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Abstract—A class of continuous robust controllers
termed Robust Integral of the Sign of the Error (RISE)
have been published over the past two decades as a
means to yield asymptotic tracking error convergence and
asymptotic identification of time-varying uncertainties, for
classes of nonlinear systems that are subject to sufficiently
smooth bounded exogenous disturbances and/or modeling
uncertainties. Despite the wide application of RISE-based
techniques, an open question that has eluded researchers
during this time-span is whether the asymptotic tracking
error convergence is also uniform or exponential. This
question has remained open due to certain limitations in
the traditional construction of a Lyapunov function for
RISE-based error systems. In this letter, new insights on
the construction of a Lyapunov function are used that
result in an exponential stability result for RISE-based con-
trollers. As an outcome of this breakthrough, the inherent
learning capability of RISE-based controllers is shown to
yield exponential identification of state-dependent distur-
bances/uncertainty.

Index Terms—Robust control, Lyapunov methods,
nonlinear control systems.

I. INTRODUCTION

A CLASS of continuous robust controllers termed Robust
Integral of the Sign of the Error (RISE) have been pub-

lished over the past two decades [1]–[14] as a means to yield
asymptotic tracking error convergence and asymptotic identi-
fication of time-varying uncertainties, for classes of nonlinear
systems that are subject to sufficiently smooth bounded exoge-
nous disturbances and/or modeling uncertainties. RISE-based
methods have been used for a wide variety of applications
involving control [4]–[20], estimation [2], [21], [22], and
optimization [23]. Despite the wide application of RISE-based
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techniques, an open question that has eluded researchers dur-
ing this time-span is whether the asymptotic tracking error
convergence is also uniform or exponential. This question has
remained open due to certain limitations in the traditional
construction of a Lyapunov function for RISE-based error
systems.

The traditional analysis methodology for a RISE-based error
system involves a Lyapunov-based approach, where the candi-
date Lyapunov function (denoted by VL) includes a P-function
(denoted by P) in addition to a typical sum of norm squared
error terms. The P-function is designed by selecting Ṗ to can-
cel disturbance-based terms in V̇L and is the essential analysis
and design tool to enable asymptotic convergence (instead
of uniformly ultimately bounded tracking) despite the pres-
ence of a disturbance term that is only upper bounded by a
constant. Previous results, including the current result, deter-
mine P as a function of the initial conditions of the system
that is proven to be non-negative under certain gain condi-
tions. Evaluating V̇L along the closed-loop error trajectories
yields a negative semi-definite V̇L. Then the extension of the
LaSalle-Yoshizawa theorem for nonsmooth systems in [24]
is invoked to prove asymptotic tracking error convergence.
Since the LaSalle-Yoshizawa theorem is based on Barbalat’s
lemma, the traditional analysis methodology does not guaran-
tee uniform tracking error convergence, and the non-strictness
of VL precluded exponential stability of the closed-loop error
system’s origin.

To prove exponential stability, it would be sufficient to
select a positive-definite VL such that V̇L ≤ −λLVL for almost
all time, with some positive constant λL. Then exponential
stability can be established using the comparison princi-
ple. Such a Lyapunov function is developed in [14], which
is the only known RISE-based exponential tracking result.
The result in [14] was developed for a specific application
under the assumption that the first and second derivatives of
the uncertainty are bounded by known constants. However,
RISE-based controllers have been applied to a broader set
of applications where this assumed bound would not hold.
For example, in results like [8], [10] and [11] that involve
dynamic compensator-based auxiliary control terms, the first
or second derivative of the uncertainty have bounds that are
state-dependent. It is not clear how the analysis approach
in [14] can be extended for such cases.

In this letter, a novel P-function design is developed that
results in a strict Lyapunov function. The new analysis results
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in exponential stability of the closed-loop error system’s ori-
gin using a comparison theorem-based argument. The novel
P-function is shown to be non-negative under certain gain
conditions by examining the analytically derived solution to
the dynamics in Ṗ. Unlike the analysis approach in [14],
the developed P-function can be easily modified for vari-
ous bounds on the first and second derivatives of uncertainty.
To rule out the existence of extra solutions for P that could
be potentially negative over some time interval, the derived
solution for P is shown to be unique corresponding to
a given closed-loop error trajectory. Additionally, solution-
dependent arguments are employed to show the sign of the
error term is integrable, and V̇L ≤ −λLVL for almost all
time, which involves showing that the set of time-instants
where V̇L ≤ −λLVL may not be true have Lebesgue mea-
sure zero. Furthermore, the disturbance/uncertainty is shown
to be estimated with exponential convergence of the distur-
bance identification error, while prior results only indicated
asymptotic convergence.

II. CONTROL DESIGN

A. Preliminaries

A function y : Iy → R
n is called a Filippov solution of

ẏ = h(y, t) on the interval Iy ⊆ R≥0, given some Lebesgue
measurable and locally essentially bounded function h : Rn ×
R≥0 → R

n, if y is absolutely continuous on Iy, and ẏ ∈
K[h](y, t) for almost all t ∈ Iy, where K[·] denotes the Filippov
set-valued map defined in [25, eq. (2b)]. A solution is called
complete if Iy is unbounded. A solution y2 : [t0, t2) → R

n

to ẏ = h(y, t) is called a proper right extension of a solution
y1 : [t0, t1) → R

n to ẏ = h(y, t) if t2 > t1 and y2(t) = y1(t),
∀t ∈ [t0, t1). A solution to ẏ = h(y, t) is called maximal if it
does not have a proper right extension which is also a solution
to ẏ = h(y, t). If a solution is maximal and if the closure of
its range, {y(t) ∈ Rn|t ∈ Iy}, is compact, then the solution is
called precompact. The space of continuous functions with
continuous first m derivatives is denoted by Cm. The space of
essentially bounded Lebesgue measurable functions is denoted
by L∞, and ‖ · ‖p denotes the p-norm, where the subscript
is suppressed when p = 2. The notation [a; b] denotes the
column vector [ aT bT ]T .

B. Control Objective

Consider a control affine system with the nonlinear
dynamics

ẋ = d(x, ν, t)+ u, (1)

where t ∈ R≥0 denotes time, x : I → R
n denotes a Filippov

solution1 to (1), with the interval of existence I = [t0, t1)
for some t0, t1 ∈ R≥0 s.t. t1 > t0, ν : R≥0 → R

m denotes
an auxiliary function representing some external dynamic

1We consider Filippov solutions instead of classical solutions to facilitate
a nonsmooth control design. Alternatively, Krasovskii solutions can also be
considered. Generalized solutions such as Filippov or Krasovskii solutions
are guaranteed to exist for nonsmooth systems with Lebesgue measurable
and locally essentially bounded right-hand-sides [26, Proposition 3], whereas
classical solutions might not exist.

compensator-based terms (e.g., adaptive feedforward terms,
observer-based terms), d : Rn×R

m×R≥0 → R
n represents C2

modeling uncertainty in the system, and u : I → R
n represents

the control input. Let ḋ(x, ẋ, ν, ν̇, t) � ∇dT(x, ν, t)[ẋ; ν̇; 1]
and d̈(x, ẋ, ẍ, ν, ν̇, ν̈, t) = [ẋ; ν̇; 1]T∇2d(x, ν, t)[ẋ; ν̇; 1] +
∇dT(x, ν, t)[ẍ; ν̈; 0], respectively, where ∇ and ∇2 denote the
gradient and Hessian operators, respectively. It is assumed that
for each (a, b, p, v,w, s) ∈ R

n × R
n × R

n × R
m × R

m × R
m,

the mappings t �→ d(a, v, t), t �→ ḋ(a, b, v,w, t), and t �→
d̈(a, b, p, v,w, s, t) are bounded. The objective is to design a
controller such that the state tracks a smooth bounded ref-
erence trajectory. The objective is quantified by defining the
tracking error

e � x − xd, (2)

where xd : R≥0 → R
n is a C2 reference trajectory such that

xd, ẋd ∈ L∞.

C. Control Law Development

To facilitate the subsequent analysis, a filtered tracking error
r : I → R

n is defined as r � d(x, ν, t)+ u − ẋd + αe, where
α ∈ R>0 is a constant control gain. To facilitate the subsequent
analysis, the dynamics in terms of ė can be rewritten using (1)
and (2) as

ė = r − αe. (3)

Let z : I → R
2n denote the augmented tracking error,

z � [ eT rT ]T . From the subsequent stability analysis, a
continuous RISE control input is designed as [3]

u � ẋd − αe − d̂, (4)

where d̂ : I → R
n is an auxiliary term designed as a Filippov

solution2 to
˙̂d = kr + e + βsgn(e), (5)

given any user-selected d̂(t0) ∈ R
n. In (5), k, β ∈ R>0 are

constant control gains. Using (1)-(4) yields

r = d(x, ν, t)− d̂. (6)

It follows from (5) and (6) that r is a Filippov solution to the
closed-loop error system

ṙ = ˜N + NB − kr − e − βsgn(e), (7)

where ˜N � ḋ(x, ẋ, ν, ν̇, t) − ḋ(xd, ẋd, ν, ν̇, t) and NB �
ḋ(xd, ẋd, ν, ν̇, t).

Assumption 1: The function ν is a solution to some
external dynamics such that there exist known constants,
η1, η2, η3, η4 ∈ R≥0, and a known strictly increasing func-
tion, ρ21 : R≥0 → R≥0, such that ‖ν‖ ≤ η1, ‖ν̇‖ ≤ η2, and
‖ν̈‖ ≤ η3 + η4‖z‖ + ρ21(‖z‖)‖z‖.

Then, there exist known constants γ1, γ3, γ4 ∈ R≥0 and a
known strictly increasing function ρ21 : R≥0 → R≥0 such that
‖NB‖ ≤ γ1 and ‖ṄB‖ ≤ γ3 + γ4‖z‖ + ρ2(‖z‖)‖z‖, ∀t ∈ R≥0.

2Since r may not be commonly available, d̂(t) is evaluated using d̂(t) =
d̂(t0) + ke(t) − ke(t0) + ∫ t

t0
((kα + 1)e(τ ) + βsgn(e(τ )))dτ for closed-loop

implementation. Note that βsgn(e(·)) is Riemann integrable on [t0, t], ∀t ∈ I
according to Lemma 2.
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Additionally, since ν is bounded and t �→ ḋ(a, b, v,w, t)
is bounded for each (a, b, v,w) ∈ R

n × R
n × R

m × R
m,

‖˜N‖ ≤ γ2‖z‖ + ρ1(‖z‖)‖z‖, ∀t ∈ R≥0, according to the Mean
Value Theorem-based inequality in [27, Lemma 5], where
γ2 ∈ R≥0 is a known constant, and ρ1 : R≥0 → R≥0 is
a known strictly increasing function. Note that the type of
state-dependent bounds considered in Assumption 1 are gen-
eral and often required in various applications where the RISE
method is used (e.g., [8], [10] and [11]), typically as a conse-
quence of augmenting adaptive feedforward controllers with
a RISE term. In the case where ν represents adaptive feed-
forward terms, the developed approach offers modularity of
design in the sense that d̂ and ν can be designed indepen-
dently, as long as ν satisfies Assumption 1. The following
example illustrates a type of system satisfying Assumption 1.

Example 1: Consider a dynamic neural network given by

ν̇ = proj{WTσ(VTx), ν}, (8)

where proj{·, ·} denotes the smooth projection operator
in [28] that guarantees ‖ν‖ ≤ η1, σ : R

L → R
L denotes

a globally bounded continuous activation function, and
W ∈ R

m×L and V ∈ R
L×n are constant3 matrices of outer

and inner-layer weights, respectively. Using [28, Property 3]
and the fact that σ(·) is globally bounded, ν̇ can be
bounded by a constant, i.e., ‖ν̇‖ ≤ η2. Taking the time-
derivative of ν̇ yields ν̈ = d

dt (proj{WTσ(VTx), ν}) =
∂
∂y (proj{y, ν})|y=WTσ(VT x)

d
dt (W

Tσ(VTx)) + ∂
∂y (proj{WTσ

(VTx), y})|y=ν ν̇. Based on the structure of the projection
operator in [28, eq. (7)], the terms ∂

∂y (proj{y, ν})|y=WTσ(VT x)

and ∂
∂y (proj{WTσ(VTx), y})|y=ν can be bounded by some

known functions of x. Additionally, based on the right-hand-
side of (3), the term d

dt (W
Tσ(VTx)) = WT ∂

∂yσ(y)|y=VT xVT ẋ =
WT ∂

∂yσ(y)|y=VT xVT(ẋd + r − αe) can be bounded by some
known continuous function of z. Therefore, ν̈ can be bounded
as ‖ν̈‖ ≤ η3 +η4‖z‖+ρ21(‖z‖)‖z‖. Thus, the dynamic neural
network in (8) satisfies Assumption 1.

The structure of the closed-loop error system in (7) may
appear similar to a higher order sliding-mode design (see [29]);
however, there are some remarkable differences to highlight.
Specifically, the βsgn(e) term in (7) would need to be βsgn(r)
to facilitate the analysis for a standard continuous higher-order
sliding-mode design. Since sensor measurements for the high-
est order derivative (e.g., ė or r) may not be available for
feedback, the controller in (4) is designed to depend only on
state measurements. Additionally, the closed-loop error system
in (3) and (7) is also different from a super-twisting system,
since (3) would require an additional −|e|1/2sgn(e) term to
facilitate a super-twisting design, which needs a different
analysis approach [30].

We now present some supporting lemmas which facilitate
the subsequent analysis. Proofs of all lemmas can be found in
the Appendix.

Lemma 1: Given some Filippov solutions, e and r, to (3)
and (7), respectively, the set of time-instants T � {t ∈ I|∃i ∈

3See [8] for continuous adaptive weight updates.

{1, 2, . . . , n} s.t. ei(t) = 0 ∧ ri(t) �= 0} has Lebesgue mea-
sure zero, where ei and ri denote the ith element of e and r,
respectively.

Lemma 2: Given some Filippov solution, e, to (3), sgn(e(·))
is Riemann integrable on [t0, t1], ∀t1 ∈ I.

III. STABILITY ANALYSIS

Following the development in Section II, every Filippov
solution to (1) and (5) with the controller in (4) corresponds to
a Filippov solution of the transformed system in (3) and (7).
Additionally, a P-function is introduced to facilitate the con-
struction of a candidate Lyapunov function for analyzing the
stability and convergence properties of z. The P-function is
denoted by P : I → R and is defined as a Filippov solution
to

Ṗ = −λPP − L, (9)

where λP ∈ R>0 is an auxiliary constant, and

L � rTNB − rTβsgn(e)− (γ4 + ρ2(‖z‖))‖z‖‖e‖1, (10)

where ‖ · ‖1 denotes the 1-norm, and

P(t0) = 0. (11)

The analytical solution to (9) is derived in Lemma 3. To facil-
itate the inclusion of the P-function in the candidate Lyapunov
function, P is designed to be non-negative under certain gain
conditions as described in Lemma 4.

Lemma 3: Given some Filippov solutions, e and r, to (3)
and (7), respectively,

P = β‖e‖1 − eT NB + e−λPt ∗ (

(α − λP)
(

β‖e‖1 − eT NB
) + eT ṄB

)

+ e−λPt ∗ ((γ4 + ρ2(‖z‖))‖z‖‖e‖1), (12)

is the unique Filippov solution to the differential equation
in (9) initialized according to (11), where ‘∗’ denotes the con-
volution operator, i.e., p(t)∗q(t) = ∫ t

t0
p(t − τ)q(τ )dτ , for any

given p, q : [t0,∞) → R.
Lemma 4: Given any pair of Filippov solutions, e and r,

to (3) and (7), respectively, provided that P is initialized
according to (11), and the gain conditions

α > λP, (13)

β > γ1 + γ3

α − λP
, (14)

are satisfied, P(t) ≥ 0, ∀t ∈ I, where the gains α and β

are introduced in (3) and (5), respectively, and γ1, γ4 are
introduced in Assumption 1.

Let ψ � [ eT rT P ]T , and ψ̇ = g(ψ, t) denote the dif-
ferential equations in (3), (7) and (9), where g : R

2n+1 ×
[t0,∞) → R

2n+1 is Lebesgue measurable and locally essen-
tially bounded (i.e., bounded on a neighborhood of every point,
excluding sets of measure zero), since it is continuous except
in the set {(ψ, t) ∈ R

2n+1 × [t0,∞)|e = 0}. To facilitate the
stability analysis, let VL : R2n+1 → R≥0 be defined as

VL(ψ) �
1

2
eTe + 1

2
rTr + P. (15)

Let c � min{k − γ2 − nγ4, α − γ2 − nγ4,
λP
2 }, ρ(·) � ρ1(·)+

nρ2(·), and consider the regions, D � {σ ∈ R
2n+1|VL(σ ) <
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(ρ−1(c−λV ))
2

2 } and S � {σ ∈ R
2n|‖σ‖ < c − λV}, where λV ∈

R>0 is a user-defined constant.
Theorem 1: Given any initial condition z(t0) ∈ R

2n, every
maximal solution to (3), (7), and (9) with P(t0) initialized
according to (11) is complete, and the zero solution to (3)
and (7), (e(t), r(t)) ≡ (0, 0), is semi-globally exponentially
stable in the sense that ‖z(t)‖ ≤ ‖z(t0)‖ exp(−λV(t − t0)),
∀(z(t0), t) ∈ R

2n × [t0,∞), provided that the gains α, β, k and
λP are selected according to the gain conditions in (13), (14),
and

c > λV + ‖z(t0)‖. (16)

Proof: The existence of a Filippov solution, ψ : I →
R

2n+1, to ψ̇ = g(ψ, t) is guaranteed4 by [26, Proposition 3].
The time-derivative of VL along ψ , starting from the speci-
fied initial conditions, exists a.e., and V̇L(ψ, t)

a.e.∈ ˙̃VL(ψ, t)

[31, eqs. (12) and (13)], where the notation
a.e.
(·) implies that

the relation holds for almost all time t ∈ I, and

˙̃VL(ψ, t) =
⋂

ξ∈∂VL(ψ)

ξTK
[

g
]

(ψ, t)

= ∇VT
L K

[

g
]

(ψ, t)

= [

zT 1
]T

K
[

g
]

(ψ, t). (17)

In (17), ∂VL(ψ) denotes Clarke’s generalized
gradient [31, eq. (7)], and K[ · ] is defined in [25, eq. (2b)].
Since ψ �→ VL(ψ) is continuously differentiable,
∂VL = {∇VL} using [26, Proposition 6]. Substituting (3), (7),
and (9) into (17), utilizing ‖ · ‖1 ≤ √

n‖ · ‖, and applying
Young’s inequality on ‖z‖‖e‖1 yields

˙̃VL = rT(˜N + NB − kr − e − βK
[

sgn
]

(e))

+ eT(r − αe)− λPP − rTNB

+ rTβK
[

sgn
]

(e)+ (γ4 + ρ2(‖z‖))‖z‖‖e‖1

≤ −k‖r‖2 − α‖e‖2 + (γ2 + ρ1(‖z‖))‖r‖‖z‖
− λPP + (γ4 + ρ2(‖z‖))‖z‖‖e‖1

≤ −2(c − ρ(‖z‖))VL

≤ −2
(

c − ρ
(
√

2VL

))

VL, (18)

for almost all t ∈ I, where c and ρ are introduced before the
theorem statement, the term t �→ rT(t)βK[sgn](e(t)) is set-
valued only for the set of time instants T = {t ∈ [t0,∞)|∃i ∈
{1, 2, . . . , n} s.t. ei(t) = 0 ∧ri(t) �= 0}. According to Lemma 1,
the set T has Lebesgue measure zero. It follows from (18) that
VL is non-increasing along all trajectories initialized such that
ψ(t0) ∈ D. Selecting c according to (16) and using (11) yields
c > λV + ‖z(t0)‖ = λV + ρ(

√
2VL(ψ(t0))). Then, VL(ψ(t))

is non-increasing, implying ψ(t) ∈ D, ∀t ∈ I. It follows
from (16) and (18) that V̇L can be upper-bounded as

V̇L ≤ −2λVVL, (19)

4The solution ψ may not be unique; however, P is unique according to
Lemma 3 for a given pair (e, r). Moreover, the results in this letter are appli-
cable to all the trajectories even when ψ is non-unique, since we consider a
generalized Filippov solution in the analysis.

for almost all t ∈ I. Using the comparison principle
[32, Lemma 4.4] in (19) yields

VL(ψ(t)) ≤ VL(ψ(t0)) exp(−2λV(t − t0)), (20)

∀(ψ(t0), t) ∈ D × I. Since (ψ, t) �→ K[g](ψ, t) is locally
bounded over R

2n+1 × [t0,∞) and (20) implies that ψ is
precompact, then [33, Lemma 3.3 and Remark 3.4] can be
invoked to show that every maximal solution ψ with P(t0)
initialized according to (11) is complete, i.e., I = [t0,∞).
Using the definition of z, (20) and Lemma 4, VL(ψ(t)) =
1
2‖z(t)‖2 + P(t) ≥ 1

2‖z(t)‖2, ∀t ∈ [t0,∞). Therefore,

‖z(t)‖ ≤ √

2VL(ψ(t)), ∀t ∈ [t0,∞). (21)

Using (20) and (21), ‖z(t)‖ can further be upper-bounded as

‖z(t)‖ ≤ √

2VL(ψ(t0)) exp(−λV(t − t0)), (22)

∀(ψ(t0), t) ∈ D × [t0,∞). Moreover, substituting (11) in
the expression for VL(ψ(t0)) yields VL(ψ(t0)) = 1

2‖z(t0)‖2.
Consequently, ψ(t0) ∈ D implies z(t0) ∈ S . Using (22) yields

‖z(t)‖ ≤ ‖z(t0)‖ exp(−λV(t − t0)), (23)

∀(z(t0), t) ∈ S × [t0,∞), implying the zero solution to (3)
and (7), (e(t), r(t)) ≡ (0, 0), is semi-globally exponentially
stable. Note that the exponential stability result is semi-global
(cf., [34, Remark 2]) because the size of the set S can be
arbitrarily increased using (16) to include any z(t0) ∈ R

2n.
Moreover, x ∈ L∞ since e, xd ∈ L∞. Since d ∈ L∞ by
Assumption 1, it follows from (6) that μ ∈ L∞. Therefore,
since all the terms on the right hand side of (4) are bounded
and continuous, u ∈ L∞ and is continuous. Moreover, since
e(t) = e(t0)+

∫ t
t0
(r(τ )−αe(τ ))dτ for all t ∈ [t0,∞) using (3),

the continuity of r −αe implies that the Filippov solution e is
also continuously differentiable.

Remark 1: The relation in (6) indicates that r is the esti-
mation error between the RISE term d̂(t) and the uncertainty
d(x, ν, t). Therefore, (23) implies that the RISE term is an
exponentially convergent estimator of the uncertainty, i.e.,
d̂(t) → d(x, ν, t) with a uniform and exponential convergence
as t → ∞.

Remark 2: For the special case when ḋ(t) and d̈(t) are
bounded by known constants, the analysis approach in [14]
can also be considered.

Remark 3: The exponential stability result is global when
the bounds on ˜N and ṄB are linear in ‖z‖, i.e., ρ1 = ρ2 = 0.

IV. CONCLUSION

In this letter, new insights on the construction of a
P-function are used to yield exponential stability with
RISE-based controllers. As an outcome of this breakthrough,
the inherent learning capability of RISE-based controllers
is shown to yield exponential identification of distur-
bances/uncertainty, as compared to all previous asymptotic
results. Future work could involve extension of the proposed
stability analysis methodology for RISE-based error systems
with sensor noise, and delays in input and state measurements.
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APPENDIX

Proof of Lemma 1: The set T can also be represented as
T = {t ∈ I|∃i ∈ {1, 2, . . . , n} s.t. ei(t) = 0 ∧ ri(t) − αei(t) �=
0} = {t ∈ I|∃i ∈ {1, 2, . . . , n} s.t. ei(t) = 0∧ėi(t) �= 0} to facil-
itate the subsequent analysis using the dynamics in (7). Select
a ∈ T , which yields ei(a) = 0 using the definition of T . Given
ėi(a) �= 0, we can assume without loss of generality that
ėi(a) > 0; the proof easily extends for ėi(a) < 0. Since e and r
are absolutely continuous, it follows from (3) that ė is contin-
uous. Given ėi(a) > 0 and continuity of ė, there exists δ > 0
such that ėi(t) > 0 for all t ∈ (a−δ, a+δ). Based on ėi(t) > 0,
it follows that

∫ t
a ėi(τ )dτ > 0 for all t ∈ (a, a + δ). Then,

using ei(a) = 0 yields
∫ t

a ėi(τ )dτ = ei(t)− ei(a) = ei(t) > 0.
Similarly, − ∫ a

t ėi(τ )dτ = ei(t) − ei(a) = ei(t) < 0 for all
t ∈ (a− δ, a), implying ei(t) �= 0 for all t ∈ (a− δ, a+ δ)\{a}.
If more than one component has ei(a) = 0, we select the
intersection of each neighborhood found above, represented
by U(a). Therefore, there exists a neighborhood, U(a), for
any a ∈ T , s.t. ei(t) �= 0 for all time-instants t ∈ U(a)\{a}
and i ∈ {1, 2, . . . , n}. When t ∈ T , ei(t) = 0 for some
i ∈ {1, 2, . . . , n}, which implies U(a)∩ T = {a} for all a ∈ T;
therefore, T is discrete and consequently has measure zero.

Proof of Lemma 2: The function sgn(e(·)) is discontin-
uous only at time-instants where it changes sign, i.e., the
set {t ∈ I|∃i ∈ {1, 2, . . . , n} s.t. ei(t) = 0 ∧ ėi(t) �= 0} =
{t ∈ I|∃i ∈ {1, 2, . . . , n} s.t. ei(t) = 0 ∧ ri(t) − αei(t) �=
0} = T . Since T has Lebesgue measure zero according to
Lemma 1, sgn(e(·)) is continuous a.e., implying it is Riemann
integrable [35, Th. 11.33] on [t0, t1], ∀t1 ∈ I.

Proof of Lemma 3: The right hand side (RHS) of (12) is
almost everywhere (a.e.) differentiable with respect to time,
because every term on the RHS is absolutely continuous,
including ‖e‖1, since ‖·‖1 is globally Lipschitz and e is abso-
lutely continuous. The time-derivative of ‖e‖1, whenever it
exists, is ėTsgn(e), using the chain rule. Therefore, taking the
time-derivative of both the sides of (12) at points where P is
differentiable yields

Ṗ
a.e.= β ėTsgn(e)− ėTNB − eTṄB

+ d

dt
(e−λPt ∗ ((α − λP)(β‖e‖1 − eTNB)+ eTṄB))

+ d

dt

(

e−λPt ∗ ((γ4 + ρ2(‖z‖))‖z‖‖e‖1)
)

. (24)

Based on the Leibniz rule, for any given q:[t0,∞) → R,
the function e−λPt satisfies d

dt (e
−λPt ∗ q) =

d
dt (

∫ t
t0

e−λP(t−τ)q(τ )dτ) = q(t) − λP
∫ t

t0
e−λP(t−τ)q(τ )dτ =

−λPe−λPt ∗ q + q. Additionally, L = ėTNB + αeTNB −
β ėTsgn(e) − αβ‖e‖1 − (γ4 + ρ2(‖z‖))‖z‖‖e‖1 is obtained
after substituting (3) into (10). Therefore, the expression for
Ṗ in (24) can be rewritten as

Ṗ
a.e.= −λPe−λPt ∗ ((γ4 + ρ2(‖z‖))‖z‖‖e‖1)

− λPe−λPt ∗ ((α − λP)(β‖e‖1 − eTNB)+ eTṄB)

− λPβ‖e‖1 + λPeTNB + β ėT sgn(e)

− ėTNB + αβ‖e‖1 − αeTNB + (γ4 + ρ2(‖z‖))‖z‖‖e‖1

= −λPP − L. (25)

Filippov’s differential inclusion for (9) is given by

Ṗ ∈ −λPP − K[L]. (26)

To prove the uniqueness of the solution to (26), consider any
two solutions with the same initial conditions, i.e., P1 and P2,
with P1(t0) = P2(t0) = 0, implying

Ṗ1
a.e.∈ −λPP1 − K[L], (27)

Ṗ2
a.e.∈ −λPP2 − K[L]. (28)

Based on (10), t �→ K[L](ψ(t)) is set-valued only when there
exists some i ∈ {1, 2, . . . , n} such that t → K[sgn](ei(t)) is
set-valued and ri(t) �= 0. Using Lemma 1, t �→ K[L](ψ(t))
is set-valued only for a set of time-instants of measure zero.
Therefore, defining �(t) = P2(t) − P1(t), and using (27)
and (28) yields

�̇
a.e.= −λP�, (29)

with �(t0) = 0. Since � ≡ 0 is an equilibrium point of (29),
�(t0) = 0 implies ‖�(t)‖ = 0, ∀t ∈ I, therefore P1(t) =
P2(t), ∀t ∈ [t0,∞), i.e., any two solutions are equal, implying
the solution is unique.

Proof of Lemma 4: Using Holder’s inequality and
Assumption 1 yields lower bounds on −eTNB and eTṄB,

− eTNB ≥ −‖e‖1‖NB‖1 ≥ −γ1‖e‖1, (30)

and

eTṄB ≥ −‖e‖1

∥

∥ṄB
∥

∥

1

≥ −(γ3 + γ4‖z‖ + ρ2(‖z‖)‖z‖)‖e‖1, (31)

∀t ∈ I. Substituting the bounds in (30) and (31) into the
expression for P in (12) yields

P ≥ β‖e‖1 − γ1‖e‖1

+ e−λPt ∗ (((α − λP)(β − γ1)− γ3)‖e‖1). (32)

Selecting P(t0) according to (11), and α and β according to
the gain conditions (13) and (14) yields P(t) ≥ 0, ∀t ∈ I
using (32).
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