(S). Up to replacing it by an iterate, we can
assume that H belongs to V), with H =: (0, k) in the linearizing coordinates of P. Up
to conjugating the dynamics by (z,y) — (x,—y), we can assume moreover that h > 0.
Also, a preimage S’ of S has coordinates S’ =: (s,0) in the linearizing coordinates of P:

S"=(s,0) and H=(0,h), h>0.

Furthermore up to a smooth perturbation, we can assume that:

(T1) The intersection W#(P) N W"%(S) is transverse at H.
(Tz) The line TsW"(P) is in direct sum with the weak unstable direction E° of S.
(T5) The line TgW"(P) is in direct sum with the strong unstable direction E** of S.

Let V{ € V{ and Vi € V), be small neighborhoods of S and H; and let 7° : V{ — Vp
and T* : Vg < Vs be inverse branches of iterates of f such that 7°(S) = S’ and
TH*(H) € WEe(S) (see Fig. 7).

loc

3.2. Basic sets induced by a heterocycle

We now build two hyperbolic sets: one expanding projective hyperbolic set containing
the source, and a saddle hyperbolic set containing the saddle.

3.2.1. Proof of Lemma 2.0: expanding Cantor set linked to the heterocycle
Note that for n large, the point (s, A™™h) belongs to the range of T°. We perturb f
near the point S’ and define a map f which satisfies in coordinates
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f(s,\7"h) = f(9).

This in turn defines a perturbation TS of the inverse branch 7.

As the point (s, \="h) is sent by P" to the (6" - s,h) € Vy, the map T* o P" o TS
is well defined on a neighborhood W of S. Hence for N large compared to n, the maps
S =8NoTHoPmo T and Sy := SY are contractions from W into W with disjoint
images. So they define a transitive expanding Cantor set R for f which contains S.

Let us fix > 0 small and introduce the cone C := {(u,v) : |u|] < n|v|}. Using (T1),
(T2) and assuming that n, N have been chosen large enough, for any x € W, the maps
D,S; and D, S send C inside C U {0}. The cone field criterion (see for instance [44])

implies that the Cantor set R is projectively hyperbolic. The Lemma 2.6 is proved. O

3.2.2. Basic sets linked to the heterocycle
The heterocycle configuration implies under the transversality assumptions (77) and
(T>) that the saddle P has a transverse homoclinic intersection.

Lemma 3.1. For all n large, the subsegment:
Wige(H) =T 08" o T*(Wio(P) N Vpr)

of W*(P) intersects transversally the local unstable manifold W _(P) at a point H which
is < o, -close to S'. The endpoints of WS _(H) are < o™-distant from W _(P).

Proof. Let I' := W} (P) N V. This curve is sent by 77 to a curve which intersects
transversally WX (S) by (11). By projective hyperbolicity, the image by S™ of 7*(I")
is a curve which is tangent to a thin vertical cone field, which is < o7},,-close to S and
which has length =< o™. As (7°)7!({y = 0}) intersects transversally {z = 0} N Vs at S
by (T%), it must intersect transversally S™ o T*(T") for n large. Consequently the curve

TS 08" o TH(I') intersects the local unstable manifold {y =0} NVp of P. O
By Smale’s horseshoe theorem (see [39, chapter 2]), one deduces:
Corollary 3.2. There exists a basic set K containing P and H.
We will make it more precise. If NV is large, K can be spanned by the inverse branches
G =P and Go:=T 08" oT"oPN.
Let € > 0 be small enough so that {0} x [h — e, h + €] is included in V and let (see

Fig. 8):

h—e h+e¢
5= { NN }



P. Berger et al. / Advances in Mathematics 407 (2022) 108528 27

S\ -
N P

Vs T

Fig. 8. The box B and its images.

Lemma 3.3. For every n, N large, the map G is well defined on B. If ea™ AN > 1, the
map Gy displays a saddle fized point Q in BN K, which is homoclinically related to P.

Proof. The box B is sent by P¥ to (0,h) + [~o™, 0] x [—¢, €] which is included in Vi
for N large enough. As 8™ o T*(Vy) is included in V¥ for n large enough, the map g is
well defined on B. Let us decompose the boundary of B:

h—e h+e¢

853 = {71, 1} X |:)\]V’ )\,N:| and 3“B = aB \ 35B

Both curves of S"oT *oP (9% B) are o, close to the vertical arc W£ (S) := {0} x[—1,1]
and their endpoints are < ¢ -] distant to W»%(.S) by transversality (T%1) at 77 (H) and
by projective hyperbolicity of S. Thus they intersect transversally (7°)~*(Wg_(P)) by
property (T3).

Consequently Go(B) intersects W _(P), and Go(0"B) is < ¢ - o]} distant to W} (P).
By assumption, A~V is small compared to ¢ - 0%, then Go(B) crosses B: it does not meet
the vertical boundary 9°B, whereas B does not meet the horizontal boundary G2(9"B).
Thus G, displays a fixed point Q in B N Gy(B).

Note that DGy expands vectors in a vertical cone by a factor < AN o, which is
large, and the image of these vectors are uniformly transverse to the horizontal. On the
other hand by projective hyperbolicity DG, ! sends the vectors in an horizontal cone to
uniformly horizontal vectors and expands them by a factor o - o~V. The point Q is
a saddle, its local unstable manifold is an horizontal graph in B over [—1, 1] whereas its
local stable manifold connects the two curves in Go(9"B) and so crosses the horizontal
Wi (P). This shows that @ and P are homoclinically related as required. O

3.2.3. Replacement of the saddle point
Let us consider a saddle periodic point () homoclinically related to P. The following
allows to replace the saddle P by @ in the heterocycle.

Lemma 3.4. Let QQ be a periodic saddle point that is homoclinically related to P. Then
there exists a map f that is C™ close to f such that S and Q form a heterocycle.
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One can choose f to coincide with f outside an arbitrarily small neighborhood of
F7YUS)\ {S}. In particular if W"*(S; f) contains Q, then S and Q form a strong hete-
rocycle for f.

Proof. By assumption, there exists a point 2 € W*(P) N f~1(S) \ {S}. Let Q_1 be the
forward iterate of ) which satisfies f(Q_1) = @Q. Since @_; is homoclinically related
to P, there exists 2z’ € W*(Q_1) arbitrarily close to z having a backward orbit which
converges to the orbit of @@ and which avoids a uniform neighborhood of z.

Hence, there exists a C'°°-small perturbation of f supported on a small neighborhood
of z satisfying f(2') = f(z). In particular W*(Q) contains S. O

We state a parametric version of the previous lemma.

Lemma 3.5. Consider a C*® family (fo)acr in Diff}s.(U, M), and, for r > 1, fami-
lies of saddles (P,)qcr and of projectively hyperbolic sources (Sg)qcr exhibiting a C”-
paraheterocycle at a = 0. If (Qa)acr 18 a family of saddles homoclinically related to
(P.)acr, then there exists (fa)ae]g, C>™-close to (fa)acr such that Qo and Sy form a
C" -paraheterocycle at a = 0.

One can choose (fa)aeR to coincide with (fa)acr outside an arbitrarily small neighbor-

hood of fy *(So)\{So}. Hence if Qo € W¥*(Sy; fo), then So, Qo form a strong heterocycle
Jor fo-

Proof. Let (K,)q.cr be a basic set that contains P, and @, for a in a neighborhood
I of 0. Let P and Q be the periodic lifts of P and @ in K. By assumption, there
exists a choice of local unstable manifolds W} (z, f,) for z € ¥ and N > 1 such that
d(Sa, FN(WE(P,))) = o(|a|™). Since P and @ are homoclinically related, there exists a
sequence of points z,, € which converges to P and which belong to W} (Q). Since
W} (2; fa) varies continuously with z for the C'*°-topology, when n is large there exists
a family (fu)aer, which is C®-close to (fa)acr, such that d(Sa, fN (Wi (2., fa))) =
o(|a|"). There exists a large integer £ > 1 such that fN (W (z,, fa)) C ff(VVﬁ,c(Qa, fa)),
hence d(S,, ff(Wﬁm(Qa, fa))) = o(|a]") as in the definition of C"-paracycle. Note that
the perturbation can be supported on a neighborhood of a point in f;'(So) \ {So}. O

3.8. Proof of Proposition 2.1: from heterocycles to strong heterocycles

The main step in the proof of Proposition 2.1 is contained in the following lemma.
Lemma 3.6. Let us assume that both stable branches of P intersect W¥(P) transversally.
Then there exists a map f, C®-close to f, with a saddle Q homoclinically related to Py

such that:

o f and f coincide on W (P) and outside a small neighborhood of P,
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Fig. 9. The two cases for the position of [S’, H].

o WU(S, f) contains Q.

Proof. From (7}), the curves W %(S) and 8" o T*(W} .(P)NVy) intersect transversally

at a point whose image under 7° is denoted as [S’, H], see Fig. 9.

We can reduce to the case depicted on the left part of Fig. 9, where [S’, H] belongs
to the half upper plane {y > 0} (for the chart of Vp). Indeed if we are in the other case
(depicted on the right part of Fig. 9), we use the fact that the stable branch {0} x [—1, 0]
of P has backward iterates which accumulate on W} .(P) in order to replace H by a point
H' = (0,R"), b < 0, which is a transverse intersection between W#(P) and W**(S). The
new point [S’, H'] is close to [S’, H], hence belongs to the lower half plane. It remains
to conjugate the chart by (x,y) — (z, —y) in order to find the desired configuration.

Let us consider some large integers n, N, the map Gs and the box B defined at Sec-
tion 3.2.2. The transversality conditions (%) and (T3) imply that 7™ (W} %(S)) crosses
the box Go(B) along a small curve whose vertical coordinate belongs to an interval
[c1.07,, c2.00,], where ¢, ¢o are independent from the choice of n, N.

We choose n, N such that
(h—e)A Nt < g0, < (h—e)A™ . (3.1)

Note that the condition eo”AY > 1 is satisfied and Lemma 3.3 associates a saddle
point Q € B whose vertical coordinates is in [(h —&)A™", (b + £)A~N]. By the previous
estimates, @ is “above” the graph 7™ (W“(S)).

Now we consider a family (f:):c[0,1] such that fo = f, and for every ¢, the restrictions
of fi to W (P) and to the complement of a neighborhood of V}, coincide with f, while

the restriction of the map f;|V} is still linear with eigenvalues (\;, o) such that:

A = A with o= Ah=2 1~

N1+t-(C—1) coh+te

Note that (f¢)¢ejo,1) is a smooth family which is C'*°-close to be constantly equal to f
since n is large. The map S, 7%, T* are unchanged, while P? := (x,y) € Vp — (-2, \iy)
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depends on a. Any map of this family satisfies the assumptions of Section 3.2.2. Let
(Qt)te[o,l] be the hyperbolic continuation of Q. The vertical coordinate of Q; is bounded
by

(h+ AN =C-(h+e) AN =(h—e) A" ¥15
C2

From (3.1), it is smaller than c;.0™,, hence @ is “below” the graph 7™(W2%(S)). One

deduces that there exists a parameter such that Q; belongs to 7% (W“*(S)). This implies
that Q; has an iterate @ which belongs to W'*(S). O

loc

Proof of Proposition 2.1 in the C*° case. One considers a basic set K provided by
Corollary 3.2. It contains a periodic saddle P’ homoclinically related to P such that both
of its stable branches intersects W*(P’) transversally. The Lemma 3.4 allows by a first
perturbation fl to replace P by the saddle P’ so that the assumptions of the Lemma, 3.6
are satisfied. One can then build a new perturbation fs such that wue (s, fg) contains a
saddle @ which is homoclinically related to P and P’, whereas the heterocycle between S
and P’ is not destroyed (since the perturbation does not modify S nor W _(P’)). After
a third perturbation fs provided by Lemma 3.4, a strong heterocycle between @Q and S
is obtained. O

3.4. Proof of Proposition 2.1 in the analytic case

w

Now we assume f € Diff};,

(U, M) and as before f displays a heterocycle between a
saddle P and a source S. To prove Proposition 2.1 in the analytic case, it suffices to

show the following counterparts of Lemmas 3.4 and 3.6.

Lemma 3.7. Let QQ be a periodic saddle point that is homoclinically related to P. Then
there exists a map f that is C* close to f such that S and Q form a heterocycle.

If Wuu(S; f) contains @Q, then, one can choose f so that S and Q form a strong
heterocycle.

Lemma 3.8. Let us assume that both stable branches of P intersect W™ (P) transversally.
Then there exists a map f, C¥-close to f, with a saddle Q homoclinically related to Py
such that:

o WU(S, f) contains Q.
o W¥(P, f) contains S.

Proof of Lemma 3.7. First recall that M is analytically embedded into an Euclidean
space R, see [23]. Hence there exists an analytic retraction = : U — M of a neigh-
borhood U of M in RM. Let W _(P) be a local unstable manifold of P which contains
S in its interior and let S" # S in W} (P) such that f(S') = S. Let Vg be a small
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neighborhood of S” such that the backward orbit of S” inside W} _(P) does not meet S’.
One takes an analytic chart ¢ : Voo — [—1,1]% sending S’ to 0 and Vsr N W (P) to
[—1,1] x {0}.

Now consider a C*°-family (fp)pe[-c,] sSuch that fo = f and each f, is equal to
f outside Vg while on a smaller neighborhood of S’, the map f, coincides with the
composition of f with a translation of vector (0,p). In particular the continuation of
W (P) for f, inside Vg is equal to W% (P), while the continuations S, of S and of
its preimage ), = f ~1(S) N Vg satisfy that 0pS,|p=0 has non-zero second coordinate.
Remark that x := Df™! o (0, fp|p=0) is a smooth vector field defined on the compact
subset U C RY. Then by Stone-Weierstrass Theorem, there exists a polynomial vector
fields ¥ € R[X1,..., Xy] whose restriction to U is C'-close x. Also by reducing & > 0,
the following is well defined for any |p| < e:

fp ::meUr—)ﬂ(f(m)+p~Dfof((z)).

Note that 9,f,lp=0 = Df o X is C'-close to ,fp|p=0. In particular the hyperbolic
continuation (S{;)pe[—s,a} of §' for (f,), is family C'- close to (g;/))pe [—c,e]- Also the
hyperbolic continuation (W (P, fp))pg[,m] is a family of curves C'- close to the family
constantly equal to [—1,1] x {0}. Hence assuming that the C'-size of the perturba-
tion is small, the curve T' := Upe[—e,e]{g;} x {p} intersects transversally the surface
5 i= Uperoe WP, o) x {p} at {8} x {0}.

By the inclination lemma with parameter, see [7, Lemma 3.2], there exists a sequence
(Wh.p)n of p-families of segments W, ,, C W*(Q, f,) such that the sequence of surfaces
En = Upej—e,e) Wnp x {p} converges to ¥ in the C'-topology as n — oo. Thus when
n is large, the curve I intersects %,, at a point close to {S’} x {0}. Hence there is p
arbitrarily small such that the continuations of S’ and @ form a heterocycle for fp. This
proves the first part of the lemma since fp is C¥-close to f when p is small.

In the second part of the lemma, the saddle @ belongs to a local strong unstable
manifold W%(S) of S and one performs a similar construction. Let Q" # @ in WX%(.5)
which satisfies f(Q') = @, let Vipr be a small neighborhood of @', and consider a chart
¥: Voo = [—=1,1]% sending Q" to 0 and Vg N WX %(Q) to [—1,1] x {0}. One considers
a C*° family of maps which are equal to f outside Vi and which coincide with the
composition of f with a translation of vector (0,¢) on a small neighborhood of Q': it
induces a vector field &, that can be approximated by a polynomial vector field €. Up to
shrinking ¢ > 0, for every (p, q) € [—¢,¢]?, the following is well defined:

fra=zeMer(f(x)+p-Dfox(z)+q -Dfol(x)) .

Similarly we can consider the continuation S pq Of S, prq of Q, Wg.(P, fp,q) of

Wise(P, ), Wapq of Wap and Wit (Q, fo.q) of Wi (Q).
From the first part of the proof, W (P, f,,) contains S, , when (p,q) belongs to
graphs v, that are arbitrarily C'-close to the curve p = 0 when n — co. By a similar
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argument, W»%(S, fp’q) contains Qp,q when (p, ¢) belongs to a one-dimensional subman-
ifold o that contains 0, is C'-close to the curve g = 0. In particular o is transverse to the
graphs ,. Thus the conclusion of the lemma holds for some map fp7q with (p,q) € y,No
which is C“-close to f when n is large and p, ¢ are small. This implies the second part
of the lemma. 0O

Proof of Lemma 3.8. The proof of Lemma 3.6 was obtained using a smooth family which
changes the stable eigenvalue of P, without changing the relative position of S w.r.t.
WE.(P; f). To obtain the analytic setting, as above, we approximate this family by an
analytic one and we add an extra parameter which varies the relative position of S w.r.t.
W% (P; f). While the first parameter enables to find a saddle @ homoclinically related
to P such that @ € W%(S), in the analytic setting this unfolding might unfold also the
heterocycle. However the new second parameter enables to restore it. O

3.5. Proof of Proposition 2.5: from paraheterocycles to strong paraheterocycles

We follow the proof of the Proposition 2.1 in the C'°° case. After a first C'°°-small
perturbation of fy (and hence of the family (f,).cr), there exists a saddle ¢ homoclin-
ically related to P which belongs to W;“%(S). The paracycle property (1.1) between S
and P may not hold anymore, but by a new perturbation, with a similar size, it can be
restored. Note that it is supported near f=1(S)\ {S}, hence the property Q € W “(S)
is not destroyed. Finally one applies Lemma 3.5, and gets a C'*°-small perturbation of

the family (f,)qcr in order to get a strong C”-paraheterocycle at a = 0 between S and

Q. O
4. From chains of heterocycles to paraheterocycles

We prove Proposition 2.10 in this section: an N-chain of alternate heterocycles whose
saddles are homoclinically related, can be perturbed as a C%paraheterocycle, provided
that N is large enough with respect to d. This is shown by induction on d. The case d = 0
follows from the continuity of the family (without any perturbation). The induction step
is given by:

Proposition 4.1. Consider a C™ family (fa)acr in Dift},.(U, M) and d > 0 such that
fo has a 2-chain of alternate heterocyles with saddle points P', P? and sources S*,S?
such that (P',S') and (P2,8?) form two C%-paraheterocycles at a = 0. Then there
is a C>®-perturbation of (fi)acr such that the continuation of (P, S?) forms a C4+1-
paraheterocycle at a = 0.

Moreover the perturbation is supported on a small neighborhood of orbit(S1) U
orbit(S?).
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Proof of Proposition 2.10. One considers a 2%-chain of alternate heterocycles with pe-
riodic points P*, S, ..., P2d, 52°. Proposition 4.1 allows to perform a perturbation at
orbit(S1)Uorbit(S5?), such that P! and the continuation of S? form a C!-paraheterocycle.

Note that P!, S2, P3,83, ..., P2d, 52" is still a 2¢ — 2-chain of alternate heterocycles.
By induction, one gets a 2¢~'-chain of alternate heterocycles P, S?, ..., P2d_1, 52" such
that P?*1 §%42 form a C'-paraheterocycle at a = 0, for each 0 <4 < 2971,

By a new perturbation supported near the sources, one gets a 2% 2-chain of al-
ternate heterocycles PI,S4,...,P2d_3,S2d such that each pair P**+1 §4+4 forms a
C?-paraheterocycle at a = 0. Repeating this construction inductively, one gets a C%-
paraheterocycle at a = 0 between P! and the continuation of s o

Proposition 4.1 is proved in the next two subsections. In Section 4.3 we discuss the
case where there are several parameters.

4.1. Notations and local coordinates

The setting is similar to Section 3.1 and depicted Fig. 10. We choose a large integer
r and a small number ¢ > 0, we look for a smooth perturbation of (f,),cr Wwhich is
e-C"-small and such that the continuation of (P!, S?) forms a C%*!-paraheterocycle at
a=0.

As in Section 3 we shall assume that the points P? and S* are fixed. We denote by
loa| < 1and A\, < —1 (resp. by |o2%| < |o¥] < 1) the inverse of the eigenvalues of the
tangent map of f, at P? (resp. at S}).

After a small perturbation we can assume that the eigenvalues are non-resonant and:

log |o¢|
log |>\0 \

eR\Q.
Then by [42], there exist:

o neighborhoods V{(a) C Vs(a) := f.(Vi(a)) of S! endowed with coordinates depend-
ing C™ on the parameter and for which the inverse branche S, := (f,|V4)™! has the
form:

Su:(z,y) €V = (0¥ - z,0 - y) € VY

o neighborhoods Vj(a) and Vp(a) := f.(Vh(a)) of P? endowed with coordinates de-
pending C" on the parameter and for which the inverse branch has the form:

Pa : ('ruy) € VP(a') = (Ua"ra/\a y) € VIID(a) :

Up to restricting Vp, V), and Vs we can assume them equal to filled rectangles containing
0 in their interior. We define:
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Wiee(PY) = Vp(a) N {y =0}, Wi (PY) =Vp(a)N{z =0} and
Wloc( )*{y*O}QVS( )

Let Hy be a point in W#(PZ) N W*(S}). Up to replacing it by an iterate, we can
assume that Hy belongs to V5 (0) with Hy = (0, ho) in the linearizing coordinates of P3.
Also, a preimage S’? of S? by an iterate of f, has coordinates S’? =: (x,,¥,) in the
linearizing coordinates of P2. Let T, : Vi < Vs be an inverse branches of an iterate of
fa defined on a neighborhood Vi € V}, of Hy and such that 7j sends Hy into W% “(Sh).
Up to a smooth perturbation, one can require that:

(Ty) W*“(P') is transverse to ESY at S*,
(Ty) WEe(S) and Wi (P§) are transverse at Ho.

loc

By (T1), W¥(PL) contains a graph in the chart at S}, over a neighborhood I C R of 0:

Ty =A{(z,7.(2)); z € I}

By (T3), the transverse intersection Hy admits a continuation H, for a close to 0. One
sets

H,=(0,h,) and T,(H,) = (24,0).

Since (P!, S') and (P2, S?) form two C?-paraheterocycles at a = 0, one has for any
0<k<d,

957a(0)[a=o =0 and  9yqla=o = 0.
Up to a small perturbation, one can also assume that
9 72(0)|a=o #0 and 9 yqala=o # 0.
Fig. 10 summaries the notations.
4.2. Compositions nearby a paraheterocycle
Let A be the second coordinate of 9,7y(Hy); it is nonzero by (1%).
Lemma 4.2. Given integers n,m > 1 large such that (o§)"AJ* = O(1), there is a C”"-

perturbation of (f)a localized at S? such that the germ at a = 0 of a — ST oT,oP™(S2?)
is C*1_close to

u\n m ag+1ya|a:0
(0, (O'O) AN )\O . Wad+1> .
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Proof. For m large, after a C"-small perturbation localized at S? (which is conjugated
to a translation in a small neighborhood of S?), we can assume 5.2 = (24, Yo +€4) Where
a — g4 is the C*°-small function defined by &, := A\;™ - h, and where as before (24, ya)
are the coordinates of S’? before the perturbation.

Then observe that P™(S%2) = H, + (67 - x4, AT - y,) forms a family whose germ at
a =0 is C%close to (H,),. When m is large, the germ at a = 0 of a — T, o P™(S2) is
C%*1_close to

Ta(Ho) + Dy, To | o0 - 2oy AL —8g+1ya|a:0ad+1
a a H,,, a a as “‘a <d+1)!

and so C%1_close to

d+1
aa+ yalazo ad+1

(24,0) + 0y To(Ho) - Ay" - T

Consequently, for any n > 0, the germ at a = 0 of a — S? o T, 0 P™(S.2) is C¥F1-close
to

d+1
anr ya|a:O d+1

(72" 20,0) + diag((0)", (0)") -y To(Ho) - Nyt - 32

If (o))" Ay = O(1), then both (c¥*)™ and (o§*)"\j* are small, and so we obtain the

a
announced bound. O

Since the ratio log|od|/log|\o| is irrational, and since 9%+17,(0)|,—0 # 0 and
ag+1ya\a:0 = 0, one can choose some large positive integers n,m such that

nlog |og| + mlog|Xo| — log |A| + log \8(‘f+1ya|a:0

is arbitrarily close to log|92%1v,(0)|,=0. Since X is negative, one can choose m to be odd
or even so that A - (%)™ (o)™ y,]a=0 and 9¥F1v,(0)|4s=0 have the same sign.

By our assumptions, the C%jets of a + 7,(0) and a > y, at a = 0 vanish. With our
choices, this guaranties that the C9*1-jet at a = 0 of a — A - (%) (Ao)™Ya — V4 (0) is
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arbitrarily small. By Lemma 4.2, after a C"-perturbation of (f,), localized at (S?),, the
germ at a = 0 of the following function is C4*!-small:

@ 1o =0 0P 0 Sy 0 Ta 0 P (S%) = py 0 Sy 0 Ta 0 P (S?).

A C7-small perturbation localized at S} (which is locally conjugated to a translation)
translates the functions (v,), by —n, for each parameter a close to 0. Then we have at
a=0:

d(Ta, S5 0 Ta 0 P(S)) = o(a®™).

As a consequence, the continuation of P} and S2 form a C?*l-paraheterocycle at
a = 0 for the chosen perturbation. Since the charts are a priori only C", the resulting
perturbation is only C". In a last step, we thus smooth the family near the sources,
keeping the paraheterocycle we have obtained (the latter being a finite codimensional
condition on the family). Proposition 4.1 is now proved. O

4.8. Families parametrized by k-parameters

When the family (f,) is parametrized by a = (ay,...,ax) in R¥, k& > 1, the proof
follows the same scheme, by canceling one by one the partial derivatives 92! 022 - - - 9k
of the unfolding of the heterocycle. For this end, we proceed by induction on {i =

(i1,..., i) € NF: >_;1j < d} following an order < such that:
Zij < Zz; =i=<7.
J J
5. Nearly affine (para)-blender renormalization

In this section, we prove Propositions 2.2 and 2.4.

We consider a C* map f € Diff},.(U, M) with a projectively hyperbolic source S
and a saddle point @ forming a strong heterocycle, and build by perturbation a nearly
affine blender homoclinically related to @. It is defined by two inverse branches from a
neighborhood of @) to “vertical rectangles” stretching across the local unstable manifold
of the saddle.

In §5.1 and §5.2 we choose nice coordinate systems for the inverse dynamics nearby
the source, the saddle and the heteroclinic orbits. It requires preliminary perturbation in
order to satisfy some non-resonance and transversality conditions. We also explain how
to unfold the strong heterocycle. The heterocycle induces well-defined inverse branches
of the dynamics (§5.3) that are transitions from one linearizing chart to the other. §5.4
provides C"-estimates on rescalings ¢g—, g* of the inverse branches. In §5.5 and §5.6, we
tune the length of the branches and the size of the unfolding so that the inverse branches
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Fig. 11. Inverse branches given by the strong heterocycle.

define a nearly affine blender with a neat dilation A; it is homoclinically related to the
saddle point P and that its activation domain contains S. In other words, Proposition 2.2
will be proved.

In §5.8, we add a parameter, consider a family (f,).cr and apply the previous discus-
sion to fo. The inverse branches admit continuations (g, )s.er and (¢ )qer. After having
chosen an adapted reparametrization, we extend the C"-bounds to the parametrized
families and check that they define a nearly affine C"-parablender, concluding the proof
of Proposition 2.4.

Notations The proofs will depend on a small number ¢ > 0 and on integers
nT,n=,m*,m~. The notation A = O(e) (or more generally A = O(g(e,n*,n~,m™T,
m™))) will mean that the quantity A has a norm bounded by C.e (or by C.|g(e,n",n",
m*,m™)|), where the number C' > 0 depends on the initial map f but not on the choices
made during the construction.

Similarly, one will say that a function h (that may depend on coordinates z,y, and/or
parameters a or «) is C"-dominated by ¢ if 9*h = O(¢) for all its k*® derivatives with
respect to x,y,a,a with 0 < k < r. Note that if in the C"-topology, h; = h} + O(e),
i € {1,2}, then hq o ha = h} o b, + O(e).

5.1. Coordinates for generic perturbations of strong heterocycles
We first fix a system of coordinate as depicted in Fig. 11. As in Section 3.1, we

L< ok
and 0 < A™! <1 < 07! of Dgf and Dgf respectively are positive and non-resonant.

shall assume that the points @) and S are fixed and the eigenvalues 1 < o,

Furthermore we can assume that:

log oy,

Tog A ¢Q. (5.1)

The hypothesis of the proposition consists of two finite codimensional conditions:
SeW™Q;f) and Qe W"(S;f). (5.2)

So after a small smooth perturbation, we can assume moreover:
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TQW™(S; ) @ TeW*(Q; f) = TqM  and  E*(S) © TsW*(Q; f) = TsM . (5.3)

As in Section 3.1, the non-resonance of the eigenvalues and the smoothness of the
dynamics imply, by the Sternberg Theorem [41], the existence of:

o Neighborhoods V¢ C Vg := f(V{) of S and coordinates for which f|V{ has the form:
—1 -1,

f:(xvy)GVS/'H(Uuu'xvo'u y)EVS'

+ Neighborhoods V() and Vg = (V) of Q and coordinates in which f|V{, has the
form:

fi(zy) e Vhm (o™t ATt y) € V.
This defines the inverse branches Q := (f|V5) ™" and S := (f[Vg)~":
S:(x,y) €Vs = (Ouu-2,00-y) €Vg and Q: (x,y) €V (0 -z, y) €V} .
Up to restrict Vg and Vé and rescale their coordinate, we can assume:
Vo=1[-22] x [-2A71,2A7"] and V) =[-20,20] x [-2,2] .

Let Wi (Q) :== Vo N{y = 0}, Wi (Q) ==V, N{z =0} and Wi (S) :={y=0}NVs.

By Eq. (5.2) there is a neighborhood V{ € V§ of 0 = S and an inverse branch
T° : V§ — Vg of an iterate of f sending 0 into [—2,2] x {0}. Similarly, there exists
a neighborhood Vc’g/ S Vé N Vg of 0 = @ and an inverse branch 7° : Vé’ — Vs of an
iterate of f sending 0 into Vg N {y = 0}. The inverse branches 7° and 72 are called the
transitions maps.

Assuming the neighborhoods Vg and Vi small enough, it is possible (up to compose by
an iterate of f) to choose 7%, T such that

T5(0) eV \ V) and T°2(0) € Vs \ Vs,
Let the coordinates of 7° and 72 be
TS = (X°,Y°) and T°:=(X°,)°).
By Eq. (5.3), 8,Y2(0) # 0. Thus by rescaling one of the linearizing chart, we can assume:

9,Y°(0) = 1. (5.4)
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5.2. Unfolding of the strong heterocycle

We will perturb 7°,7° so that the following points are close to but not necessarily
in {y =0}:

S = (s},8,) :==T°(0) and Q" = (q;,q,):=T=(0).

z 2y
This is enabled by the next claim without changing any derivative of the inverse branches.

!
Y

dynamics such that the inverse branches § and Q remain unchanged, while the contin-

Claim 5.1. For every small numbers s/ and q;, there exists a C'°° perturbation of the

uations of the inverse branches 7° and 72 have the same derivatives but satisfy:
Y3(0) =s, and Y°(0) =g,

Proof. First recall that 7°(0) € Vg \ V(5. One perturbs f by composing with a trans-
lation supported on a small neighborhood of 7%(0). This enables to move the vertical
position of 7°(0), without affecting the other branches. The modification of 72(0) is
done similarly. O

In the following we will prescribe some values of s
dynamics. The inverse branches of the new system will be still denoted by 9O, S, 7° =
(X°,¥%) and T2 = (X2,Y°). The next lemma enables to assume that 9,Y°(0) is
positive.

,q, and consider the perturbed

Lemma 5.2. Up to perturbation f and to change T?, we can assume moreover that
9, Y°(0) > 0.

Proof. If 9,1°(0) < 0, we are going to perturb f and replace 7 by the inverse branch
TS :=T508"0T20Q" 0TS for some large n and m. First note that for any large n
and any m, the map 75 is well defined on a small neighborhood of 0 = S. Also 0,7°(0)
is a vector with negative vertical component. By hyperbolicity, it is sent by DQ™ to a
nearly vertical vector. Its vertical component is still negative since A > 0. It is pointed at
a point Q™ o T5(0) close to 0 = Q. Thus for m sufficiently large, by Eq. (5.4), its image
by DT < is a vector with negative vertical component. By projective hyperbolicity of the
source S, its image by DS™ is a vector vertical, pointed at a point nearby S when n is
large, and with negative vertical component. Consequently it is sent by 7° to a vector
with positive vertical component at a point nearby 7°(0). In other words, the second
coordinate of 3y7?3(0) is positive.

It remains to perform a perturbation of f so that the second coordinate of %(0) is
zero. Let (7;%); be the family of perturbations of 7° given by Claim 5.1 and enabling to
move the y-coordinate of 7°(0). Note that when n > m,
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Fig. 12. Construction of a nearly affine blender.

Oy (T2 08" 0T20 QMo T)(0) ~ 8,7,°(0) + D(T® 08" o T=0 Q™) (8, 77(0)) = 9,7,(0) -

Hence there is a small parameter ¢ such that 7,5 := (7;5 0 S" 0 T2 0 Q™ o T,) satisfies
moreover that the y-coordinate of 7,°(0) is 0. O

Remark 5.3. Note that all the previous properties, and in particular Claim 5.1, are still
satisfied by the coordinates change given in the proof of Lemma 5.2.

5.3. Choice and renormalization of inverse branches

Let us fix A > 1 sufficiently close to 1 so that a nearly affine blender of contraction
A~1is a blender by Proposition 1.8. The construction also depends on a small number
e > 0 (it will measure the distance of the rescaled blender to an affine one) and on large
integers n~,m™,n", m" that will be chosen later.

The nearly affine blender will be displayed in the neighborhood Vg of @, using two
inverse branches g+ and g~ of different iterates of f (see Fig. 12). We take them of the
form:

gi =75 05"i o7 %o Qmi.
The inverse branches defining the blender will be rescaled by the map:
—1ymt—1 o —~1ymT—1 —m¥
H:(z,y) €[—2;2) x [-27°A , 2670 ] = (z,e- A cy)eVg.
Their renormalizations are given for + € {—,+} by:
Rg* ::’H‘logio’}-{:’}-[_loTsoSnioTQonio’H (5.5)

Lemma 5.4. For every n~,m~,nt,m"% large, with m* > m™, the renormalizations
Rg~,Rg" are well defined on B = [—2,2]2.

Proof. Since m~ < m™, both maps om' o H, Q™ oH are well defined on B and equal
to:
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+

Q™ oH(z,y) = (6™ -xe-y) and Q" oH(wm,y) = (o™ -we- A" T -y).

As € is small, their ranges are contained in a small neighborhood of 0 and so in the
domain of 7<2. Thus both maps 7 <o Qmi oH are well defined on B and their ranges lie
in a small neighborhood of 72(0) € Vs. Then as S contracts Vg into itself with a fixed
point at 0 and since n* are large, S" 0T 20Q™" 0 is well defined on B and its image
is included in the small neighborhood Vé’ of 0. Thus 7% o S"i oT<o Qmi o H is well

defined on B. O

5.4. Bounds on the renormalized maps

Given ¢ > 0 small, we require the following properties on the large integers n*, m*:
nt>n">e ! and mT>m >t (5.6)

{7 A . 9,5(0), o A" . 9,V°(0)} C [A—g,A+e], (5.7)

a;ﬁ_’f <e and (mt-m7)"- AT M < g2 -min(n~,m”) . (5.8)

Let us recall that the inverse eigenvalues satisfy x := max(oy, ouu, 2, A lo) < 1.
Fact 5.5. For every € > 0 small and n > e, it holds k™ < n~("+%),

In particular, one has 0™ < e and 07 <e.

We decompose the renormalized maps as

RgF =T 00t = [H 10T 08" oHE] o [(HE) 1 oT%0 Q™ o],
where H*E := (z,y) — (z,¢- AmE—mt cy) — Q.

Lemma 5.6. The maps (z,y) — ®*(x,y) — (0,y) are C"-dominated by .

Proof. We have ®*(z,y) = (H*)"'oT2%0 Qmi o H(x,y). Since Q' = T2(0) = T2 o
9" o H(0) we get ®*(0) = 0. Recalling that 7° = (X°,Y°) and that Q' = (¢}, q,),
we obtain:

OF(z,y) = (X2, L A LYY (0™ e AT ) (gl e AT T )

y) -

0, % (z,y) = o (0, X2, et Amt—mE .axyg)(ami T, E - AmE—mt

0,0%(a,y) = (- X" - 0,X°,0,Y°) (0" - z,e - AT )

From this, (5.6) and Fact 5.5, the first coordinate of D®* is C"~!-dominated by &.
Using also (5.8) and then Fact 5.5, we have ot e loymemT o pm® o= < cand
the second coordinate of 9,®* is C"~!-dominated by e. As 9,Y2(0) = 1 by (5.4), the
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second coordinate of (‘9y<I>i coincides with the constant function 1, up to an error term
that is C"~!-dominated by e. O

Lemma 5.7. The maps ¥F coincide with
/ —1ym™t / —1 mt _n* S /
(xay)}_)(07A’y)+(saca€ A TSy —€ A Oy ayy (O)Qy)a
up to an error term that is C"-dominated by €.

Proof. We have U% = 110 TS 08" o HE. With T = (X, V%), it holds:

U (2, y) = (X5, e N V) (0T - (x—q)), of (e A

Y= dqy)) -
Thus 8, U= is C"~'-dominated by o7, -A™" -~ which by (5.6), (5.7), (5.8) is dominated
by

Tuu \N~ . mt—m~ o1 -
(O'_u) A €

<(Zw)" onTe<e.

The first coordinate of ay\pi is C"~'-dominated by ¢ - J’uLi amEemt g Similarly,
using (5.7), the second coordinate of 9,¥* coincides with agi SAmE 0,Y°(0), hence
with A, up to an error term that is C"~!-dominated by ¢. We have thus shown that the

derivative of (z,y) — ¥*(x,y) — (0,A -y) is C"~'-dominated by . Moreover:

WE(0) = (X%, e N Y (ol - dh—ol )

The first coordinate is e-close to X?(0) = s/, and the second coordinate is equal to:
+ +
N Y (o, dh ol - d)
e <y5<0> —0:°(0) -0l - = ,Y°(0) -0l -+ O(Ui”i))

As before e=1 - A™" .o =0
A

= O(g). By (5.7) and (5.8), e=1 - A™" . 627" is dominated by
g=1. ymt-—m” con = 0(¢g). As

Y9(0) = s;,, we obtain (1). O
5.5. Tunning iterates

Lemma 5.8. Given ¢ > 0 small, there exist n=,m~,nT,m" which satisfy (5.6), (5.7),
(5.8).

Proof. By (5.1), there exist m,n > 1 arbitrarily large such that:

ANy e[l—5,1+45] and oy <e.
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As A and 9,Y°(0) have the same sign (by Lemma 5.2), there are n=,m~ > ! such
that:

min(n”",m”) > e ?-m"- A" and 9,Y°(0)- A" o €A+ [-5. 5]

u

Then let m™ := m+m~ and n* := n+n~. This gives \™ -9,Y5(0)-0"" € A+[—¢,e]. O

A consequence of the Lemmas 5.6, 5.7 and 5.8 is:

Corollary 5.9. For every ¢ > 0 there exist n=,m™,n", m™ such that the renormalized
maps Rg* coincide, up to a term that is CT-dominated by e, with:

(@) = (0,4 )+ (sh, e LA™ sl —e LA™ ol 9,¥5(0) - ).

5.6. Proof of Proposition 2.2: from strong heterocycles to blenders

Let n=,m~,nt, m" be given by Corollary 5.9. It remains to choose the values of s;!
and q;, such that the renormalized maps Rg* are C"-close to:

In view of Corollary 5.9, it is enough to ask:
eloam g —emloamT et g V2(0)- ¢, = +(A—=1)+O(e)
Yy u Y qy *

This is implied by choosing s;, and ¢, as follows:

eloamh. s,=A—-1 and &' )\eraZf “0,Y°(0) - qy =2(A - 1) . (5.9)
Indeed, one has J;ﬁ*’f < € by (5.8), and with (5.6), (5.7), Fact 5.5, the choices (5.9)
give s!, = 0(?), ¢, = O() and e~ - A" 7" - 9,1°(0) - ¢!, = O(e).

By Proposition 1.8, {Rg™, Rg~} defines a nearly affine blender with activation domain
containing [—2,2] x [-1/2,1/2]. Thus, {g*, g~ } defines a blender with activation domain
containing H([—2,2] x [-1/2,1/2]) = [-2,2] x [—€ - A2 e )Fm+/2]. Choosing
|A — 1] < 1/4, one gets [s)| < € A~™" /2 and S’ belongs to this activation domain.
Also the point @) = 0 belongs to this activation domain. Pushing forward this activation
domain along the inverse branch 7%, we define a new family of local unstable manifolds
for the blender whose activation domain contains S. Note that the unstable manifold of
Q stretches across {s,} x [—£ - A™™" /2, - A=™" /2] and so the stable manifolds of the
blender. Hence () is homoclinically related to the blender. Proposition 2.2 is proved in
the C*° case. O
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5.7. Proof of the Proposition 2.2 in the analytic case

The whole previous proof is still valid in the analytic setting but Claim 5.1. Note
that the proof of Proposition 2.2 does not use that the r first derivatives of 7° and T <
remain unchanged but only that they are bounded. Thus to prove the analytic case of
Proposition 2.2, it suffices to show:

Claim 5.10. For every small numbers s;

dynamics such that the inverse branches & and Q remain unchanged, while the contin-

and q;, there exists a C* perturbation of the

uations of the inverse branches 7° and 72 derivatives at 0 and satisfy:
Y3(0) =s, and Y<°(0)=gq,.

Moreover their C"-norm vary continuously with the parameters sy, qy
Proof. The perturbation technique follows the same lines as the proof of Lemma 3.7.
First we embed analytically M into RY, and we define an analytic retraction = from
a neighborhood of M C RY to M. Then we chose a C*°-family (fp)pe[—c,c+ such that
fo = f, such that f, coincide with f outside of a small neighborhood of {S, @}, and such
that the following map is a local diffeomorphism:

P:pc e’ (Sps Pp, a(p), A(p), 0u(p), ouu(p)) € M? x R*,

where S, and P, are the continuations of S and P, while (¢~ '(p),A\"!(p)) and
(0,1 (p), o, (p)) are their eigenvalues. Then using Stone-Weierstrass theorem and the
retraction 7, we define an analytic family ( fp)pe[—s,s]s such that fo = f and such that
the continuation of ® remains a diffeomorphism. We can thus extract from this family a
4-parameter family ( fp)pe —e,e)+ along which the eigenvalues are constant, but such that
the continuations S and P of S and P still satisfy that the following map is a local

diffeomorphism:
p€[-¢ce* = (S, P,) € M%.

In §5.1, we assumed the eigenvalues of these points to be non-resonant. Thus we can
apply [42] which provides C"-families of coordinates at S and P in which f,|V{ and
fplV§ coincide with diagonalized linear part of Dgf, and Dq fp, which do not depend
on p. Consequently the inverse branches S and Q (seen in the coordinates) remain
unchanged when p varies in [—¢,¢]*. Also the continuations of the inverse branches 7%
and T< vary C"-continuously with p. On the other hand, the variation of the relative
positions of the continuation of S and @ w.r.t. a local unstable manifold of () and a local
strong unstable manifold of S is non-degenerated. O
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5.8. Proof of Proposition 2.4: from strong paraheterocycles to parablenders

We now consider a C* family of (f,)scr and continue to work in the setting of
§5.1-5.6 for the map f = fo.

The continuations of the periodic points are (S;)ecr, (Qa)acr, With eigenvalues

o 1(a), 0 (a) and A~Y(a), 0~ (a). By [42], their linearizing coordinates can be extended

for every a € I of I sufficiently small, as C"+!-family of C"*!-diffeomorphisms. This en-
ables us to consider the continuations S,, Q,, 7,2 and 7. of the inverse branches S, Q,
T< and T°. They are still of the form:

So i (z,y) € Vs = (oyula) - z,0u(a) - y), Qu:(z,y) € Vg (0(a)-x,Aa) - y),
To = (X, V5): (v,y) €VE = Vo, T2 =(X2.V7): (x,y) €Vh = Vs,
and they allow to define the preimages by f,:
Sa = (sz(a),sy(a)) :==T;(0) and @ = (¢,(a),q,(a)) == T;(0).

Observe that up to a perturbation localized at a neighborhood of Sy we can also
assume:

log oy, (a)

“Tog A(a) #0 ata=0. (5.10)

We consider A > 1, € > 0, and the integers nt, m*,n~, m~ as before. This allows to
extend the definition of g* as families (g )qes. We also extend the rescaling maps:

Ho: (z,y)— (z,e- )\m+(a) ),
HE: () (e A" " (0) ) — Qs

and, similarly to Eq. (5.5), the renormalized inverse branches:

Rya = Hy' oga oHa = V5 0Py,
where F = (HE) 10720 Q™ oM, and U = (H,) 'oT o8 oHE.
For a small, Rg,, Rg, are well defined on B := [—1,1] x [~2, 2] by Lemma 5.4 and form
a C"-nearly affine blender K, by Section 5.6. We also rescale the parameter space:

+

afa) :=A_(a) —A_(0) where Ay(a):= A (a) - 0,Y5(0) - oy (a).
Lemma 5.11.

1. The map « is a local diffeomorphism at a = 0.
2. Its inverse function o+ a(a) is C"-dominated by 1/n~ (and hence by ).
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3. The maps o — Ayx(a) — (A + a) are C"-dominated by ¢.

Proof. First observe that a(0) = 0. Then

AT' 0400 = D log A_ = Dy log(A™ - ol - 9,V5(0))
_o, (M

. S
Tog X log A + log 0,3 (O))

logo, m™ -logA+n~logoy,

—n" -log\-d,
no-logA-da gy log A

- Oglog A + 0q log (0, V5 (0)) .

Thus by (5.7), when ¢ is small, d,c|.—¢ is invertible, of the order of n~, giving the first
item.
By induction, one gets that the higher derivatives can be written as:

logo, m™ -logA+n"logo,
log A log A

- Og log A+

a

OFA_=0Fa=A_. (n— log\- 9,

k
Oa log(ayyf(O))> +A_-Rg(n~,m™), (5.11)

where Rjp(n~,m™) is a polynomial in n~,m~ with degree smaller or equal to k — 1.
Hence 0« is dominated by (n~)*. Note that 9%a - (9,a)¥! is a linear combination of
terms of the form (9,a)% - (92a)® --- (0% a)™*, where i + 2 -4y + --- + k - i < k. This
implies that 9%a is dominated by 1/n~ < ¢ as announced in the second item.

The definition of & gives A_ (o) = A_(0) + o and |A_(0) — A| < & by (5.7). In order
to get the third item, it is thus enough to prove that each derivative O%(A, — A_) is
dominated by ¢.

By (5.7) and (5.8), Ay — A_ is dominated by ¢, and n* —n~ is dominated by en~,
whereas m™ - log A +n~ log o, and m™ -log A + n* log o, are uniformly bounded. The
partial derivative O¥ A_ satisfies Eq. (5.11). Replacing A_,n_,m_ by A, ,n,,m,, one
obtains a relation for 9¥ A, . Taking the difference, one concludes that 9%(A, — A_) is
dominated by e(n~)*. Since 9¥(A, — A_) is a linear combination of terms 97" (A, —
A_)-9dha---9%a with iy + --- + iy = m, by the second equality of it is dominated by
e. O

By abuse of notation, for any function of a, for instance a — S/, we denote o — S/,
its reparametrization equal to the composition of a — S/ with the inverse of a.

Corollary 5.12.

1. The maps o — S, — S} and a — Q, — Qf are C"-dominated by €.
2. The first derivative of o+ 71 - At —m* (@) - q(a) is CT~'-dominated by ¢.
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3. The first derivative of o+ =2 - A™" (a) - O’;li (a) - q,(a)) is C"~'-dominated by e.

Proof. The first item is a direct consequence of Lemma 5.11: in particular the first deriva-

tive of a > ¢} () is C"~'-dominated by 1/n~. By our choice (5.9), ¢, (0) is dominated

by €-A™ ~™"_ Similarly, the first derivative of v — A™ =™ (a) is C"~-dominated by
+

e L RS B 8 = L U

n

using (5.8). The second item is thus a consequence of (5.8) 5_1)\m —m* /n~ <e.
The third item is obtained similarly, by writing A™" (a) - ol ( ) =A™ *mi(a) .
ok .

A" o (a) and by using (5.7). O

u

Lemma 5.13. With p, : (x,y) — y, the families (% — (0,p,))a are C"-dominated by ¢.

Proof. In addition to Lemma 5.6, it remains to study the partial derivatives involving
. Let us recall that ®F(x,y) is given by

+

(X2, 71 AT () Y2) (0™ (@)@, e AT (@) )+ (gl (@), e T T (a)-gl ().

By Corollary 5.12, one can reduce to consider the family indexed by « and formed by:

+

(2,y) = (X271 A " (0) V) (@™ (a) e AT (0) y). (5.12)

By Lemma 5.11.(2) and then by the 2°¢ inequality in (5.8), the first derivative of the
map a — 1 - A =™ (o) has a C"~'-norm dominated by

—1 _
max € ' -n;" - (m
1<i<r +

. +_, =+ .
T omE) I T < max e ny <e.
1<i<lr

On the other hand, the map K : («a,z,y) — (é’(ag,){f)(ami (a) - z,e - /\mifer(a) - y)
isa C"- bounded function with small first coordinate. Also its first derivative w.r.t. « is
dominated by + < e. Thus the first derivative w.r.t. o of the map in (5.12) is dominated
by:

et e AT T () 0K ot

which is dominated by e small using the 2"¢ inequality in (5.8). O

Lemma 5.14. The families (V),, coincide, up to the addition of maps C”-dominated by
€, with the families defined by:

((2,9), @) = (0, (A+a)y)+(s,(0), e A" ()-s, (@) —e A" (a)-02 ()-8, V5(0)-q, ().
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Proof. In addition to Lemma 5.7, we are reduced to examine the (9,¥),. We have:

VE(z,y) = (X5, 67N (@)VS) (07 (@) - (=g, (), 07 (@)-(A™ "™ (a)-y—d, () .

We first discuss the families (0, ¥F),, (9,¥Z), and then the families (9, ¥E(0))q.

Step 1. The families (0, ¥}), are controlled as in the proof of Lemma 5.13, by bounding
the factors d%a by 1/n~ with Lemma 5.11. By (5.7), (5.8), m~,m*,n* are dominated
by n~. All of this implies that log(/\mi)7 a;‘i, agj, as functions of «, are C"-bounded.
One deduces that 9, ¥ are C"~!-dominated by 033 -Am" =1 Arguing as in the proof
of Lemma 5.7, 3,V are thus C"~!-dominated by

(Quuyn” . ymtomT ol -
ou

<(Zm)" onTe<e.

Step 2. The families (9, V), have a first coordinate which is C"~1-dominated by (n*)"-
ofji “(mE —m)r. A =m" ¢ and by e by Fact 5.5. The second coordinate of 0,V
equals:

((,9),0) = oy (@) - A" (a)

nt +

-0y V3 <Uw () - (& = g(@)), 0% (@) - (£ A"~ (a) -y q;(a))) :

It differs with (UZi () - Am* (@) - 9,Y5(0))q up to a map which is C"~!-dominated by

e e R s T A P L 8

and hence by ¢ from (5.7) and Fact 5.5. By definition aﬁi () Am* (@)-0,Y5(0) = Ax(a)
and A4 («) coincides with A+« up to a term that is C"-dominated by ¢, by Lemma 5.11.

Up to here, we have shown that the spacial derivative of UF coincides with the spatial
derivative of the map ((z,y),a) — (0, (A + ) - y), up to a term C"~*-dominated by e.
Step 3. The families (0,¥E(0))q, are given by:

+ +

WE0) = (X5,e7" A" (@) - Vi) (=0t (@) - (@), =07 (@) - g (@) -

The first coordinate of each derivative 0¥ W (0) is dominated by derivatives 9%a, hence
the first coordinate of 9, ¥ (0) is dominated by ¢ by Lemma 5.11.

By similar estimates as in Lemma 5.7, combined with Lemma 5.11, the second coor-
dinate of 9,¥E(0) can be reduced (up to a term C"~!-dominated by ¢) to:

e (@) YE(0) + &A™ (a) - DYE(0).(0, 0k (@) - g (@)

which is also equal to e=1- A" () - sh (o) —e™t- A () ~03i (@) - 0,Y5(0) - gy (). O
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As a consequence of the Lemmas 5.13, 5.14 and 5.8, we have obtained:

Corollary 5.15. For everye > 0 there exist nt,n™,m*, m™ such that the families (RgZ)a
coincide, up to a term CT-dominated by €, with the families defined by:

(2,9) = (0, (A+a)y)+(5,(0),e A" ()5, (@)= - A (@)-07 ()-0,Y3(0)-} () -

End of the proof of Proposition 2.4. Corollaries 5.15 and 5.12 reduce the family (Rg¥).
to:

(2,9) = (0, (A+a)-y)+(s,(0), 67N (@) -5, (@) — A" (0)-07 (0)-8,V5(0)-,,(0)) -

Note that we removed the dependence on « of the right hand term since its first derivative
(w.r.t. @) is bounded by e by the 2°¢ inequality of (5.8) and Lemma 5.11(2). As in
Section 5.6,

e AT(0) - o (0) - 9,V5(0) - g (0) = 2(A —1) and
et A™T(0) - o (0) - B, V5 (0) - 4 (0) = O(e).

As we started with a strong C"-paraheterocycle, all the r-first derivatives of a +— s'y (@)
equal 0 at 0. So by Claim 5.1, we can perturb (f,)s so that a — s;(a) has the same
r-jet as the C"-small function a5 € - A™™" (@) - (A — 1) at o = 0. Then we obtain that
(Rgt), are 5-C"-close to:

(z,y) = (5,(0), (A +a) -y (A1),

and hence defines a d-nearly affine C"-parablender, where § is arbitrarily close to 0
when ¢ — 0. By Proposition 1.19, one deduces that the continuation (K,), of the
maximal invariant set induced by the maps (g, g, ) is a C"-parablender. Its activation
domain seen in the chart H, contains any germ o — z(«) with z(0) € [-2,2] x {0}
and ||0yz(a)||cr—1 <, where 1 > 0 is small number independent from e. Note that our
perturbation satisfies H (S)) = (s, (a),e(A —1)). Combining with Corollary 5.12, item
1, one concludes that the activation domain of (K, )aes contains the germ of (S/,)q, and
the germ of the source (S,) at @ = 0. We also recall that @ is homoclinically related to

the (para)-blender. Proposition 2.4 is proved. O

Remark 5.16. For each point z € ?, let v, be the unstable curve of z which is a
graph over [—2,2]. The activation domain is obtained by considering the local unstable
manifolds of the form (7°)71(v;). By assumption (5.3), W*(Q) is transverse to E<%(S).
One deduces that the family of local unstable manifolds defining the activation domain
of the parablender satisfies the property announced in Remark 2.5.
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