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Abstract
The first step in classifying the complexity of an
NP problem is typically showing the problem in P
or NP-complete. This has been a successful first
step for many problems, including voting prob-
lems. However, in this paper we show that this may
not always be the best first step. We consider the
problem of constructive control by replacing vot-
ers (CCRV) introduced by Loreggia et al. [2015]
for the scoring rule First-Last, which is defined by
〈1, 0, . . . , 0,−1〉. We show that this problem is
equivalent to Exact Perfect Bipartite Matching, and
so CCRV for First-Last can be determined in ran-
dom polynomial time. So on the one hand, if CCRV
for First-Last is NP-complete then RP = NP, which
is extremely unlikely. On the other hand, showing
that CCRV for First-Last is in P would also show
that Exact Perfect Bipartite Matching is in P, which
would solve a well-studied 40-year-old open prob-
lem.
Considering RP as an option for classifying prob-
lems can also help classify problems that until
now had escaped classification. For example, the
sole open problem in the comprehensive table from
Erdélyi et al. [2021] is CCRV for 2-Approval. We
show that this problem is in RP, and thus easy since
it is widely assumed that P = RP.

1 Introduction
Elections are an important tool used to aggregate the prefer-
ences of several agents (voters) over a set of choices (candi-
dates) with applications in areas such as political domains and
multiagent systems in artificial intelligence settings. We con-
sider computational problems relating to elections. Specifi-
cally the computational complexity of electoral control.

Electoral control models the actions of an agent with con-
trol over an election, referred to as the chair, who modifies
this structure to ensure a preferred outcome, e.g., by adding
voters to the election to ensure a preferred candidate wins.
Types of electoral control model many different types of real-
world manipulative actions on elections such as get-out-the-
vote drives. The study of electoral control was introduced

by Bartholdi, Tovey, and Trick [1992] who studied the com-
putational complexity of different types of control, including
control by adding voters, for several voting rules. This im-
portant initial work led to lots of subsequent work on control
(see, e.g., Faliszewski and Rothe [2016]).

A natural model of control introduced by Loreggia et
al. [2015] is constructive control by replacing voters (CCRV)
in which the election chair (for example to avoid detection)
replaces a set of voters from the election with the same num-
ber of unregistered voters in order to ensure a preferred candi-
date wins. This model has been thoroughly studied and recent
work by Erdélyi et al. [2021] completes many open cases and
includes a comprehensive table of known results. The sole
open case is CCRV for 2-Approval elections.

When studying an electoral control problem for a given
voting rule, the first step is typically to determine if the ac-
tion is in P or NP-complete. If the problem is NP-complete,
the next steps could involve empirical approaches, parame-
terized complexity, or approximation (see, e.g., Rothe and
Schend [2013] and Dorn and Schlotter [2017]). However,
some problems in NP do not seem to easily be classified
as being in P or NP-complete. An example of such a prob-
lem is Exact Perfect Matching (in which we ask if there ex-
ists a perfect matching with exactly a certain number of red
edges) introduced by Papadimitriou and Yannakakis [1982]
who conjectured it to be NP-complete. Mulmuley, Vazirani,
and Vazirani [1987] later gave a randomized polynomial-time
algorithm thus showing the problem easy.

We consider control by adding voters (CCAV) and con-
trol by replacing voters (CCRV) as well as their exact vari-
ants (CCAV! and CCRV!) for the scoring rules First-Last
(defined by 〈1, 0, . . . , 0,−1〉) and 2-Approval, and link their
complexity to the complexity of Exact Perfect Matching. Our
results are summarized in Table 1. Equivalence in Table 1
means polynomial-time disjunctive truth-table (dtt) equiva-
lence (a more flexible notion than many-one equivalence; see
the Preliminaries) though many of the individual reductions
are proven with less flexible (typically logspace many-one)
reductions. Since RP is closed under dtt reductions, and Exact
Perfect Bipartite Matching (EPBM) and Exact Perfect Match-
ing are in RP, the problems polynomial-time dtt equivalent to
these problems are also in RP. If one of the equivalent prob-
lems is NP-complete, then RP = NP, which is very unlikely.
On the other hand, if one of the equivalent problems is in
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P, then so is EPBM, which would solve a 40-year-old open
problem.1

Our results establish even better upper bounds than RP,
since EPBM and Exact Perfect Matching are not only in RP,
but even in RNC [Mulmuley et al., 1987], which is the class
of problems with efficient randomized parallel algorithms.

Our work is the first to show equivalence between voting
problems and Exact Perfect [Bipartite] Matching. In fact the
only work we found that does something related in voting is
Giorgos [2019], which reduces a multiwinner election prob-
lem to Exact Perfect Matching (but does not show equiva-
lence). Our approach of showing equivalence to Exact Perfect
[Bipartite] Matching may be useful for other voting problems
that have thus-far defied classification as being in P or NP-
complete.

2 Preliminaries
An election (C, V ) is a pair comprised of a set of candidates
C and a set of voters V where each voter v ∈ V has a total-
order vote over the set candidates.

A voting rule E is a mapping from an election to a set of
candidates referred to as the winners. Our results are for two
natural scoring rules, First-Last and 2-Approval. A scoring
rule is defined by a family of scoring vectors of the form
〈α1, α2, . . . , αm〉 (wherem is the number of candidates) with
αi ≥ αi+1 where a candidate ranked ith by a voter receives
score αi from that voter. The rule First-Last is described by
the general scoring vector 〈1, 0, . . . , 0,−1〉 and 2-Approval
is described by the general scoring vector 〈1, 1, 0, . . . , 0〉.

2.1 Election Problems
We examine the complexity of two types of electoral control,
namely, control by adding voters and control by replacing
voters. Control by adding voters was introduced by Bartholdi,
Tovey, and Trick [1992], and control by replacing voters was
introduced by Loreggia et al. [2015].
Name: E-Constructive Control by Adding Voters (CCAV)
Given: An election (C, V ), a set of unregistered voters W ,
an integer k ≥ 0, and a preferred candidate p.
Question: Does there exist a set W ′ ⊆W such that ‖W ′‖ ≤
k and p is an E-winner of the election (C, V ∪W ′)?

Name: E-Constructive Control by Replacing Voters (CCRV)
Given: An election (C, V ), a set of unregistered voters W ,
an integer k ≥ 0, and a preferred candidate p.
Question: Do there exist sets V ′ ⊆ V and W ′ ⊆ W , such
that ‖V ′‖ = ‖W ′‖ ≤ k and p is an E-winner of the election
(C, (V − V ′) ∪W ′)?

We also consider the exact versions of these problems (in-
troduced by Erdélyi [2021]) where we ask if it is possible to
add or replace exactly k voters. We refer to these problems as
CCAV! and CCRV!, respectively.

1One might wonder why we (and others) do not prove such prob-
lems complete for a class such as RP. The answer to that is that
semantically defined classes such as RP may not have complete
problems. In particular, RP does not robustly (i.e., in every rel-
ativized world) possess many-one complete sets [Sipser, 1982] or
even Turing-complete sets [Hemaspaandra et al., 1993]. Of course
if RP = P, then RP does have complete sets.

2.2 Exact Perfect Matching
This paper explores the connection between the abovemen-
tioned election problems with the following graph problems
introduced by Papadimitriou and Yannakakis [1982].
Name: Exact Perfect [Bipartite] Matching
Given: A [bipartite] graph G = (V,E), a set R ⊆ E of red
edges, and an integer k ≥ 0.
Question: Does there exist a perfect matching of G with ex-
actly k red edges, i.e., a set of edges E′ ⊆ E, exactly k of
which are red, such that each v ∈ V is incident with exactly
one edge in E′?

In proving our results we use several different intermediate
problems and define these when they are first used.

2.3 Computational Complexity
We assume that the reader is familiar with the classes P and
NP, and what it means for a problem to be NP-complete.
NP-completeness is typically shown using polynomial-time
many-one reductions. However, there are many other types
of reductions. Many of our results will use logspace many-
one reductions (where the reduction is even computable in
logspace) as well as disjunctive truth-table reductions. A dis-
junctive truth-table (dtt) reduction is a generalization of the
many-one reduction. A dtt reduction from X to Y outputs a
list of strings such that x ∈ X if and only if at least one of the
strings in the list is in Y . Two languages X and Y are equiv-
alent with respect to a given type of reduction if X reduces
to Y and Y reduces to X , and the type of equivalence (e.g.,
polynomial-time dtt equivalence) is determined by the most
flexible reduction used in establishing the equivalence.

RP (sometimes called R) is the class of languages L for
which there exists a probabilistic polynomial-time algorithm
A such that for all x ∈ L, A accepts with probability at least
1/2, and for all x 6∈ L, A always rejects [Gill, 1977]. Note
that A can have false negatives, but not false positives, and
by iterating we can make the probability of a false negative
exponentially small.

RNC is a subset of RP, and is defined as the class of lan-
guages that can be decided by a randomized algorithm in
polylogarithmic time on a parallel computer with a polyno-
mial number of processors (see, e.g., Papadimitriou [1994]).
Since RNC is not known to contain P, it may not be closed
under polynomial-time reductions, but RNC is closed under
logspace dtt reductions.

We note in passing that the “P” upper bounds listed in
Table 1 could be replaced by P ∩ RNC, since 2-Approval
CCAV! logspace many-one reduces to 2-Approval CCRV by
padding (after some preprocessing), CCAV always logspace
dtt reduces to CCAV!, and we show that CCRV for 2-
Approval and First-Last are in RNC.

For a more detailed description of the concepts introduced
in this section, see, e.g., Papadimitriou [1994].

3 First-Last Elections
In this section, we will show that CCRV, CCAV!, and CCRV!
for First-Last are polynomial-time dtt equivalent to EPBM.
These are the first voting problems equivalent to EPBM. This
implies that we are very unlikely to be able to classify these
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First-Last 2-Approval
CCAV P [Hemaspaandra et al., 2014] P [Lin, 2011]
CCAV! equiv. to Exact Perfect Bipartite Matching (Section 3.1) P (Theorem 10)
CCRV equiv. to Exact Perfect Bipartite Matching (Section 3.2) reduces to Exact Perfect Matching (Corollary 11)
CCRV! equiv. to Exact Perfect Bipartite Matching (Section 3.2) equiv. to Exact Perfect Matching (Section 4)

Table 1: Summary of our results

control problems as being in P or being NP-complete: If First-
Last CCAV!/CCRV!/CCRV is NP-complete, then RP = NP,
which is generally believed to be almost as unlikely as P =
NP. And if we were to prove CCAV!/CCRV!/CCRV to be in
P, then we would also have shown that EPBM is in P. The
proof consists of a large number of reductions, some of which
are complicated. To make the proof easier to follow, we will
first prove the CCAV! case, which shows the main ideas, and
then show how to modify this for CCRV! and CCRV.

3.1 First-Last-CCAV! Is Equivalent to EPBM
The equivalence of First-Last-CCAV! to EPBM follows from
the following cycle of reductions:

1. Exact Cycle Sum logspace many-one reduces to First-
Last-CCAV! (Theorem 1).

2. First-Last-CCAV! logspace many-one reduces to Exact
Perfect Bipartite b-Matching (Theorem 3).

3. Exact Perfect Bipartite b-Matching logspace many-one
reduces to EPBM (Theorem 5).

4. EPBM polynomial-time dtt reduces to Exact Cycle Sum
[Papadimitriou and Yannakakis, 1982, Proposition 1].2

The above also implies that First-Last-CCAV! is in RNC,
since items 2 and 3 imply that First-Last-CCAV! logspace
many-one reduces to EPBM, RNC is closed under logspace
dtt reductions (and so certainly under logspace many-one re-
ductions), and EPBM is in RNC [Mulmuley et al., 1987].
Exact Cycle Sum is defined as follows [Papadimitriou and
Yannakakis, 1982].
Name: Exact Cycle Sum
Given: Digraph G and integer k ≥ 0.
Question: Is there a set of (vertex) disjoint cycles of total
length exactly k?

Exact Perfect Bipartite b-Matching is defined as follows.
Name: Exact Perfect Bipartite b-Matching
Given: A bipartite multigraph G = (V,E), a capacity func-
tion b : V → N, a set R ⊆ E of red edges, and an integer
k ≥ 0.
Question: Does there exist a perfect b-matching of G with
exactly k red edges, i.e., a set of edges E′ ⊆ E, exactly k of

2Papadimitriou and Yannakakis [1982] only consider “polyno-
mial equivalence,” though it is clear from inspection that some of
the reductions in their paper are in fact logspace many-one reduc-
tions. This particular reduction however computes a perfect bipar-
tite matching (which can be done in polynomial time, but it is not
known if this can be done in logarithmic space; we mention that re-
cent work shows this problem is in quasi-NC [Fenner et al., 2021]).
Careful inspection also shows that the reduction from Papadimitriou
and Yannakakis [1982] is a dtt but not a many-one reduction.

which are red, such that each v ∈ V is incident with exactly
b(v) edges in E′?

Theorem 1 Exact Cycle Sum logspace many-one reduces to
First-Last-CCAV!.
Proof. We will first show that the obvious attempt at a re-
duction fails. Let G be a digraph. Let the candidates be
V (G) plus preferred candidate p. There are no registered vot-
ers. For each arc (a, b) in G, we have an unregistered voter
b > · · · > a (i.e., ranking b first and a last) and we ask if we
can add exactly k voters such that p is a winner (note that in
that case all candidates are tied at 0). It is easy to see that a
set of disjoint cycles of total length exactly k corresponds to
a set of k added voters such that p is a winner. However, the
following example shows that the converse does not hold.
Example 2 Consider the digraph consisting of arcs (a, b),
(b, c), (c, a), (a, d), (d, e), and (e, a) (that is, two cycles of
length 3, intersecting in a) and the corresponding set of vot-
ers.

There is no set of disjoint cycles of total length exactly 6
in the given graph. However, if we add all six corresponding
voters, p is a winner.

Note that the reduction attempt above will successfully re-
duce the version of Exact Cycle Sum in which the cycles
are edge-disjoint rather than (vertex-)disjoint to First-Last-
CCAV!. And it is easy to see this reduction is computable
in logspace, since each voter corresponds directly to an arc.
It remains to show that we can reduce Exact Cycle Sum to the
edge-disjoint version of Exact Cycle Sum (in logspace). This
is not hard. Given a digraphG, we create a new digraphG′ as
follows. For every vertex v inG, we have an arc (v, v′) inG′.
For every arc (v, w) in G, we have an arc (v′, w) in G′. Set
the sum to 2k. An example of this construction on the graph
from Example 2 is shown below.

Every cycle that goes through v must go through (v, v′) and
so a set of disjoint cycles in G corresponds to a set of edge-
disjoint cycles in G′ of twice the length. q
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Theorem 3 First-Last-CCAV! logspace many-one reduces to
Exact Perfect Bipartite b-Matching.

Proof. Let p be the preferred candidate and let k be the
number of voters to add. If there are at least k unregistered
voters with p first, we will add only voters that have p first.
Then the final score of p will be the score of p from the reg-
istered voters plus k and we can easily check if we can add
k such voters in such a way that the score of each candidate
a 6= p is at most the final score of p.

If there are ` < k unregistered voters with p first, we add
all of those (to the registered voters) and subtract ` from k.
So, all remaining unregistered voters do not have p first.

Note that if we have not yet determined if control is pos-
sible, we are left with an instance in which no unregistered
voter has p first (note that in the process, k may have been
updated). If `′ < k voters do not have p last, add all of those
and check if you can add k − `′ voters that have p last such
that p is still a winner. If there are at least k voters that do not
have p last, we will never add a voter that has p last, so delete
all unregistered voters that have p last.

Note that after this preprocessing, we have either deter-
mined whether control is possible, or we are left with an in-
stance where all unregistered voters give 0 points to p.

Let sc be the score of c from the registered voters. We
create the following graph (see Example 4 for an example of
the construction). The vertices are a, a′ for every candidate
a 6= p and a special vertex x. The graph will be bipartite,
with the nonprimed vertices (including x) in one part and the
primed vertices in the other.

For every unregistered voter voting b > · · · > a, we have
a red edge (a, b′). Note that this will give a multigraph, since
we can have multiple voters with the same vote. We also have
an “infinite” number of nonred edges (a, a′) and an “infinite”
number of nonred edges (x, a′), where infinite means as many
as we could ever need.

LetM be a constant that is large enough so that all b-values
(to be specified below) are positive. We set the b-values as
follows: b(a′) =M ; b(a) =M + sa − sp; b(x) is set so that
the sum of the unprimed b-values = the sum of the primed b-
values, i.e., b(x) =

∑
a 6=p(sp − sa). If this is negative, then

there is no solution.

Example 4 Consider an instance of First-Last-CCAV!, after
the preprocessing described above has been performed, with
preferred candidate p, k = 2, registered voters resulting in
the following scores: sa = 3, sb = −2, sc = −2, and sp = 1,
and five unregistered voters: b > · · · > a, c > · · · > a,
c > · · · > a, b > · · · > c, and a > · · · > b. Below is the cor-
responding bipartite graph as described in the construction.

p wins after adding the voter voting b > · · · > a and one
of the voters voting c > · · · > a. This corresponds to the
following perfect matching with exactly two red edges.

We will show that we can add k unregistered voters such
that p becomes a winner if and only if there exists a perfect
matching that contains exactly k red edges.

If there is a set of k unregistered voters that we can add so
that p becomes a winner, then add the edges corresponding to
the added voters to the matching. These are k red edges. We
need to show that we can extend this to a perfect matching by
adding just nonred edges.

For a 6= p, let Fa be the set of added voters with a first,
and let La be the set of added voters with a last. Since p is a
winner, we know that sa + ‖Fa‖ − ‖La‖ ≤ sp (∗).

The edges corresponding to La are incident with a, and
the edges corresponding to Fa are incident with a′. b(a) =
M+sa−sp, and so we needM+sa−sp−‖La‖ nonred edges
incident with a to get a perfect matching. All nonred edges
incident with a go to a′, and there are as many of them as we
need. The only thing we need to ensure is that a′ can handle
that many nonred edges. b(a′) =M and a′ is already incident
with ‖Fa‖ red edges. So we need thatM+sa−sp−‖La‖ ≤
M −‖Fa‖. This follows from (∗). We then make sure that a′
is incident with exactly b(a′) edges by adding as many (x, a′)
edges as needed.

For the converse, suppose there is a perfect bipartite b-
matching with exactly k red edges. For each red edge (a, b′)
add the corresponding voter (who votes b > · · · > a). We
claim that p is a winner. Consider candidate a 6= p. Let
La be the set of red edges incident with a and let Fa be the
set of red edges incident with a′. We know that there are
M + sa − sp − ‖La‖ nonred edges incident with a and that
there are M − ‖Fa‖ nonred edges incident with a′. Since
all nonred edges incident with a go to a′, it follows that
M + sa − sp − ‖La‖ ≤ M − ‖Fa‖, which implies that
sa − sp + ‖Fa‖ − ‖La‖ ≤ 0, and so the score of a after
addition, sa + ‖Fa‖ − ‖La‖, is at most sp. q

Theorem 5 Exact Perfect [Bipartite] b-Matching logspace
many-one reduces to Exact Perfect [Bipartite] Matching.

The proof of the above theorem generalizes the reduc-
tion from Perfect b-Matching to Perfect Matching (see, e.g.,
Berge [1973]) and can be found in the full version [Fitzsim-
mons and Hemaspaandra, 2022].

3.2 First-Last CCRV! and CCRV are Equivalent
to EPBM

We will now show that CCRV! and CCRV for First-Last are
equivalent to EPBM. This follows from the following cycle

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

296



of reductions.

1. First-Last-CCAV! logspace many-one reduces to First-
Last-CCRV (Theorem 7).

2. First-Last-CCRV logspace dtt reduces to First-Last-
CCRV! (Observation 6).

3. First-Last-CCRV! logspace many-one reduces to EPBM
(Theorems 8 and 9).

4. EPBM polynomial time dtt reduces to First-Last-CCAV!
(previous section).

The above also implies that First-Last-CCRV and First-Last-
CCRV! are each in RNC.

We start by noting that control by replacing at most k voters
is possible if and only if for some `, 0 ≤ ` ≤ k, control by
replacing exactly ` voters is possible.

Observation 6 For any voting ruleX ,X-CCRV logspace dtt
reduces to X-CCRV!.

Next, we will show that First-Last-CCAV! reduces to First-
Last-CCRV.

Theorem 7 First-Last-CCAV! logspace many-one reduces to
First-Last-CCRV (and to First-Last-CCRV!).

Proof. Consider an instance of First-Last-CCAV! with reg-
istered voters V , unregistered voters W , preferred candidate
p, and limit k. As in the proof of Theorem 3 it suffices to con-
sider First-Last-CCAV! where p receives 0 points from each
unregistered voter.

Let sp denote the score of p from the registered voters.
Note that in a First-Last election the sum of the scores of all
candidates is 0. And so if sp is negative, p cannot be made a
winner by exact adding.

So assume sp ≥ 0. We now construct an instance of First-
Last-CCRV as follows. Let the candidate set consist of C
with 2k additional candidates: a1, . . . , ak and b1, . . . , bk. Up-
date the preferences for each voter so that these candidates
receive 0 points from each registered and unregistered voter.
Except for adding these new candidates to the votes, the set
of unregistered voters remains the same. However, for each
i, 1 ≤ i ≤ k, add sp + 1 voters voting ai > · · · > bi to
the set of registered voters. Now each ai candidate has score
sp + 1, each bi candidate has score −sp − 1, and the scores
of the remaining candidates are unchanged.

If control is possible by adding exactly k voters such that p
wins, then control by replacing voters is possible by replacing
k voters, with the ith voter voting ai > · · · > bi for 1 ≤ i ≤
k, with those same k unregistered voters. This decreases the
score of each ai candidate by 1 so that they tie with p, and it
is easy to see that p wins.

For the converse, suppose that there is a way to replace at
most k voters such that p wins. Since the score of each of the
k ai candidates must decrease by 1, and each unregistered
voter gives 0 points to ai, at least one of the voters voting
ai > · · · > bi must be replaced for each i. It follows that we
replace exactly one voter voting ai > · · · > bi for each i, and
it is straightforward to see that the k unregistered voters re-
placing the ai voters correspond to k voters that can be added
to V so that p wins by exact control by adding voters.

The same reduction reduces to CCRV!. q

And finally, we will show that First-Last-CCRV! reduces
to EPBM. Note that we can view CCRV! as CCAV! where
we have two sets of unregistered voters. This suggests re-
ducing to the following variation of Exact Perfect Bipartite
b-Matching.
Name: Exact Red-Blue Perfect Bipartite b-Matching
Given: A bipartite multigraph G = (V,E), a capacity func-
tion b : V → N, disjoint sets R ⊆ E of red edges and B ⊆ E
of blue edges, an integer k ≥ 0, and an integer ` ≥ 0.
Question: Does there exist a perfect b-matching of G with
exactly k red edges and exactly ` blue edges, i.e., a set of
edges E′ ⊆ E, exactly k of which are red and exactly ` of
which are blue, such that each v ∈ V is incident with exactly
b(v) edges in E′?

Theorem 8 First-Last-CCRV! logspace many-one reduces to
Exact Red-Blue Perfect Bipartite b-Matching.

The proof of the above theorem can be found in the full
version.

Theorem 9 Exact Red-Blue Perfect [Bipartite] b-Matching
logspace many-one reduces to Exact Perfect [Bipartite]
Matching.

Proof. The construction from the proof of Theorem 5
(when we color edges in the constructed graph with the color
of their corresponding edges in the multigraph) reduces Exact
Red-Blue Perfect [Bipartite] b-Matching to Exact Red-Blue
Perfect [Bipartite] Matching.

It remains to reduce Exact Red-Blue Perfect [Bipartite]
Matching to Exact Perfect [Bipartite] Matching.

Let G be the graph with red and blue edges, and let k and
` be the exact numbers of red and blue edges we want in
the perfect matching. Without loss of generality, assume that
k, ` < n, where n is the number of vertices (note that a perfect
matching contains n/2 edges). Adapting approaches from
Papadimitriou and Yannakakis [1982, Proposition 1], we re-
place each blue edge (u, v) by a path of length 2n−1 colored
red-nonred alternately:

Call this graph G′. Note that G′ is bipartite if G is bipartite
and that G′ uses only the color red. We claim that G has a
perfect matching with k red and ` blue edges if and only if
G′ has a perfect matching with `n+ k red edges. Consider a
perfect matching of G with k red and ` blue edges. We will
modify this to obtain a perfect matching forG′. For each blue
edge in G consider the length 2n − 1 path in G′ that corre-
sponds to this edge. If the blue edge is in the matching of G,
replace this edge by the n red edges on the path. If the blue
edge is not in the matching, put the n − 1 nonred edges on
the path in the matching. This gives a perfect matching of G′

with the required number of red edges. For the converse, con-
sider a perfect matching of G′ with `n + k red edges. Note
that every path corresponding to a blue edge in G contributes
n or 0 red edges to the perfect matching of G′. Also note
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that the matching of G′ contains fewer than n nonpath edges.
It follows that exactly ` of the paths corresponding to a blue
edge contribute n red edges to the matching. These are ex-
actly the blue edges in the perfect matching for G. And the
remaining edges in the matching of G′ (k of which are red)
are the remaining edges in the perfect matching of G. q

4 2-Approval Elections
In the previous section we found that control by replacing
voters for First-Last is equivalent to EPBM and so it is un-
likely to be NP-complete, and showing that it is in P would
solve an important open question in matching. Linking the
complexity of a problem to Exact Perfect [Bipartite] Match-
ing and showing that the problem is in RP can be a useful
approach for gaining insight into the complexity of a vot-
ing problem which has resisted classification. In fact we
find an RP (and RNC) upper-bound for the complexity of 2-
Approval-CCRV by showing that it logspace dtt reduces to
Exact Perfect Matching (Corollary 11). It remains open if a
reduction exists in the other direction. Notably, 2-Approval-
CCRV is the sole remaining case in the 11-by-12 table from
Erdélyi et al. [2021], and we show that this problem is easy,
since it is in RP and it is widely assumed that P = RP.

As was the case with First-Last, control by adding voters
for 2-Approval elections is in P [Lin, 2011]. The correspond-
ing case of exact control is also in P, by a straightforward
reduction (for details see the full version).

Theorem 10 2-Approval-CCAV! is in P.

We now turn to the problem of control by replacing vot-
ers. We show that 2-Approval-CCRV! is equivalent to Exact
Perfect Matching through the following cycle of reductions.

1. 2-Approval-CCRV! logspace many-one reduces to Ex-
act Red-Blue Perfect b-Matching (Theorem 12).

2. Exact Red-Blue Perfect b-Matching logspace many-one
reduces to Exact Perfect Matching (Theorem 9).

3. Exact Perfect Matching logspace many-one reduces to
2-Approval-CCRV! (Theorem 13).

As a result of Observation 6 and items 1 and 2 we have the
following corollary.
Corollary 11 2-Approval-CCRV logspace dtt reduces to Ex-
act Perfect Matching.

This implies that 2-Approval-CCRV is in RNC. Addition-
ally, the above statements imply 2-Approval-CCRV! is in
RNC.

Theorem 12 2-Approval-CCRV! logspace many-one re-
duces to Exact Red-Blue Perfect b-Matching.

Proof. Consider an instance of 2-Approval-CCRV! with
candidatesC, registered votersX , unregistered voters Y , pre-
ferred candidate p, and number `. As was done in the proof
of Theorem 8, we can view this problem as a version of exact
control by adding voters where we ask if it is possible to add
(to the empty set) k = ‖X‖ − ` voters from X and ` voters
from Y such that p wins.

Note we can assume that we will add as many voters that
approve of p as possible. This fixes the final score of p which

we denote by sp = min(k, #voters in X approving p) +
min(`, #voters in Y approving p).

We will now construct the instance of Exact Red-Blue Per-
fect b-Matching. Let the set of vertices in the constructed
graph V (G) = C ∪ {x}, where x is a vertex used to ensure
that the resulting matching is perfect. For each c ∈ C let
b(c) = sp. Let b(x) = ‖C‖sp − 2(k + `). If this is negative,
control is not possible. The set of edges is defined as follows.
Red edges: For each voter in X that votes {a, b} > . . . add
a red edge (a, b).
Blue edges: For each voter in Y that votes {a, b} > . . . add
a blue edge (a, b).
Uncolored edges: For each candidate c ∈ C − {p}, add
b(c) = sp uncolored edges (c, x).

Suppose there exists a way to add k voters from X and `
voters from Y such that p wins. As mentioned above, we can
assume that we add as many voters approving p as possible
and so the score of p is sp.

We construct a matching in the graph G by taking the k
red edges corresponding to the voters added from X and the
` blue edges corresponding to the voters added from Y . Since
the score of p is sp, vertex p is incident to b(p) edges in the
matching. Since p is a winner, every other candidate c has
score at most sp, and so vertex c is incident to at most sp
edges in the matching. What remains is to make this a perfect
matching. The sum of the b-values for the vertices in C is
(‖C‖−1)sp. Since there are k+ ` edges in the matching and
the vertex p is an endpoint of sp of the edges, (‖C‖− 1)sp −
(2(k + `) − sp) uncolored edges must be added. Notice that
is exactly b(x) and so this is a perfect matching.

For the converse, suppose there exists a perfect matching
with k red edges and ` blue edges. For each of the k red edges
add the corresponding voter from X , and for each of the `
blue edges add the corresponding voter from Y . Since this is
a perfect b-matching, vertex p is incident to exactly sp colored
edges in the matching. And each vertex c ∈ C − {p} is
incident to at most sp colored edges in the matching. It is easy
to see that when the voters in X are added that correspond to
the red edges and the voters in Y are added that correspond
to the blue edges that p wins. q

What is left to show for equivalence is the reduction in the
other direction. The proof of the following theorem can be
found in the full version.
Theorem 13 Exact Perfect Matching logspace many-one re-
duces to 2-Approval-CCRV!

5 Conclusion
We showed that by considering RP as an option, we can gain
insight into the complexity of voting problems that have re-
sisted classification as being in P or NP-complete. We con-
nected the complexity of control by replacing voters for First-
Last and 2-Approval elections to the complexity of the Exact
Perfect [Bipartite] Matching, showing these problems in RP.
For 2-Approval control by replacing voters, this shows the
last remaining case in the comprehensive table from Erdélyi
et al. [2021] to be easy, since it is widely assumed P = RP.
We expect this approach will be useful in exploring the com-
plexity of other voting problems.
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