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Graph parameters such as the clique number and the chromatic number are central in 
many areas, ranging from computer networks to linguistics to computational neuroscience 
to social networks. In particular, the chromatic number of a graph can be applied in solving 
practical tasks as diverse as pattern matching, scheduling jobs to machines, allocating 
registers in compiler optimization, and even solving Sudoku puzzles. Typically, however, 
the underlying graphs are subject to (often minor) changes. To make these applications of 
graph parameters robust, it is important to know which graphs are stable in the sense that 
adding or deleting single edges or vertices does not change them. We initiate the study 
of stability of graphs in terms of their computational complexity. We show for various 
central graph parameters that deciding the stability of a given graph is complete for �p

2, a 
well-known complexity class in the second level of the polynomial hierarchy.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this first section, we motivate our research topic, introduce the necessary notions and notation, and provide an 
overview of both the related work and our contribution.

1.1. Motivation

Informally stated, a graph is stable with respect to some graph parameter (such as the chromatic number) if some type 
of small perturbation of the graph (a local modification such as adding an edge or deleting a vertex) does not change 
the parameter. Other graph parameters we consider are the clique number, the independence number, and the vertex 
cover number. This notion of stability formalizes the robustness of graphs for these parameters, which is important in 
many applications. Typical applications of the chromatic number, for instance, include coloring algorithms for complex 
networks such as social, economic, biological, and information networks (see, e.g., Jackson’s book on social and economic 
networks [28] or Khor’s work on applying graph coloring to biological networks [30]). In particular, social networks can 

✩ A preliminary version of parts of this paper appeared in the Proceedings of the 31st International Symposium on Algorithms and Computation 
(ISAAC) [16].
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be colored to find roles [15] or to study human behavior in small controlled groups [29,10]. In various applied areas of 
computer science, graph coloring has also been used for register allocation in compiler optimization [7], pattern matching 
and pattern mining [39], and scheduling tasks [31]. To ensure that these applications of graph parameters are robust, graphs 
need to be stable for them with respect to certain operations. Recognizing instability in advance is desirable as it affords us 
the opportunity to amend the situation or at least take precautions for the case of a sudden change. We initiate a systematic 
study of stability of graphs in terms of their computational complexity and present some tools to stabilize specific parts of 
a graph.

1.2. Notions and notation

In this subsection, we define the core notions used in this paper and fix our notation.

1.2.1. Complexity classes
We begin with the relevant complexity classes. Besides P, NP, and coNP, these are DP, coDP, and �p

2. The class DP, 
introduced by Papadimitriou and Yannakakis [35], is the second level of the Boolean hierarchy over NP; that is,

DP = NP ∧ coNP = {L1 ∩ L2 | L1 ∈ NP ∧ L2 ∈ coNP}
is the set of all intersections of NP languages with coNP languages. Equivalently, it can be seen as the differences of NP
languages, whence the name. An example of a trivially DP-complete language is Sat-UnSat = Sat × UnSat, where UnSat

is the set of all unsatisfiable CNF-formulas. The complement class coDP contains exactly the unions of NP languages with 
coNP languages.

The class �p
2, whose name is due to Wagner [41], belongs to the second level of the polynomial hierarchy; it can be 

defined as �p
2 = PNP[O(logn)] , which is the class of problems that can be solved in polynomial time by an algorithm with 

access to an oracle that decides arbitrary instances for an NP-complete problem—with one instance per call and each such 
query taking constant time—restricted to a logarithmic number of queries. (Without the last restriction, we would get the 
class �p

2 = PNP.) Results due to Hemachandra [23, Theorem 4.10] usefully characterize �p
2 as Pp

tt, the class of languages 
that are polynomial-time truth-table reducible to NP. By definition, this is the same as PNP‖ , the class of languages that are 
polynomial-time recognizable with unlimited parallel access to an NP oracle. Unlimited means that an algorithm witnessing 
the membership of a problem in PNP‖ can query the oracle on as many instances of an NP-complete problem as it wants—
which due the polynomial running-time means at most polynomially many—while parallel means that all queries need 
to be sent simultaneously. The characterization of �p

2 as PNP[O(log n)] , in contrast, allows the logarithmically many queries 
to be adaptive; that is, they can be sent interactively, with one depending on the oracle’s answers to the previous ones. 
Membership proofs for �p

2 are usually easy; we will see a simple example of how to give one at the beginning of Section 3.
Note that the definitions immediately yield the inclusions

NP ∪ coNP ⊆ DP ⊆ �
p
2 ⊆ �

p
2.

1.2.2. Graphs and graph numbers
Throughout this paper graphs are simple. Let G be the set of all (simple) graphs and N the set of natural numbers 

including zero. For any set M , we denote its cardinality or size by ‖M‖. A map ξ : G → N is called a graph number. In this 
paper, we examine the prominent graph numbers α, β , χ , and ω, which give the size of a maximum independent set, the 
size of a minimum vertex cover, the size of a minimum coloring (i.e., the minimum number of colors allowing for a proper 
vertex coloring), and the size a maximum clique, respectively.

Let V , E , and E be the functions that map a graph G to its vertex set V (G), its edge set E(G), and its set of nonedges
E(G) = {{u, v} | u, v ∈ V (G) ∧ u 
= v} − E(G), respectively.

Let G and H be graphs. We denote by G ∪ H the disjoint union and by G + H the join, which is G ∪ H with all join 
edges—i.e., the edges {v, w} ∈ V (G) × V (H)—added to it.3

For v ∈ V (G), e ∈ E(G), and e′ ∈ E(G), we denote by G − v , G − e, and G + e′ the graphs that result from G by deleting 
v , deleting e, and adding e′ , respectively.

For any k ∈N , we denote by Ik and Kk the empty (i.e., edgeless) and the complete graph on k vertices, respectively. The 
graph I0 = K0 without any vertices is called the null graph. A vertex v is universal with respect to a graph G if it is adjacent 
to all vertices V (G) − {v}.

1.2.3. Stability
Let G be a graph. An edge e ∈ E(G) is called stable with respect to a graph number ξ (or ξ -stable, for short) if ξ(G) =

ξ(G − e), that is, deleting e leaves ξ unchanged. Otherwise (that is, if the deletion of e does change ξ ), e is called ξ -critical. 
For a vertex v ∈ V (G) instead of an edge e ∈ E(G), stability and criticality are defined in the same way.

3 We adopt the notation G + H for the join from Harary’s classical textbook on graph theory [20, p. 21].
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A graph is called ξ -stable if all of its edges are ξ -stable. A graph whose vertices—rather than edges – are all ξ -stable is 
called ξ -vertex-stable. Analogously, a graph is called ξ -critical and ξ -vertex-critical if all its edges and vertices, respectively, 
are ξ -critical. Note that each edge and vertex is either stable or critical, whereas a graph might be neither. An unspecified 
ξ defaults to the chromatic number χ .

A traditional term for stability with respect to adding edges and vertices—rather than deleting them—is unfrozenness.4

Specifically, a nonedge e ∈ E(G) is called unfrozen if adding it to the graph G leaves χ unchanged, and frozen otherwise. 
All of these notions extend naturally to vertices (where we can freely choose to which existing vertices a new vertex is 
adjacent, implying an exponential number of possibilities), to entire graphs, and to any graph number ξ , as just seen for 
stability and criticality.

We call a graph two-way stable if it is both stable and unfrozen. Again, this notion is understood with respect to the 
chromatic number and modifying edges by default; namely, a graph is two-way stable if neither deleting nor adding a 
single edge changes the chromatic number. As before, we have the analogous set of notions with respect to vertices and 
any graph number ξ .

Prefixing a natural number k ∈N to any of these notions additionally requires the respective graph number to be exactly 
k. For example, a graph G is k-critical if and only if χ(G) = k and χ(G − e) 
= k for every e ∈ E(G).

The notion of stability can be naturally applied to Boolean formulas as well. We call a formula 	 in conjunctive normal 
form stable if deleting an arbitrary clause C does not change its satisfiability status—that is, if it either is satisfiable (and 
of course stays so upon deletion of a clause) or if it and all its 1-clause-deleted subformulas 	 − C are unsatisfiable. We 
remark that the unfrozen formulas are exactly the unsatisfiable ones since adding an empty clause renders any formula 
unsatisfiable.

1.2.4. Stability problems
We denote by CNF the set of formulas in conjunctive normal form and by 3CNF, 4CNF, and 6CNF the set of CNF-

formulas with exactly 3, 4, and 6 literals per clause, respectively.5 The sets Sat and 3Sat contain the satisfiable, UnSat

and 3UnSat the unsatisfiable formulas from CNF and 3CNF, respectively. Let StableUnSat = {	 ∈ UnSat | (	 − C) ∈
UnSat for every clause C of 	} be the set of stably unsatisfiable formulas. The set StableCNF = Sat ∪ StableUnSat consists 
of the stable CNF-formulas. Intersecting with 3CNF yields the classes Stable3UnSat and Stable3CNF and so on.

Let Stability be the set of stable graphs and Unfrozenness the set of unfrozen graphs, both with respect to the default 
graph number χ . The set of two-way stable graphs is TwoWayStability = Stability ∩ Unfrozenness. Once more, these 
definitions extend naturally. For example, 4-VertexStability is the set of (with respect to the default χ ) 4-vertex-stable 
graphs and β-TwoWayStability consists of the graphs for which the vertex-cover number β remains unchanged upon 
deletion or addition of an edge.

1.2.5. AND functions and OR functions
Following Chang and Kadin [9], we say that a language L ⊆ 
∗ has AND2 if there is a polynomial-time computable 

function f : 
∗ × 
∗ → 
∗ such that for all x1, x2 ∈ 
∗ , we have

x1 ∈ L ∧ x2 ∈ L ⇐⇒ f (x1, x2) ∈ L.

If this is the case, we call f an AND2 function for L. If there even is a polynomial-time computable function f :⋃∞
k=0(


∗)k → 
∗ such that for every k ∈N and for all x1, . . . , xk ∈ 
∗ we have

x1 ∈ L ∧ · · · ∧ xk ∈ L ⇐⇒ f (x1, . . . , xk) ∈ L,

then we say that L has ANDω . Replacing ∧ with ∨, we get the analogous notions OR2 and ORω . Note that a language has 
an AND2 function if and only if its complement has an OR2 function, with the analogous statement holding for ANDω and 
ORω .

1.3. Related work

Many interesting problems are suspected to be complete for either DP or �p
2. While membership is usually trivial in 

these cases, matching lower bounds are rare and hard to prove. For example, Woeginger [44] observes that determining 

4 The notion of instance parts being either frozen or unfrozen has originally been introduced to the field of computational complexity in analogy to the 
physical process of freezing [32,33].

The sudden shift from P to NP-hardness that can be observed when transitioning from 2Sat to 3Sat by allowing a larger and larger percentage of clauses 
of length 3 rather than 2, for example, mimics the phase transition from liquid to solid, with the former granting much higher degrees of freedom to the 
substance’s constituents than the latter. Based on this general intuition, Beacham and Culberson [2] then more formally defined the notion of unfrozenness 
with regard to an arbitrary graph property that is downward monotone (meaning that a graph keeps the property when edges are deleted); they call a 
graph unfrozen if it also keeps the property when an arbitrary new edge is added. We naturally extend this notion to arbitrary graph numbers, which are 
not necessarily monotone.

5 In the literature, these set names are often prefixed by an E, emphasizing the exactness. This is notably not the case for a paper by Cai and Meyer [6]
that contains a construction crucially relying on this restriction. We will build upon this construction later on and are thus bound to the same constraint.
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whether a graph has a wonderfully stable partition is in �p
2 , and leaves it as an open problem to settle the exact complexity. 

Wagner, who introduced the class name �p
2 [40], provided a number of hardness results for variants of standard problems 

such as Satisfiability, Clique and Colorability, which are designed to be complete for DP or �p
2. For example, he proves the 

DP-completeness of

ExactClique = {(G,k) ∈ G ×N | ω(G) = k} [40, Theorem 6.1.1]

and the �p
2-completeness6 of

OddClique = {G ∈ G | ω(G) is odd} [40, Theorem 6.1.2].

He obtains the analogous results for Colorability [40, Theorem 6.3], Vertex Cover [40, Corollary 6.4], and Independent Set [40, 
Corollary 6.4] instead of Clique and points out [40, second-to-last paragraph] that his proof techniques also yield the �p

2-
completeness of the equality version of all of these problems—for example,

EqualClique = {(G, H) ∈ G2 | ω(G) = ω(H)}.
The same holds true for the comparison versions7 such as

CompareClique = {(G, H) ∈ G2 | ω(G) ≤ ω(H)}.
The DP-completeness of ExactColorability has been extended to the subproblem of recognizing graphs with chromatic 
number 4 [36]. Furthermore, a few election problems have been proved to be �p

2-complete by Hemaspaandra et al. [24,25], 
by Rothe et al. [37], and Hemaspaandra et al. [26]. Weishaupt and Rothe [42] provide a systematic study of graph classes 
(including trees, bipartite graphs, and co-graphs) for which various stability problems become polynomial-time solvable.

In general, establishing lower bounds proved to be difficult for many natural DP-complete and particularly �p
2-complete 

problems. Consequently, hardness results remained rather rare in the area of criticality and stability, despite the great atten-
tion that these natural notions have garnered from graph theorists ever since the seminal paper by Dirac [13] from 1952; 
see for example the classical textbooks by Harary [20, chapters 10 and 12] and Bollobás [3, chapter IV]—the latter having 
a precursor dedicated exclusively to extremal graph theory [4, chapters I and V]—and countless papers over the decades, 
of which we cite some selected examples from early to recent ones [14,21,1,43,18,22,12,27,11]. A pioneering complexity 
result by Papadimitriou and Wolfe [34, Theorem 1] establishes the DP-completeness of MinimalUnSat. (They call a formula 
minimally unsatisfiable if deleting an arbitrary clause renders it satisfiable, that is, if it is critical.) They also proved that de-
termining, given a graph G and a k ∈N , whether G is k-ω-vertex-critical is a DP-complete problem [34, Theorem 4]. Later, 
Cai and Meyer [6] showed the DP-completeness of k-VertexCriticality (which they call Minimal-k-Uncolorability) for all 
k ≥ 3. Burjons et al. [5] recently extended this result to the more difficult case of edge deletion, showing that k-Criticality

is DP-complete for all k ≥ 3 [5, Theorem 8]. They also provided the first �p
2-hardness result for a criticality problem, namely 

for β-VertexCriticality [5, Theorem 15].
Note the drop in difficulty down to DP when fixing the graph number. This emerges as a general pattern, as evidenced 

by our results outlined in the contribution section below.
Stability, in contrast to criticality, has been sorely neglected by the computational complexity community, which is sur-

prising in light of its apparent practical relevance—for example in the design of infrastructure, where stability is a most 
desirable property. As a small exception to this, Beacham and Culberson [2] proved a comparably easy variant of Unfrozen-
ness, namely {(G, k) | χ(G) ≤ k and G is unfrozen}, to be NP-complete.

1.4. Contribution

We choose four of the most prominent graph problems— Colorability, Vertex Cover, Independent Set, and Clique—to 
analyze the complexity of stability. We prove all of them to be �p

2-complete for the default case of edge deletion. For 
unfrozenness—that is, stability with respect to edge addition—we prove the same, with the one exception of Colorability. 
For this problem, we prove that the existence of a construction with a few simple properties would be sufficient to prove 
�

p
2-completeness. Finally, we introduce the notion of two-way stability—stability with respect to both deleting and adding 

edges—and prove again �p
2-completeness for all four problems. Table 1 provides an overview of these results, showcasing 

surprising contrasts between some of the problems.
We also derive several other useful results with broad appeal on their own, among these being the coDP-completeness 

of Stable3CNF [Theorem 12], the DP-completeness of k-Stability and k-VertexStability for all k ≥ 4 [Theorem 17], gen-
eral criteria for proving DP-hardness [Lemmas 28 and 29], and finally constructions such as the edge-stabilizing gadget 

6 Note that Wagner originally derived his results with respect to the more restricted form of polynomial-time reducibility via Boolean formulas, indicated 
by the bf in the class name. He later proved the resulting notions to be equivalent, however; that is, we have Pp

bf = �
p
2 [41].

7 Spakowski and Vogel explicitly proved the �
p
2-completeness of CompareVertexCover [38, Theorem 12], CompareClique and Compare-

IndependentSet [38, Theorem 13]. For other cases, see Lemma 29 and Theorem 26.
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Table 1
An overview of our results regarding the complexity of different stability problems. See Section 7 for the results on Clique and Independent Set; almost all of 
them follow in analogy to the ones for Vertex Cover [Proposition 34], with α-VertexStability and ω-VertexStability being the exception [Proposition 35].

With respect to this
base problem and
graph number:

Stability Unfrozenness Two-Way Stability

Edge Vertex Edge Vertex Edge Vertex

Vertex Cover, β [Theorem 22] [Theorem 20] [Theorem 24] [Theorem 23] [Theorem 33] [Theorem 30]
�

p
2-complete P �

p
2-complete P �

p
2-complete P

Independent Set, α
and Clique, ω

�
p
2-complete �

p
2-complete �

p
2-complete P �

p
2-complete P

Colorability, χ �
p
2-complete �

p
2-complete ? P �

p
2-complete P

[Theorem 5] [Theorem 6] [Theorem 25] [Theorem 23] [Theorem 31] [Theorem 30]

[Lemma 18] that yields an ANDω function for Stability [Corollary 19] and has potential applications in various contexts 
such as reoptimization and general graph theory. For example, it enhances the time-honored Hajós construction [19], which 
shows how we can build arbitrarily complex critical graphs, by allowing us to construct graphs with any given number of 
stable edges.

2. Basic observations

We begin with a few very basic and useful observations that will be used implicitly and, where appropriate, explicitly 
throughout the paper.

Observation 1. The deletion of an edge or of a vertex either decreases the chromatic number by exactly one or leaves it unchanged.

Proof. It is clear that deleting an edge or vertex cannot increase the chromatic number. To see that this cannot decrease 
it by more than one, it suffices to note that introducing a new edge or vertex can increase it by at most one since we can 
assign one new, unique color to the new vertex or to one of the two vertices of the inserted edge. �
Observation 2. Let e = {u, v} be a critical edge. Then u and v are critical as well.

Proof. Since G − u and G − v are subgraphs of G − e, both χ(G − u) and χ(G − v) are at most χ(G − e), which is less than 
χ(G) because e is critical. Thus u and v are critical. �
Observation 3. Let v be a stable vertex. Then all edges incident to v are stable.

Proof. This follows immediately from the contrapositive of Observation 2. �
Observation 4. Let G be a graph. A vertex v ∈ V (G) is critical if and only if there is an optimal coloring of G that assigns v a color with 
which no other vertex is colored.

Proof. Given a critical v ∈ V (G), consider an arbitrary optimal coloring of G − v . Since v is critical, it uses one fewer color 
than the optimal colorings of G . We therefore obtain an optimal coloring of G by assigning v a new color. The converse is 
immediate. �
3. Stability and Vertex-Stability for Colorability

We will prove �
p
2-completeness for both Stability and VertexStability. On a very high level, this structure of this 

section can be summarized as follows: In general, only the lower bounds are hard to prove. Theorem 12 establishes the 
coDP-completeness of Stable3CNF, which is reduced to VertexStability in Theorem 16. Knowing VertexStability to be 
coDP-hard, we can now apply Corollary 8 to elevate this to �p

2-hardness. This hardness result in turn transfers to Stability

via the reduction from Lemma 7. We will not prove these results in this order, however, in an effort to keep the distance 
to our main goal minimal by finishing the more manageable parts first and avoiding having too many loose ends at a time. 
The section will conclude with Theorem 17 and Lemma 18, whose proofs mostly stand on their own.

We now formally state our two main goals for this section.

Theorem 5. Determining whether a graph is stable is �p
2-complete.

Theorem 6. Determining whether a graph is vertex-stable is �p-complete.
2
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As is typical, the upper bounds are immediate: Recalling that �p
2 = PNP‖ , we can determine the chromatic numbers of a 

graph and all its 1-vertex-deleted and 1-edge-deleted subgraphs with a polynomial number of parallel queries to an oracle 
for the standard, NP-complete colorability problem {(G, k) ∈ G × N | χ(G) ≤ k}. Specifically, the queries (G, k), (G − e, k), 
and (G − v, k) for every e ∈ E(G), every v ∈ V (G), and every k ∈ {0, . . . , ‖V (G)‖} suffice to find out whether G is stable and 
whether it is vertex-stable. We mention that we could also have relied on the definition �p

2 = PNP[O(logn)] for proving this 
upper bound by finding the chromatic numbers via a binary search with a logarithmic number of adaptive queries. To prove 
the matching lower bounds, we first note that the lower bound for Theorem 6 implies the lower bound for Theorem 5.

Lemma 7. VertexStability polynomial-time many-one reduces to Stability.

Proof. We show that G is vertex-stable if and only if G + G is stable. Assume that G is vertex-stable. Then G + G is 
vertex-stable too as an immediate consequence of the general equation χ(G1 + G2) = χ(G1) + χ(G2), which holds for 
arbitrary graphs G1 and G2 since the join edges force the vertices of G1 and G2 to use disjoint sets of colors. Hence 
G + G is stable by Observation 3. For the converse, suppose that G is not vertex-stable. Then there is a vertex v with 
χ(G − v) = χ(G) − 1. We will color of the graph G + G from which the edge between the two copies of v has been deleted 
with 2(χ(G) − 1) + 1 = χ(G + G) − 1 colors, proving that G + G is not stable. Fix any optimal coloring of G − v . We now 
color both copies of G − v in G + G according to it, but using two disjoint sets of χ(G) − 1 colors. Finally, we assign one 
additional new color to the two vertices corresponding to v . �

It remains to establish the lower bound of Theorem 6, that is, to prove that determining whether a graph is vertex-stable 
is �p

2-hard. Proving �p
2-hardness is not easy. However, we will now argue that it suffices to show that VertexStability is 

coDP-hard.
Chang and Kadin [8, Theorem 7.2] show that a problem is �p

2-hard if it is DP-hard and has an ORω function. Observing 
that �p

2 is closed under complementation, we obtain the following corollary.

Corollary 8. If a coDP-hard problem has an ANDω function, then it is �p
2-hard.

We first note that VertexStability has an ANDω function.

Theorem 9. The join is an ANDω function for VertexStability and Unfrozenness.

Proof. Let G1, . . . , Gn be a finite number of graphs. Consider G1 + · · · + Gn . For every i ∈ {1, . . . , n}, the join edges force the 
vertices V (Gi) to have colors that are different from the colors of all remaining vertices. This implies χ(G1 + · · · + Gn) =
χ(G1) + · · · + χ(Gn). Moreover, vertex deletion and edge addition commute with joining: For every v ∈ V (G1 + · · · + Gn) =
V (G1) ∪ · · · ∪ V (Gn), there is an i such that

(G1 + · · · + Gn) − v = G1 + · · · + Gi−1 + (Gi − v) + Gi+1 + · · · + Gn.

Analogously, for every nonedge e ∈ E(G1 + · · · + Gn) = E(G1) ∪ · · · ∪ E(Gn), there is an i such that

(G1 + · · · + Gn) + e = G1 + · · · + Gi−1 + (Gi + e) + Gi+1 + · · · + Gn.

The claim of the theorem follows immediately. �
Now, Theorem 6 follows from Corollary 8 and the coDP-hardness of VertexStability stated in the following lemma.

Lemma 10. Determining whether a graph is vertex-stable is coDP-hard.

To prove Lemma 10, we show in Theorem 12 that Stable3CNF = 3Sat ∪ Stable3UnSat is coDP-complete and then reduce 
it to VertexStability in Theorem 16. We will use the following lemma twice.

Lemma 11. There is a polynomial-time many-one reduction from Sat to 3Sat converting a CNF-formula 	 into a 3CNF-formula �
such that 	 is stable if and only if � is stable.

Proof. The standard clause-size reducing reduction maps a CNF-formula 	 = C1 ∧ · · ·∧ Cm to �′ = F1 ∧ · · ·∧ Fm by splitting 
any clause C = (�1 ∨ · · · ∨ �k) with k literals for a k ≥ 3 into the k clauses of the subformula

F = (�1 ∨ y1) ∧ (y1 ∨ �2 ∨ y2) ∧ · · · ∧ (yk−2 ∨ �k−1 ∨ yk−1) ∧ (yk−1 ∨ �k)

with fresh variables yi that do not occur elsewhere.
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We prove that 	 is stable if and only if �′ is. We already know that 	 is satisfiable exactly if �′ is. Thus it suffices to 
show that 	 is satisfiable after deleting C if and only if �′ is satisfiable after deleting some clause in F . Let α be a satisfying 
assignment for 	 − C . We then obtain a satisfying assignment β for �′ − (�1 ∨ y1) by setting β(y1) = · · · = β(yk−1) = 0
and the remaining variables as usual. For the converse, we simply observe that the restriction of an assignment satisfying 
�′ with an arbitrary clause from F deleted satisfies 	 − C .

We now transform �′ into a formula � ∈ 3CNF that is stable exactly if �′ is. We do this by substituting for any two-
literal clause (�1 ∨ �2) the subformula (�1 ∨ �2 ∨ z) ∧ (�1 ∨ �2 ∨ z) and for any one-literal clause (�1) the subformula 
(�1 ∨ z1 ∨ z2) ∧ (�1 ∨ z1 ∨ z2) ∧ (�1 ∨ z1 ∨ z2) ∧ (�1 ∨ z1 ∨ z2), where z, z1, and z2 are, for each substitution, new variables 
that do not occur anywhere else. It is now straightforward to check that � has all the desired properties. �
Theorem 12. Stable3CNF is coDP-complete.

The proof of Theorem 12 is based on a simple corollary to the following observation by Chang and Kadin: If a set is 
NP-hard, coNP-hard, and it has an OR2 function, then it is DP-hard [8, Lemma 5].

Corollary 13. If a set is NP-hard, coNP-hard, and it has an AND2 function, then it is coDP-hard.

The proof of the corollary is immediate since an AND2 function for one language is an OR2 function for its complement 
and vice versa. We can now start with the proof of Theorem 12.

Proof of Theorem 12. It is immediate that Stable3CNF is in coDP. By Corollary 13, it now suffices to show that Stable3CNF

is coNP-hard, NP-hard, and that it has an OR2 function.

coNP-hardness. It is easy to see that the function

f : 	 �→ 	 ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)

∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z),

where x, y, and z are fresh variables not occurring in 	, reduces 3UnSat to Stable3CNF.
NP-hardness. We give a reduction from 3Sat to Stable4CNF; composing it with the reduction from Lemma 11 yields the 

desired reduction to Stable3CNF. Given a 3CNF-formula 	 = C1 ∧ · · · ∧ Cm over X = {x1, . . . , xn}, map it to the 
4CNF-formula

� = (C1 ∨ y) ∧ (C ′
1 ∨ y′) ∧ (C ′′

1 ∨ y′′) ∧ · · · ∧
(Cm∨ y) ∧ (C ′

m∨ y′) ∧ (C ′′
m∨ y′′) ∧

(y ∨ y′ ∨ y′′ ∨ z) ∧ (y ∨ y′ ∨ y′′ ∨ z),

where the clauses C ′
i and C ′′

i are just like the clauses Ci but with a new copy of variables X ′ = {x′
1, . . . , x

′
n} and 

X ′′ = {x′′
1, . . . , x′′

n} instead of X , respectively, and y, y′ , y′′ , and z being four fresh variables as well. Deleting the 
clause (y ∨ y′ ∨ y′′ ∨ z) renders � trivially satisfiable; any assignment that sets y, y′ , y′′ , and z to 1 will do. Thus 
� is stable if and only if it is satisfiable. It remains to prove the equisatisfiability of 	 and �.

First assume that 	 has a satisfying assignment σ : X → {0, 1}. Then � is satisfied by any assignment τ with 
τ (xi) = τ (x′

i) = τ (x′′
i ) = σ(xi) for i ∈ {1, . . . , n} and τ (y) = 0. Now assume that � has a satisfying assignment τ . 

The last two clauses (y ∨ y′ ∨ y′′ ∨ z) and (y ∨ y′ ∨ y′′ ∨ z) of � guarantee that τ (y) = 0, τ (y′) = 0 or τ (y′′) = 0. 
In the first case, 	 is satisfied by σ : xi �→ τ (xi), in the second case by σ ′ : xi �→ τ (x′

i), and in the third case by 
σ ′′ : xi �→ τ (x′′

i ).
OR2. In their proof of DP-completeness, Papadimitriou and Wolfe [34, Lemma 3 plus corollary] implicitly gave a sim-

ple AND2 function for both MinimalUnSat and Minimal3UnSat (the sets of unsatisfiable formulas that become 
satisfiable after deleting any clause). We make use of the same construction.

Let 	 = C1 ∧ · · · ∧ Cm and 	′ = C ′
1 ∧ · · · ∧ C ′

m′ be two given 3CNF-formulas. Without loss of generality, 	 and 
	′ have disjoint variable sets. Let

� =
∧

1≤i≤m,1≤ j≤m′
(Ci ∨ C ′

j).

Note that � is in 6CNF and equivalent to 	 ∨	′ . We will show that � ∈ Stable6CNF if and only if 	 ∈ Stable3CNF

or 	′ ∈ Stable3CNF. Setting the clause length of � to exactly 3 by applying Lemma 11 then yields the desired 
OR2-reduction.

First assume that neither 	 nor 	′ is in Stable3CNF. Then we have 	, 	′ /∈ 3Sat and there are ı̂ ∈ {1, . . . , m}
and ĵ ∈ {1, . . . , m′} and assignments σ and σ ′ such that σ satisfies 	 − C ı̂ and σ ′ satisfies 	′ − C ′ . Then we have 
ĵ
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vc

vs

x1 x1 · · · xi xi · · · x j x j · · · xn xn

a11 b11 a12 b12 a13 b13 am1 bm1 am2 bm2 am3 bm3

t11

t12

t13 tm1

tm2

tm3

· · ·

C1 Cm

Fig. 1. The graph G	 for a 3CNF-formula with C1 = x1 ∨ xi ∨ x j and Cm = x j ∨ xn ∨ xn . The construction is due to Cai and Meyer [6], the figure to Burjons 
et al. [5, Figure 1, slightly modified].

� /∈ Sat and (σ , σ ′) satisfies (Ci ∨ C ′
j) for all (i, j) 
= (ı̂, ĵ ). It follows that � − (C ı̂ ∨ C ′

ĵ
) is satisfiable, and thus 

� /∈ Stable6CNF.
Now assume that � /∈ Stable6CNF. Then � /∈ Sat, and hence 	, 	′ /∈ 3Sat. There are indices ı̂ and ĵ such that 

� − (C ı̂ ∨ C ′
ĵ
) is satisfiable, say by assignment τ . This τ satisfies (Ci ∨ C ′

j) for all (i, j) 
= (ı̂, ĵ ). In particular, τ
satisfies (Ci ∨ 	′) for all i 
= ı̂ and (	 ∨ C ′

j) for all j 
= ĵ . Since 	, 	′ /∈ 3Sat, this implies that τ satisfies Ci for all 
i 
= ı̂ and C ′

j for all j 
= ĵ . It follows that 	, 	′ /∈ Stable3CNF.

This concludes the proof that Stable3CNF is coDP-complete. �
All that is left to do is to reduce Stable3CNF to VertexStability. First, we consider the known reduction from Minimal-

3UnSat to VertexMinimal3UnColorability by Cai and Meyer [6].
It maps a formula 	 over the variable set {x1, . . . , xn} with m 3-clauses C1, . . . , Cm to the graph G	 constructed as 

follows. For every clause Ci , start with a triangle on three new vertices ti1, ti2, and ti3, add three disjoint edges {ai1, bi1}, 
{ai2, bi2}, and {ai3, bi3}, and then insert the edges {bi1, ti1}, {bi2, ti2}, and {bi3, ti3}. For every variable x j , add an isolated edge 
{x j, x j}. For every i ∈ {1, . . . , m} and every k ∈ {1, 2, 3}, connect aik to the vertex representing the kth literal of Ci . Finally, 
add a vertex vs connected to the vertices aik and bik , for every i ∈ {1, . . . , m} and every k ∈ {1, 2, 3}, and add a vertex vc
connected to the vertices x j and x j for all j ∈ {1, . . . , n}. See Figure 1 [5, Figure 1, slightly modified] for an illustration of 
the full construction, combining the single steps described in the original paper [6].

It comes as no surprise that this reduction does not work for us since, for example, G	 − vs is always 3-colorable, and 
thus G	 is never stable if 	 is not satisfiable. However, careful checking reveals the following important property of G	 .

Lemma 14. A 3CNF-formula 	 is not stable if and only if χ(G	) > χ(G	 − ti1) for at least one i ∈ {1, . . . , m}.

Proof of Lemma 14. As stated by Cai and Meyer [6, Lemma 2.2], 	 is satisfiable if and only if G	 is 3-colorable. Note that 
a 	 that is not stable is not satisfiable. Therefore, it suffices to check that 	 − Ci is satisfiable if and only if G	 − ti1
is 3-colorable. The mentioned paper proves this implication “by picture” [6, Figure 2.12] and states the converse in the 
second-to-last paragraph of its second section. �

What we need now is a way to enhance the construction such that the deletion of a vertex other than t11, . . . , tm1, for 
example vs, does not decrease the chromatic number. We achieve this by the following lemma.

Lemma 15. Let G be a graph and v ∈ V (G). Let Ĝ be the graph that results from replicating v; that is, V (Ĝ) = V (G) ∪ {v ′} and 
E(Ĝ) = E(G) ∪ {{v ′, w} | {v, w} ∈ E(G)}. Then χ(G) = χ(Ĝ) = χ(Ĝ − v) = χ(Ĝ − v ′).

Proof. The only nontrivial part is to show that χ(Ĝ) ≤ χ(G). To see this, we start with an arbitrary optimal valid vertex 
coloring of G and then color v ′ with the same color as v . �
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Lemma 15 is simple and yet very powerful in our context. It allows us to select a set of vertices whose removal will not 
influence the chromatic number, and thus will not influence whether or not the graph is vertex-stable. We can use this to 
obtain the desired reduction.

Theorem 16. Stable3CNF polynomial-time many-one reduces to VertexStability.

Proof. Given a 3CNF-formula 	, map it to r(G	), where G	 is the graph from the reduction by Cai and Meyer [6] and r
denotes the replication of all vertices other than t11, . . . , tm1.

If 	 is not in Stable3CNF, then we have χ(G	) > χ(G	 − ti1) for some i ∈ {1, . . . , m} by Lemma 14. Furthermore, a 
repeated application of Lemma 15 yields χ(r(G	)) = χ(G	) and χ(r(G	) − ti1) = χ(r(G	 − ti1)) = χ(G	 − ti1). Thus r(G	)

is not vertex-stable. For the converse, suppose that r(G	) is not vertex-stable. Let v ∈ V (r(G	)) be a vertex such that 
χ(r(G	)) > χ(r(G	) − v). From Lemma 15, we can see that v = ti1 for some i ∈ {1, . . . , m}. By Lemma 14, this implies that 
	 is not stable. �

This completes the proof of Theorem 6— stating that VertexStability is �p
2-complete—which in turn implies Theorem 5, 

the �p
2-completeness of Stability, by Lemma 7. Now we briefly turn to some DP-complete problems. Recall that by prefixing 

a number k to the name of a stability property we additionally require the graph number to be exactly k.

Theorem 17. The problems k-Stability and k-VertexStability are NP-complete for k = 3 and DP-complete for k ≥ 4.

Proof. The membership proofs are immediate. For the lower bound we use that Exact-k-Colorability (the class of all 
graphs whose chromatic number is not merely at most, but exactly k) is NP-complete for k = 3 and DP-complete for k ≥ 4; 
see [36]. It suffices to check that mapping G to G ∪ G reduces Exact-k-Colorability to k-Stability and k-VertexStability. 
Indeed, for any two graphs H and H ′ , we have χ(H ∪ H ′) = max{χ(H), χ(H ′)}, implying that G ∪ G is stable and vertex-
stable with χ(G) = χ(G ∪ G). �

In the previous proof, we used the disjoint union of a graph with itself to render it stable without changing its chromatic 
number. Using a far more complicated construction, we can also ensure the stability of an arbitrary set of edges of a 
graph while keeping track of how exactly this changes the chromatic number. This immediately yields an explicit ANDω

function for Stability, which we will formally state in Corollary 19. Moreover, this stabilizing construction is likely to have 
applications in reoptimization, the recently introduced neighborly-help model [5], and graph theory in general. We now 
state the result in the following lemma.

Lemma 18. There is a polynomial-time algorithm that, given any graph G plus a nonempty subset S ⊆ E(G) of its edges, adds a fixed 
gadget to the graph and then substitutes for every e ∈ S some gadget that depends on G and e, yielding a graph ̂G with the following 
properties:

1. χ(Ĝ) = χ(G) + 2.
2. All edges in E(Ĝ) − (E(G) − S) are stable.
3. Each one of the remaining edges in E(G) − S is stable in ̂G exactly if it is stable in G.

Proof. Let a graph G and a subset S ⊆ E(G) of edges in it be given. We first describe the construction of Ĝ in detail. 
Figure 2 exemplifies the full construction for a simple graph G and an S that contains exactly one edge e = {v1, v2}.

We begin by adding a cycle on four new vertices w ′
1, w ′

2, w ′′
1, w ′′

2 and joining it to G . Then we complete the procedure 
described in the following paragraph for each edge e ∈ S .

We add in disjoint union a copy G ′
e of the original graph G . We distinguish the vertices of G ′

e from the ones of G by 
adding a prime and the subindex e to them. In the example, where the edge e = {v1, v2} is to be stabilized, there will thus 
be two adjacent vertices v ′

1,e, v
′
2,e ∈ V (G ′

e), as shown in Figure 2. Now we join two new vertices to G ′
e . One of them we 

merge with v1; the other one we call u′
e and connect it to v2. We then replicate u′

e and every v ′ ∈ V (G ′
e), marking the 

replicas with a second prime. Excluding u′′ , these replicas constitute another, empty copy of G , which we denote G ′′
e . Finally, 

we delete the edge e = {v1, v2}.
This completes the construction; we call the resulting graph Ĝ . For each edge e = {v1, v2} ∈ S , we denote the induced 

subgraph of Ĝ on the vertices V (G ′
e) ∪ V (G ′′

e ) ∪ {u′
e, u′′

e , v1, v2} by He . We now examine the induced subgraph He as a 
gadget that depends on G and substitutes e.

In the following paragraph, we prove an essential property of the graph He , namely that it behaves exactly like the 
deleted edge e as far as (χ(G) + 1)-colorability is concerned, whereas it acts like a nonedge with regards to (χ(G) + 2)-
colorability.

Assume that χ(G) + 1 colors are available. First, let v1 and v2 be colored by two different ones of them. We can then 
extend this to a (χ(G) + 1)-coloring of He in the following way. We assign to u′

e and u′′
e the color of v1, choose an arbitrary 

coloring of G using the remaining χ(G) colors, and then assign it to both G ′
e and G ′′

e . Now, pick instead an arbitrary color 
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v1 v2 Ge

(a) An example of a simple given 
graph G with only a single edge e =
{v1, v2} to be stabilized. The vertices 
outside the dashed ellipse and edge 
parts leading to them are omitted.

w ′
2

w ′
1 w ′′

1

w ′′
2

v1 v2

u′
e

u′′
e

v ′
1,e

v ′
2,e

v ′′
1,e

v ′′
2,e

G

G ′
e

G ′′
e

He

(b) The graph Ĝ , satisfying all properties stated in Lemma 18. In the simple case of our ex-
ample that S is only a singleton {e}, the construction contains three partly modified copies of 
G , with the same vertices and edge parts as in Figure 2a omitted from the picture.

Fig. 2. Example of the construction of Lemma 18, rendering arbitrary subsets of edges stable.

and let both v1 and v2 be colored by it. While this can be extended to a (χ(G) + 2)-coloring of He immediately—assign 
a second color to u′

e and u′′
e and then color G ′

e and G ′′
e with the remaining χ(G) colors—it is impossible to extend it to a 

(χ(G) + 1)-coloring of He as we show now. Seeking contradiction, assume there were such a coloring. It must assign to u′′
e

a color different from the one color assigned to both v1 and v2. Since the vertices of G ′
e are all adjacent to both v1 and u′′

e , 
they must be colored with the remaining χ(G) − 1 colors, yielding the desired contradiction to χ(G ′

e) = χ(G).
Returning to the entire graph, it remains to show that Ĝ has the three stated properties.

1. Let a χ(G)-coloring of G be given. We describe how to extend it to a (χ(G) +2)-coloring of Ĝ . We assign one of the two 
new colors to w ′

1 and w ′′
1 and the other one to w ′

2 and w ′′
2. Now, for every e = {v1, v2} ∈ S , we color the gadget He as 

follows. To both u′
e and u′′

e we assign the color of v1. Now color both G ′
e and G ′′

e according to the initially given χ(G)-
coloring of G with one modification, namely swapping out the two colors assigned to v1 and v2, wherever they occur, 
for the two new colors. We can check that this yields a valid (χ(G) + 2)-coloring of Ĝ , proving that χ(Ĝ) ≤ χ(G) + 2.
For the reverse inequality, assume by contradiction that Ĝ has a (χ(G) + 1)-coloring. We observe two properties of 
this coloring. On the one hand, it uses at most χ(G) − 1 colors for the vertices V (G) since they are all adjacent to 
the 2-clique {w ′

1, w
′
2}. On the other hand, the restriction to V (He), for any e ∈ S , is a χ(G) + 1 coloring of He , which 

implies—by the edge-like behavior of He under this circumstance proved above—that v1 and v2 are assigned different 
colors. Combining these two insights, we see that the restriction of our coloring to V (G) is a (χ(G) − 1)-coloring of G , 
yielding the desired contradiction.

2. First note that all edges in S are deleted during the described construction of Ĝ , implying E(Ĝ) − E(G) = E(Ĝ) − (E(G) −
S). We show the vertices of V (Ĝ) − V (G) to be stable. Observe that they can be partitioned into the single-primed and 
the double-primed ones; the latter were constructed as the replicas of the former, and no edges were added after this. 
We recall from Lemma 15 that replicating a vertex renders it and its replica stable because they have exactly the same 
neighborhood but are not adjacent. Each edge e in E(Ĝ) − E(G) is adjacent to one of the stable vertices in V (Ĝ) − V (G)

and therefore stable itself by Observation 3.
3. Note that the described construction does not commute with the deletion of an arbitrary edge e ∈ E(G). (That is, 

denoting the construction by f : G �→ Ĝ , we do not have f (G − e) = f (G) − e.) This stands in contrast to the situation 
with the other stabilizing constructions in this paper—where commutativity of the construction immediately yields the 
corresponding property—necessitating an independent proof in this case.
Let e′ ∈ E(G) − S . Assume first that e′ is critical in G . Then there is a (χ(G) − 1)-coloring of G − e′ . We can extend it 
to a (χ(G) + 1)-coloring of Ĝ − e′ by assigning one of the two new colors to w ′

1 and w ′
2, the other one to w ′

2 and w ′′
2, 

and then use the already proven fact that, for each e ∈ S , the graph He can be colored with χ(G) + 1 colors whenever 
two different colors are prescribed for the two endpoints of e. This proves χ(Ĝ − e′) 
= χ(Ĝ) and thus the criticality of 
e′ in Ĝ .
Now we start with the assumption that e′ is critical in Ĝ . By the first property of Lemma 18 we have χ(Ĝ − e′) =
χ(G) + 1. Pick an arbitrary (χ(G) + 1)-coloring of Ĝ − e′ . Since the induced 4-cycle on {w ′

1, w
′
2, w

′′
1, w ′′

2} has chromatic 
number 2 and is joined to the induced subgraph on V (G), the induced coloring on G − e′ uses at most χ(G) − 1 of 
these colors, implying χ(G − e′) ≤ χ(G) − 1 and thus the criticality of e′ in G . We deduce via the contrapositive that e′
is stable in G if and only if it is stable in Ĝ .
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v1 v2

(a) Example of the relevant section of G .

v1

u1 u2

u3 u4

v2

(b) The same section in G ′ after the substitution.

Fig. 3. Illustration of the substitution of an edge {v1, v2} by the gadget mentioned in Lemma 21. We remark in passing that the gadget used here is the 
smallest one with the desired properties.

This concludes the proof of Lemma 18. �
Note that this construction allows us to reduce the problem of deciding whether in a given selection of edges all of them 

are stable to Stability by stabilizing all other edges. Moreover, it yields the following ANDω function for Stability, which is 
stated in the following corollary,

Corollary 19. Mapping k graphs G1, . . . , Gk to G1 + · · · + Gk with all join edges stabilized using the construction from Lemma 18 is 
an ANDω function for Stability.

Proof. We know that χ(G1 + · · · + Gk) = χ(G1) + · · · + χ(Gk). This implies that, for any i ∈ {1, . . . , k}, an edge e ∈ E(Gi) is 
stable in Gi exactly if it is stable in G1 + · · · + Gk . The graph with all join edges stabilized is thus stable exactly if all graphs 
G1, . . . , Gk are. �

Note that the more complicated formulation of Lemma 18 that allows for the stabilization of arbitrary subsets of edges 
rather than just a single chosen edge is crucial for the derivation of Corollary 19. For since the construction of Lemma 18
more than doubles the number of vertices—even if S is only a singleton—at most a logarithmic number of iterated applica-
tions are possible in polynomial time.

4. Stability and Vertex-Stability for Vertex Cover

We will now examine the complexity of stability with respect to the vertex-cover number β . First, we note that 
β-VertexStability is trivially in P as it consists of the empty graphs.

Theorem 20. Only the empty graphs are β-vertex-stable.

Proof. Let G be a graph. If G is empty, it is β-vertex-stable since the empty set is a minimum vertex cover for both G and 
G − v for every v ∈ V (G). If G has an edge {u, v}, every vertex cover contains either u or v or both. Consider any optimal 
vertex cover X of G and assume, without loss of generality, that v ∈ X . Then v is a critical vertex since X − {v} is a vertex 
cover of size ‖X‖ − 1 of G − v . �

Turning to the smaller change of deleting only an edge instead of a vertex, the situation changes radically. We will prove 
with Theorem 22 that determining whether a graph is β-stable is �p

2-complete. An important ingredient to the proof is the 
following analogue of Lemma 15, which shows how to β-stabilize an arbitrary edge of a given graph.

Lemma 21. Let G be a graph and {v1, v2} ∈ E(G) one of its edges. Create from G a new graph G ′ by replacing the edge {v1, v2}
by the gadget that consists of four new vertices u1, u2 , u3 , and u4 with edges {u1, u2}, {u2, u3}, {u3, u4}, and {u4, u1} (i.e., a new 
rectangle) and additionally the edges {v1, u1}, {v1, u3}, {v2, u2}, and {v2, u4}. (This gadget is displayed in Figure 3b.) Then we have 
β(G ′) = β(G) + 2, all edges of the gadget are stable in G ′, and the remaining edges are stable in G ′ if and only if they are stable in G.

Proof. Let X be a vertex cover for G . Due to {v1, v2} ∈ E(G), we have v1 ∈ X or v2 ∈ X . We obtain a vertex cover for G ′
by adding u2 and u4 to X in the first case and u1 and u3 in the second case. This shows β(G ′) ≤ β(G) + 2. For the reverse 
inequality observe that out of the four vertices {u1, u2, u3, u4} inducing a 4-cycle every vertex cover for G ′ contains at least 
two and removing all of them leaves us with a vertex cover for G .

Now, let e be an arbitrary edge of G other than {v1, v2}. We can check that the argument above still holds true for G − e
and G ′ − e instead of G and G ′ , and hence β(G ′ − e) = β(G − e) + 2. It follows that β(G) − β(G − e) = β(G ′) − β(G ′ − e); 
that is, e is stable in G exactly if it is stable in G ′ .
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u1 u2

u3 u4

v2

(a) A vertex cover X for G ′ − {u1, u2}.
Only the gadget part is shown.

v1

u1 u2

u3 u4

v2

(b) Removing u3 and adding u2 yields
a vertex cover of the same size for G ′ .

v1

u1 u2

u3 u4

v2

(c) A vertex cover Y for G ′ − {v1, u1}.

v1

u1 u2

u3 u4

v2

(d) A vertex cover of the same size for G ′ .

Fig. 4. An illustration of the proof of Lemma 21: All edges of the gadget are β-stable in G ′ .

Finally, we prove β-stability for all the gadget edges. Let e be such an edge. It suffices to show that, for every vertex 
cover of G ′ − e, there is a vertex cover of the same size for G ′. We show this for e = {u1, u2} and e = {v1, u1}; the remaining 
cases follow immediately by symmetry. The following argumentation is illustrated in Figure 4. Let X be a vertex cover of 
G ′ − {u1, u2}. If X contains u1 or u2, it is a vertex cover for G ′ as well. Otherwise, we have {v1, u3, u4, v2} ⊆ X since the 
edges incident to u1 and u2 need to be covered—see Figure 4a—and {u2} ∪ X − {u3} is another vertex cover for G ′; see 
Figure 4b. Analogously, let Y be a vertex cover of G ′ − {v1, u1}. If Y contains v1 or u1, then it is a vertex cover of G ′
as well. Otherwise, Y contains the vertices {u2, u3, u4} since they are neighbors of either v1 or u1; see Figure 4c. Then, 
{u1, v2} ∪ Y − {u2, u4} is a vertex cover for G ′ that is either—see Figure 4d—of the same size as Y or, if v2 ∈ Y , smaller by 
one. �
Theorem 22. Determining whether a graph is β-stable is �p

2-complete.

Proof. We reduce from {(G, H) ∈ G2 | β(G) < β(H)}, which is �p
2-hard [38, Theorem 12]. (Note that this language is es-

sentially the complement of CompareVertexCover and that �p
2 is closed under taking the complement.) Let G and H

be given graphs. Replace each edge e ∈ E(G) by a copy of the stabilizing gadget described in Lemma 21. Call the result-
ing graph G ′ . Clearly, we have ‖V (G ′)‖ = ‖V (G)‖ + 4‖E(G)‖. By Lemma 21, G ′ is β-stable and β(G ′) = β(G) + 2‖E(G)‖. 
Moreover, let H ′ = H ∪ K2. The edge in K2 ensures that H ′ is not β-stable. Moreover, we have β(H ′) = β(H) + 1 and 
‖V (H ′)‖ = ‖V (H)‖ + 2.

Now, let G ′′ = G ′ , just for consistent notation, and H ′′ = H ′ ∪ K2‖E(G)‖ . Since β(Kn) = n − 1 for n ≥ 1, this implies 
β(G ′′) −β(G) = 2‖E(G)‖ = β(H ′′) −β(H) whenever ‖E(G)‖ ≥ 1, which we can assume without loss of generality by handling 
the trivial case of an empty graph G separately. We finish the construction by adding isolated vertices to either G ′′ or H ′′
such that we achieve an equal number of vertices without changing the vertex cover number; that is, we let

G ′′′ = G ′′ ∪ Imax{0,‖V (H ′′)‖−‖V (G ′′)‖} and

H ′′′ = H ′′ ∪ Imax{0,‖V (G ′′)‖−‖V (H ′′)‖}.
Let c = ‖V (G ′′′)‖ = ‖V (H ′′′)‖ and d = β(G ′′′) − β(G) = β(H ′′′) − β(H). Note that G ′′′ is β-stable since we stabilized G ′ with 
the gadget substitutions and then only added isolated vertices but no more edges. Moreover, H ′′′ is not β-stable due to the 
β-critical edge of K2.

Let S be the join G ′′′ + H ′′′ with all join edges stabilized, again by the gadget substitution described in Lemma 21. It 
is easy to see from the proof of Lemma 21 that the gadget as a whole behaves just like the edge it replaces, in the sense 
that an optimal vertex cover of the whole graph contains, without loss of generality, either v1 or v2 or both. Therefore, an 
optimal vertex cover of S consists of either an optimal vertex cover of G ′′′ and all vertices of H ′′′ or of an optimal vertex 
cover of H ′′′ and all vertices of G ′′′ plus, in both cases, a constant number k of vertices for covering the gadget edges—
namely two for each former join edge, that is, k = 2 · ‖V (G ′′′)‖ · ‖V (H ′′′)‖. In the first case, we obtain an optimal vertex 
cover for S of size β(G ′′′) + c + k = β(G) + d + c + k, in the second case one of size β(H ′′′) + c + k = β(H) + d + c + k.

Assume first that β(G) < β(H). It follows that β(G ′′′) < β(H ′′′) and thus any optimal vertex cover for S consists of all 
vertices V (H ′′′), an optimal vertex cover for G ′′′ , and k vertices for the gadgets. Since we ensured that G ′′′ is β-stable, S
is β-stable. Now, assume that β(G) ≥ β(H). Then there is an optimal vertex cover that consists of all vertices of G ′′′ , an 
optimal vertex cover of H ′′′ , and again k vertices due to the gadgets. Since H ′′′ not β-stable, as pointed out above, S is 
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not β-stable either. We conclude that S is β-stable exactly if β(G) < β(H), thus proving that β-stability is �p
2-hard and 

therefore �p
2-complete. �

5. Unfrozenness

We begin with the observation that both for Colorability and for Vertex Cover adding a vertex is too generous a modifi-
cation to be interesting.

Theorem 23. There is no vertex-unfrozen graph and only one β-vertex-unfrozen graph, namely the null graph (i.e., the graph with the 
empty vertex set).

Proof. Adding a universal vertex increases both χ and β by exactly one, with the exception of the null graph K0, for which 
χ(K0) = β(K0) = 0 but χ(K1) = 1 
= β(K1) = 0. �

Both problems are far more interesting in the default setting, that is, for adding edges. The �p
2-completeness of deciding 

whether a given graph is β-unfrozen can be obtained by a method similar to the one we used to establish Theorem 22.

Theorem 24. Determining whether a graph is β-unfrozen is �p
2-complete.

Proof. The upper bound is again immediate. For hardness, we reduce from CompareVertexCover = {(G, H) ∈ G2 | β(G) ≤
β(H)}—known to be �p

2-hard [38, Theorem 12]— to β-Unfrozenness.
Let G and H be the two given graphs. We show how to construct in polynomial time from G and H a graph J that 

is β-unfrozen if and only if β(G) ≤ β(H). Denote g = ‖V (G)‖ and h = ‖V (H)‖. Assume without loss of generality that 
g > 1. Let G ′ = (G ∪ Ih) + (G ∪ Ih). Note that G ′ is β-unfrozen, with β(G ′) = β(G) + g + h, and that ‖V (G ′)‖ = 2(g + h). Let 
H ′ = (H + K g+h) ∪ I g (i.e., join a (g + h)-clique to H and then add g isolated vertices). Note that H ′ is not β-unfrozen—due 
to the β-frozen edges that can be added between any two of the g ≥ 2 vertices of I g —with β(H ′) = β(H + K g+h) = 
β(H) + g + h and that ‖V (H ′)‖ = (h + (g + h)) + g = 2(g + h). Let c = 2(g + h). We conclude that G ′ is β-unfrozen, that 
β(G ′) ≤ β(H ′) ⇐⇒ β(G) ≤ β(H), that ‖V (G ′)‖ = ‖V (H ′)‖ = c, and that H ′ is β-frozen. Now, let J = G ′ + H ′ . Clearly, J can 
be constructed in polynomial time. We will prove that J is β-unfrozen if and only if β(G) ≤ β(H). For both directions, note 
that due to ‖V (G ′)‖ = ‖V (H ′)‖ = c, we have β( J ) = min{β(G ′), β(H ′)} + c.

First, assume that β(G) ≤ β(H). Then β(G ′) ≤ β(H ′) and thus β( J ) = β(G ′) + c. We prove that all nonedges e ∈ E( J ) are 
β-unfrozen in J . Such an e is either adjacent to two vertices of G ′ or to two vertices of H ′ . For the first case, note that 
β(G ′ + e) = β(G ′) since G ′ is β-unfrozen. Thus we have β( J + e) = min{β(G ′ + e), β(H ′)} + c = β( J ). In the second case 
we have β( J + e) = min{β(G ′), β(H ′ + e)} + c = β(G ′) + c = β( J ), where the second equality follows from β(G ′) ≤ β(H ′) ≤
β(H ′ + e). Thus J is β-unfrozen if β(G) ≤ β(H).

For the converse, assume that β(G) > β(H), implying β(G ′) > β(H ′) and thus β( J ) = β(H ′) + c. Since H ′ is β-frozen, 
there is a β-frozen nonedge e that can be added to H ′ , yielding β(H ′ + e) = β(H ′) + 1 ≤ β(G). Hence, we have β( J + e) =
min{β(G ′), β(H ′ + e)} + c = β(H ′) + 1 + c > β( J ). This shows that e is β-frozen for J as well, concluding the proof. �

Now, we would like to show the analogous result that Unfrozenness is �p
2-complete as well. This turns out to be a 

very difficult task, however. There are many clues suggesting the hardness of Unfrozenness, which exhibits a far richer 
structure than all of the problems listed in Table 1 as easy. The latter problems are either empty or singletons or consist 
of all independent sets or all cliques, while Unfrozenness contains large classes of different graphs. We can even produce 
arbitrarily many new complicated unfrozen graphs using the graph join. There are no clearly identifiable characteristics to 
these unfrozen graphs to be leveraged. Instead, we give a sufficient condition for the �p

2 -completeness of Unfrozenness, 
namely the existence of a polynomial-time computable construction that turns arbitrary graphs into unfrozen ones without 
changing their chromatic number in an intractable way.

Theorem 25. Assume that there are polynomial-time computable functions f : G → G and g : G →Z such that for any graph G we 
have that f (G) is unfrozen and χ( f (G)) = χ(G) + g(G). Then Unfrozenness is �p

2-complete.

Proof. As usual, membership in �p
2 is immediate. For the lower bound, assume the existence of functions f and g as 

described in the theorem. We reduce from {(G, H) | χ(G) ≤ χ(H)}, which is �p
2-hard, as to be expected from this type of 

comparison problem. This hardness will be formally stated in Theorem 26 only later on because its proof both relies on and 
well illustrates the application of a general criterion we are going formulate in Lemma 29.

Now, let two graphs G and H be given. Our intermediate goal is to construct two graphs G ′′ and H ′′ such that only the 
latter is unfrozen and

χ(G) ≤ χ(H) ⇐⇒ χ(G ′′) < χ(H ′′).
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Let G ′ = G + I2 and H ′ = f (H). Note that H ′ is unfrozen with χ(H ′) = χ(H) + g(H), while G ′ is not unfrozen—due to the 
frozen nonedge that can be added to I2—and χ(G ′) = χ(G) +1. Let G ′′ = G ′ + Kmax{0,g(H)−1} and H ′′ = H ′ + K1+max{1−g(H),0} . 
Then H ′′ is unfrozen with

χ(H ′′) = χ(H) + g(H) + 1 + max{1 − g(H),0} = χ(H) + max{1, g(H)} + 1,

while G ′′ has a frozen nonedge with

χ(G ′′) = χ(G) + 1 + max{0, g(H) − 1} = χ(G) + max{1, g(H)}.
Moreover, we have χ(G ′′) − χ(G) = max{1, g(H)} = χ(H ′′) − χ(H) − 1 and hence χ(G) ≤ χ(H) ⇐⇒ χ(G ′′) < χ(H ′′), 

as desired.
Now let U = G ′′ ∪ H ′′ be the disjoint union of the two constructed graphs. We clearly have χ(U ) = max{χ(G ′′), χ(H ′′)}. 

Moreover, every nonedge between an arbitrary vertex v ∈ V (G ′′) and an arbitrary vertex w ∈ V (H ′′) is unfrozen: Let an 
arbitrary optimal coloring of U = G ′′ ∪ H ′′ be given. If it assigns v and w different colors, we are done; otherwise, swap the 
two distinct colors of v and w for all vertices in V (G ′′). Recalling that H ′′ is unfrozen, we can conclude that U is unfrozen 
if and only if all nonedges e ∈ E(G ′′) = E(G ′) are unfrozen.

Assume first that χ(G) ≤ χ(H); that is, χ(G ′′) < χ(H ′′). For every e ∈ E(G ′′), we then have

χ(U + e) = χ((G ′′ + e) ∪ H ′′) ≤ max{χ(G ′′) + 1,χ(H ′′)} = χ(H ′′) = χ(U ).

Therefore, U is unfrozen. Assume now that χ(G) > χ(H); that is, χ(G ′′) ≥ χ(H ′′). Recall that G ′′ has a frozen nonedge e′ . 
It follows that χ(G ′′ + e′) = χ(G ′′) + 1 > χ(H ′′) and thus

χ(U + e′) = max{χ(G ′′ + e′),χ(H ′′)} = χ(G ′′) + 1 > max{χ(G ′′),χ(H ′′)} = χ(U ).

Therefore, e′ is also a frozen nonedge of U , which is thus not unfrozen. This concludes the proof. �
Note that an analogue of Lemma 18 for unfreezing instead of stabilizing edges would be sufficient to satisfy the assump-

tion of Theorem 25. However, based on our efforts we suspect that a suitable gadget—if one exists—must be of significantly 
higher complexity than the one in Figure 2.

It remains to show the �p
2-hardness of the problem from which we reduced in the proof of Theorem 25.

Theorem 26. CompareColorability = {(G, H) ∈ G2 | χ(G) ≤ χ(H)} is �p
2-hard.

Theorem 26 is proved essentially in the same way as Wagner [40, Theorem 6.3.2] proves the �p
2-hardness of OddCol-

orability. As he suggests [40, page 79], it is rather straightforward to translate the hardness result for OddColorability into 
one for EqualColorability. This holds true for CompareColorability as well. In the remainder of this section, we generalize 
the method for obtaining these results to yield two sufficient criteria for �p

2-hardness, stated as Lemmas 28 and 29 below. 
We then use the latter lemma to prove Theorem 26.

Our two sufficient criteria for �p
2-hardness, Lemmas 28 and 29, are both consequences of Wagner’s criterion [40, Theo-

rem 5.2], which we state in Lemma 27. We assume without loss of generality that all problems are encoded over the same 
finite alphabet 
.

Lemma 27 (By Wagner [40, Theorem 5.2]). A problem A is �p
2-hard if the following condition is satisfied:

There are an NP-complete problem D and a polynomial-time computable function f : ⋃∞
k=1(


∗)2k → 
∗ such that for every 
k ∈N − {0} and for all x1, . . . , x2k ∈ 
∗ with x1 ∈ D ⇐ ·· · ⇐ x2k ∈ D we have

f (x1, . . . , x2k) ∈ A ⇐⇒ ‖{x1, . . . , x2k} ∩ D‖ is odd.

The following two lemmas are identical, except for the last line, where once we have an equality and once a nonstrict 
inequality.

Lemma 28. A problem A is �p
2-hard if the following condition is satisfied:

There are NP-complete problems D1 and D2 and a polynomial-time computable function g : ⋃∞
k=1(


∗)2k → 
∗ such that for 
every k ∈N − {0} and for all y1, . . . , yk, z1, . . . , zk ∈ 
∗ with y1 ∈ D1 ⇐ ·· · ⇐ yk ∈ D1 and z1 ∈ D2 ⇐ ·· · ⇐ zk ∈ D2 we have

g(y1, . . . , yk, z1, . . . , zk) ∈ A ⇐⇒ ‖{y1, . . . , yk} ∩ D1‖ = ‖{z1, . . . , zk} ∩ D2‖.

Lemma 29. A problem A is �p
2-hard if the following condition is satisfied:

There are NP-complete problems D1 and D2 and a polynomial-time computable function g : ⋃∞
k=1(


∗)2k → 
∗ such that for 
every k ∈N − {0} and for all y1, . . . , yk, z1, . . . , zk ∈ 
∗ with y1 ∈ D1 ⇐ ·· · ⇐ yk ∈ D1 and z1 ∈ D2 ⇐ ·· · ⇐ zk ∈ D2 we have
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g(y1, . . . , yk, z1, . . . , zk) ∈ A ⇐⇒ ‖{y1, . . . , yk} ∩ D1‖ ≤ ‖{z1, . . . , zk} ∩ D2‖.

We point out that Lemma 29 is the corrected version of a slightly flawed lemma statement in the paper by Spakowski 
and Vogel [38, Lemma 9]. Since said paper does not apply the problematic lemma anywhere, all other results derived in it 
remain valid.

Proof of Lemmas 28 and 29. It suffices to make the following five observations.
First, �p

2 is closed under complementation since we can just invert the output of any algorithm witnessing the member-
ship in PNP‖ . Therefore, Lemma 27 remains true if we replace, on the one hand, only the second occurrence of the language 
A by its complement Ā = 
∗ − A and, on the other hand, “odd” by “even.”

Second, within the modified version of Lemma 27 resulting from the two replacements just described, the following 
three conditions are equivalent due to the assumption x1 ∈ D ⇐ x2 ∈ D ⇐ ·· · ⇐ x2k ∈ D .

1. ‖{x1, . . . , x2k} ∩ D‖ is even,
2. ‖{x1, x3, . . . , x2k−1} ∩ D‖ = ‖{x2, x4 . . . , x2k} ∩ D‖, and
3. ‖{x1, x3, . . . , x2k−1} ∩ D‖ ≤ ‖{x2, x4 . . . , x2k} ∩ D‖.

Third, given two arbitrary NP-complete problems D1 and D2, there are polynomial-time many-one reductions h1 and h2

from D to D1 and D2, respectively. Letting

y1 = h1(x1), y2 = h1(x3), . . . , h1(x2k−1) and

z1 = h2(x2), z2 = h2(x4), . . . , h2(x2k),

we have

‖{x1, x3, . . . , x2k−1} ∩ D‖ = ‖{y1, y2, . . . , yk} ∩ D1‖ and

‖{x2, x4, . . . , x2k} ∩ D‖ = ‖{z1, z2, . . . , zk} ∩ D2‖.
Fourth, given a polynomial-time computable function g : ⋃∞

k=1(

∗)2k → 
∗ , we obtain another such function f that 

satisfies

f (x1, . . . , x2k) ∈ A ⇐⇒ g(y1, . . . , yk, z1, . . . , zk) ∈ A

by simply defining f (x1, . . . , x2k) = g(y1, . . . , yk, z1, . . . , zk).
Finally, x1 ∈ D ⇐ ·· · ⇐ x2k ∈ D implies both

x1 ∈ D ⇐ x3 ∈ D ⇐ ·· · ⇐ x2k−1 ∈ D and x2 ∈ D ⇐ x4 ∈ D ⇐ ·· · ⇐ x2k ∈ D,

which in turn implies

y1 ∈ D1 ⇐ ·· · ⇐ yk ∈ D1 and z1 ∈ D2 ⇐ ·· · ⇐ zk ∈ D2. �
Lemma 28 provides for several equality problems the proofs of �p

2-hardness (and thus �p
2-completeness), which Wagner 

asserted [40, page 79] without spelling out the straightforward proofs. In particular, EqualIndependentSet, EqualVertex-

Cover, EqualColorability, and EqualClique—which ask whether two graphs have the same graph number α, β , χ , and 
ω, respectively—and EqualMaxSat—which asks whether two formulas in 3CNF have the same maximal number of simul-
taneously satisfiable clauses—are all �p

2-complete. This is seen by applying Lemma 28 to the proofs of the corresponding 
theorems by Wagner [40, Theorems 6.1, 6.2, and 6.3].

By applying Lemma 29 instead, we immediately obtain �p
2-completeness for the comparison problems CompareIndepen-

dentSet, CompareVertexCover, CompareColorability, CompareClique, and CompareMaxSat.
For all but CompareColorability, �p

2-hardness was also proved by Spakowski and Vogel [38, Theorems 2, 12 and 13]. 
We now show how to apply concretely Lemma 29 to obtain the �p

2-hardness of CompareColorability.

Proof of Theorem 26. This proof is modeled after the one for Wagner’s Theorem 6.3 [40]. We apply Lemma 29 with A =
CompareColorability and D1 = D2 = 3Sat.

Let k ∈N − {0} and let 2k formulas 	1, . . . , 	k, �1, . . . , �k ∈ 3CNF satisfying

	1 ∈ 3Sat ⇐ ·· · ⇐ 	k ∈ 3Sat and

�1 ∈ 3Sat ⇐ ·· · ⇐ �k ∈ 3Sat
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be given. Denote by h the standard reduction from 3Sat to 3Colorability by Garey et al. [17]; it maps a formula to a 
graph whose chromatic number is 3 if the formula is satisfiable and 4 otherwise. Moreover, let G = h(	1) + · · ·+ h(	k) and 
H = h(�1) + · · · + h(�k), where + denotes the graph join. It follows that

χ(G) =
k∑

i=1

χ(h(	i)) = 4k − ‖{	1, . . . ,	k} ∩ 3Sat‖ and

χ(H) =
k∑

i=1

χ(h(�i)) = 4k − ‖{�1, . . . ,�k} ∩ 3Sat‖.

Thus we have χ(H) ≤ χ(G) if and only if

‖{	1, . . . ,	k} ∩ 3Sat‖ ≤ ‖{�1, . . . ,�k} ∩ 3Sat‖.
The map g : (	1, . . . , 	k, �1, . . . , �k) �→ (H, G) therefore satisfies all requirements of Lemma 29, which concludes the 
proof. �
6. Two-Way Stability

A graph is two-way stable if it is stable with respect to both the deletion and addition of an edge. First, we note that the 
analogous problem with respect to vertices is trivial for both Colorability and Vertex Cover. The following is an immediate 
consequence of Theorem 23.

Theorem 30. There is no vertex-two-way-stable graph and only one β-vertex-two-way-stable graph, namely the null graph with the 
empty vertex set.

The default case of edge deletion is more interesting. We begin with Colorability.

Theorem 31. Assume that there are polynomial-time computable functions f : G → G and g : G → Z such that for any graph G we 
have that f (G) is unfrozen and χ( f (G)) = χ(G) + g(G). Then the problem TwoWayStability is �p

2-complete.

Proof. We have TwoWayStability = Stability ∩ Unfrozenness. The membership in �p
2 is immediate. For �p

2-hardness, we 
show that the map f (G) = G ∪ G is a reduction from Unfrozenness, which is �p

2-hard by Theorem 25 under the stated 
assumptions. First, G ∪G is stable for any given graph G since χ(G1 ∪G2) = max{χ(G1), χ(G2)} for all graphs G1, G2 ∈ G . We 
conclude that G ∪ G is two-way-stable if and only if it is unfrozen. Moreover, G ∪ G is unfrozen if and only if G is unfrozen: 
A nonedge e ∈ E(G) is unfrozen in G exactly if it is unfrozen in G ∪ G , again due to χ(G1 ∪ G2) = max{χ(G1), χ(G2)}. It 
remains to examine the nonedges that can be added to G ∪ G between the two copies of G . Let {v1, v2} be such a nonedge. 
We prove that it is unfrozen. Without loss of generality, assume that G is nonempty, that is, χ(G) > 1. Given an optimal 
coloring for G , we obtain an optimal coloring for G ∪ G + {v1, v2} by coloring both copies according to the given coloring, 
just with the colors permuted appropriately for the second copy, that is, such that v2 receives a color different from the 
one of v1. �

We are able to prove the analogous result for β-TwoWayStability via Lemma 32.

Lemma 32. Let a nonempty graph G and an edge e = {v, v ′} ∈ V (G) be given. Construct from G a graph G ′ by adding to e the gadget 
consisting of a clique on the new vertex set Q = {u1, u2, u3, u4, u′

1, u
′
2, u

′
3, u

′
4}, with the four edges {ui, u′

i} for i ∈ {1, 2, 3, 4} removed 
and the four edges {v, u1}, {v, u2}, {v ′, u3}, and {v ′, u4} added. (This gadget is displayed in Figure 5b.) The graph G ′ has the following 
properties.

1. β(G ′) = β(G) + 6,
2. every edge e′ ∈ E(G) − {e} is β-stable in G exactly if it is in G ′,
3. all remaining edges of G ′ are β-stable,
4. every nonedge e′ ∈ E(G) is β-unfrozen in G exactly if it is in G ′ , and
5. all remaining nonedges e′ ∈ E(G ′) − E(G) of G ′ are β-unfrozen.

Proof. We prove that G ′ has the required properties.

1. Let X be a vertex cover of G . It must contain v or v ′ . If v ∈ X , then it follows that X ∪ {u2, u3, u4, u′
2, u

′
3, u

′
4} is a 

vertex cover of G ′; if v ′ ∈ X , then X ∪ {u1, u2, u3, u′ , u′ , u′ } is one. This proves β(G ′) ≤ β(G) + 6. To obtain the inverse 
1 2 3

118



F. Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103–121
v v ′

(a) An edge to be stabilized.

v

u1

u2 u3

u4

u′
1

u′
2 u′

3

u′
4

v ′

(b) The same section after adding the stabilization gadget.

Fig. 5. How to stabilize an arbitrary edge {v, v ′} without introducing new unfrozen edges.

inequality, let X ′ be a vertex cover of G ′ . Then X ′ − Q is a vertex cover of G . Moreover, for any vertex w ∈ Q , we 
have that, if w /∈ X ′ , then X ′ must contain the entire neighborhood of w , which contains exactly six vertices from Q . It 
follows that

β(G) ≤ ‖X ′ − Q ‖ ≤ ‖X ′‖ − 6 ≤ β(G ′) − 6.

2. This is a consequence of the first property since, for every edge e′ ∈ E(G) −{e}, our construction clearly commutes with 
deleting e′ .

3. Let e′ = e or e′ ∈ E(G ′) − E(G). We need to show that β(G ′ − e′) ≥ β(G) + 6. We denote the induced graph of G ′ − e′ on 
the eight vertices Q by (G ′ − e′)[Q ].
Assume first that e′ 
= e. This implies that deleting the vertices Q from G ′ − e yields exactly the original graph G . 
Therefore, it suffices to show that any vertex cover of (G ′ − e′)[Q ] contains at least 6 vertices, which is the same as 
saying that any independent set of (G ′ − e′)[Q ] contains at most 2 vertices, which is in turn equivalent to proving 
that the complement graph of (G ′ − e′)[Q ] contains no clique of size 3. This is obvious since this complement of 
(G ′ − e′)[Q ] consists of the four edges {u1, u′

1}, {u2, u′
2}, {u3, u′

3}, and {u4, u′
4} plus potentially the edge e′ , which can 

at most connect two of these otherwise disjoint edges but never complete a triangle.
Assume now that e′ = e. Our observation from the previous paragraph is still sufficient in the case of a vertex cover of 
G ′ − e that contains v or v ′ since removing Q still yields a vertex cover of the original graph G in this case. Only if 
neither v nor v ′ is part of the considered vertex cover of G ′ − e′ , then we have to show that (G ′ − e′)[Q ] is guaranteed 
to contain 7 vertices instead of only 6. This is easy to see since u1, u2, u3, and u4 are required to cover the edges 
leading from them to v and v ′ and three more vertices are necessary to cover the edges of the 4-clique on u′

1, u′
2, u′

3, 
and u′

4.
4. The argument for the second property is valid for nonedges e′ ∈ E(G) as well.
5. Let e′ ∈ E(G ′) − E(G) and let X be a vertex cover of G . We show how to obtain a vertex cover for G ′ + e′ by adding 

six vertices to X . At least one endpoint of e lies in Q , call it w . If w ∈ {u1, u′
1, u4, u′

4}, let X ′ = X ∪ {u1, u′
1, u4, u′

4}; 
otherwise, let X ′ = X ∪ {u2, u′

2, u3, u′
3}. Let X ′′ = X ′ ∪ {u3, u′

3, u4, u′
4} if v ∈ X . Otherwise, we have v ′ ∈ X and let X ′′ =

X ′ ∪ {u1, u′
1, u2, u′

2}. It is easy to check that X ′′ is a vertex cover of G ′ + e′ and ‖X ′′‖ = ‖X‖ + 6 in all cases.

This concludes the proof. �
An iterated application of Lemma 32 allows us to stabilize an arbitrary set of edges of an arbitrary graph without 

introducing any new unfrozen nonedges. The �p
2-hardness of β-TwoWayStability is now an easy consequence of Lemma 32.

Theorem 33. The problem β-TwoWayStability is �p
2-complete.

Proof. The upper bound is immediate. We now give a polynomial-time many-one reduction from β-Unfrozenness, which 
is �p

2-hard by Theorem 24, to β-TwoWayStability. For given G , we replace each edge e ∈ E(G) by the gadget displayed in 
Figure 5b and call the resulting graph Ĝ . This is possible in polynomial time because the gadget has constant size. By an 
iterated application of Lemma 32, all new edges in the resulting graph Ĝ are β-stable and each pre-existing edge e ∈ E(G)

is β-unfrozen in Ĝ if and only if it was β-unfrozen in G . Thus Ĝ is β-two-way-stable if and only if G is β-unfrozen. �
7. Connections between Clique, Vertex Cover, and Independent Set

We conclude our investigations by examining the relations between the three problems of Clique, Vertex Cover, and 
Independent Set. As is to be expected, they are so closely related that almost all stability results for one of them carry over 
to the other two in a straightforward way.

Proposition 34. Let G denote the complement graph of G. We have the following equalities.
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1. β-Stability = α-Stability = {G | G ∈ ω-Unfrozenness}.
2. β-Unfrozenness = α-Unfrozenness = {G | G ∈ ω-Stability}.
3. β-TwoWayStability = α-TwoWayStability = {G | G ∈ ω-TwoWayStability}.
4. β-VertexStability = {In | n ∈N}.
5. α-VertexStability = {G | G ∈ ω-VertexStability}.
6. β-VertexUnfrozenness = β-VertexTwoWayStability = {K0}.
7. α-VertexUnfrozenness = α-VertexTwoWayStability = ω-VertexUnfrozenness = ω-VertexTwoWayStability = ∅.

Proof. For the second equality of the first three items it suffices to note that an independent set of a graph is a clique of 
its complement graph and vice versa. The first equality of the first three items follows from the fact that, on the one hand, 
for any graph on n vertices, the complement of a vertex cover of size k is an independent set of size n − k and, on the 
other hand, adding or deleting edges obviously does not change the number of vertices. For the remaining items, we add 
or delete vertices, so this argument does not hold anymore. Item 4 is exactly Theorem 20. For item 5, we simply use that a 
clique is an independent set in the complement graph and vice versa. Item 6 combines Theorems 23 and 30. Item 7 finally 
follows from the fact that adding an isolated vertex increases α, while adding a universal vertex increases ω. �

An interesting inversion in this pattern occurs for the vertex deletion case. Here, switching from β to α or ω in fact flips 
the stability problem to the criticality version and vice versa.

Proposition 35. We have the following equalities.

1. β-VertexStability = α-VertexCriticality = {G | G ∈ ω-VertexCriticality}.
2. β-VertexCriticality = α-VertexStability = {G | G ∈ ω-VertexStability}.

Proof. For the second part of the claim, it suffices to prove that a vertex v of a graph G is α-stable if and only if it is 
β-critical. For the first part of the claim we then only need to recall that any vertex must be either α-stable or α-critical 
and likewise either β-stable or β-critical by the definition of these notions. In the fourth step of the following equivalence 
chain we use that every minimum vertex cover is the complement of a maximum independent set and vice versa.

v is α-stable ⇐⇒ α(G − v) = α(G)

⇐⇒ ‖V (G)‖ − α(G − v) = ‖V (G)‖ − α(G)

⇐⇒ ‖V (G − v)‖ − α(G − v) + 1 = ‖V (G)‖ − α(G)

⇐⇒ β(G − v) + 1 = β(G)

⇐⇒ β(G − v) 
= β(G)

⇐⇒ v is β-critical. �
Using Proposition 35, we directly obtain from the �

p
2-hardness of β-VertexCriticality [5] the same for α-Vertex-

Stability and, by complementing the graphs, ω-VertexStability. We note that these are the only nontrivial results revealed 
by the connection between stability and criticality.
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