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Abstract. We study counting problems for several types of orientations
of chordal graphs: source-sink-free orientations, sink-free orientations,
acyclic orientations, and bipolar orientations, and, for the latter two, we
also present linear-time uniform samplers. Counting sink-free, acyclic, or
bipolar orientations are known to be #P-complete for general graphs,
motivating our study on a restricted, yet well-studied, graph class. Our
main focus is source-sink-free orientations, a natural restricted version of
sink-free orientations related to strong orientations, which we introduce
in this work. These orientations are intriguing, since despite their similar-
ity, currently known FPRAS and sampling techniques (such as Markov
chains or sink-popping) that apply to sink-free orientations do not seem
to apply to source-sink-free orientations. We present fast polynomial-
time algorithms counting these orientations on chordal graphs. Our ap-
proach combines dynamic programming with inclusion-exclusion (going
two levels deep for source-sink-free orientations and one level for sink-
free orientations) throughout the computation. Dynamic programming
counting algorithms can be typically used to produce a uniformly random
sample. However, due to the negative terms of the inclusion-exclusion,
the typical approach to obtain a polynomial-time sampling algorithm
does not apply in our case. Obtaining such an almost uniform sampling
algorithm for source-sink-free orientations in chordal graphs remains an
open problem.
Little is known about counting or sampling of acyclic or bipolar orienta-
tions, even on restricted graph classes. We design efficient (linear-time)
exact uniform sampling algorithms for these orientations on chordal
graphs. These algorithms are a byproduct of our counting algorithms,
but unlike in other works that provide dynamic-programming-based sam-
plers, we produce a random orientation without computing the corre-
sponding count, which leads to a faster running time than the counting
algorithm (since it avoids manipulation of large integers).

1 Introduction

An orientation of an undirected graph is an assignment of a direction to each
edge, converting the original graph to a directed graph. We initiate the study of
counting source-sink-free orientations, where there are no sources, nor sinks (that
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is, no vertices of indegree or outdegree 0). Our motivation is twofold: First, these
orientations are related to the well-studied sink-free orientations, which can be
counted (approximately) despite being #P-hard for general graphs. While clearly
similar, source-sink-free orientations exhibit certain properties that prevent the
application of the current techniques for counting or sampling of sink-free orien-
tations. Therefore, new techniques are needed to understand this problem, and
we are starting with a restricted but well-known graph class. Second, source-sink-
free orientations can be thought of as a local (soft) version of strong orientations,
another well-studied class of orientations, the counting of which is also #P-hard
on general graphs [15] as well as on restricted graph classes such as planar and
bipartite graphs [13]. Our study is a first step beyond sink-free and towards
strong orientations.

Chordal graphs have attracted great attention in computer science theory as
a natural graph class with real-world applications (for example, some inference
techniques in probabilistic graphical models rely on sampling and counting of
certain types of orientations on chordal graphs [9, 16]), on which some problems
that are NP-hard or #P-hard on general graphs can be solved in polynomial
time; see, for example, [11].

Sink-free orientations are well understood. Bubley and Dyer [5] proved that
counting these orientations is #P-complete on general graphs. They also pro-
vided a Markov Chain that samples sink-free orientations of an arbitrary input
graphG approximately from the uniform distribution in time O(|E(G)|3 log ϵ−1),
where ϵ is the degree of approximation. Additionally, they showed that the
problem of counting sink-free orientations is self-reducible, yielding a fully poly-
nomial randomized approximation scheme (FPRAS) for the counting problem,
the running time of which is roughly |E(G)| times the sampling running time.
Huber [8] used the “coupling from the past” technique to obtain an exact
sample in time O(|E(G)|4). Cohn, Pemantle, and Propp [6] proposed a “sink-
popping” algorithm which can generate a sink-free orientation uniformly at ran-
dom in O(|V (G)||E(G)|) time. This algorithm fits the “partial rejection sam-
pling through the Lovász Local Lemma” framework of Guo, Jerrum and Liu [7],
yielding a uniformly random sink-free orientation in time O(|V (G)|2) time. In-
terestingly, none of these techniques appear to apply to the problems of counting
and sampling of source-sink-free orientations.

Our main contribution is a polynomial (cubic in the worst case) exact count-
ing algorithm for source-sink-free orientations in chordal graphs, combining dy-
namic programming with two-level inclusion-exclusion at every step of the dy-
namic programming computation. However, our combination with inclusion-
exclusion prevents us from extending our algorithm to an exact uniform sampler,
and we leave the sampling question as the main open problem of our work. We
apply a similar approach, using one-level inclusion-exclusion, to count sink-free
orientations of a given chordal graph in almost linear time, significantly improv-
ing the running time over the FPRAS for this graph class. Besides these two
orientations, we also present almost linear time counting and linear time sam-
pling algorithms for acyclic orientations and bipolar orientations, which are both
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#P-complete on general graphs [10]. The problem of counting acyclic orienta-
tions has also attracted a lot of attention since it corresponds to a specific input
of the well-studied Tutte polynomial TG(x, y) [4], in particular to TG(2, 0) [14]),
which plays an important role in graph theory and statistical physics. Acyclic
orientations can be counted efficiently on chordal graphs via the calculation of
the chromatic polynomial [1]. However, this result does not yield a(n almost)
uniform sampler since acyclic orientations are not known to be self-reducible.
In this work we present a simple linear-time exact uniform sampling algorithm
for acyclic orientations in chordal graphs. An interesting aspect of this sampling
algorithm is that it runs faster than its counting counterpart. This is atypi-
cal — dynamic programming based samplers usually rely on a precomputation
of the corresponding counts and are efficient only after substantial preprocess-
ing time. We note that, with some extra work to maintain the desired (unique)
source s and sink t, our results extend to counting and sampling of bipolar (s, t)-
orientations, also known as st-numberings. Finally, we compare our work to the
recent celebrated results of Wienöbst, Bannach, and Lìskiewicz [16], who count
and sample another type of orientations, the so-called v-structure-free acyclic
(or moral acyclic) orientations in chordal graphs. The authors prove interesting
structural results for these orientations and employ dynamic programming over
the clique tree in order to count them. In their case, the dynamic programming
consists of additive quantities, which allows them to extend their counting ap-
proach to sampling. In contrast, in our work we either do not need to compute
the counts in order to sample, or our dynamic programming does not appear to
extend to sampling due to the presence of negative terms in the computation.

The paper is organized as follows. Section 2 contains preliminaries on chordal
graphs and clique trees. Our main result, a fast counting algorithm for source-
sink-free orientations, combining dynamic programming with inclusion-exclusion,
is in Section 3. We summarize our other results in Section 4.

2 Preliminaries

For a graph G, we denote by G[U ] the graph induced in G on the vertex set
U ⊆ V (G). An undirected graph is chordal if for every cycle of more than three
vertices there exists an edge, called a chord, not on this cycle connecting two
vertices on the cycle. Every chordal graph G can be represented by a tree TG

where V (TG) is the set of maximal cliques of G, and the tree satisfies the induced
subtree property : For every vertex v ∈ V (G), the induced subgraph TG[Av] is
connected, where Av is the set of maximal cliques of G containing v. Such a tree
TG is called a clique tree of G, see, for example, [12]. Let TG,Cr

be the clique tree
TG rooted at a maximal clique Cr. If G is clear from the context, we will simply
write TCr

, or simply T if Cr is also clear. We denote by TCr,C the subtree of TCr

containing C and its descendants; we write TC if Cr is clear from the context.

Each clique C in TCr
can be partitioned into a separator set Sep(C) =

C ∩ Parent(C) and a residual set Res(C) = C\Sep(C), where Parent(C) is
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the parent clique of C in TCr
(if C = Cr, then Parent(C) = ∅). The following

properties hold, see, for example, [2, 12].

– For each vertex v in G, there is a unique clique Cv that contains v in its
residual set. This implies that |V (TG)| ≤ |V (G)| and that Cv is the root of
TCr [Av]; we denote this rooted subtree by TCv . All other cliques in TCv that
contain v have it in their separator set.

– For a clique C letD(C) be the set of vertices in the descendant cliques of C in
TCr , excluding the vertices in Sep(C), i.e., D(C) := C ′ ∈ V (TC)C

′−Sep(C).
Let A(C) be the vertices in the cliques not in TC , excluding the vertices in
Sep(C), i.e., A(C) :=

⋃
C′∈V (TCr )−V (TC) C

′ −Sep(C). The separator Sep(C)

separates A(C) and D(C) in G: there is no edge with one endpoint in A(C)
and the other endpoint in D(C).

– Construction of a clique tree for a connected chordal graph can be done in
time O(|E(G)|).

We use G[TC ] for the subgraph induced by the vertices that belong to cliques
in TC , i.e., G[TC ] := G[

⋃
C′∈V (TC) C

′]. We will often work with the following

subgraph of G[TC ]: Let Ĝ[TC ] be G[TC ] with the edges within the separator set
Sep(C) removed, i.e., Ĝ[TC ] := G[TC ]− E(G[Sep(C)]).

The following lemma will be essential for our calculations.

Lemma 1. Let C be a clique in the rooted clique tree TCr and let C1, C2, . . . , Cd

be its child cliques. The edge sets of the graphs Ĝ[TCi
], i = 1, . . . , d, are mutually

disjoint.

Proof. By contradiction, suppose that there are i ̸= j ∈ {1, . . . , d} such that
Ĝ[TCi ] and Ĝ[TCj ] share an edge e = (u, v). Since Sep(Ci) is a separator in G,
separating vertices in V (G[TCi ]) − Sep(Ci) from V (G) − V (G[TCi ]), and since
V (G[TCj

]) ⊆ V (G)−V (G[TCi
]), it follows that u and v must be in Sep(Ci). But

then e is not in Ĝ[TCi
], a contradiction. 2

In order to make the running times of our algorithms more readable, we
assume that each arithmetic operation takes a constant time. This is, of course,
a bit optimistic, since the ultimate number of orientations can be as high as
2m for a graph with m edges, and, therefore, the true running time of each
arithmetic operation adds a factor of about mpolylog(m). We use Õ() notation
to indicate that this factor is omitted from our running time estimate.

Our sampling algorithms produce orientations uniformly at random: Each
orientation is chosen with equal probability from the set of all desired orienta-
tions. We use [d] to denote {1, 2, . . . , d}.

3 Counting source-sink-free orientations

In this section we describe the main contribution of this paper. We show how
to count source-sink-free orientations in chordal graphs using dynamic program-
ming on the clique tree. While this approach is quite standard for algorithms on
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chordal graphs, the novel aspect of our work is to employ a two-level inclusion-
exclusion principle as a subroutine of the dynamic programming. We prove the
following theorem:

Theorem 1. Let G be a chordal graph. The number of source-sink-free orienta-
tions of G can be computed in time Õ(|Cmax||E(G)|) = Õ(|E(G)||V (G)|), where
Cmax is a maximum clique of G.

Proof. We define the following quantities for each clique C in a rooted clique
tree T of the given chordal graph G:

– SSFO(TC): The number of orientations of the graph Ĝ[TC ] where every sink
and every source is in Sep(C). Let S(TC) be the set of all these orientations.

– SoO(TC , v1): The number of orientations in S(TC), where v1 ∈ Sep(C) is a
source.

– SiO(TC , v2): The number of orientations in S(TC), where v2 ∈ Sep(C) is a
sink.

– SoSiO(TC , v1, v2): The number of orientations in S(TC), where v1 ∈ Sep(C)
is a source and v2 ∈ Sep(C) is a sink. Notice that since Res(C) ̸= ∅, it follows
that v1 ̸= v2.

We will compute the quantities SSFO(TC), SoO(TC , v1), SiO(TC , v2), and
SoSiO(TC , v1, v2) by dynamic programming on the rooted clique tree TCr

. The
quantity SSFO(TCr ) represents the number of source-sink-free orientations of G.

To simplify our expressions, for a clique C we define quantities oa(C), os(C),
ox(C), oss(C), and oxx(C) as follows. Let oa(C) be the number of all orientations

of C, i.e., oa(C) = 2(
|C|
2 ). Let os(C, v) be the number of orientations of C where

the vertex v ∈ C is a sink. All edges have to be oriented towards v, hence

os(C, v) = 2(
|C|−1

2 ). It also follows that v is the only sink in C. Moreover, since
the quantity os(C, v) does not depend on the vertex v, we simplify the notation
to just os(C). Let ox(C) be the number of orientations of C where no vertex
is a sink. Since each orientation with a sink has a unique sink, we get that
ox(C) = oa(C)−|C| os(C). Let oss(C, v1, v2) be the number of orientations of C

where v1 is a source and v2 is a sink. It follows that oss(C, v1, v2) = 2(
|C|−2

2 ). Since
the value does not depend on v1, v2, we simplify the notation to just oss(C). Let
oxx(C) be the number of orientations of C with no sources or sinks. An oriented
clique can have at most one source and at most one sink. Therefore, from all
orientations we can subtract those that have a sink and those that have a source;
leading to “double penalization” of orientations with both a source and a sink.
Therefore, oxx(C) = oa(C)− 2|C| os(C) +

(|C|
2

)
oss(C).

Base case of the computation of SSFO(TC), SoO(TC , v1), SiO(TC , v2), and
SoSiO(TC , v1, v2): Let C be a leaf of T . In SoO(TC , v1) and SoSiO(TC , v1, v2) all
edges incident to v1 point away from v1, and in SiO(TC , v2) and SoSiO(TC , v1, v2)
the edges incident to v2 need to point towards v2; the other edges can be oriented
either way. We get:

SoO(TC , v1) = SiO(TC , v2) = oa(Res(C))2|Res(C)|(| Sep(C)|−1),
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SoSiO(TC , v1, v2) = oa(Res(C))2|Res(C)|(| Sep(C)|−2).

For SSFO(TC), we partition S(TC) into these four mutually exclusive cases.

▶ The orientation restricted to G[Res(C)] contains no sources or sinks. Then,
the edges between Res(C) and Sep(C) can be oriented arbitrarily, leading to
oxx(Res(C))2|Res(C)|| Sep(C)| of such orientations.

▶ The orientation restricted to G[Res(C)] contains a (single) source u1 ∈ Res(C)
and no sinks. Then, at least one of the edges from Sep(C) needs to be oriented
towards u1 to prevent it from remaining a source, and the other edges between
Sep(C) and Res(C)−{u1} can be oriented arbitrarily. The part of the orientation
within Res(C) has to have all edges outgoing from u1, and the remaining edges
must be oriented so that there is no sink within Res(C)−{u1}. This corresponds
to ox(Res(C)− {u1})(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1) of such orientations.

▶ The orientation restricted to G[Res(C)] contains a (single) sink u2 ∈ Res(C)
and no sources. The calculation is analogous to the previous case.

▶ The orientation restricted to G[Res(C)] contains a (single) source u1 and
a (single) sink u2. Then, u1 needs to be “fixed” by at least one edge from
Sep(C), u2 by at least one edge to Sep(C), and the other edges between Sep(C)
and Res(C) can be oriented arbitrarily. Likewise, the edges within Res(C) −
{u1, u2} can be oriented arbitrarily. We get oa(Res(C) − {u1, u2})(2| Sep(C)| −
1)22| Sep(C)|(|Res(C)|−2) of such orientations.

Therefore, summing across possible u1, u2 ∈ Res(C), we get

SSFO(TC) = oxx(Res(C))2|Res(C)|| Sep(C)|+

2|Res(C)| ox(Res(C)−1)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)+(
|Res(C)|

2

)
oa(Res(C)−2)(2| Sep(C)| − 1)22| Sep(C)|(|Res(C)|−2),

where for a clique Ĉ, the notation Ĉ−k stands for removing k vertices from Ĉ.

Inductive case. Let C be a non-leaf of T , and let C1, C2, . . . , Cd be its child
cliques in T . For u ∈ Res(C) we denote by Iu the set of indices corresponding
to the child cliques containing u, i.e., Iu := {i ∈ [d] | u ∈ Ci}.

To compute SoSiO(TC , v1, v2), the edges between v1, respectively v2, and
Res(C) are forced (away from v1, towards v2). This implies that no vertex in
Res(C) will be a source, or a sink, and hence the orientation of all other edges
can be arbitrary. We get:

SoSiO(TC , v1, v2) = oa(Res(C))2| Sep(C)|(|Res(C)|−2)
d∏

i=1

SSFO(TCi
).

For SoO(TC , v1), the edges between v1 and Res(C) need to point away from
v1, and as such there will be no sources in Res(C). We distinguish two cases:
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▶ There is no sink in the orientation restricted to G[Res(C)]. There are α1 :=

ox(Res(C))2| Sep(C)|(|Res(C)|−1)
∏d

i=1 SSFO(TCi
) such orientations of Ĝ[TC ].

▶ The orientation restricted toG[Res(C)] contains a (single) sink u2. Then either
there is an edge between u2 and Sep(C) pointing towards u2, or all edges point
away from u2 and u2 cannot be a sink at at least one of the child subtrees. The
number of orientations of Ĝ[TC ] corresponding to this case is

α2(u2) := os(Res(C), u2)(2
| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)

d∏
i=1

SSFO(TCi)+

os(Res(C), u2)2
| Sep(C)|(|Res(C)|−1)

∏
i∈[d]−Iu2

SSFO(TCi
)×

 ∏
i∈Iu2

SSFO(TCi
)−

∏
i∈Iu2

SiO(TCi
, u2)

 .

Putting the two cases together, we get SoO(TC , v1) = α1+
∑

u2∈Res(C) α2(u2).

Note that SiO(TC , v1) can be computed analogously.
It remains to compute SSFO(TC). We will split the possible orientations into

these four mutually exclusive cases:

▶ The orientation restricted to G[Res(C)] contains no sources or sinks. Then,
all the remaining edges within Res(C) can be oriented arbitrarily, and the child
subtrees can be oriented recursively (provided, as always, that there are no
sinks or sources outside their separator sets). Therefore, the number of these

orientations is β1 := ox(Res(C))2| Sep(C)||Res(C)| ∏d
i=1 SSFO(TCi).

▶ The orientation restricted to G[Res(C)] contains a (single) source u1 and no
sinks. Then, either there is an edge oriented from Sep(C) to u1, or all edges are
oriented from u1 to Sep(C) and one of the child subtrees does not have u1 as
their source. Within Res(C), all edges point away from u1 and the remainder
of Res(C) needs to be sink-free. Thus, the number of orientations of Ĝ[TC ]
corresponding to this case is:

β2(u1) := ox(Res(C)−1)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi)+

ox(Res(C)−1)2| Sep(C)|(|Res(C)|−1)
∏

i∈[d]−Iu1

SSFO(TCi
)×

 ∏
i∈Iu1

SSFO(TCi
)−

∏
i∈Iu1

SoO(TCi
, u1)

 .

▶ The orientation restricted to G[Res(C)] contains a (single) sink u2 and no
sources. The number of the corresponding orientations of Ĝ[TC ] can be computed
analogously to the previous case; we refer to this quantity as β3(u2).
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▶ The orientation restricted to G[Res(C)] contains a (single) source u1 and a
(single) sink u2. We will partition the corresponding orientations of Ĝ[TC ] into
these subcases:

a) There is an edge from Sep(C) to u1 and from u2 to Sep(C) (i.e., both u1 and
u2 are “fixed” by an edge from/to Sep(C)). The number of corresponding
orientations is

β4a := oss(Res(C))(2| Sep(C)| − 1)22| Sep(C)|(|Res(C)|−2)
d∏

i=1

SSFO(TCi
).

b) There is an edge from Sep(C) to u1 but no edge from u2 to Sep(C) (i.e., u1

is “fixed” by Sep(C) but u2 is not). Then u2 needs to be “fixed” by one of
the child subtrees. The number of corresponding orientations is

β4b(u2) := oss(Res(C))(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−2)×∏
i∈[d]−Iu2

SSFO(TCi
)

 ∏
i∈Iu2

SSFO(TCi
)−

∏
i∈Iu2

SiO(TCi
, u2)

 .

c) There is an edge from u2 to Sep(C) but no edge from Sep(C) to u1 (i.e., u2

is “fixed” by Sep(C) but u1 is not). The number of corresponding orienta-
tions can be computed analogously to the previous subcase; we refer to this
quantity as β4c(u1).

d) There is no edge from Sep(C) to u1 and no edge from u2 to Sep(C) (i.e.,
neither u1 nor u2 is “fixed” by Sep(C)). Then both u1 and u2 need to be
“fixed” by one of the child subtrees. Let Xu1

be the set of valid orientations
of the subtrees where no subtree fixes u1. (We call an orientation of the
subtrees valid if sinks and sources are present only in the residual sets in the
root cliques of each tree.) Then,

|Xu1
| =

∏
i∈[d]−Iu1

SSFO(TCi
)
∏

i∈Iu1

SoO(TCi
, u1).

Let Yu1
be the set of valid orientations of the subtrees where no subtree fixes

u2. Then,

|Yu2 | =
∏

i∈[d]−Iu2

SSFO(TCi)
∏

i∈Iu2

SiO(TCi , u2).

Let Zu1,u2 = Xu1∩Yu2 . In particular, Zu1,u2 is the set of all valid orientations
of the subtrees where no subtree fixes u1 or u2. In other words, the subtrees
containing u1 but not u2 have u1 as a source, the subtrees containing u2 but
not u1 have u2 as a sink, and the subtrees containing both u1 and u2 have
u1 as a source and u2 as a sink. Therefore,

|Zu1,u2
| =

∏
i∈[d]−Iu1

−Iu2

SSFO(TCi
)

∏
i∈Iu1

−Iu2

SoO(TCi
, u1)×

∏
i∈Iu2−Iu1

SiO(TCi
, u2)

∏
i∈Iu1∩Iu2

SoSiO(TCi
, u1, u2).
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Then, when accounting for all orientations in case d, we use inclusion-exclusion
as follows: We consider all valid orientations of the subtrees, then subtract
those in Xu1 and Yu2 , and then add those in Zu1,u2 to compensate for the

double subtraction. Therefore, the number of orientations of Ĝ[TC ] corre-
sponding to case d is

β4d(u1, u2) := oss(Res(C))2| Sep(C)|(|Res(C)|−2)×∏
i∈[d]

SSFO(TCi
)− |Xu1

| − |Yu2
|+ |Zu1,u2

|

 .

Putting it all together we get

SSFO(TC) = β1 +
∑

u1∈Res(C)

β2(u1) +
∑

u2∈Res(C)

β3(u2)+

∑
u1,u2∈Res(C),u1 ̸=u2

[β4a + β4b(u2) + β4c(u1) + β4d(u1, u2)] .

Finally, we need to estimate the running time of the algorithm. After con-
structing the clique tree T (which is of size O(|V (G)|)), the algorithm per-
forms a tree traversal of T . In the base case it performs O(1) arithmetic op-
erations per leaf clique.1 To analyze the running time in the inductive case,
we first pretend that we have access to the quantities SSFO(TCi

). Notice that
we do not need to store the quantities SoSiO(TC , v1, v2) for each v1, v2, since
the computation is independent of v1, v2 and therefore we really need only
one quantity SoSiO(TC) for each clique. The computation of SoSiO(TC) takes
O(d) arithmetic operations, assuming SSFO(TCi

)’s have been computed. Since
d = outdegT (C), the computation of all SoSiO’s across the entire tree T takes
O(

∑
C∈T outdegT (C)) = O(|T |) = O(|V (G)|) arithmetic operations.

Next we consider the computations of SoO(TC , v1); notice that the compu-
tations are independent of v1. All α1 quantities can be computed in O(|V (G)|
time following the same reasoning as for SoSiO. The same holds for the first
term of the quantities α2(u2). We need to estimate the running time needed
to compute the second (additive) term of the α2(u2)’s. Notice that the size of
the set Iu2 corresponding to the child cliques of C that contain u2 is upper-
bounded by degG(u2). This is because for each child clique Ci for i ∈ Iu2 we
have a wi ∈ Res(Ci). All the wi’s are distinct since Sep(C) separates them,
yielding |Iu2

| ≤ degG(u2). We can rewrite the computation of the second term
of α2(u2) as a product of os(Res(C), u2)2

| Sep(C)|(|Res(C)|−1)
∏

i∈[d] SSFO(TCi
)

and (1 −
∏

i∈Iu2

SiO(TCi
,u2)

SSFO(TCi
). Computing the last term of this product takes

O(
∑

u∈Res(C) |Iu|) operations. Since |Iu| ≤ degG(u), across the entire tree T

we get O(
∑

C∈T

∑
u2∈Res(C) degG(u2)) = O(

∑
u2∈V (G) degG(u2)) = O(|E(G)|)

operations to compute all SoO(TC)’s (and the same holds for the SiO(TC)’s).

1 Computation of the factorial of a k-bit number takes O(k polylog k), see [3], which
will be subsumed by our Õ() notation.
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It remains to bound the running time needed to compute all the SSFO’s.
Using the same arguments as before we get that the computation of all β1,
β2(u1), β3(u2), β4a, β4b(u2), and β4c(u1) takes O(|E(G)|) arithmetic operations.
The tricky part is to account for the computation of the β4d(u1, u2)’s, due to the
2-level inclusion-exclusion depth. In particular, we want to efficiently compute∑
u1,u2∈Res(C),u1 ̸=u2

[
∏
i∈[d]

SSFO(TCi
)−

∏
i∈[d]−Iu1

SSFO(TCi
)
∏

i∈Iu1

SoO(TCi
, u1)−

∏
i∈[d]−Iu2

SSFO(TCi
)
∏

i∈Iu2

SiO(TCi
, u2) +

∏
i∈[d]−Iu1−Iu2

SSFO(TCi
)×

∏
i∈Iu1

−Iu2

SoO(TCi , u1)
∏

i∈Iu2
−Iu1

SiO(TCi , u2)
∏

i∈Iu1
∩Iu2

SoSiO(TCi , u1, u2)] =

∏
i∈[d]

SSFO(TCi)
∑

u1,u2∈Res(C),u1 ̸=u2

[(1−
∏

i∈Iu1

SoO(TCi
, u1)

SSFO(TCi
)

−
∏

i∈Iu2

SiO(TCi , u2)

SSFO(TCi
)
+

∏
i∈Iu1

−Iu2

SoO(TCi , u1)

SSFO(TCi)

∏
i∈Iu2

−Iu1

SiO(TCi
, u2)

SSFO(TCi)

∏
i∈Iu1

∩Iu2

SoSiO(TCi
, u1, u2)

SSFO(TCi)
].

The first three products can be computed within the linear number of arith-
metic operations discussed earlier. For the remaining part of the calculation, we
get this bound on the number of arithmetic operations across all cliques in T :

O(
∑
C∈T

∑
u1,u2∈Res(C)

[degG(u1) + degG(u2)]) = O(
∑
C∈T

∑
u1∈Res(C)

|C|degG(u1)),

which is O(|Cmax||E(G)|). This concludes the proof of the theorem. 2

Counting algorithms based on dynamic programming can often be used to
sample: If the algorithm is based on summing counts corresponding to disjoint
subproblems, one first runs the counting algorithm, followed by the sampling
which proceeds top-down, always choosing which subproblem to go into pro-
portionally to its count. However, here we are subtracting quantities as part
of our computations and, as such, a sampling algorithm does not seem to fol-
low from the counting algorithm. For a single level inclusion-exclusion (a single
subtraction), one could employ rejection sampling to reject the unfavorable (i.e.
those that are subtracted) configurations. However, if almost all configurations
are rejected, the probability of sampling success could be minuscule. For two-
level inclusion-exclusion, as is the case for our algorithm, even this (potentially
low-probability and hence large running time) approach is unclear. We leave the
problem of efficient (almost) uniform sampling of source-sink-free orientations
in chordal graphs open.

4 Results for the other types of orientations

In this section we briefly sketch our results on counting and sampling of acyclic
and bipolar orientations, and on counting sink-free orientations. We include the
detailed proofs and discussion in the appendix.
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An orientation is acyclic if it does not contain a directed cycle. A structural
examination of the properties of acyclic orientations in chordal graphs leads to

a simple relationship: AO(TC) =
|C|!

| Sep(C)|!
∏d

i=1 AO(TCi
), where AO(TC) is the

number of acyclic orientations of the clique subtree TC and where C1, . . . , Cd are
the child cliques of C in the rooted T (and d = 0 if C is a leaf of T ). This allows
us to count all acyclic orientations in time Õ(|V (G)|+ |E(G)|).

To sample an acyclic orientation uniformly at random, we first construct a
clique tree of the input graph and randomly pick a clique Cr as the root. We pick
a uniformly random ordering of Cr. Then we process the remaining cliques in
a depth-first manner. Let C be the current clique we are processing, we always
pick an orientation on G[C] that is consistent with G[Sep(C)]. This can be done
by choosing a random ordering π of C and replacing the relative order of Sep(C)
in π by the given ordering. Once all cliques are processed, the resulting directed
graph is just a uniformly generated random acyclic orientation. The running
time is O(

∑
C∈T |C|) = O(

∑
v∈V (G)(degG(v) + 1)) = O(|E(G)|), assuming G

is connected. The first equality follows from the fact that each v occurs in at
most degG(v)+1 cliques. Both results are summarized in the following theorem,
which also includes a more precise statement of the counting running time:

Theorem 2. Let G be a connected chordal graph. The number of its acyclic
orientations can be calculated in Õ(|V (G)|) + O(|E(G)|) time, and a uniformly
random acyclic orientation can be produced in time O(|E(G)|).

A bipolar (s, t)-orientation is an acyclic orientation with a unique source s and
a unique sink t. We employ a similar strategy as we did for acyclic orientations.
At the beginning, we construct a clique tree and randomly pick a clique Cs that
contains the source s as the root clique. In order to maintain s and t as the unique
source and sink, we differentiate between cliques in T that are or are not on the
Cs-Ct path in T , and we recursively compute corresponding bipolar orientations
of the subtrees (with some well-chosen restrictions to maintain the overall source
and sink). While somewhat more complex than acyclic orientations, the structure
still allows us to sample very efficiently analogously to acyclic orientations, as
summarized in the following theorem:

Theorem 3. Let G be a connected chordal graph and s ̸= t be two of its
vertices. The number of bipolar (s, t)-orientations of G can be computed in
Õ(|V (G)|) + O(|E(G)|)) time. A uniformly random bipolar (s, t)-orientation of
G can be produced in time O(|E(G)|).

We conclude with sink-free orientations. Recall that for any graph there is
an FPRAS counting these orientations [5] and an efficient exact uniform “sink-
popping” sampler is also known [6]. Therefore, we focus on the counting problem,
aiming to improve the running time compared to the FPRAS. In fact, our count-
ing algorithm is deterministic, exact, and efficient, with (near) linear running
time, as stated in this theorem:

Theorem 4. Let G be a connected chordal graph. The number of sink-free ori-
entations of G can be counted in Õ(|V (G)|) +O(|E(G)|) time.
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The algorithm computes two separate quantities at every node of the clique
tree: (i) NSFO(TC), which counts orientations of Ĝ[TC ] where only sinks in
Sep(C) are allowed, and (ii) ASFO(TC , v), which counts orientations of Ĝ[TC ],
where v ∈ Sep(C) is a sink and there are no sinks in V (Ĝ[TC ])− Sep(C). These
quantities are reminiscent of the ones we used for the source-sink-free calculation,
but they are significantly less involved. Due to the nature of these orientations,
a single-level inclusion-exclusions is needed to compute these quantities, which
allows us to run in the (near) linear running time, just as for acyclic and bipolar
orientations. However, unlike for the other types of orientations, due to the
negative term in the computation, this dynamic programming does not extend
to a corresponding sampling algorithm. Understanding how to obtain a sampler
from a dynamic programming approach combined with a single level inclusion-
exclusion might help with solving our open problem related to sampling source-
sink-free orientations in chordal graphs.
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