Journal of Computer and System Sciences 123 (2022) 103-121

Contents lists available at ScienceDirect

JOURNAL or
COMPUTER
2" SYSTEM

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Complexity of stability ™ |

Check for
updates

Fabian Frei®*, Edith Hemaspaandra®!, Jorg Rothe ©-2

4 Department of Computer Science, ETH Ziirich, Universitdtstrasse 6, 8092 Ziirich, Switzerland
b pepartment of Computer Science, Rochester Institute of Technology, Rochester, NY 14623, USA
¢ Institut fiir Informatik, Heinrich-Heine-Universitit Diisseldorf, 40225 Diisseldorf, Germany

ARTICLE INFO ABSTRACT
Article history: Graph parameters such as the clique number and the chromatic number are central in
Received 16 January 2021 many areas, ranging from computer networks to linguistics to computational neuroscience

Received in revised form 4 June 2021
Accepted 12 July 2021
Available online 28 July 2021

to social networks. In particular, the chromatic number of a graph can be applied in solving
practical tasks as diverse as pattern matching, scheduling jobs to machines, allocating
registers in compiler optimization, and even solving Sudoku puzzles. Typically, however,
the underlying graphs are subject to (often minor) changes. To make these applications of

'gfﬁ?gs' graph parameters robust, it is important to know which graphs are stable in the sense that
Colorability adding or deleting single edges or vertices does not change them. We initiate the study
Vertex cover of stability of graphs in terms of their computational complexity. We show for various
Satisfiability central graph parameters that deciding the stability of a given graph is complete for @5, a
Difference polynomial time well-known complexity class in the second level of the polynomial hierarchy.

Parallel access to NP © 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this first section, we motivate our research topic, introduce the necessary notions and notation, and provide an
overview of both the related work and our contribution.

1.1. Motivation

Informally stated, a graph is stable with respect to some graph parameter (such as the chromatic number) if some type
of small perturbation of the graph (a local modification such as adding an edge or deleting a vertex) does not change
the parameter. Other graph parameters we consider are the clique number, the independence number, and the vertex
cover number. This notion of stability formalizes the robustness of graphs for these parameters, which is important in
many applications. Typical applications of the chromatic number, for instance, include coloring algorithms for complex
networks such as social, economic, biological, and information networks (see, e.g., Jackson’s book on social and economic
networks [28] or Khor’s work on applying graph coloring to biological networks [30]). In particular, social networks can

* A preliminary version of parts of this paper appeared in the Proceedings of the 31st International Symposium on Algorithms and Computation
(ISAAC) [16].
* Corresponding author,
E-mail addresses: fabian.frei@inf.ethz.ch (F. Frei), eh@cs.rit.edu (E. Hemaspaandra), rothe@hhu.de (J. Rothe).
1 Research done in part while on sabbatical at Heinrich-Heine-Universitit Diisseldorf and supported in part by NSF grant DUE-1819546 and a Renewed
Research Stay grant from the Alexander von Humboldt Foundation.
2 Research supported by DFG grants RO 1202/14-2 and RO 1202/21-1.

https://doi.org/10.1016/j.jcss.2021.07.001
0022-0000/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcss.2021.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2021.07.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:fabian.frei@inf.ethz.ch
mailto:eh@cs.rit.edu
mailto:rothe@hhu.de
https://doi.org/10.1016/j.jcss.2021.07.001
http://creativecommons.org/licenses/by/4.0/

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

be colored to find roles [15] or to study human behavior in small controlled groups [29,10]. In various applied areas of
computer science, graph coloring has also been used for register allocation in compiler optimization [7], pattern matching
and pattern mining [39], and scheduling tasks [31]. To ensure that these applications of graph parameters are robust, graphs
need to be stable for them with respect to certain operations. Recognizing instability in advance is desirable as it affords us
the opportunity to amend the situation or at least take precautions for the case of a sudden change. We initiate a systematic
study of stability of graphs in terms of their computational complexity and present some tools to stabilize specific parts of
a graph.

1.2. Notions and notation
In this subsection, we define the core notions used in this paper and fix our notation.

1.2.1. Complexity classes
We begin with the relevant complexity classes. Besides P, NP, and coNP, these are DP, coDP, and @g. The class DP,
introduced by Papadimitriou and Yannakakis [35], is the second level of the Boolean hierarchy over NP; that is,

DP=NPAcoNP={L1NLy|L; € NPAL, € coNP}

is the set of all intersections of NP languages with coNP languages. Equivalently, it can be seen as the differences of NP
languages, whence the name. An example of a trivially DP-complete language is SAT-UNSAT = SAT x UNSAT, where UNSAT
is the set of all unsatisfiable CNF-formulas. The complement class coDP contains exactly the unions of NP languages with
coNP languages.

The class G)g, whose name is due to Wagner [41], belongs to the second level of the polynomial hierarchy; it can be
defined as @ = PNPIOUogM] which is the class of problems that can be solved in polynomial time by an algorithm with
access to an oracle that decides arbitrary instances for an NP-complete problem—with one instance per call and each such
query taking constant time—restricted to a logarithmic number of queries. (Without the last restriction, we would get the
class Ab = PP.) Results due to Hemachandra [23, Theorem 4.10] usefully characterize ®} as Pf, the class of languages
that are polynomial-time truth-table reducible to NP. By definition, this is the same as Pﬁ“’, the class of languages that are
polynomial-time recognizable with unlimited parallel access to an NP oracle. Unlimited means that an algorithm witnessing
the membership of a problem in Pﬁ”’ can query the oracle on as many instances of an NP-complete problem as it wants—
which due the polynomial running-time means at most polynomially many—while parallel means that all queries need
to be sent simultaneously. The characterization of ®5 as PNFIOU%8M] in contrast, allows the logarithmically many queries
to be adaptive; that is, they can be sent interactively, with one depending on the oracle’s answers to the previous ones.
Membership proofs for (95 are usually easy; we will see a simple example of how to give one at the beginning of Section 3.

Note that the definitions immediately yield the inclusions

NP U coNP € DP € ©) € A).

1.2.2. Graphs and graph numbers

Throughout this paper graphs are simple. Let G be the set of all (simple) graphs and N the set of natural numbers
including zero. For any set M, we denote its cardinality or size by |M||. A map &: G — N is called a graph number. In this
paper, we examine the prominent graph numbers «, 8, x, and w, which give the size of a maximum independent set, the
size of a minimum vertex cover, the size of a minimum coloring (i.e., the minimum number of colors allowing for a proper
vertex coloring), and the size a maximum clique, respectively.

Let V, E, and E be the functions that map a graph G to its vertex set V(G), its edge set E(G), and its set of nonedges
EG) ={{u,v}|u,veV(G) Auz#v}— E(G), respectively.

Let G and H be graphs. We denote by G U H the disjoint union and by G + H the join, which is G U H with all join
edges—i.e., the edges {v, w} € V(G) x V(H)—added to it.?

For v € V(G), e € E(G), and e’ € E(G), we denote by G — v, G —e, and G + ¢’ the graphs that result from G by deleting
v, deleting e, and adding e’, respectively.

For any k € N, we denote by Iy and K the empty (i.e., edgeless) and the complete graph on k vertices, respectively. The
graph Ip = Ky without any vertices is called the null graph. A vertex v is universal with respect to a graph G if it is adjacent
to all vertices V(G) — {v}.

1.2.3. Stability

Let G be a graph. An edge e € E(G) is called stable with respect to a graph number & (or &-stable, for short) if £(G) =
£(G —e), that is, deleting e leaves & unchanged. Otherwise (that is, if the deletion of e does change &), e is called &-critical.
For a vertex v € V(G) instead of an edge e € E(G), stability and criticality are defined in the same way.

3 We adopt the notation G + H for the join from Harary’s classical textbook on graph theory [20, p. 21].

104

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

A graph is called &-stable if all of its edges are &-stable. A graph whose vertices—rather than edges - are all £-stable is
called &-vertex-stable. Analogously, a graph is called &-critical and &-vertex-critical if all its edges and vertices, respectively,
are &-critical. Note that each edge and vertex is either stable or critical, whereas a graph might be neither. An unspecified
& defaults to the chromatic number .

A traditional term for stability with respect to adding edges and vertices—rather than deleting them—is unfrozenness.
Specifically, a nonedge e € E(G) is called unfrozen if adding it to the graph G leaves y unchanged, and frozen otherwise.
All of these notions extend naturally to vertices (where we can freely choose to which existing vertices a new vertex is
adjacent, implying an exponential number of possibilities), to entire graphs, and to any graph number &, as just seen for
stability and criticality.

We call a graph two-way stable if it is both stable and unfrozen. Again, this notion is understood with respect to the
chromatic number and modifying edges by default; namely, a graph is two-way stable if neither deleting nor adding a
single edge changes the chromatic number. As before, we have the analogous set of notions with respect to vertices and
any graph number &.

Prefixing a natural number k € N to any of these notions additionally requires the respective graph number to be exactly
k. For example, a graph G is k-critical if and only if x (G) =k and x (G —e) #k for every e € E(G).

The notion of stability can be naturally applied to Boolean formulas as well. We call a formula & in conjunctive normal
form stable if deleting an arbitrary clause C does not change its satisfiability status—that is, if it either is satisfiable (and
of course stays so upon deletion of a clause) or if it and all its 1-clause-deleted subformulas ® — C are unsatisfiable. We
remark that the unfrozen formulas are exactly the unsatisfiable ones since adding an empty clause renders any formula
unsatisfiable.

4

1.2.4. Stability problems

We denote by CNF the set of formulas in conjunctive normal form and by 3CNF, 4CNF, and 6CNF the set of CNF-
formulas with exactly 3, 4, and 6 literals per clause, respectively.” The sets SAT and 3SAT contain the satisfiable, UNSAT
and 3UNSAT the unsatisfiable formulas from CNF and 3CNF, respectively. Let STABLEUNSAT = {® € UNSAT | (& — C) €
UNSAT for every clause C of ®} be the set of stably unsatisfiable formulas. The set STABLECNF = SAT U STABLEUNSAT consists
of the stable CNF-formulas. Intersecting with 3CNF yields the classes STABLE3UNSAT and STABLE3CNF and so on.

Let STABILITY be the set of stable graphs and UNFROZENNESS the set of unfrozen graphs, both with respect to the default
graph number x. The set of two-way stable graphs is TWOWAYSTABILITY = STABILITY N UNFROZENNESS. Once more, these
definitions extend naturally. For example, 4-VERTEXSTABILITY is the set of (with respect to the default) 4-vertex-stable
graphs and SB-TwoWAYSTABILITY consists of the graphs for which the vertex-cover number B remains unchanged upon
deletion or addition of an edge.

1.2.5. AND functions and OR functions
Following Chang and Kadin [9], we say that a language L € ¥* has AND; if there is a polynomial-time computable
function f: X* x X* — ¥* such that for all x1, xo € £*, we have

Xx1€ELAX el < f(x1,x3) €L.

If this is the case, we call f an AND, function for L. If there even is a polynomial-time computable function f :
U,;'io(E*)k — X* such that for every k € N and for all xq,...,x, € ¥* we have

XMeELA--Axpel & f(x1,...,x) €L,

then we say that L has AND,,. Replacing A with v, we get the analogous notions OR; and OR,. Note that a language has
an AND; function if and only if its complement has an OR; function, with the analogous statement holding for AND,, and
OR,,.

1.3. Related work

Many interesting problems are suspected to be complete for either DP or @g. While membership is usually trivial in
these cases, matching lower bounds are rare and hard to prove. For example, Woeginger [44] observes that determining

4 The notion of instance parts being either frozen or unfrozen has originally been introduced to the field of computational complexity in analogy to the
physical process of freezing [32,33].

The sudden shift from P to NP-hardness that can be observed when transitioning from 2SAT to 3SAT by allowing a larger and larger percentage of clauses
of length 3 rather than 2, for example, mimics the phase transition from liquid to solid, with the former granting much higher degrees of freedom to the
substance’s constituents than the latter. Based on this general intuition, Beacham and Culberson [2] then more formally defined the notion of unfrozenness
with regard to an arbitrary graph property that is downward monotone (meaning that a graph keeps the property when edges are deleted); they call a
graph unfrozen if it also keeps the property when an arbitrary new edge is added. We naturally extend this notion to arbitrary graph numbers, which are
not necessarily monotone.

5 In the literature, these set names are often prefixed by an E, emphasizing the exactness. This is notably not the case for a paper by Cai and Meyer [6]
that contains a construction crucially relying on this restriction. We will build upon this construction later on and are thus bound to the same constraint.

105

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

whether a graph has a wonderfully stable partition is in 65 , and leaves it as an open problem to settle the exact complexity.
Wagner, who introduced the class name ®g [40], provided a number of hardness results for variants of standard problems
such as Satisfiability, Clique and Colorability, which are designed to be complete for DP or @g. For example, he proves the
DP-completeness of

EXACTCLIQUE = {(G, k) € G x N | w(G) =k} [40, Theorem 6.1.1]

and the @S-completenessG of

ODDCLIQUE = {G € G | w(G) isodd} [40, Theorem 6.1.2].

He obtains the analogous results for Colorability [40, Theorem 6.3], Vertex Cover [40, Corollary 6.4], and Independent Set [40,
Corollary 6.4] instead of Clique and points out [40, second-to-last paragraph] that his proof techniques also yield the ®§—
completeness of the equality version of all of these problems—for example,

EQUALCLIQUE = {(G, H) € G? | w(G) = w(H)}.

The same holds true for the comparison versions’ such as

CoMPARECLIQUE = {(G, H) € G? | w(G) < w(H)}.

The DP-completeness of EXACTCOLORABILITY has been extended to the subproblem of recognizing graphs with chromatic
number 4 [36]. Furthermore, a few election problems have been proved to be ®§—complete by Hemaspaandra et al. [24,25],
by Rothe et al. [37], and Hemaspaandra et al. [26]. Weishaupt and Rothe [42] provide a systematic study of graph classes
(including trees, bipartite graphs, and co-graphs) for which various stability problems become polynomial-time solvable.

In general, establishing lower bounds proved to be difficult for many natural DP-complete and particularly ®§—comp1ete
problems. Consequently, hardness results remained rather rare in the area of criticality and stability, despite the great atten-
tion that these natural notions have garnered from graph theorists ever since the seminal paper by Dirac [13] from 1952;
see for example the classical textbooks by Harary [20, chapters 10 and 12] and Bollobas [3, chapter IV]—the latter having
a precursor dedicated exclusively to extremal graph theory [4, chapters | and V]—and countless papers over the decades,
of which we cite some selected examples from early to recent ones [14,21,1,43,18,22,12,27,11]. A pioneering complexity
result by Papadimitriou and Wolfe [34, Theorem 1] establishes the DP-completeness of MINIMALUNSAT. (They call a formula
minimally unsatisfiable if deleting an arbitrary clause renders it satisfiable, that is, if it is critical.) They also proved that de-
termining, given a graph G and a k € N, whether G is k-w-vertex-critical is a DP-complete problem [34, Theorem 4]. Later,
Cai and Meyer [6] showed the DP-completeness of k-VERTEXCRITICALITY (which they call MINIMAL-k-UNCOLORABILITY) for all
k > 3. Burjons et al. [5] recently extended this result to the more difficult case of edge deletion, showing that k-CRITICALITY
is DP-complete for all k > 3 [5, Theorem 8]. They also provided the first @g—hardness result for a criticality problem, namely
for S-VERTEXCRITICALITY [5, Theorem 15].

Note the drop in difficulty down to DP when fixing the graph number. This emerges as a general pattern, as evidenced
by our results outlined in the contribution section below.

Stability, in contrast to criticality, has been sorely neglected by the computational complexity community, which is sur-
prising in light of its apparent practical relevance—for example in the design of infrastructure, where stability is a most
desirable property. As a small exception to this, Beacham and Culberson [2] proved a comparably easy variant of Unfrozen-
ness, namely {(G, k) | x(G) <k and G is unfrozen}, to be NP-complete.

1.4. Contribution

We choose four of the most prominent graph problems— Colorability, Vertex Cover, Independent Set, and Clique—to
analyze the complexity of stability. We prove all of them to be ®g-complete for the default case of edge deletion. For
unfrozenness—that is, stability with respect to edge addition—we prove the same, with the one exception of Colorability.
For this problem, we prove that the existence of a construction with a few simple properties would be sufficient to prove
®§—completeness. Finally, we introduce the notion of two-way stability—stability with respect to both deleting and adding
edges—and prove again ®§-completeness for all four problems. Table 1 provides an overview of these results, showcasing
surprising contrasts between some of the problems.

We also derive several other useful results with broad appeal on their own, among these being the coDP-completeness
of STABLE3CNF [Theorem 12], the DP-completeness of k-STaBILITY and k-VERTEXSTABILITY for all k > 4 [Theorem 17], gen-
eral criteria for proving DP-hardness [Lemmas 28 and 29], and finally constructions such as the edge-stabilizing gadget

6 Note that Wagner originally derived his results with respect to the more restricted form of polynomial-time reducibility via Boolean formulas, indicated
by the bf in the class name. He later proved the resulting notions to be equivalent, however; that is, we have ng = @g [41].

7 Spakowski and Vogel explicitly proved the (~)2p—comp1eteness of COMPAREVERTEXCOVER [38, Theorem 12], ComMPARECLIQUE and COMPARE-
INDEPENDENTSET [38, Theorem 13]. For other cases, see Lemma 29 and Theorem 26.

106

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

Table 1
An overview of our results regarding the complexity of different stability problems. See Section 7 for the results on Clique and Independent Set; almost all of
them follow in analogy to the ones for Vertex Cover [Proposition 34], with o-VERTEXSTABILITY and @-VERTEXSTABILITY being the exception [Proposition 35].

With respect to this

base problem and Stability Unfrozenness Two-Way Stability

graph number: Edge Vertex Edge Vertex Edge Vertex

Vertex Cover, B [Theorem 22] [Theorem 20] [Theorem 24] [Theorem 23] [Theorem 33] [Theorem 30]
©5-complete P ©5-complete P ©5-complete P

Independent Set, o p p p P

and Clique, @ ©;-complete ©;-complete ©®,-complete P ©;-complete P

Colorability, x ©5-complete ©5-complete ? p ©5-complete p
[Theorem 5] [Theorem 6] [Theorem 25] [Theorem 23] [Theorem 31] [Theorem 30]

[Lemma 18] that yields an AND,, function for StaBILITY [Corollary 19] and has potential applications in various contexts
such as reoptimization and general graph theory. For example, it enhances the time-honored Haj6s construction [19], which
shows how we can build arbitrarily complex critical graphs, by allowing us to construct graphs with any given number of
stable edges.

2. Basic observations

We begin with a few very basic and useful observations that will be used implicitly and, where appropriate, explicitly
throughout the paper.

Observation 1. The deletion of an edge or of a vertex either decreases the chromatic number by exactly one or leaves it unchanged.

Proof. It is clear that deleting an edge or vertex cannot increase the chromatic number. To see that this cannot decrease
it by more than one, it suffices to note that introducing a new edge or vertex can increase it by at most one since we can
assign one new, unique color to the new vertex or to one of the two vertices of the inserted edge. O

Observation 2. Let e = {u, v} be a critical edge. Then u and v are critical as well.

Proof. Since G —u and G — v are subgraphs of G —e, both (G —u) and x (G — v) are at most x (G — e), which is less than
X (G) because e is critical. Thus u and v are critical. O

Observation 3. Let v be a stable vertex. Then all edges incident to v are stable.
Proof. This follows immediately from the contrapositive of Observation 2. 0O

Observation 4. Let G be a graph. A vertex v € V (G) is critical if and only if there is an optimal coloring of G that assigns v a color with
which no other vertex is colored.

Proof. Given a critical v € V(G), consider an arbitrary optimal coloring of G — v. Since v is critical, it uses one fewer color
than the optimal colorings of G. We therefore obtain an optimal coloring of G by assigning v a new color. The converse is
immediate. O

3. Stability and Vertex-Stability for Colorability

We will prove @g—completeness for both STABILITY and VERTEXSTABILITY. On a very high level, this structure of this
section can be summarized as follows: In general, only the lower bounds are hard to prove. Theorem 12 establishes the
coDP-completeness of STABLE3CNF, which is reduced to VERTEXSTABILITY in Theorem 16. Knowing VERTEXSTABILITY to be
coDP-hard, we can now apply Corollary 8 to elevate this to ®5-hardness. This hardness result in turn transfers to STABILITY
via the reduction from Lemma 7. We will not prove these results in this order, however, in an effort to keep the distance
to our main goal minimal by finishing the more manageable parts first and avoiding having too many loose ends at a time.
The section will conclude with Theorem 17 and Lemma 18, whose proofs mostly stand on their own.

We now formally state our two main goals for this section.

Theorem 5. Determining whether a graph is stable is G)g—complete.

Theorem 6. Determining whether a graph is vertex-stable is ®g—complete.

107

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

As is typical, the upper bounds are immediate: Recalling that ©F = Pﬁ"’, we can determine the chromatic numbers of a
graph and all its 1-vertex-deleted and 1-edge-deleted subgraphs with a polynomial number of parallel queries to an oracle
for the standard, NP-complete colorability problem {(G,k) € G x N | x(G) < k}. Specifically, the queries (G, k), (G — e, k),
and (G — v, k) for every e € E(G), every v € V(G), and every k € {0, ..., ||[V(G)|]} suffice to find out whether G is stable and
whether it is vertex-stable. We mention that we could also have relied on the definition @g = pNPIOdogn)] fop proving this
upper bound by finding the chromatic numbers via a binary search with a logarithmic number of adaptive queries. To prove
the matching lower bounds, we first note that the lower bound for Theorem 6 implies the lower bound for Theorem 5.

Lemma 7. VERTEXSTABILITY polynomial-time many-one reduces to STABILITY.

Proof. We show that G is vertex-stable if and only if G + G is stable. Assume that G is vertex-stable. Then G + G is
vertex-stable too as an immediate consequence of the general equation x(Gi + G2) = x(G1) + x(G2), which holds for
arbitrary graphs G; and G; since the join edges force the vertices of G; and G, to use disjoint sets of colors. Hence
G + G is stable by Observation 3. For the converse, suppose that G is not vertex-stable. Then there is a vertex v with
X (G —v) = x(G)—1. We will color of the graph G + G from which the edge between the two copies of v has been deleted
with 2(x(G) — 1)+ 1= x(G + G) — 1 colors, proving that G + G is not stable. Fix any optimal coloring of G — v. We now
color both copies of G — v in G + G according to it, but using two disjoint sets of x(G) — 1 colors. Finally, we assign one
additional new color to the two vertices corresponding to v. O

It remains to establish the lower bound of Theorem 6, that is, to prove that determining whether a graph is vertex-stable
is ®5-hard. Proving ®§-hardness is not easy. However, we will now argue that it suffices to show that VERTEXSTABILITY is
coDP-hard.

Chang and Kadin [8, Theorem 7.2] show that a problem is G)g—hard if it is DP-hard and has an OR,, function. Observing
that @5 is closed under complementation, we obtain the following corollary.

Corollary 8. If a coDP-hard problem has an AND,, function, then it is G)g—hard.
We first note that VERTEXSTABILITY has an AND,, function.
Theorem 9. The join is an AND,, function for VERTEXSTABILITY and UNFROZENNESS.

Proof. Let Gy, ..., Gy, be a finite number of graphs. Consider G + - - - + Gp. For every i € {1,...,n}, the join edges force the
vertices V(G;) to have colors that are different from the colors of all remaining vertices. This implies x (G + ---+ Gp) =
X (G1) + -+ -+ x(Gp). Moreover, vertex deletion and edge addition commute with joining: For every v e V(G1+---+ Gp) =
V(G1)U---UV(Gy), there is an i such that

G1+--+G6)—v=GC1+-+Gi1+(Gi—V)+Gipy1 +---+ G
Analogously, for every nonedge e € E(Gy +--- + G) = E(G1) U --- U E(Gy), there is an i such that

Gi+-+Gn)+e=Gr+ - +Gi_1 + (Gi+€) +Giy1 + -+ +Gn.

The claim of the theorem follows immediately. O
Now, Theorem 6 follows from Corollary 8 and the coDP-hardness of VERTEXSTABILITY stated in the following lemma.
Lemma 10. Determining whether a graph is vertex-stable is coDP-hard.

To prove Lemma 10, we show in Theorem 12 that STABLE3CNF = 3SAT U STABLE3UNSAT is coDP-complete and then reduce
it to VERTEXSTABILITY in Theorem 16. We will use the following lemma twice.

Lemma 11. There is a polynomial-time many-one reduction from SAT to 3SAT converting a CNF-formula ® into a 3CNF-formula ¥
such that ® is stable if and only if W is stable.

Proof. The standard clause-size reducing reduction maps a CNF-formula ® = Cy A--- ACp to W' = F1 A--- A Fiy by splitting
any clause C = (£1 Vv --- Vv £) with k literals for a k > 3 into the k clauses of the subformula

F=(UVvyD)A@ VL Vy) A ATr_a VeV Ye—1) A g1 VL)

with fresh variables y; that do not occur elsewhere.

108

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

We prove that @ is stable if and only if ¥’ is. We already know that @ is satisfiable exactly if ¥’ is. Thus it suffices to
show that @ is satisfiable after deleting C if and only if W’ is satisfiable after deleting some clause in F. Let « be a satisfying
assignment for ® — C. We then obtain a satisfying assignment 8 for ¥ — (¢; v y1) by setting B(y1) =--- = B(Yk—1) =0
and the remaining variables as usual. For the converse, we simply observe that the restriction of an assignment satisfying
W’ with an arbitrary clause from F deleted satisfies ® — C.

We now transform ¥’ into a formula W € 3CNF that is stable exactly if ¥’ is. We do this by substituting for any two-
literal clause (£1 Vv £3) the subformula (¢1 Vv €3 v z) A (1 vV €2 vV Z) and for any one-literal clause (£1) the subformula
iVvZIVZINUEIVZIVZ) A1V ZIVZ2) A VZ1 VZ2), where z, z1, and z; are, for each substitution, new variables
that do not occur anywhere else. It is now straightforward to check that W has all the desired properties. O

Theorem 12. STABLE3CNF is coDP-complete.

The proof of Theorem 12 is based on a simple corollary to the following observation by Chang and Kadin: If a set is
NP-hard, coNP-hard, and it has an OR; function, then it is DP-hard [8, Lemma 5].

Corollary 13. If a set is NP-hard, coNP-hard, and it has an AND; function, then it is coDP-hard.

The proof of the corollary is immediate since an AND, function for one language is an OR; function for its complement
and vice versa. We can now start with the proof of Theorem 12.

Proof of Theorem 12. It is immediate that STABLE3CNF is in coDP. By Corollary 13, it now suffices to show that STABLE3CNF
is coNP-hard, NP-hard, and that it has an OR; function.

coNP-hardness. It is easy to see that the function

i OAXVYVDOAKXVYVIDIAKVYVIIARKVYVZ)
AXVYVIOIAXVYVIOARKVYVIOARKVYVZ),

where x, y, and z are fresh variables not occurring in &, reduces 3UNSAT to STABLE3CNF.

NP-hardness. We give a reduction from 3SAT to STABLE4CNF; composing it with the reduction from Lemma 11 yields the
desired reduction to STABLE3CNF. Given a 3CNF-formula & = C; A --- A Cp, over X = {X1,...,X,}, map it to the
4CNF-formula

U=(CrVY)ALCIVYIANC]VYIA-A
CmV Y A (Crv YD) A (Crv Y™ A
VY VY VDOAGVY VYV,
where the clauses C and C} are just like the clauses C; but with a new copy of variables X" = {x{,...,x;} and
X" ={x],...,x;} instead of X, respectively, and y, y’, y”, and z being four fresh variables as well. Deleting the
clause (vy vy’ vZ) renders W trivially satisfiable; any assignment that sets y, y’, y”, and z to 1 will do. Thus
W is stable if and only if it is satisfiable. It remains to prove the equisatisfiability of ® and W.

First assume that @ has a satisfying assignment o : X — {0, 1}. Then W is satisfied by any assignment T with
T(x)=t(X) =1(/)=0(x) for i e{1,...,n} and 7(y) = 0. Now assume that ¥ has a satisfying assignment 7.
The last two clauses (¥ VY vy’ Vvz) and (3 vy vy’ VvZ) of ¥ guarantee that T(y) =0, T(y') =0 or T(y")=0.
In the first case, ® is satisfied by o : x; — T(x;), in the second case by o’ : x; > r(xlf), and in the third case by
o x> T(X)).

OR;. In their proof of DP-completeness, Papadimitriou and Wolfe [34, Lemma 3 plus corollary] implicitly gave a sim-
ple AND; function for both MINIMALUNSAT and MINIMAL3UNSAT (the sets of unsatisfiable formulas that become
satisfiable after deleting any clause). We make use of the same construction.

Let ®=CyA---ACpand ' =Cj A---AC, be two given 3CNF-formulas. Without loss of generality, ® and
@’ have disjoint variable sets. Let

U= AN @GV

1<i<m,1<j<m’

Note that W is in 6CNF and equivalent to ® v ®’. We will show that ¥ € STABLE6CNF if and only if ® € STABLE3CNF
or ® e STaBLE3CNF. Setting the clause length of W to exactly 3 by applying Lemma 11 then yields the desired
OR;-reduction.

First assume that neither ® nor @’ is in STABLE3CNF. Then we have ®, ®' ¢ 3SAT and there are 7 € {1,...,m}
and j € {1,...,m’} and assignments o and ¢’ such that o satisfies ® — C; and o’ satisfies ' — C}. Then we have

109

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

Fig. 1. The graph G¢ for a 3CNF-formula with C; =x; v x; VX; and G =X; V X \V X,. The construction is due to Cai and Meyer [6], the figure to Burjons
et al. [5, Figure 1, slightly modified].

W ¢ SAT and (o, 0”) satisfies (C; v C}) for all (i, j) # (i, j). It follows that ¥ — (C; v C/;) is satisfiable, and thus
W ¢ STABLEGCNF.

Now assume that W ¢ STABLEGCNF. Then W ¢ SAT, and hence &, ®’ ¢ 3SAT. There are indices i and j such that
v — (G Vv C}) is satisfiable, say by assignment 7. This t satisfies (C; v C}) for all (i, j) # (i, j). In particular, t
satisfies (C; v @) for all i 7 and (® v C}) for all j = j. Since ®, ®’ ¢ 3SAT, this implies that T satisfies C; for all
i1 and C; for all j# j. It follows that @, @' ¢ STABLE3CNF.

This concludes the proof that STABLE3CNF is coDP-complete. O

All that is left to do is to reduce STABLE3CNF to VERTEXSTABILITY. First, we consider the known reduction from MINIMAL-
3UNSAT to VERTEXMINIMAL3UNCOLORABILITY by Cai and Meyer [6].

It maps a formula ® over the variable set {xq,...,x,} with m 3-clauses Cq,...,Cp to the graph G¢ constructed as
follows. For every clause C;, start with a triangle on three new vertices tj1, tj>, and tj3, add three disjoint edges {a;1, bi1},
{aiz, bi2}, and {a;3, b3}, and then insert the edges {b;1, ti1}, {bi2, ti2}, and {b;3, t;3}. For every variable x;, add an isolated edge
{xj,x;}. For every i € {1,...,m} and every k € {1, 2, 3}, connect a;, to the vertex representing the kth literal of C;. Finally,
add a vertex vs connected to the vertices aj, and by, for every i € {1,...,m} and every k € {1, 2,3}, and add a vertex v,
connected to the vertices x; and X; for all j e {1,...,n}. See Figure 1 [5, Figure 1, slightly modified] for an illustration of
the full construction, combining the single steps described in the original paper [6].

It comes as no surprise that this reduction does not work for us since, for example, Ggp — v is always 3-colorable, and
thus Go is never stable if @ is not satisfiable. However, careful checking reveals the following important property of G¢.

Lemma 14. A 3CNF-formula ® is not stable if and only if x (Go) > x (Go — ti1) for at leastonei e {1,...,m}.

Proof of Lemma 14. As stated by Cai and Meyer [6, Lemma 2.2], ® is satisfiable if and only if G¢ is 3-colorable. Note that
a & that is not stable is not satisfiable. Therefore, it suffices to check that ® — C; is satisfiable if and only if Gg — tjj
is 3-colorable. The mentioned paper proves this implication “by picture” [6, Figure 2.12] and states the converse in the
second-to-last paragraph of its second section. 0O

What we need now is a way to enhance the construction such that the deletion of a vertex other than tq1,..., ty1, for
example vg, does not decrease the chromatic number. We achieve this by the following lemma.

Lemma 15. Let G be a graph and v € V(G). Let G be theAgraph tilgt results frqln replicating v; that is, V(E) =V(G) U {v'} and
E(G)=EG)U{{v',w}|{v,w} € E(G)}.Then x (G) = x(G) = x(G —v) = x (G — V).

Proof. The only nontrivial part is to show that X(E) < x(G). To see this, we start with an arbitrary optimal valid vertex
coloring of G and then color v’ with the same color as v. O

110

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

Lemma 15 is simple and yet very powerful in our context. It allows us to select a set of vertices whose removal will not
influence the chromatic number, and thus will not influence whether or not the graph is vertex-stable. We can use this to
obtain the desired reduction.

Theorem 16. STABLE3CNF polynomial-time many-one reduces to VERTEXSTABILITY.

Proof. Given a 3CNF-formula ®, map it to r(Ge), where G¢ is the graph from the reduction by Cai and Meyer [6] and r
denotes the replication of all vertices other than ti1, ..., tm1.

If ® is not in STABLE3CNF, then we have x(Go¢) > x(Go — ti1) for some i € {1,...,m} by Lemma 14. Furthermore, a
repeated application of Lemma 15 yields x (r(Gg)) = x(Go) and x (r(Ge) —ti1) = x (r(Go —ti1)) = X (G —ti1). Thus r(Ge)
is not vertex-stable. For the converse, suppose that r(Ge) is not vertex-stable. Let v € V(r(Ge)) be a vertex such that
X1 (Go)) > x((Ggp) — v). From Lemma 15, we can see that v =t;; for some i € {1,...,m}. By Lemma 14, this implies that
@ is not stable. O

This completes the proof of Theorem 6— stating that VERTEXSTABILITY is @g-complete—which in turn implies Theorem 5,

the (H)g-completeness of STABILITY, by Lemma 7. Now we briefly turn to some DP-complete problems. Recall that by prefixing
a number k to the name of a stability property we additionally require the graph number to be exactly k.

Theorem 17. The problems k-STABILITY and k-VERTEXSTABILITY are NP-complete for k = 3 and DP-complete for k > 4.

Proof. The membership proofs are immediate. For the lower bound we use that EXAcT-k-COLORABILITY (the class of all
graphs whose chromatic number is not merely at most, but exactly k) is NP-complete for k =3 and DP-complete for k > 4;
see [36]. It suffices to check that mapping G to G U G reduces EXACT-k-COLORABILITY to k-STABILITY and k-VERTEXSTABILITY.
Indeed, for any two graphs H and H’, we have x(H U H’) = max{x (H), x (H)}, implying that G U G is stable and vertex-
stable with x(G) = x(GUG). O

In the previous proof, we used the disjoint union of a graph with itself to render it stable without changing its chromatic
number. Using a far more complicated construction, we can also ensure the stability of an arbitrary set of edges of a
graph while keeping track of how exactly this changes the chromatic number. This immediately yields an explicit AND,,
function for StaBiLITY, which we will formally state in Corollary 19. Moreover, this stabilizing construction is likely to have
applications in reoptimization, the recently introduced neighborly-help model [5], and graph theory in general. We now
state the result in the following lemma.

Lemma 18. There is a polynomial-time algorithm that, given any graph G plus a nonempty subset S < E(G) of its edges, adds a fixed
gadget to the graph and then substitutes for every e € S some gadget that depends on G and e, yielding a graph G with the following
properties:

1L x©=xG)+2
2. All edges in E(G) — (E(G) — S) are stable. N
3. Each one of the remaining edges in E(G) — S is stable in G exactly if it is stable in G.

Proof. Let a graph G and a subset S C E(G) of edges in it be given. We first describe the construction of G in detail.
Figure 2 exemplifies the full construction for a simple graph G and an S that contains exactly one edge e = {v1, v3}.

We begin by adding a cycle on four new vertices w}, w’, w{, w) and joining it to G. Then we complete the procedure
described in the following paragraph for each edge e € S.

We add in disjoint union a copy G, of the original graph G. We distinguish the vertices of G, from the ones of G by
adding a prime and the subindex e to them. In the example, where the edge e = {v1, v3} is to be stabilized, there will thus
be two adjacent vertices V/1,e» V/Z.e € V(G}), as shown in Figure 2. Now we join two new vertices to G,. One of them we
merge with vq; the other one we call u, and connect it to v,. We then replicate u, and every v’ € V(G,), marking the
replicas with a second prime. Excluding u”, these replicas constitute another, empty copy of G, which we denote G. Finally,
we delete the edge e = {vq, v2}.

This completes the construction; we call the resulting graph G. For each edge e = {vq, vz} € S, we denote the induced
subgraph of G on the vertices V(G,) U V(G)) U{u,,u},vi,v2} by He. We now examine the induced subgraph H. as a
gadget that depends on G and substitutes e.

In the following paragraph, we prove an essential property of the graph H., namely that it behaves exactly like the
deleted edge e as far as () (G) + 1)-colorability is concerned, whereas it acts like a nonedge with regards to (x (G) + 2)-
colorability.

Assume that x (G) + 1 colors are available. First, let vi and v, be colored by two different ones of them. We can then
extend this to a (x (G) + 1)-coloring of H, in the following way. We assign to u, and u, the color of v1, choose an arbitrary
coloring of G using the remaining x (G) colors, and then assign it to both G, and G,. Now, pick instead an arbitrary color

111

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

(a) An example of a simple given
graph G with only a single edge e =
{v1, vy} to be stabilized. The vertices
outside the dashed ellipse and edge
parts leading to them are omitted.

(b) The graph G, satisfying all properties stated in Lemma 18. In the simple case of our ex-
ample that S is only a singleton {e}, the construction contains three partly modified copies of
G, with the same vertices and edge parts as in Figure 2a omitted from the picture.

Fig. 2. Example of the construction of Lemma 18, rendering arbitrary subsets of edges stable.

and let both vi and v, be colored by it. While this can be extended to a (x(G) + 2)-coloring of H, immediately—assign
a second color to u, and u) and then color G, and G, with the remaining y (G) colors—it is impossible to extend it to a
(x(G) + 1)-coloring of He as we show now. Seeking contradiction, assume there were such a coloring. It must assign to u}
a color different from the one color assigned to both v; and v;. Since the vertices of G, are all adjacent to both v; and u},
they must be colored with the remaining x (G) — 1 colors, yielding the desired contradiction to x (G,) = x (G).

Returning to the entire graph, it remains to show that G has the three stated properties.

1. Let a x (G)-coloring of G be given. We describe how to extend it to a () (G)+2)-coloring of G. We assign one of the two
new colors to w} and w/ and the other one to w/, and w/,. Now, for every e = {v, v2} € S, we color the gadget H, as
follows. To both u, and u] we assign the color of v{. Now color both G, and G according to the initially given yx (G)-
coloring of G with one modification, namely swapping out the two colors assigned to vi and v, wherever they occur,
for the two new colors. We can check that this yields a valid (x (G) + 2)-coloring of G, proving that)((6) < x(G)+2.
For the reverse inequality, assume by contradiction that G has a (x (G) 4+ 1)-coloring. We observe two properties of
this coloring. On the one hand, it uses at most x (G) — 1 colors for the vertices V(G) since they are all adjacent to
the 2-clique {w/, w}}. On the other hand, the restriction to V (H,), for any e € S, is a x(G) + 1 coloring of He, which
implies—by the edge-like behavior of H, under this circumstance proved above—that v; and v, are assigned different
colors. Combining these two insights, we see that the restriction of our coloring to V(G) is a () (G) — 1)-coloring of G,
yielding the desired contradiction.

2. First note that all edges in S are deleted during the described construction of G, implying 5(6) —E(G) = E(E) —(E(G)—
S). We show the vertices of V(E) — V(G) to be stable. Observe that they can be partitioned into the single-primed and
the double-primed ones; the latter were constructed as the replicas of the former, and no edges were added after this.
We recall from Lemma 15 that replicating a vertex renders it and its replica stable because they have exactly the same
neighborhood but are not adjacent. Each edge e in 5(6) — E(G) is adjacent to one of the stable vertices in V(E) - V(G)
and therefore stable itself by Observation 3.

3. Note that the described construction does not commute with the deletion of an arbitrary edge e € E(G). (That is,
denoting the construction by f: G — G, we do not have f(G —e) = f(G) —e.) This stands in contrast to the situation
with the other stabilizing constructions in this paper—where commutativity of the construction immediately yields the
corresponding property—necessitating an independent proof in this case.

Let ¢’ € E(G) — S. Assume first that e’ is critical in G. Then there is a () (G) — 1)-coloring of G — e’. We can extend it
to a (x(G) + 1)-coloring of G — e’ by assigning one of the two new colors to wj and wj, the other one to w), and w7,
and then use the already proven fact that, for each e € S, the graph H, can be colored with x (G) + 1 colors whenever
two different colors are prescribed for the two endpoints of e. This proves X(E —e)# X(@) and thus the criticality of
e’ in G.

Now we start with the assumption that e’ is critical in G. By the first property of Lemma 18 we have X(E —e) =
X (G) + 1. Pick an arbitrary (x (G) + 1)-coloring of G — ¢’ Since the induced 4-cycle on {w}, w), w{, w)} has chromatic
number 2 and is joined to the induced subgraph on V (G), the induced coloring on G — e’ uses at most x(G) — 1 of
these colors, implying x (G —e’) < x(G) — 1 and thus the criticality of ¢’ in G. We deduce via the contrapositive that e’
is stable in G if and only if it is stable in G.

112

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

(a) Example of the relevant section of G. (b) The same section in G’ after the substitution.

Fig. 3. lllustration of the substitution of an edge {v1, vy} by the gadget mentioned in Lemma 21. We remark in passing that the gadget used here is the
smallest one with the desired properties.

This concludes the proof of Lemma 18. O

Note that this construction allows us to reduce the problem of deciding whether in a given selection of edges all of them
are stable to STABILITY by stabilizing all other edges. Moreover, it yields the following AND,, function for STABILITY, which is
stated in the following corollary,

Corollary 19. Mapping k graphs G1, ..., G, to Gy + - - - + Gy, with all join edges stabilized using the construction from Lemma 18 is
an AND,, function for STABILITY.

Proof. We know that (G +---+ Gg) = x(G1) + - -- + x (G). This implies that, for any i € {1,...,k}, an edge e € E(G;) is
stable in G; exactly if it is stable in G + - - - + Gg. The graph with all join edges stabilized is thus stable exactly if all graphs
G1,...,Gg are. O

Note that the more complicated formulation of Lemma 18 that allows for the stabilization of arbitrary subsets of edges
rather than just a single chosen edge is crucial for the derivation of Corollary 19. For since the construction of Lemma 18
more than doubles the number of vertices—even if S is only a singleton—at most a logarithmic number of iterated applica-
tions are possible in polynomial time.

4. Stability and Vertex-Stability for Vertex Cover

We will now examine the complexity of stability with respect to the vertex-cover number B. First, we note that
B-VERTEXSTABILITY is trivially in P as it consists of the empty graphs.

Theorem 20. Only the empty graphs are B-vertex-stable.

Proof. Let G be a graph. If G is empty, it is B-vertex-stable since the empty set is a minimum vertex cover for both G and
G — v for every v € V(G). If G has an edge {u, v}, every vertex cover contains either u or v or both. Consider any optimal
vertex cover X of G and assume, without loss of generality, that v € X. Then v is a critical vertex since X — {v} is a vertex
cover of size | X||—1of G—v. O

Turning to the smaller change of deleting only an edge instead of a vertex, the situation changes radically. We will prove
with Theorem 22 that determining whether a graph is g-stable is ®g—complete. An important ingredient to the proof is the
following analogue of Lemma 15, which shows how to B-stabilize an arbitrary edge of a given graph.

Lemma 21. Let G be a graph and {v1, vo} € E(G) one of its edges. Create from G a new graph G’ by replacing the edge {v1, v2}
by the gadget that consists of four new vertices u1, up, us, and u4 with edges {uq, ua}, {uz, us}, {us, us}, and {ug, uq} (ie., a new
rectangle) and additionally the edges {v1, u1}, {v1, us}, {va, uy}, and {v,, us}. (This gadget is displayed in Figure 3b.) Then we have
B(G") = B(G) + 2, all edges of the gadget are stable in G’, and the remaining edges are stable in G’ if and only if they are stable in G.

Proof. Let X be a vertex cover for G. Due to {vq, vy} € E(G), we have v{ € X or v, € X. We obtain a vertex cover for G’
by adding u, and u4 to X in the first case and uq and us in the second case. This shows 8(G’) < B(G) + 2. For the reverse
inequality observe that out of the four vertices {uq, us, us, us} inducing a 4-cycle every vertex cover for G’ contains at least
two and removing all of them leaves us with a vertex cover for G.

Now, let e be an arbitrary edge of G other than {v1, v}. We can check that the argument above still holds true for G —e
and G’ — e instead of G and G’, and hence B(G’ —e) = B(G —e) + 2. It follows that B(G) — B(G —e) = B(G') — B(G' —e);
that is, e is stable in G exactly if it is stable in G’.

113

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

) A vertex cover X for G’ — {uq, uz}. (b) Removing u3 and adding u; yields
Only the gadget part is shown a vertex cover of the same size for G'.
c) A vertex cover Y for G’ — {vq,uq}.) A vertex cover of the same size for G'.

Fig. 4. An illustration of the proof of Lemma 21: All edges of the gadget are B-stable in G’.

Finally, we prove gB-stability for all the gadget edges. Let e be such an edge. It suffices to show that, for every vertex
cover of G’ —e, there is a vertex cover of the same size for G’. We show this for e = {uq, u} and e = {vq, u1}; the remaining
cases follow immediately by symmetry. The following argumentation is illustrated in Figure 4. Let X be a vertex cover of
G’ — {uy1,u3}. If X contains uq or ujy, it is a vertex cover for G’ as well. Otherwise, we have {v1, us, ug, v2} C X since the
edges incident to u; and u; need to be covered—see Figure 4a—and {u3} U X — {us} is another vertex cover for G’; see
Figure 4b. Analogously, let Y be a vertex cover of G’ — {vy,uq}. If Y contains vy or uq, then it is a vertex cover of G’
as well. Otherwise, Y contains the vertices {u,, us, u4} since they are neighbors of either vi or ui; see Figure 4c. Then,
{u1,v2}UY — {uy, uy} is a vertex cover for G’ that is either—see Figure 4d—of the same size as Y or, if v, € Y, smaller by
one. [

Theorem 22. Determining whether a graph is 8-stable is @g—complete.

Proof. We reduce from {(G, H) € G2 | 8(G) < B(H)}, which is ®g-hard [38, Theorem 12]. (Note that this language is es-
sentially the complement of COMPAREVERTEXCOVER and that @gJ is closed under taking the complement.) Let G and H
be given graphs. Replace each edge e € E(G) by a copy of the stabilizing gadget described in Lemma 21. Call the result-
ing graph G’. Clearly, we have ||V(G")|| = ||V(G)| + 4||E(G)||. By Lemma 21, G’ is B-stable and B(G") = B(G) + 2||E(G)]|.
Moreover, let H = H U K,. The edge in K, ensures that H' is not B-stable. Moreover, we have B(H') = B(H) + 1 and
IVH)I = IVH) +2.

Now, let G” = G/, just for consistent notation, and H” = H' U Kyg(). Since B(Ky) =n — 1 for n > 1, this implies
B(G")—B(G) =2||[E(G)|| = B(H"”)—B(H) whenever ||E(G)| > 1, which we can assume without loss of generality by handling
the trivial case of an empty graph G separately. We finish the construction by adding isolated vertices to either G” or H”
such that we achieve an equal number of vertices without changing the vertex cover number; that is, we let

G" = G" U Imax(o,|v ="~V (G and
H" = H" U Imax{o,) v G")— |V (H")]}-

Let c = [|[V(G")||=||V(H")| and d = B(G"") — B(G) = B(H"") — B(H). Note that G" is B-stable since we stabilized G’ with
the gadget substitutions and then only added isolated vertices but no more edges. Moreover, H” is not B-stable due to the
B-critical edge of Kj.

Let S be the join G + H” with all join edges stabilized, again by the gadget substitution described in Lemma 21. It
is easy to see from the proof of Lemma 21 that the gadget as a whole behaves just like the edge it replaces, in the sense
that an optimal vertex cover of the whole graph contains, without loss of generality, either v{ or v, or both. Therefore, an
optimal vertex cover of S consists of either an optimal vertex cover of G and all vertices of H” or of an optimal vertex
cover of H"” and all vertices of G” plus, in both cases, a constant number k of vertices for covering the gadget edges—
namely two for each former join edge, that is, k=2 ||[V(G")| - |I[V(H")|. In the first case, we obtain an optimal vertex
cover for S of size B(G"”") +c+k=pB(G) +d+ c +k, in the second case one of size B(H"”) +c+k=pB(H)+d+c+k.

Assume first that 8(G) < B(H). It follows that B(G") < B(H"") and thus any optimal vertex cover for S consists of all
vertices V (H), an optimal vertex cover for G, and k vertices for the gadgets. Since we ensured that G” is B-stable, S
is B-stable. Now, assume that B(G) > B(H). Then there is an optimal vertex cover that consists of all vertices of G/, an
optimal vertex cover of H”, and again k vertices due to the gadgets. Since H” not B-stable, as pointed out above, S is

114

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

not B-stable either. We conclude that S is B-stable exactly if B(G) < B(H), thus proving that g-stability is @S—hard and
therefore ®)-complete. O

5. Unfrozenness

We begin with the observation that both for Colorability and for Vertex Cover adding a vertex is too generous a modifi-
cation to be interesting.

Theorem 23. There is no vertex-unfrozen graph and only one B-vertex-unfrozen graph, namely the null graph (i.e., the graph with the
empty vertex set).

Proof. Adding a universal vertex increases both x and B by exactly one, with the exception of the null graph Ky, for which
X (Ko) = B(Ko) =0 but x (K1) =1#B(K1)=0. O

Both problems are far more interesting in the default setting, that is, for adding edges. The ®g—comp1eteness of deciding
whether a given graph is g-unfrozen can be obtained by a method similar to the one we used to establish Theorem 22.

Theorem 24. Determining whether a graph is S-unfrozen is ®g-complete.

Proof. The upper bound is again immediate. For hardness, we reduce from COMPAREVERTEXCOVER = {(G, H) € G? | B(G) <
B(H)}—known to be @S—hard [38, Theorem 12]— to B-UNFROZENNESS.

Let G and H be the two given graphs. We show how to construct in polynomial time from G and H a graph J that
is B-unfrozen if and only if 8(G) < B(H). Denote g = ||V(G)|| and h = |V (H)||. Assume without loss of generality that
g>1.Let G'=(GUIp) + (G UIy). Note that G’ is B-unfrozen, with 8(G’) = 8(G) + g + h, and that |V (G")|| =2(g + h). Let
H'=(H+Kgiy) Ul (ie, join a (g + h)-clique to H and then add g isolated vertices). Note that H’ is not S-unfrozen—due
to the p-frozen edges that can be added between any two of the g > 2 vertices of Ig—with S(H') = B(H + Kgip) =
B(H) + g+ h and that |[V(H)||=(th+ (g +h)) +g=2(g+h). Let c=2(g + h). We conclude that G’ is B-unfrozen, that
B(G") < B(H") & B(G) < B(H), that |V (G)||=|IV(H)|| =c, and that H’ is B-frozen. Now, let] = G’ + H'. Clearly, J can
be constructed in polynomial time. We will prove that | is S-unfrozen if and only if 8(G) < B(H). For both directions, note
that due to ||V (G")| = ||[V(H")|| =c, we have B(J) = min{B(G’), B(H)} +c.

First, assume that 8(G) < B(H). Then 8(G’) < B(H’) and thus B(J) = B(G’) + c. We prove that all nonedges e € E(J) are
B-unfrozen in J. Such an e is either adjacent to two vertices of G’ or to two vertices of H’'. For the first case, note that
B(G' +e) = B(G) since G’ is B-unfrozen. Thus we have B(J + e) = min{B(G' +e), B(H')} + c = B(J). In the second case
we have B(J +e) =min{B(G’), B(H' +e)} +c = B(G') + c = B(J), where the second equality follows from B(G") < B(H') <
B(H' +e). Thus J is B-unfrozen if B(G) < B(H).

For the converse, assume that B8(G) > B(H), implying B(G’) > B(H’) and thus B(J) = B(H’) + c. Since H’ is B-frozen,
there is a B-frozen nonedge e that can be added to H’, yielding B(H' +e) = B(H’) + 1 < B(G). Hence, we have 8(J +e) =
min{B(G"), B(H' +e)} +c=B(H') +1+c> B(J). This shows that e is B-frozen for J as well, concluding the proof. O

Now, we would like to show the analogous result that UNFROZENNESS is (-)g-complete as well. This turns out to be a
very difficult task, however. There are many clues suggesting the hardness of UNFROZENNESS, which exhibits a far richer
structure than all of the problems listed in Table 1 as easy. The latter problems are either empty or singletons or consist
of all independent sets or all cliques, while UNFROZENNESS contains large classes of different graphs. We can even produce
arbitrarily many new complicated unfrozen graphs using the graph join. There are no clearly identifiable characteristics to
these unfrozen graphs to be leveraged. Instead, we give a sufficient condition for the G)g-completeness of UNFROZENNESS,
namely the existence of a polynomial-time computable construction that turns arbitrary graphs into unfrozen ones without
changing their chromatic number in an intractable way.

Theorem 25. Assume that there are polynomial-time computable functions f: G — G and g: G — Z such that for any graph G we
have that f(G) is unfrozen and x (f(G)) = x (G) + g(G). Then UNFROZENNESS is ®§-complete.

Proof. As usual, membership in @g is immediate. For the lower bound, assume the existence of functions f and g as
described in the theorem. We reduce from {(G, H) | x (G) < x (H)}, which is @g—hard. as to be expected from this type of
comparison problem. This hardness will be formally stated in Theorem 26 only later on because its proof both relies on and
well illustrates the application of a general criterion we are going formulate in Lemma 29.

Now, let two graphs G and H be given. Our intermediate goal is to construct two graphs G” and H” such that only the
latter is unfrozen and

X(G) < x(H) <= x(G") < x(H").

115

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

Let G'=G + I, and H' = f(H). Note that H' is unfrozen with yx (H") = x (H) + g(H), while G’ is not unfrozen—due to the
frozen nonedge that can be added to I—and x (G') = x (G)+1. Let G” = G’ + Kmax{o,g(t)—1} and H” = H'+ K1 max1—g(H),0}-
Then H” is unfrozen with

X(H") = x(H) +g(H) + 1+ max{1 — g(H), 0} = x (H) + max{1, g(H)} + 1,

while G” has a frozen nonedge with

X (G"y = x(G) + 1+ max{0, g(H) — 1} = x(G) + max{1, g(H)}.

Moreover, we have x (G”) — x(G) = max{1, g(H)} = x(H”) — x(H) — 1 and hence x(G) < x(H) < x(G") < x(H"),
as desired.

Now let U = G” U H” be the disjoint union of the two constructed graphs. We clearly have x (U) = max{x (G"), x (H")}.
Moreover, every nonedge between an arbitrary vertex v € V(G”) and an arbitrary vertex w € V(H”) is unfrozen: Let an
arbitrary optimal coloring of U = G” U H” be given. If it assigns v and w different colors, we are done; otherwise, swap the
two distinct colors of v and w for all vertices in V (G”). Recalling that H” is unfrozen, we can conclude that U is unfrozen
if and only if all nonedges e € E(G”) = E(G’) are unfrozen.

Assume first that x (G) < x (H); that is, x(G") < x(H"). For every e € E(G”), we then have

XU +e)=x(G"+e)UH") <max{x(G")+1, x(H")} = x(H") = x (U).

Therefore, U is unfrozen. Assume now that x (G) > x (H); that is, x(G”) > x (H”). Recall that G” has a frozen nonedge e’.
It follows that x (G” +e¢e’) = x(G”)+ 1> x(H”) and thus

X (U +e)y=max{x(G"+¢'), x(H"} = x(G")+ 1> max{x(G"), x(H")} = x (U).

Therefore, e’ is also a frozen nonedge of U, which is thus not unfrozen. This concludes the proof. O

Note that an analogue of Lemma 18 for unfreezing instead of stabilizing edges would be sufficient to satisfy the assump-
tion of Theorem 25. However, based on our efforts we suspect that a suitable gadget—if one exists—must be of significantly
higher complexity than the one in Figure 2.

It remains to show the @g—hardness of the problem from which we reduced in the proof of Theorem 25.

Theorem 26. COMPARECOLORABILITY = {(G, H) € G? | x (G) < x (H)} is (—)g—hard.

Theorem 26 is proved essentially in the same way as Wagner [40, Theorem 6.3.2] proves the G)zp—hardness of OppCoL-
ORABILITY. As he suggests [40, page 79], it is rather straightforward to translate the hardness result for ODDCOLORABILITY into
one for EQUALCOLORABILITY. This holds true for COMPARECOLORABILITY as well. In the remainder of this section, we generalize
the method for obtaining these results to yield two sufficient criteria for @g-hardness, stated as Lemmas 28 and 29 below.
We then use the latter lemma to prove Theorem 26.

Our two sufficient criteria for @)g—hardness, Lemmas 28 and 29, are both consequences of Wagner’s criterion [40, Theo-
rem 5.2], which we state in Lemma 27. We assume without loss of generality that all problems are encoded over the same
finite alphabet X.

Lemma 27 (By Wagner [40, Theorem 5.2]). A problem A is G)g -hard if the following condition is satisfied:
There are an NP-complete problem D and a polynomial-time computable function f: (g2, (=*)% — =* such that for every
ke N — {0} and forall xq, ..., Xy, € Z* withx; € D < --- < X9, € D we have

fx1,..., %) €A < |{x1,...,x%} N DJ is odd.

The following two lemmas are identical, except for the last line, where once we have an equality and once a nonstrict
inequality.

Lemma 28. A problem A is @)g—hard if the following condition is satisfied:
There are NP-complete problems D1 and D and a polynomial-time computable function g: | Jp4 (=*)2k - =* such that for
every ke N — {0} and forall y1, ..., Yk, 21,...,2Zx € Z* withy1 € D1 < --- < yy e Dyand z;1 € Dy <« - -- < z; € D, we have

g1, Y21,z €A = {y1,....)N D1l =I{z1, ..., z} N Dall.

Lemma 29. A problem A is ®5-hard if the following condition is satisfied:
There are NP-complete problems D1 and Dy and a polynomial-time computable function g: | g2, (=*)% — =* such that for
everyke N — {0} and forall y1,..., Yk, 21,..., 2k € Z*withy; € D1 < ---< yreDyand z1 € Dy & --- & z;, € D, we have

116

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

gV, Y2tz €A = Iy, v N Dl < Hz1s -z 0 D2l

We point out that Lemma 29 is the corrected version of a slightly flawed lemma statement in the paper by Spakowski
and Vogel [38, Lemma 9]. Since said paper does not apply the problematic lemma anywhere, all other results derived in it
remain valid.

Proof of Lemmas 28 and 29. It suffices to make the following five observations.

First, @5 is closed under complementation since we can just invert the output of any algorithm witnessing the member-
ship in Pﬁ”’. Therefore, Lemma 27 remains true if we replace, on the one hand, only the second occurrence of the language
A by its complement A = £* — A and, on the other hand, “odd” by “even.”

Second, within the modified version of Lemma 27 resulting from the two replacements just described, the following
three conditions are equivalent due to the assumption x;y e D <x; € D < --- < xy, € D.

1 ||{x1,....x2k} N DJ| is even,
2. |[{X1,x3, ..., X1} N DI = |{X2,X4..., X} N D], and
3. [1{x1, %3, ..., X2k 1} N D < [{X2, X4 ..., Xk} N D

Third, given two arbitrary NP-complete problems D; and Dy, there are polynomial-time many-one reductions h; and hy
from D to D1 and D, respectively. Letting
y1=h1(x1), y2=h1(x3), ..., h1(xp_1) and
71 =hy(x2), z2 = ha(x4), ..., ha(xk),

we have

l{x1, X3, ..., xk—1} N DIl = I{y1, ¥2. ..., ¥k} N D1l and

[{x2, X4, ..., X2k} N D|| = [l{z1, 22, ..., z} N D2 .

Fourth, given a polynomial-time computable function g: U,;'i](E*)Zk — X*, we obtain another such function f that
satisfies

fxi,....x0) €A = g201,.... ¥k 21,....2Z) €A

by simply defining f(x1,...,X%) =&(1, ..., Yk» 215 - -5 Zk)-
Finally, X1 € D < - -- <= Xy € D implies both

x1eD&x3eD«---<xy_1€Dandxy e D<x4eD&---&x €D,

which in turn implies
yieDi«<.---&yreDjandz1 €Dy« --- <z €Dy. O

Lemma 28 provides for several equality problems the proofs of G)g—hardness (and thus ®g—completeness), which Wagner
asserted [40, page 79] without spelling out the straightforward proofs. In particular, EQUALINDEPENDENTSET, EQUALVERTEX-
CoVER, EQUALCOLORABILITY, and EQUALCLIQUE—which ask whether two graphs have the same graph number «, 8, x, and
w, respectively—and EQUALMAXSAT—which asks whether two formulas in 3CNF have the same maximal number of simul-
taneously satisfiable clauses—are all @)g-complete. This is seen by applying Lemma 28 to the proofs of the corresponding
theorems by Wagner [40, Theorems 6.1, 6.2, and 6.3].

By applying Lemma 29 instead, we immediately obtain ®§-completeness for the comparison problems COMPAREINDEPEN-
DENTSET, COMPAREVERTEXCOVER, COMPARECOLORABILITY, COMPARECLIQUE, and COMPAREMAXSAT.

For all but COMPARECOLORABILITY, @S—hardness was also proved by Spakowski and Vogel [38, Theorems 2, 12 and 13].
We now show how to apply concretely Lemma 29 to obtain the ®g—hardness of COMPARECOLORABILITY.

Proof of Theorem 26. This proof is modeled after the one for Wagner’'s Theorem 6.3 [40]. We apply Lemma 29 with A =
CoMPARECOLORABILITY and D1 = Dy = 3SAT.
Let k € N — {0} and let 2k formulas ®,..., ®y, ¥, ..., ¥, € 3CNF satisfying

P €3SAT < - - - & Py € 35AT and
W1 €35AT & - - - <= Wy € 35AT

117

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

be given. Denote by h the standard reduction from 3SAT to 3COLORABILITY by Garey et al. [17]; it maps a formula to a
graph whose chromatic number is 3 if the formula is satisfiable and 4 otherwise. Moreover, let G = h(®1) + - - - + h(®y) and
H =h(¥q) + --- + h(¥y), where + denotes the graph join. It follows that

k
X(G) =) x(h(®)) =4k — ||[{®1,..., B} N3SAT|| and
i=1
k
X(H) =Y x(h(¥) =4k — [[{¥1, ..., W} N 3AT]|.
i=1

Thus we have x (H) < x(G) if and only if

{®1, ..., Pk} N3SAT|| < [[{W1, ..., Wi} N3SAT]|.

The map g: (®1,..., Dk, ¥q,..., ¥) — (H,G) therefore satisfies all requirements of Lemma 29, which concludes the
proof. O

6. Two-Way Stability

A graph is two-way stable if it is stable with respect to both the deletion and addition of an edge. First, we note that the
analogous problem with respect to vertices is trivial for both Colorability and Vertex Cover. The following is an immediate
consequence of Theorem 23.

Theorem 30. There is no vertex-two-way-stable graph and only one B-vertex-two-way-stable graph, namely the null graph with the
empty vertex set.

The default case of edge deletion is more interesting. We begin with Colorability.

Theorem 31. Assume that there are polynomial-time computable functions f: G — G and g: G — Z such that for any graph G we
have that f (G) is unfrozen and x (f(G)) = x (G) + g(G). Then the problem TWOWAYSTABILITY is @g—complete.

Proof. We have TWOWAYSTABILITY = STABILITY N UNFROZENNESS. The membership in @g is immediate. For @'z)—hardness, we
show that the map f(G) =G UG is a reduction from UNFROZENNESS, which is @g-hard by Theorem 25 under the stated
assumptions. First, GUG is stable for any given graph G since x (G1UG2) = max{x (G1), x(G2)} for all graphs G, G, € G. We
conclude that GU G is two-way-stable if and only if it is unfrozen. Moreover, G U G is unfrozen if and only if G is unfrozen:
A nonedge e € E(G) is unfrozen in G exactly if it is unfrozen in G U G, again due to x (G1 U G3) = max{x(Gy), x(G2)}. It
remains to examine the nonedges that can be added to G U G between the two copies of G. Let {v1, v2} be such a nonedge.
We prove that it is unfrozen. Without loss of generality, assume that G is nonempty, that is, x (G) > 1. Given an optimal
coloring for G, we obtain an optimal coloring for G U G + {v1, v3} by coloring both copies according to the given coloring,
just with the colors permuted appropriately for the second copy, that is, such that v, receives a color different from the
one of vi. O

We are able to prove the analogous result for B-TwoWAYSTABILITY via Lemma 32.

Lemma 32. Let a nonempty graph G and an edge e = {v, v'} € V(G) be given. Construct from G a graph G’ by adding to e the gadget
consisting of a clique on the new vertex set Q = {u1, Uz, u3, ug, uy, ub, uy, uy}, with the four edges {u;, u} fori € {1, 2, 3, 4} removed
and the four edges {v, u1}, {v, uz}, {v’, us}, and {v’, us} added. (This gadget is displayed in Figure 5b.) The graph G’ has the following
properties.

. B(G") = B(G) +6,

. every edge e’ € E(G) — {e} is B-stable in G exactly ifit isin G/,

. all remaining edges of G’ are B-stable,

. every nonedge e’ € E(G) is S-unfrozen in G exactly if it is in G, and
. all remaining nonedges e’ € E(G’) — E(G) of G’ are B-unfrozen.

G AN WN —

Proof. We prove that G’ has the required properties.

1. Let X be a vertex cover of G. It must contain v or v'. If v € X, then it follows that X U {uz,ug,u4,u/2,u’3,uﬁl} is a
vertex cover of G’ if v/ € X, then X U {u1, up, u3, uj, u}, ul} is one. This proves S(G’) < (G) + 6. To obtain the inverse

118

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

(a) An edge to be stabilized. (b) The same section after adding the stabilization gadget.

Fig. 5. How to stabilize an arbitrary edge {v, v’} without introducing new unfrozen edges.

inequality, let X’ be a vertex cover of G’. Then X’ — Q is a vertex cover of G. Moreover, for any vertex w € Q, we
have that, if w ¢ X’, then X’ must contain the entire neighborhood of w, which contains exactly six vertices from Q. It
follows that

BG) =X —Qll =Xl -6=<B(G)—6

2. This is a consequence of the first property since, for every edge e’ € E(G) — {e}, our construction clearly commutes with
deleting ¢’

3. Let ¢’ =e or e’ € E(G’) — E(G). We need to show that 8(G’ —e’) > B(G) + 6. We denote the induced graph of G’ —e’ on
the eight vertices Q by (G’ —e")[Q].

Assume first that e’ # e. This implies that deleting the vertices Q from G’ — e yields exactly the original graph G.
Therefore, it suffices to show that any vertex cover of (G’ — e’)[Q] contains at least 6 vertices, which is the same as
saying that any independent set of (G’ — e’)[Q] contains at most 2 vertices, which is in turn equivalent to proving
that the complement graph of (G’ — e’)[Q] contains no clique of size 3. This is obvious since this complement of
(G" —e"[Q] consists of the four edges {uy,u}}, {uz, u}}, {us,uj}, and {ug, uj} plus potentially the edge e’, which can
at most connect two of these otherwise disjoint edges but never complete a triangle.

Assume now that e’ = e. Our observation from the previous paragraph is still sufficient in the case of a vertex cover of
G’ — e that contains v or v’ since removing Q still yields a vertex cover of the original graph G in this case. Only if
neither v nor v’ is part of the considered vertex cover of G’ —e’, then we have to show that (G’ —e’)[Q] is guaranteed
to contain 7 vertices instead of only 6. This is easy to see since uj, up, us, and u4 are required to cover the edges
leading from them to v and v’ and three more vertices are necessary to cover the edges of the 4-clique on uf, u}, uf,
and u}.

4. The argument for the second property is valid for nonedges e’ € E(G) as well.

5. Let e/ € E(G') — E(G) and let X be a vertex cover of G. We show how to obtain a vertex cover for G’ + ¢’ by adding
six vertices to X. At least one endpoint of e lies in Q, call it w. If w € {u1,u}, uq, ujy}, let X" =X U {uy,u}, ug, uy};
otherwise, let X' = X U {up, u}, u3, uj}. Let X" = X"U {us, u}, ug, uy} if v € X. Otherwise, we have v € X and let X" =
X"U{uq,), uz, uf}. It is easy to check that X” is a vertex cover of G’ +¢’ and | X”|| = ||X|| + 6 in all cases.

This concludes the proof. O

An iterated application of Lemma 32 allows us to stabilize an arbitrary set of edges of an arbitrary graph without
introducing any new unfrozen nonedges. The @g -hardness of S-TWOWAYSTABILITY is now an easy consequence of Lemma 32.

Theorem 33. The problem B-TWOWAYSTABILITY is ®g—complete.

Proof. The upper bound is immediate. We now give a polynomial-time many-one reduction from B-UNFROZENNESS, which
is ®§-hard by Theorem 24, to B-TwWOWAYSTABILITY. For given G, we replace each edge e € E(G) by the gadget displayed in
Figure 5b and call the resulting graph G. This is possible in polynomial time because the gadget has constant size. By an
iterated application of Lemma 32, all new edges in the resulting graph G are B-stable and each pre-existing edge e € E(G)
is B-unfrozen in G if and only if it was B-unfrozen in G. Thus G is B-two-way-stable if and only if G is B-unfrozen. O

7. Connections between Clique, Vertex Cover, and Independent Set
We conclude our investigations by examining the relations between the three problems of Clique, Vertex Cover, and

Independent Set. As is to be expected, they are so closely related that almost all stability results for one of them carry over
to the other two in a straightforward way.

Proposition 34. Let G denote the complement graph of G. We have the following equalities.

119

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

. B-STABILITY = -STABILITY = {G | G € @-UNFROZENNESS}.

B-UNFROZENNESS = o-UNFROZENNESS = {G | G € w-STABILITY}.

. B-TWOWAYSTABILITY = o-TWOWAYSTABILITY = {G | G € »-TWOWAYSTABILITY}.

. B-VERTEXSTABILITY = {I, | n € N}.

. -VERTEXSTABILITY = {G | G € w-VERTEXSTABILITY}.

. B-VERTEXUNFROZENNESS = 3-VERTEXTWOWAYSTABILITY = {Kp}.

. ot-VERTEXUNFROZENNESS = «-VERTEXTWOWAYSTABILITY = @-VERTEXUNFROZENNESS = @-VERTEXTWOWAYSTABILITY = (/.

NSO U WN

Proof. For the second equality of the first three items it suffices to note that an independent set of a graph is a clique of
its complement graph and vice versa. The first equality of the first three items follows from the fact that, on the one hand,
for any graph on n vertices, the complement of a vertex cover of size k is an independent set of size n — k and, on the
other hand, adding or deleting edges obviously does not change the number of vertices. For the remaining items, we add
or delete vertices, so this argument does not hold anymore. Item 4 is exactly Theorem 20. For item 5, we simply use that a
clique is an independent set in the complement graph and vice versa. Item 6 combines Theorems 23 and 30. Item 7 finally
follows from the fact that adding an isolated vertex increases «, while adding a universal vertex increases w. O

An interesting inversion in this pattern occurs for the vertex deletion case. Here, switching from g to « or w in fact flips
the stability problem to the criticality version and vice versa.

Proposition 35. We have the following equalities.

G € w-VERTEXCRITICALITY}.

1. B-VERTEXSTABILITY = «-VERTEXCRITICALITY = {§ |
{G | G € @w-VERTEXSTABILITY}.

2. B-VERTEXCRITICALITY = o¢-VERTEXSTABILITY =

Proof. For the second part of the claim, it suffices to prove that a vertex v of a graph G is a-stable if and only if it is
B-critical. For the first part of the claim we then only need to recall that any vertex must be either «-stable or «-critical
and likewise either B-stable or g-critical by the definition of these notions. In the fourth step of the following equivalence
chain we use that every minimum vertex cover is the complement of a maximum independent set and vice versa.
v is a-stable <= a(G —v) =a(G)

= VO —a(G—v)=|V(O)] —a(G)

— VG- —a(G—-v)+1=|V(G)] —a(G)

<~ B(G—Vv)+1=6(G)

— B(G—v)#B(G)

<= vis B-critical. O

Using Proposition 35, we directly obtain from the @S-hardness of B-VERTEXCRITICALITY [5] the same for o-VERTEX-
STABILITY and, by complementing the graphs, w-VERTEXSTABILITY. We note that these are the only nontrivial results revealed
by the connection between stability and criticality.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful to the anonymous reviewers for their careful reading of our paper, resulting in many useful
comments and suggestions.

References

[1] Douglas Bauer, Frank Harary, Juhani Nieminen, Charles L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161.

[2] Adam Beacham, Joseph C. Culberson, On the complexity of unfrozen problems, Discrete Appl. Math. 153 (1-3) (2005) 3-24.

[3] Béla Bollobds, Modern Graph Theory, Springer, 1998.

[4] Béla Bollobas, Extremal Graph Theory, London Mathematical Society Monographs, Oxford University Press, London, 1978.

[5] Elisabet Burjons, Fabian Frei, Edith Hemaspaandra, Dennis Komm, David Wehner, Finding optimal solutions with neighborly help, in: Proceedings of the
44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019), in: Leibniz International Proceedings in Informatics
(LIPIcs), vol. 138, Schloss Dagstuhl - Leibniz Center for Informatics, 2019, pp. 78:1-78:14.

120

http://refhub.elsevier.com/S0022-0000(21)00065-9/bibFCA854252D332D43B51D8BD799B683A5s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib48B223E898E998C7D8CDC6AA9B43DC2As1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibD36B635FB1C56BDB0FCF73F88BCBAB5As1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibB219DDA6EF175985330FEE31AF778078s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC804CF4EFACA9921C883178E9DFDAD97s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC804CF4EFACA9921C883178E9DFDAD97s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC804CF4EFACA9921C883178E9DFDAD97s1

E Frei, E. Hemaspaandra and J. Rothe Journal of Computer and System Sciences 123 (2022) 103-121

[6] Jin-Yi Cai, Gabriele E. Meyer, Graph minimal uncolorability is DP-complete, SIAM J. Comput. 16 (2) (1987) 259-277.

[7] Gregory]. Chaitin, Register allocation and spilling via graph coloring, in: ACM SIGPLAN Notices - Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction (CC 1982), SIGPLAN Not. 17 (6) (1982) 98-101.

[8] Richard Chang, Jim Kadin, On computing Boolean connectives of characteristic functions, Math. Syst. Theory 28 (3) (1995) 173-198.

[9] Richard Chang, Jim Kadin, The Boolean hierarchy and the polynomial hierarchy: a closer connection, SIAM]. Comput. 25 (2) (1996) 340-354.

[10] Kamalika Chaudhuri, Fan Chung, Mohammad S. Jamall, A network coloring game, in: Proceedings of the 4th International Workshop on Internet and
Network Economics (WINE 2008), in: Lecture Notes in Computer Science (LNCS), vol. 5385, Springer, December 2008, pp. 522-530.

[11] Guantao Chen, Guangming Jing, Structural properties of edge-chromatic critical multigraphs, J. Comb. Theory, Ser. B 139 (2019) 128-162.

[12] Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning, Total domination critical and stable graphs upon edge removal, Discrete Appl. Math.
158 (15) (2010) 1587-1592.

[13] Gabriel A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. s3-2 (1) (1952) 69-81.

[14] Paul Erd6s, Tibor Gallai, On the minimal number of vertices representing the edges of a graph, Magyar Tud. Akad. Mat. Kutaté Int. Kozl. 6 (1-2) (1961)
181-203.

[15] Martin G. Everett, Steve Borgatti, Role colouring a graph, Math. Soc. Sci. 21 (2) (1991) 183-188.

[16] Fabian Frei, Edith Hemaspaandra, Jorg Rothe, Complexity of stability, in: Yixin Cao, Siu-Wing Cheng, Minming Li (Eds.), Proceedings of the 31st In-
ternational Symposium on Algorithms and Computation (ISAAC 2020), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 181, Schloss
Dagstuhl - Leibniz Center for Informatics, 2020, pp. 19:1-19:14.

[17] Michael R. Garey, David S. Johnson, Larry]. Stockmeyer, Some simplified NP-complete graph problems, Theor. Comput. Sci. 1 (1976) 237-267.

[18] Georg Gunther, Bert Hartnell, Douglas F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete
Appl. Math. 46 (1993) 167-172.

[19] Gyorgy Hajés, Uber eine Konstruktion nicht n-firbbarer Graphen, Wiss. Z., Martin-Luther-Univ. Halle-Wittenb. 10 (1961) 116-117.

[20] Frank Harary, Graph Theory, Addison-Wesley, 1969.

[21] Frank Harary, Carsten Thomassen, Anticritical graphs, Math. Proc. Camb. Philos. Soc. 79 (1976) 11-18.

[22] Teresa W. Haynes, Robert C. Brigham, Ronald D. Dutton, Extremal graphs domination insensitive to the removal of k edges, Discrete Appl. Math.
44 (1-3) (1993) 295-304.

[23] Lane A. Hemachandra, The strong exponential hierarchy collapses, J. Comput. Syst. Sci. 39 (3) (1989) 299-322.

[24] Edith Hemaspaandra, Lane A. Hemaspaandra, Jorg Rothe, Exact analysis of Dodgson elections: Lewis Carroll's 1876 voting system is complete for
parallel access to NP, J. ACM 44 (6) (1997) 806-825.

[25] Edith Hemaspaandra, Lane A. Hemaspaandra, Jorg Rothe, The complexity of online manipulation of sequential elections,]. Comput. Syst. Sci. 80 (4)
(2014) 697-710.

[26] Edith Hemaspaandra, Holger Spakowski, Jorg Vogel, The complexity of Kemeny elections, Theor. Comput. Sci. 349 (3) (2005) 382-391.

[27] Michael A. Henning, Marcin Krzywkowski, Total domination stability in graphs, Discrete Appl. Math. 236 (2018) 246-255.

[28] Matthew O. Jackson, Social and Economic Networks, Princeton University Press, 2008.

[29] Michael Kearns, Siddharth Suri, Nick Montfort, An experimental study of the coloring problem on human subject networks, Science 313 (5788) (2006)
824-827.

[30] Susan Khor, Application of graph coloring to biological networks, IET Syst. Biol. 4 (3) (2010) 185-192.

[31] Frank T. Leighton, A graph coloring algorithm for large scheduling problems, J. Res. Natl. Bur. Stand. 84 (6) (1979) 489-506.

[32] Rémi Monassen, Riccardo Zecchina, Statistical mechanics of the random k-satisfiability model, Bull. Am. Phys. Soc. 56 (2) (1997) 1357-1370.

[33] Rémi Monassen, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, Lidror Troyansky, Determining computational complexity from characteristic ‘phase
transitions’, Nature 400 (1998) 133-137.

[34] Christos H. Papadimitriou, David Wolfe, The complexity of facets resolved,]. Comput. Syst. Sci. 37 (1) (1988) 2-13.

[35] Christos H. Papadimitriou, Mihalis Yannakakis, The complexity of facets (and some facets of complexity), J. Comput. Syst. Sci. 28 (2) (1984) 244-259.

[36] Jorg Rothe, Exact complexity of exact-four-colorability, Inf. Process. Lett. 87 (1) (2003) 7-12.

[37] Jorg Rothe, Holger Spakowski, Jorg Vogel, Exact complexity of the winner problem for Young elections, Theory Comput. Syst. 36 (4) (2003) 375-386.

[38] Holger Spakowski, Jorg Vogel, Ozp—completeness: A classical approach for new results, in: Proceedings of the 20th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2000), in: Lecture Notes in Computer Science (LNCS), vol. 1974, Springer, 2000,
pp. 348-360.

[39] Jimeng Sun, Charalampos E. Tsourakakis, Evan Hoke, Christos Faloutsos, Tina Eliassi-Rad, Two heads better than one: pattern discovery in time-evolving
multi-aspect data, Data Min. Knowl. Discov. 17 (1) (2008) 111-128.

[40] Klaus W. Wagner, More complicated questions about maxima and minima, and some closures of NP, Theor. Comput. Sci. 51 (1-2) (1987) 53-80.

[41] Klaus W. Wagner, Bounded query classes, SIAM]. Comput. 19 (5) (1990) 833-846.

[42] Robin Weishaupt, Jorg Rothe, Stability of special graph classes, in: Claudio Sacerdoti Coen, Ivano Salvo (Eds.), Proceedings of the 22nd Italian Conference
on Theoretical Computer Science (ICTCS 2022), CEUR Workshop Proceedings. CEUR-WS.org, 2022, in press.

[43] Walter Wessel, Criticity with respect to properties and operations in graph theory, in: Liszl6 Lovdsz Andras Hajnal, Vera T. Sos (Eds.), Finite and
Infinite Sets. Proceedings of the Sixth Hungarian Combinatorial Colloquium, in: Colloquia Mathematica Societatis Janos Bolyai, vol. 2, North-Holland,
1984, pp. 829-837.

[44] Gerhard J. Woeginger, Core stability in hedonic coalition formation, in: Proceedings of the 39th International Conference on Current Trends in Theory
and Practice of Computer Science, in: Lecture Notes in Computer Science (LNCS), vol. 7741, Springer, 2013, pp. 33-50.

121

http://refhub.elsevier.com/S0022-0000(21)00065-9/bib8EA702C6B884C6F37A36A05EB46F15FCs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC3C77F36DD98A2E565DCD2FDE55CD161s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC3C77F36DD98A2E565DCD2FDE55CD161s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibA202935A4DC6D25BA8082CE461C3A233s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib6FC658D4E94C595C832451A12ED697F6s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib89904EB2C873AEE8050BB2C5B6F7CD6Cs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib89904EB2C873AEE8050BB2C5B6F7CD6Cs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib97D1EF35FAFE594DFEF5D8B33816140Es1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib52EC8F217C341032CE9409B213B8D3BDs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib52EC8F217C341032CE9409B213B8D3BDs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibCEA49CF159EC25CDEA11E9CAAD0798CBs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib603111333894E2EEC0ED3DE2ED6DA2A7s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib603111333894E2EEC0ED3DE2ED6DA2A7s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib526DCB717D25ACB43F7D79C139049DB0s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib7B13A519F24A11BC79A44C732D11C416s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib7B13A519F24A11BC79A44C732D11C416s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib7B13A519F24A11BC79A44C732D11C416s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC6BB991817E00236285FFD4DF505A985s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib9CF182BF09D36639DCA6F923412A4144s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib9CF182BF09D36639DCA6F923412A4144s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC978D04B9EACBAF418171319803DCF66s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib28629483F4C5324047D7C4D6BFE90F54s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibAB012079B5C965ED086A4999096E3E11s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibE9E45529BF9D703DF70AE25660482516s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibE9E45529BF9D703DF70AE25660482516s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibBDCCE5654E49B1FF0A9A9307292E39A7s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib8F69B0AA5876C4A63A0C98BC36BBBC99s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib8F69B0AA5876C4A63A0C98BC36BBBC99s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibFBCE6E2EB7C98428218EBE27A0F6A2EAs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibFBCE6E2EB7C98428218EBE27A0F6A2EAs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib703774ED111B7F64A4A869244428F677s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC923D0862707CCBE02A3430E58E54C66s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibD946D125E14675936B61FECD505B43D0s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibE2897D81D57D4EC564C7AEA2DBA9CEA6s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibE2897D81D57D4EC564C7AEA2DBA9CEA6s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibD9A4484C7B5F3914A017B5885C1193FDs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib5A5B26896700F01C2474A8FE0EC3056As1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib59FD5D38FE9598F7CB45BF8A7323789As1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibCB68C7E804B5A9442DA3E5BA4EC02DEAs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibCB68C7E804B5A9442DA3E5BA4EC02DEAs1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib3A84E04CBB85404F35452EC1B90CB423s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib47E0E39B231697C4CBED3B7CB64AE935s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib4A207E6D2166671249CF002B5C68210Ds1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib110E65DBE6AEF5CB083F4F113CEEE715s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib7F45A58013DDBCD2468B47BCB29A902Ds1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib7F45A58013DDBCD2468B47BCB29A902Ds1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib7F45A58013DDBCD2468B47BCB29A902Ds1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibF4F79287C31F5ACAA3D1C15273A58600s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibF4F79287C31F5ACAA3D1C15273A58600s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib7E82AE26516ED3602EFB4994A29BA256s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibDF1E91C9F1B9E04DD4FD113C04DDCAE6s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibD46001781F81269153403F36939502C2s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibD46001781F81269153403F36939502C2s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC3089CCFED8CB10102768E9DE783B12Ds1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC3089CCFED8CB10102768E9DE783B12Ds1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bibC3089CCFED8CB10102768E9DE783B12Ds1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib6AD7CDA8E5FAE63A69159B3D45576939s1
http://refhub.elsevier.com/S0022-0000(21)00065-9/bib6AD7CDA8E5FAE63A69159B3D45576939s1

	Complexity of stability
	1 Introduction
	1.1 Motivation
	1.2 Notions and notation
	1.2.1 Complexity classes
	1.2.2 Graphs and graph numbers
	1.2.3 Stability
	1.2.4 Stability problems
	1.2.5 AND functions and OR functions

	1.3 Related work
	1.4 Contribution

	2 Basic observations
	3 Stability and Vertex-Stability for Colorability
	4 Stability and Vertex-Stability for Vertex Cover
	5 Unfrozenness
	6 Two-Way Stability
	7 Connections between Clique, Vertex Cover, and Independent Set
	Declaration of competing interest
	Acknowledgments
	References

